
Under review as a conference paper at ICLR2023

CAUSAL NEURAL NETWORKS FOR CONTINUOUS
TREATMENT EFFECT ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Causal inference have wide applications in medical decision-making, evaluating
advertising, and voucher distribution. The exist of confounding effect makes it
difficult to have an unbiased uplift estimation. Traditional methods focuses on
the ordering of the problem. Little attention has been paid to the response perfor-
mance, either on the evaluation metric, nor the modeling. In this work, an end-to-
end multi-task deep neural network is proposed to capture the relations between
the treatment propensity and the treatment effect, where the treatment can be con-
tinuous. The performance of the proposal is tested over large scale semi-synthetic
and real-world data. The result shows that the proposal balances the estimation
of response performance and individual treatment effect. The online environment
implementation suggests the proposal can boost up the market scale and achieve
4.8% higher return over investment (ROI).

1 INTRODUCTION

Conditional average treatment effect (CATE), also known as causal inference, can characterize the
causal effect of certain treatments on the potential outcome over the whole population as a function
of measured features or covariates. Typically, samples are separated into two groups, treatment
group and control group. The treatment group is given treat, such as medicines, while the control
group is not. Causal inference is to estimate the treatment effect, also known as uplift, over the
control group. This technique has wide applications such as identifying the best medical decisions
(Glass et al. (2013)), the most effective policy to economies (Heckman & Vytlacil (2007)), the most
popular item for consumers on internet platforms (Liang et al. (2016)).

One of the most significant issues encountered in practice in the causal inference problem is the bi-
ased distribution of treatment and control group. Ideally, the model should be trained over random-
ized control trials (RCT) data, in which treatment should be independent of features. However, the
RCT experiment is usually not available or expensive to obtain in practice. Typically, confounding
factors exist which affect the treatment and potential outcome at the same time in the observational
data. In the internet scenario, the voucher is often provided only to inactive or new users. The active
users, on the other hand, are not given the vouchers for cost-saving. This phenomenon makes it
difficult to learn an unbiased model.

Various methods have been developed to alleviate the bias introduced by confounders, such as,
sensitivity analyses (Rosenbaum & Rubin (1983)), instrumental variable (IV) approaches (Angrist
et al. (1996)), and multi-task deep neural network (DNN) (Shi et al. (2019)). However, the sensitivity
analyses can not give the point estimation. IVs can only partially identify CATE. Not to mention
that most of the works limit to categorical treatment.

In some scenarios, it is sufficient to get an ordering of uplift of samples, while the response estima-
tion is not crucial. In a recommendation system, the cost of pushing an advertise to a consumer is
constant, no matter whether the consumer will purchase or not. In this case, one just needs to figure
out consumers that have the greatest uplift. However, when it comes to the resource allocation prob-
lem, accurate response estimation matters. For example, with the advertise, subsidy or a coupon is
sent to consumers. Naturally, the platform want to control the total budget. In this case, one not only
needs to find consumers with the largest uplift, but also needs to estimate the probability of purchas-
ing and the expected cost. In this case, the commonly used Qini coefficients and aera under uplift
curve (AUUC) are not enough, since they does not describe the response estimation performance.
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The main contribution of this paper are as follows:

• An end-to-end multi-task deep neural network (DNN) is proposed to estimate the effect of
continuous treatment which captures the relationships between the treatment propensity, the
true responses, and the treatment effect to alleviate treatment bias in an integrated manner.

• Extensive experiments carried out on semi-synthetic and real-world dataset indicate that
the proposal outperforms the benchmarks in ITE estimation accuracy and uplift ranking
performance.

• The proposal is implemented in an online environment of voucher distribution on the largest
ride-hailing platform in mainland China. The results illustrate the effectiveness of the pro-
posal in scaling up the market and achieving high return over investment (ROI).

This work is organized as follows. In Section 3, the problem setup and notations used in this work
are presented. The proposals are presented in Section 4. Section 5 presents the experiments over
semi-synthetic and real-world data, and Section 6 illustrates the online environment results. Section
7 concludes the work.

2 RELATED WORK

There are in general three main approaches to estimate causal effects, two-model, single-model, and
direct methods. The two-model approach fits two models, one to predict the response of the control
group and the other to predict the treatment group response (Radcliffe (2007); Nassif et al. (2013)).
The model is intuitive and simple. Mature techniques can be applied within this framework like
random forest, XGBoost, and DNN. However, modeling the outcome separately often misses the
”week“ uplift signal (Radcliffe & Surry (2011); Zaniewicz & Jaroszewicz (2013)).

Single-model framework typically models a transformed target variable Z = Y T +(1−Y )(1−T )
where Y is the binary outcome and T is the binary treatment (Jaskowski & Jaroszewicz (2012)).
Following this idea, another transformation is presented in (Athey & Imbens (2015)) to relax the
balance treatment assignment assumption. Single-model framework often outperforms the two-
model framework. But the binary treatment and outcome assumption limits its applications.

Tree based model is typically employed to directly model the uplift (Wan et al. (2022); Wager
& Athey (2018); Tang et al. (2022)). A new splitting criterion with kernel-based doubly robust
estimator is proposed in (Wan et al. (2022)) to alleviate the biased treatment distribution. However,
tree models have difficulties in dealing with continuous treatment.

Deep causal models have attracted increasing attentions since 2016 (Johansson et al. (2016)). A
domain adaption framework is adopted in (Shalit et al. (2017); Alaa et al. (2017)). Causal represen-
tation learning is presented in (Atan et al. (2018). Generative Adversarial Nets (GAN) models are
considered in (Bica et al. (2019; 2020))

Recently, randomized control trials are combined with the observational data to adjust confounders
(Concato et al. (2000)), with the assumption of transportability of RCT to external observational
studies (Pearl & Bareinboim (2011)). (Yu et al. (2023)) proposed a transfer learning enhanced uplift
model that utilizes biased observational data to estimate the uplift of RCT data. However, the RCT
data is usually expensive to obtain and much less than the observational data.

Most works in causal inference area focus on the binary (Shi et al. (2019); Tang et al. (2023; 2022);
Zhong et al. (2022)) or discrete (Wan et al. (2022)) treatment case. The continuous treatment case is
less studied (Wang et al. (2022); Gao et al. (2021)). In some cases, such as voucher distribution and
dose selection, the continuous treatment is necessary.

3 NOTATION AND ASSUMPTIONS

The treatment effect estimation, also known as uplift modeling, with continuous treatment is consid-
ered in this work. Following the potential outcome framework in (Rubin (1974)), let T be the 1-dim
continuous treatment, X be the dX -dim confounding variables, and Y ∈ {0, 1} be the outcome of
interest. As shown in Figure 1a, the population Ω : (X, T, Y ) is assumed to satisfy the following
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(a) Causal Diagrams (b) Intuition: two embeddings
are trained. The b part indicates
the base response without treat-
ment. The w part describes the
treatment effect.

Figure 1: Causal Diagrams and intuition

equations:
Y = g(T,X) + ε; g(T,X) = h(T,X) + b(X);T = f(X) + ν

where ε, ν are white noises. The samples {(Xi, Ti, Yi)} where i = 1, . . . , n are drawn from Ω. The
potential outcome under treatment T = t is defined as Y(t). In the context of continuous treatments,
the propensity score is defined by probability density function π(T = t|X). The sample set of
treatment T = t is denoted as Nt and the sample size is nt , ||Nt||.
The conditional average treatment effect (CATE) is the estimation target, formally defined by

θ(t,X) = E[Y(t)|X]− E[Y(0)|X].

The following mild assumptions are made (Holland (1986); Kennedy et al. (2017)).

Assumption 1. Consistency: the outcome of any sample solely depends on its treatment.

Assumption 2. Ignorability: The potential outcomes Y(T ) is independent of treatment T given
covariate X, i.e. (Y(T ) ⊥ T )|X
Assumption 3. Positivity: The density of treatment is bounded away from 0, i.e.
π(T = t|X) > pmin > 0.

Assumption 4. Monotonicity: The treatment effect is assumed to be monotone, i.e. E[Y(t1)|X] ≥
E[Y(t2)|X] if t1 > t2.

Under these assumptions, we have
θ(t,X) = E[Y(t)|X]− E[Y(0)|X] = E[Y |T = t,X]− E[Y |T = 0,X]

= E[g(t,X)|T = t,X]− E[g(t,X)|T = 0,X]

Assumption 4 is typically true in the internet business scenarios. For example, users with more
subsidy typically more likely to consume.

3.1 EVALUATION

Typically, the treatment effect can not be evaluated since the counter factor is unknown. For each
sample, only the outcome given one treatment or none is observed. Outcomes with other treatment
are unknown. In this case, Qini coefficient and area under uplift curve (AUUC) are popular met-
ric choices. However, the metrics only describe the ordering performance of models and not the
response performance. Thus the response performance errors are introduced in this work.

For each treatment T = t, the uplift curve is defined as the follows. The samples from both control
and treatment group T = t are sorted in descending order by the estimated uplift value θ̂(t,Xi).
The response sum of the first k-samples with treatment T = t and without treatment are defined as

R(t, k) =
∑
i≤k

YiI(Ti = t);R(0, k) =
∑
i≤k

YiI(Ti = 0),
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where I(Ti = 0) is the indicator function defined as

I(Ti = t) =

{
1, if Ti = t
0, else.

Define the first k samples uplift score as

u(t, k) = [
R(t, k)

N(t, k)
− R(0, k)

N(0, k)
][(N(t, k) +N(0, k)].

where N(t, k) =
∑

i≤k I(Ti = t).

Given the first to the (nt + n0)th-samples uplift score, the uplift curve can be plotted. The AUUC
for treatment t and the entire dataset are calculated as

AUUCt =

∑
k u(t, k)

nt + n0
;AUUC =

∑
t AUUCtnt∑

t nt
.

Qini coefficient is a normalization of AUUC and can be compared across different datasets. Define:

q(t, k) = R(t, k)−R(0, k)
N(t, k)

N(0, k)

Qini coefficient for treatment t and for the entire dataset are calculated as

Qinit =
∑

k q(t, k)

nt + n0
;Qini =

∑
t Qinitnt∑

t nt
.

To evaluate the response performance, we define the average treatment effect (ATE) error of treat-
ment t as

εtATE = abs[(
R(t, nt)

nt
− R(0, n0)

n0
)− (

∑
i∈Nt

ĝ(t,Xi)

nt
−

∑
i∈N0

ĝ(0, Xi)

n0
)]

where Nt is the set of populations with treatment T = t, and ĝ the response estimate given by the
model. ATE error measures the average difference between the true and estimated treatment effect
in a treatment group.

Since the ground truth is known in the synthetic data, we can directly evaluate the estimate of
individual treatment effect (ITE). The MAE for treatment t is defined as

εtprob = E
[
abs[g(t,Xi)− ĝ(t,Xi)]

]
where g(t,Xi) is the true probability that Yi = 1, and ĝ(t,Xi) is the estimate. The response error
for treatment t is defined as

εtAprob = E
[
abs[Yi − ĝ(t,Xi)]

]
The ITE error for treatment t is defined as

εtITE = E
[
abs[

(
g(t,Xi)− g(0,Xi)

)
−

(
ĝ(t,Xi)− ĝ(0,Xi)

)
]
]
.

The ATE error εATE, MAE εprob, response error εAprob and ITE error εITE are the weighted average of
εtATE, εtprob , εtAprob and εtITE, respectively.

4 METHOD

We present the network design in this section. As shown in Figure 2, we proposed a three-head
network to deal with confounder. The features X and the treatment T are fed to two MLPs to
generate embedding. These embeddings are fed to three networks, the Monotonicity network, the
Diffloss network and the logistic regression network. Three errors are weighted summed to generate
the final loss. The online inference is the output of the Monotonicity network. Figure 2 shows the
design when the output is categorical. When the potential output is continuous, simple modification
is needed in the loss design.
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Figure 2: Method design

4.1 LOGISTIC NETWORK

The treatment embedding and feature embedding are concatenated and fed to the logistic network.
The label is the binary outcome Y , and the error is cross-entropy. This network is designed to help
train meaningful treatment and feature embedding. When the outcome Y is continuous, the error
should be replaced by mean squared error (MSE) or mean absolute error (MAE).

4.2 MONOTONICITY NETWORK

According to Assumption 4, the monotonicity network is designed to guarantee the monotonicity.
The probability of Y = 1 is assumed to follow a linear equation as follows

P̂ (Y = 1) = sigmoid(w ∗ T + b),

where the value of w and b is the output of the w-DNN and b-DNN, correspondingly. The input of
these two DNNs is the feature embedding. The value b(X) describes the potential outcome without
treatment. The value w(X) ∗ T describes the effect of treatment.

To guarantee the monotonicity of treatment effect, the activation function of the w-DNN is softmax.
The loss is defined as the cross-entropy. When the potential outcome is continuous, the error should
be replaced by MSE or MAE.

4.3 DIFFLOSS NETWORK

In the monotonicity network, the probability of Y = 1 is assumed to follow a linear equation with
two parts. The value b is assumed to be independent of treatment T . In the Diffloss network, the
outcome of the b-network and w-network is trained to be orthogonal. The cosine similarity between
the hidden state of the b-network (w-network) and the treatment embedding is calculated and denoted
by cosb (cosw).

cosb =
hb ∗ embT

||hb|| ∗ ||embT ||
.

Thus the loss is defined as

lossdiff = − log
exp(γ cosw)

exp(γ cosw) + exp(γ cosb)
.
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(a) Traditional Dragonnet (b) Continuous Dragonnet

Figure 3: Dragonnet structures

Minimizing this loss means to maximize the cosine similarity between the hidden state of w-network
and the treatment embedding while minimize the one between the hidden state of b-network and the
treatment embedding, which makes b to be independent of treatment T .

Given three networks, the loss is the weighted sum as follows:

loss = ωmonlossmon + ωloglosslog + ωdifflossdiff

The inference is given by

θ̂(t,X) = sigmoid
(
ŵ(t,X) ∗ t+ b̂(X)

)
− sigmoid

(
ŵ(0,X) ∗ 0 + b̂(X)

)
= sigmoid

(
ŵ(t,X) ∗ t+ b̂(X)

)
− sigmoid

(
b̂(X)

)
where ŵ and b̂ are the output of the monotonicity network.

4.4 DISCUSSION

In (Rosenbaum & Rubin (1983)), a theorem of sufficiency of propensity score is stated as follows.

Theorem 1 (Sufficiency of Propensity Score). If the average treatment effect θ is identifiable from
observational data by adjusting for X, i.e., θ = E[E[Y |T = t,X]−E[Y |T = 0,X]], then adjusting
for the propensity score also suffices, θ = E[E[Y |T = t, f(X)]− E[Y |T = 0, f(X)]].

Motivated by this theorem, a three headed deep neural network, Dragonnet is proposed to deal with
confounders when the treatment is binary in (Shi et al. (2019)). As shown in Figure 3a, one head
predicts the probability that one sample gets treated, and other two heads predicts the potential
outcomes when the treatment equals to 0 and 1, correspondingly. However, this structure can not fit
the continuous treatment case. One naive extension of Dragonnet is shown in Figure 3b. One head
is to predict the probability that one sample gets treated (T > 0), and the other head predicts the
potential outcomes with different treatment.

This model does not guarantee the monotonicity of the treatment effect. One intuitive idea is to
separate the potential outcomes into two parts. As shown in Figure 1b, one part is the base part
that has nothing to do with treatments, and represents the natural outcomes without treatments. The
other part is the treatment part, which tries to estimate h(T,X) and keep the monotonicity in T . To
make sure the first part has nothing to do with treatments, the Diffloss network is introduced to make
w and b orthogonal. The Logistic network is to make the embedding meaningful.

5 EXPERIMENTS

5.1 PRE-ESTABLISHED CAUSAL BENCHMARK DATASET

The IBM causal inference banchmark framework is used to evaluate the performance of the model,
which was developed for the 2018 Atlantic Causal Inference Conference competition data (ACIC
2018). The dataset is derived from the linked birth and infant death data (LBIDD) (MacDorman &
Atkinson (1998))1. The treatment in the dataset is binary and the potential output is continuous. Thus
the activation function of the logistic network and monotonicity network are set to none. Besides, the

1https://github.com/IBM-HRL-MLHLS/IBM-Causal-Inference-Benchmarking-Framework/tree/mas-
ter/data/LBIDD
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treatment effect in the data is not necessarily positive. Thus, the softplus function in the monotonicity
network is removed.

Table 1: ACIC Data Results

Method εprob εITE εprob All εITE All # of params Time
DragonNet 1.3527 9.0548 2.2591 8.9741 176804 5.08s
WTB-diff 1.3151 6.3749 1.3753 5.0956 14935 3.9s

Since the outcome of this dataset is continuous, only the ITE error and MAE are presented. The
proposal is compared with Dragonnet (Shi et al. (2019)). In Table 1, the performance with two
settings are presented as the one in (Shi et al. (2019)). Left half of the table presents the test errors.
That is to divide the dataset to training set and test set, with ratio 8:2. The model is trained over
the training set and the tested over the test set. The right half of the table is to train and test models
using the whole dataset. The result shows that the MAE and ITE error of the proposal are smaller
than the ones of Dragonnet. The number of hyper-parameters in the models and the training time
for one epoch are also smaller.

5.2 SEMI-SYNTHETIC DATA

The data is collected from one of the largest ride-sharing platform in mainland China, which covers
from July 2022 to April 2023. Users come to the platform and submit their ride enquiry to the
platform, including origins and destinations. The platform will provide estimated cost of the trip.
Meanwhile, a possible subsidy is provided by the platform. Given the cost and subsidy, users decide
to whether to place the order. In this work, more than 8 million enquires are collected, in which
there are more than half million samples are RCT data. The data is sampled that the treated and
non-treated samples are 1:1. There are more than 300 features, including the enquiry information,
the historical behavior of the user, and the supply-demand information of the origin.

The semi-synthetic data is generated using the real enquires. The treatment is the discount rate. Two
datasets are examined in this work. The linear dataset assumes the probability a user places an order
is a linear function of the treatment and features as defined as follows:{

P (Y = 1|Xi) = sigmoid(w0 ∗ Ti + bi)
bi = αXi

where α = [αj ] are randomly generated, and w >> αj to make uplift effect significant.

The polynomial dataset assumes the probability a user places an order is a polynomial function of
the treatment and features as defined as follows:{

P (Y = 1|Xi) = sigmoid(wi ∗ Ti + bi)
bi = αXi

wi = w0 + λTi + βXi

where α, β, λ are randomly generated, and λ >> αj to make uplift effect significant.

Table 2: Linear Semi-synthetic Data Results

Method εprob εITE AUUC Qini εATE

Continuous DragonNet 0.0320 0.0150 0.5216 0.3445 0.0068
GCF - 0.0185 0.5106 -0.0018 -

ADMIT (modified) 0.085 0.0324 0.4902 0.1343 0.0468
XGBoost(rand) 0.0929 0.0282 0.4273 0.3179 0.0111

WTB 0.0181 0.0182 0.5036 0.3518 0.0020
WTB-diff 0.0244 0.0185 0.4960 0.3519 0.0019

WTB-diff-fft 0.0195 0.0174 0.4891 0.3509 0.0020

The linear semi-synthetic data results are listed in Table 2. Continuous DragonNet is a two headed
deep neural network presented in Figure 3b. Generalized Causal Forest (GCF) (Wan et al. (2022))
introduces a new splitting criterion with kernel-based doubly robust estimator. The ADMIT method
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employs an importance sampling technique to deal with the biased treatment distribution (Wang
et al. (2022)). The WTB model serves as an ablation study. It follows the structure in Figure 2,
without the Diffloss Network and the the Logistic Network. The WTB-diff-fft model is similar to
the proposal in Figure 2. The only difference is that the WTB-diff-fft model replaces the learnable
treatment embedding MLP by an FFT module. All models is trained using biased observe data and
tested on the RCT data, except XGBoost(rand), since it is not designed to deal with the confounders.
XGBoost(rand) is a s-learner model, which uses RCT data only to fit the potential outcome, with
treatment as one feature. If the sample is from the control group, then T = 0.

It is shown in Table 2 that the dragonnet has the smallest ITE error and greatest AUUC value. But the
MAE εprob is large, which means the ordering of Dragonnet is good but the response estimation is not
that good just as stated in (Shi et al. (2019)). On the other hand, three proposals get both MAE and
ITE error small, which balances the ordering and the response estimate. GCF also performs great
in the ordering. However, it does not provide the response estimate. XGBoost(rand) performs the
worst, even trained with the RCT data. Comparing three proposals, it can be seen that the Diffloss
and logistic network module increases the response error εprob, since it introduce additional losses.
However, the WTB-diff-fft model has smaller ITE error and ATE error.

The polynomial semi-synthetic data results are listed in Table 3. Similar to the linear case, Dragonnet
is good at ordering but not that good at the response estimate. The three proposals balances two
aspects. Comparing three proposals, the WTB-diff model get both MAE and ITE error small and
the greatest Qini coefficients. The WTB model estimates the response well, while the WTB-diff-fft
model estimates ITE well.

Table 3: Polynomial Semi-synthetic Data Results

Method εprob εITE AUUC Qini εATE

Continuous DragonNet 0.0378 0.0227 0.4856 0.3672 0.0144
GCF - 0.0346 0.5029 -0.0004 -

ADMIT(modified) 0.0764 0.0239 0.4519 0.3499 0.0317
XGBoost(rand) 0.0913 0.0483 0.4833 0.3588 0.0211

WTB 0.0146 0.0400 0.4379 0.3703 0.0018
WTB-diff 0.0297 0.0307 0.5002 0.3707 0.0046

WTB-diff-fft 0.0260 0.0305 0.5032 0.3699 0.0036

5.3 REAL-WORLD DATA

In the real-world data part, the data is identical to the semi-synthetic data part, except that the label is
true outcomes. Since there is no ground truth in the real-world data. Only the AUUC, Qini, ATE and
average response errors are included. In Table 4, the proposals achieve the best Qini coefficients,
MAE and ATE errors. Comparing three proposals, WTB-diff model balances Qini and ATE errors
well. WTB model gets the best ATE error and WTB-diff-fft model get the best Qini score.

Table 4: Real-world Data Results

Method AUUC Qini εATE εAprob

GCF 0.5179 -0.0001 0.0105 -
ADMIT(modified) 0.4986 0.3524 0.030 0.055

XGBoost(rand) 0.6 0.309 0.009 0.065
WTB 0.336 0.288 0.007 0.005

WTB-diff 0.525 0.373 0.008 0.013
WTB-diff-fft 0.51 0.397 0.015 0.028

5.4 EFFECT OF MODEL PARAMETERS

In order to explore the effects of different hyper-parameters of our proposed model, we evaluate it
on the linear semi-synthetic dataset with two important hyper parameters, dimension of FFT and γ

8



Under review as a conference paper at ICLR2023

in the Diffloss network. As shown in Figure 5, the AUUC and Qini coefficients dip, and the MAE
and ITE error increases as the FFT dimension increases. In Figure 6, increasing in γ decreases Qini
coefficients. Thus, we choose FFT dimension as 16 and γ = 1 considering resource consumption.

Table 5: Effect of FFT dimension

Method εprob εITE AUUC Qini εATE

WTB-diff-fft-16 0.0195 0.0174 0.4891 0.3509 0.0020
WTB-diff-fft-32 0.0264 0.0176 0.4615 0.2354 0.0019
WTB-diff-fft-64 0.0268 0.0211 0.4865 0.3509 0.0019

WTB-diff-fft-128 0.0261 0.0207 0.4979 0.3513 0.0019

Table 6: Effect of γ

Method εprob εITE AUUC Qini εATE

γ = 1 0.0264 0.0176 0.4615 0.3509 0.0019
γ = 2 0.0242 0.0215 0.4557 0.2354 0.0019
γ = 10 0.0173 0.0195 0.4619 0.2353 0.0020

6 IMPLEMENTATION

The proposal is employed in the largest ride-hailing platform in mainland China. The causal in-
ference results are employed to distribute vouchers to users so the total market scale is maximized.
The uplift model firstly infers query-wise elasticity, then a clustering procedure is applied to achieve
consumer fairness. After that, the class-wise elasticity and budget constraints are fed to an optimiza-
tion module to generate a subsidy dictionary. At a fixed interval, the order information flows back
to the optimization block to update the subsidy dictionary. The experiment is carried out in six of
the largest cities in mainland China over a week in August 2023. The target subsidy rate is set to
3%. Three methods are compared with a control group. The market scale of the control group is
normalized to 1, and the cost is 0 since there is no subsidy in this group. The proposal achieves the
largest market scale gain with the largest cost. The return over investment (ROI) is 4.8% higher than
the ones of DragonNet and XGBoost.

Table 7: Online Implementation Results

Method Market Scale Cost ROI
Control 1 0 -

Continuous DragonNet 1.0176 3.11% 0.56
XGBoost(rand) 1.0143 2.49% 0.56

WTB-diff 1.019 3.18% 0.587

7 CONCLUSION AND FUTURE WORK

In this work, the CATE estimation problem is considered with the exists of confounders. An end-
to-end multi-task network is proposed to capture the relationship between treatment propensity and
the treatment effect. Numerical experiments using semi-synthetic and real-world data illustrate the
effectiveness of the proposal in ITE estimation accuracy and uplift ranking performance. Online
implementation shows the proposal achieves greater market scale and higher ROI.

Potential future works include to find the theoretical prove of the performance and evaluate the
stability of the proposal. Another interesting problem would be to find an evaluation metric to bal-
ance the uplift ranking and response estimation performance. This metric is crucial when choosing
models in the practice.
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