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Abstract

Despite Large Language Models (LLMs)
demonstrating superior translation perfor-
mance and long-context capabilities, evaluation
methodologies remain constrained to sentence-
level assessment due to dataset limitations, to-
ken number restrictions in metrics, and rigid
sentence boundary requirements. We introduce
an evaluation scheme that extends existing auto-
matic metrics to long-document translation by
treating documents as continuous text and ap-
plying sentence segmentation and alignment
methods. Our approach enables previously
unattainable document-level evaluation, han-
dling translations of arbitrary length generated
with document-level prompts while accounting
for under-/over-translations and varied sentence
boundaries. Experiments show our scheme sig-
nificantly outperforms existing long-form doc-
ument evaluation schemes, while comparable
to evaluations performed with groundtruth sen-
tence alignments. Additionally, we apply our
scheme to book-length texts and newly demon-
strate that many open-weight LLMs fail to ef-
fectively translate documents at their reported
maximum context lengths.

1 Introduction

Since the inception of Large Language Models
(LLMs), the paradigm of machine translation (MT)
has been shifting toward an LLM-based approach.
In the WMT 2024 general translation shared task
(Kocmi et al., 2024), LLM-based systems demon-
strated strong performance, ultimately dominating
submissions across all language pairs. Additionally,
because of their long context windows, LLM-based
systems may potentially be able to generate transla-
tions that better capture discourse-level phenomena
and maintain coherence across longer spans of text.
This development aligns with the long-standing
trend in MT research to move beyond sentence-
level processing toward paragraph-level (Deutsch

et al., 2023), discourse-level (Bawden et al., 2018),
and document-level (Zhu et al., 2024) translation.

However, despite claims that modern LLMs can
process inputs of up to 1M tokens (Yang et al.,
2025), evaluations of LLLM-based translations re-
main largely confined to sentence-level or segment-
level, in that they are only prompted to translate
one sentence or segment at a time. This forms a sig-
nificant gap between what LLMs can generate and
what existing metrics can evaluate. This limitation
stems from several challenges:

1. Many existing MT datasets (e.g., FLORES
(Costa-jussa et al., 2022)) are inherently de-
signed only for sentence-level assessment.

2. Commonly used model-based evaluation met-
rics have relatively low maximum token length
limitations (e.g., 512 tokens for COMET).

3. Current automatic evaluation metrics require
adherence to pre-defined sentence boundaries.
This forces evaluators to either use sentence-
level prompting or add artificial boundaries.

The first issue is partially addressed with the
introduction of new datasets such as WMT24++
(Deutsch et al., 2025), which contains full docu-
ments instead of isolated sentences. However, sig-
nificant lack of datasets remains when evaluating a
model’s capability to translate longer documents,
such as book-length texts. Meanwhile, the issues
of token length limitations and requirements for
rigid sentence boundaries remain unresolved.

In this paper, we propose a solution to these chal-
lenges by introducing a scheme that extends exist-
ing automatic evaluation metrics to long documents.
To summarize, our approach applies to arbitrar-
ily long documents by using sentence segmenters
and aligners to create appropriate sentence-level
alignments. We treat those automatically aligned
sentence pairs in two different ways. In the case
where a valid sentence alignment is found, we ap-
ply the existing evaluation metric to the sentence



pair. In the case where translation errors occur - ei-
ther when content from the source text is missing in
the translation (under-translation) or when there is
hallucinated content that is not present in the source
(over-translation) - we detect these as null align-
ments and assign a fixed penalty. At the end, along
with metric scores, we also report an auxiliary met-
ric that reflect the ratio of null alignments to help
track these over-translation and under-translation
errors, which current MT evaluation metrics are
having trouble detecting reliably.

Our experiments demonstrate that this scheme
evaluates translations with comparable perfor-
mance to existing sentence-level metrics when
applied to cases with over-translation and under-
translation. In addition, it handles cases where
LLMs are liberal with sentence-boundaries, which
create many-to-one and one-to-many sentence
alignments. Lastly, we newly demonstrate that
we can successfully apply this scheme to evaluate
translations of book-length texts, and reveal that
many open-weight LLMs cannot translate docu-
ments of their reported context length, because the
number of under- and over-translation errors rise
sharply as the input length gets longer. Our code
and artifacts will be available at anonymous.url.

2 Related Work

2.1 Document-Level Translation

Document-level MT extends translation beyond
isolated sentences by leveraging broader context
for coherence. Existing approaches include sim-
ply concatenating adjacent sentences as a larger
input to a standard MT model (Scherrer et al.,
2019; Junczys-Dowmunt, 2019; Sun et al., 2022),
as well as more advanced architectures that in-
troduce context-specific modules: multi-encoder
models encode previous sentences with separate
encoders and hybrid attention mechanisms (Jean
et al., 2017; Bawden et al., 2018; Voita et al., 2019;
Miculicich et al., 2018; Maruf et al., 2019; Herold
and Ney, 2023). Recent work has also focused on
improving the quality of document-level transla-
tion by utilizing larger-scale document-level cor-
pus (Thai et al., 2022; Al Ghussin et al., 2023; Post
and Junczys-Dowmunt, 2023; Pal et al., 2024), as
well as leveraging large language models (LLMs)
(Karpinska and lyyer, 2023; Wang et al., 2023).
Despite the progress, document-level transla-
tion still has a few limitations. First, a lot of
work stick to a relatively small number of max-

imum input/output length. For example, Scherrer
et al. (2019); Post and Junczys-Dowmunt (2023)
both have maximum context length of 250 tokens,
while Al Ghussin et al. (2023); Pal et al. (2024)
have 512. Besides, some work (Junczys-Dowmunt,
2019; Post and Junczys-Dowmunt, 2023) introduce
artificial sentence boundaries to the input, which
provides native sentence segmentations for eval-
uation. This requires specialized training data or
prompt, and there is no guarantee that the system
will generate matching sentence boundaries as the
input document.

2.2 Machine Translation Evaluation

Machine translation evaluation has shifted from
string-based metrics (e.g., BLEU (Papineni et al.,
2002), chrF (Popovié, 2015)) to model-based met-
rics (e.g., COMET (Rei et al., 2020), MetricX
(Juraska et al., 2024), GEMBA (Kocmi and Fe-
dermann, 2023)). Human evaluations like direct as-
sessment (DA) and multi-dimensional quality met-
rics (MQM) played a crucial role in this paradigm
shift by providing meta-evaluations and training
data for model-based metrics.

Most model-based metrics are trained and evalu-
ated on the segment-level. For example, COMET
limits each input (source, target, and reference) to
512 tokens, while MetricX has a combined limit of
1,536 tokens across all inputs. In contrast, Qwen-
2.5 (Yang et al., 2024), a recent open-source LL.M,
can handle input of 131,072 tokens and generate
up to 8,192 tokens. Prior efforts have explored
extending MT evaluation metrics beyond sentence-
level. Vernikos et al. (2022) proposed adding prior
sentences as context when training model-based
metrics. Deutsch et al. (2023) trained metrics on
paragraph-level data but found limited benefits.
These studies are orthogonal to ours — they focus
on building new model-based metrics with longer
maximum input length, while we focus on applying
existing metrics to long-form text.

Closest to the spirit of our work is MWERSeg-
menter (Matusov et al., 2005). It is a joint sen-
tence segmentation and alignment scheme that has
been the long-standing evaluation standard for un-
segmented speech translation!. The high-level
idea is to jointly segment and align long-form
model output by minimizing the word error rate
(WER) between the segmented text and the already-

'Specifically, MWERSegmenter has been the evaluation
standard for the IWSLT speech translation shared tasks
(https://iwslt.org/)
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segmented reference text. The assumption behind
the idea is that perfectly segmented and aligned
sentences are more likely to be translated well,
and thus should have a low WER. Similar to MW-
ERSegmenter, Wang et al. (2023) implemented
a segmentation and alignment scheme based on
Bleualign (Sennrich and Volk, 2010), but there was
no extensive discussion regarding the validity of
the scheme. Apart from that, Raunak et al. (2024)
proposed to extend existing metrics based on run-
ning evaluations on aligned sliding windows over
sentences in a document, but the algorithm is still
limited to the sentence-level prompting paradigm.

A few recent investigations (Salesky et al., 2023;
Sperber et al., 2024) of MWERSegmenter in the
context of long-form audio data raised concerns
about the segmentation quality. The reader shall
see that our results corroborate the concerns.

2.3 Long-Context LLM Evaluation

Recent progress in extending LLM architectures
to handle longer contexts has spurred considerable
research interest. Parallel to architectural advances,
there has been growing attention toward systemati-
cally evaluating the capabilities of LLMs on long-
context tasks. Kamradt (2023) developed an evalua-
tion focusing on models’ abilities to retrieve deeply
nested information. Similarly, Bai et al. (2024) in-
troduced a long-context bilingual benchmark for
assessing models’ comprehension and reasoning
abilities, while An et al. (2024) shows that stan-
dardized evaluation criteria across multiple long-
context scenarios are essential for comprehensive
model assessment. Furthermore, Hsieh et al. (2024)
highlights that there are discrepancies between the-
oretical capabilities and effective usable context
lengths of contemporary LLMs.

Despite these advances, the evaluation method-
ologies have predominantly focused on general
comprehension tasks rather than specialized ap-
plications like long-context machine translation.
Existing metrics face limitations such as fixed max-
imum token lengths and rigid assumptions about
sentence boundaries, which hinder effective evalu-
ation of extensive, continuous texts, like books.

3 Preliminaries

Our ultimate goal is to find a way to evaluate the
translation quality in the following scenarios:

* For translations of documents of arbitrary
length generated with document-level prompts,
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Figure 1: The Kendall’s 7 correlations of MetricX-24
and MetricX-24-QE show limited sensitivity to over-
and under-translation; sentences with more than three
drops are insufficient to estimate correlations reliably.

while handling under-/over-translations and var-
ied sentence boundaries

* For both reference-based and reference-free
evaluations, thus enabling broader applications
like curating high-quality training data for
LLMs (similar to Finkelstein et al., 2024)

We start by justifying why extensions of existing
metrics are required for document-level MT eval-
uation, rather than directly feeding concatenated
sentence pairs from a document into existing met-
rics. A key limitation of the direct concatenation
approach is that commonly used model-based eval-
uation metrics have relatively low maximum token
length limits. Additionally, even for documents
that are within the maximum token length limit,
we show with a preliminary study in this section
that directly applying state-of-the-art MT metrics
to concatenated sentences is actually not able to
reliably detect under- and over-translation errors.”

We evaluate the performance of MetricX-24
(Juraska et al., 2024) on such concatenation ap-
proach. To avoid going over the maximum to-
ken length limit of MetricX-24, we filter out cases
where the concatenation of source and target in-
puts exceed 1024 tokens in length. We compute
both MetricX-24 and its reference-free variant,

“The conclusion may seem different from a prior study
Deutsch et al. (2023), but it’s actually not a direct contradic-
tion, because the evaluation in Deutsch et al. (2023) focuses
only on cases where one-to-one mapping between source,
target, and reference exists.
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Figure 2: The effect of the skip cost (Bsip) on alignment behavior under over-translation. Higher skip costs increase
the risk of over-insertion by allowing loose semantic matches to align, while lower skip costs enforce stricter
alignment, leading to over-deletion. Over-deletion is indicated by spikes in the null alignment ratio (NA ratio) and

low alignment costs, both shown in red.

MetricX-24-QE, across three language pairs: En-
glish—-German (en-de), English—Spanish (en-es),
and Japanese—Chinese (ja-zh). We use the dataset
from the WMT 2024 Metrics Shared Task (Freitag
et al., 2024). To simulate translation errors, we ma-
nipulate the texts in two ways: for over-translation,
we remove one or two sentences from both source
and reference texts, while for under-translation, we
remove sentences only from the target side.> We
measure the performance of the metrics by com-
puting Kendall’s 7 correlations between the metric
outputs and human evaluation scores.*

The results of this preliminary study (Figure 1)
confirm that MetricX-24 and MetricX-24-QE have
limited sensitivity to over- and under-translations,
even within token length limits. This empirical evi-
dence shows that the direct concatenation approach
is inadequate for document-level MT evaluation.
To apply existing MT metrics to document-level
MT evaluation, we need an extension scheme that
can properly handle these translation errors while
working within the constraints of existing metrics.

4 Method

We now turn to our proposed extension scheme.
Our approach consists of the following steps:

1. Segment the document-level system transla-
tion into indivudual sentences

2. Align the source and system translations

*We limit ourselves to removing at most two sentences
since removing more would leave too few documents for
reliable Kendall’s 7 correlation calculations.

*For more details on meta-evaluation, see Section 5.1.

3. Apply existing metrics to the individual
aligned sentences, then average sentence-level
scores to obtain a document-level score

4.1 Sentence Segmentation

We use off-the-shelf sentence segmentation models
to segment documents into sentences. We exper-
imented with ersatz (Wicks and Post, 2021) and
spaCy (Honnibal et al., 2020).

4.2 Sentence Alignment

Given a sentence-segmented source document
S = {s1,...,sn} and its translation T
{t1,...,ta}, the goal of sentence alignment is to
identify a minimal-cost alignment path that maps
contiguous spans of source sentences to contiguous
spans of target sentences. We use Vecalign (Thomp-
son and Koehn, 2019) to perform such alignment,
with a few changes detailed below.

Adaptive Penalty Search Ideally, all over- and
under-translations errors will result in null align-
ments. In Vecalign, null alignments are mod-
eled via a skip cost, which is parameterized by a
percentile-based threshold S;p. If the skip cost is
set too high, many alignments are forced between
unrelated sentence blocks — essentially reverting to
the scenario in our preliminary experiment. Con-
versely, if the skip cost becomes too low, the aligner
will start to assign null alignments even to semanti-
cally related sentence pairs. Figure 2 illustrates an
example of over-translation and demonstrates how
different Bgp values impact the alignment result.



Given that the optimal value of Sy, can vary
depending on the severity of over- or under-
translation in each individual document, we im-
plement an adaptive search strategy to enhance ro-
bustness. We leverage the insight that over-deletion
is often signaled by sudden spikes in the null align-
ment ratio and abnormally low average alignment
costs. Since the optimal alignment typically oc-
curs just before over-deletion sets in, our approach
starts with a relatively high [, and progressively
decreases it in small steps.

At each step, alignment quality is monitored
using two heuristics to determine whether to ter-
minate the search: (a) when the average alignment
cost drops below a threshold, indicating excessive
skipping, or (b) when the null alignment ratio ex-
ceeds a predefined limit at a step. Both patterns
typically suggest that the skip penalty has become
too lenient. In such cases, we revert to the previ-
ous step and treat it as the final alignment result.
See Appendix B for implementation details and
heuristic settings.

Building Better Text Embeddings Text embed-
ding models are crucial for sentence alignment.
We observe that sentence segmentation granulari-
ties vary across languages, which strains existing
text embedding models. For example, suppose we
have a long source sentence s that should align to
smaller target sentences {t1,...,% }. In Vecalign,
the scoring function calculates similarity between
s and all consecutive blocks of {¢1,...,ta}. This
is not what text embedding models are trained for,
leading to suboptimal alignments.

Motivated by this observation, we build our own
text embedding model that is specifically designed
to handle the sentence segmentation granularities
we described above. Our model is fine-tuned from
BGE-M3 (Chen et al., 2024), which achieves high
performance on bitext-mining task with only S68M
parameters and without relying on instructions.
The fine-tuning is performed on a synthetic dataset
with query, positive and negative example triplets
built from the News Commentary v18°> dataset (see
more details in Appendix B.3), with the FlagEm-
bedding toolkit’. The readers shall see that our
fine-tuned text embedding model outperforms both
LASER (Artetxe and Schwenk, 2019) and BGE-
M3 text embedding models in our experiments.

5https://data.statmt.org/news-commentary/v18.1/
6https://github.com/FlagOpen/FlagEmbedding

4.3 Evaluation via Existing Metrics

Once the target translation is segmented and
aligned with the source document, we calculate
the segment-level translation quality using exist-
ing metrics, then average the scores to obtain a
document-level score. Two numbers are reported
per document: the average segment score and ra-
tio of null alignments over aligned sentence pairs
("NA ratio"). For each null alignment, we assign
the worst possible score (0 for COMET, 25 for
MetricX) and include it in the average calculation.

5 Experiments

Our experiments are aimed to test if the proposed
evaluation scheme can achieve the two goals stated
in Section 3 — in other words, whether it is (1)
robust to all kinds of anomalies in system transla-
tions and (2) effective with both reference-based
and reference-free metrics. Our data and metric
setup reflect the above goals.

To establish meaningful comparisons, we com-
pare with two baselines. One is calculating metric
scores using the groundtruth sentence boundaries
and alignments provided by the dataset ("Gold"),
which serves as a performance upper bound.” The
other is calculating metric scores using the sentence
boundaries and alignments derived by MWERSeg-
menter ("MWER").

Our experimental results demonstrate that our
method consistently outperforms MWER while
achieving comparable performance to Gold, val-
idating its effectiveness. We further conduct an
ablation study to examine how different sentence
embeddings and segmenters affect performance.

5.1 Setup

Dataset We use the same dataset from prelimi-
nary experiments in Section 3. In all experiments,
we merge existing sentence boundaries in the sys-
tem translation to simulate system translations gen-
erated at document-level. We adhere to the same
sentence boundaries on the source and reference
sides during evaluation.

There are significant limitations if we only con-
duct meta-evaluation on the original test set, be-
cause the original test set is always guaranteed
to have perfect sentence alignments (i.e., no null

As the reader shall see, there are times when our score
is higher than the upper bound performance. This is likely
caused by the sentence segmentation variations between the
sentence segmenter and boundaries in the test set. It shouldn’t
be interpreted as our method being better in a meaningful way.
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COMET COMET-QE

MetricX MetricX-QE

NA Ratio (| Agoa|)

Original

Gold 0.3107 0.2785 0.3131 0.2748 0.0% (-)
Ours 0.3113 0.2773 0.3139 0.2728 0.7% (0.7%)
MWER 0.2964 0.2661 0.2965 0.2565 0.0% (0.0%)
Over-Translate

Gold 0.3843 0.3551 0.3603 0.3037 10.0% (-)
Ours 0.3572 0.3409 0.3528 0.3141 11.2% (1.2%)
MWER 0.3501 0.3261 0.3209 0.2711 0.0% (10.0%)
Under-Translate

Gold 0.3543 0.3216 0.3043 0.2857 10.0% (-)
Ours 0.3509 0.3347 0.3239 0.2861 5.8% (4.2%)
MWER 0.1893 0.1729 0.1463 0.1268 2.5% (7.5%)
Flex-Boundary

Gold 0.3093 0.2778 0.3113 0.2726 0.0% (-)
Ours 0.3046 0.2728 0.3073 0.2670 1.2% (1.2%)
MWER 0.2589 0.2339 0.2551 0.2187 0.0% (0.0%)

Table 1: Correlation between document-level scores and human judgments under different evaluation settings. The
first four columns are Kendall’s 7 correlation coefficients (1), with the last column being the average NA ratio
and the absolute difference from the groundtruth (JAgea|). All numbers are averaged across three language pairs
(en-de, en-es, ja-zh), and all reported numbers of our method are calculated with ersatz sentence segmenter and our

fine-tuned BGE-M3 text embedding model.

alignments). Hence, in addition to the original test
set ("original" case), we create three synthetic test
sets by introducing anomalies into the original test
set, namely "over-translate", "under-translate”, and
"flex-boundary" cases. The first two cases are cre-
ated by randomly removing 10% of the sentences
from the source/reference sides and system trans-
lations, respectively. The last case is created by
merging 10% of the neighboring sentences in the
system translations with GPT-40. For more details,
please refer to Appendix A.

Metric Our experiments cover both reference-
based and reference-free ("QE") variants of
COMET and MetricX.

Meta-Evaluation Similar to previous work and
preliminary experiments, we use correlation be-
tween document-level scores and human judgments
as the primary metric. Although both system
translation and human judgments are performed
at segment-level, previous work (Deutsch et al.,
2023) has shown that MQM annotations are done
with context of surrounding sentences, and sen-
tences appear in document order. Hence, they are a
good proxy for document translation quality. For
cases with introduced null alignments, we assign
25 as the human-annotated MQM score for each
null alignment, which is then converted into z-score
in accordance with each human annotator’s scor-

ing distribution. Like previous work, we average
the segment-level human judgment scores as the
document-level scores.

We also report NA ratio for each method as the
auxiliary metric. Ideally, we would like to achieve
the same NA ratio as the groundtruth (|Agowa| = 0),
but the reader should note the following caveats:

* Perfect NA ratio on its own doesn’t necessarily
imply a good evaluation scheme.® The corre-
lation with human judgments is the ultimate
measure of a good evaluation scheme.

* NA ratio is sometimes ill-defined for MWER.

5.2 Results

Main Results Table 1 shows a concise version
of our main results (averaged across three lan-
guage pairs). In terms of correlation with hu-
man judgments, our method achieves near-ideal
performance, outperforming MWER while main-
taining comparable correlation with human judg-
ments to Gold. The trend is especially clear
for "under-translate” and "flex-boundary" cases,
where MWER suffers significant performance
drops while our method remains robust. For a de-
tailed version with per-language-pair breakdown,
please refer to Appendix C. The readers shall see

8For example, in the "original" case, a very bad hypothet-

ical evaluation scheme that aligns a random segment to the
source can achieve the same 0% NA ratio as groundtruth.



COMET MetricX NA Ratio (|Agoia|)
Original
ersatz+LASER 0.3021 0.3067 1.2% (1.2%)
ersatz+BGE-m3 0.3021 0.3094 1.3% (1.3%)
ersatz+BGE-m3-ft 0.3113 0.3139 0.7% (0.7%)
spacy+BGE-m3-ft 0.3066 0.3096 1.4% (1.4%)
Over-Translate
ersatz+LASER 0.3313 0.3370 8.6% (1.4%)
ersatz+BGE-m3 0.3212 0.3234 9.8% (0.2%)
ersatz+BGE-m3-ft 0.3572 0.3528 11.2% (1.2%)
spacy+BGE-m3-ft 0.3555 0.3508 10.1% (0.1%)
Under-Translate
ersatz+LASER 0.3414 0.3145 6.3% (3.7%)
ersatz+BGE-m3 0.3347 0.3094 4.2% (5.8%)
ersatz+BGE-m3-ft 0.3509 0.3239 5.8% (4.2%)
spacy+BGE-m3-ft 0.3483 0.3215 6.0% (4.0%)
Flex-Boundary
ersatz+LASER 0.3000 0.3043 1.9% (1.9%)
ersatz+BGE-m3 0.2979 0.3049 2.2% (2.2%)
ersatz+BGE-m3-ft 0.3046 0.3073 1.2% (1.2%)
spacy+BGE-m3-ft 0.3022 0.3050 1.5% (1.5%)

Table 2: Ablation study on different sentence embed-
dings and segmenters. Numbers are calculated similarly
to Table 1 but only include reference-based metrics due
to space limits. Boldface numbers indicate the highest
correlation for the first two columns, and the NA ratio
with the smallest | Agonq| for the last column.

that the general trend shown in Table 1 is consistent
across all language pairs.

For NA ratio, we can observe that MWER per-
fectly matches the groundtruth in two settings
("original" and "flex-boundary"). However, upon
closer inspection, we conclude that this is not be-
cause MWER can more accurately estimate the NA
ratio, but rather because MWER was not designed
to account for certain translation anomalies. For ex-
ample, MWER by design is not able to handle null
alignments on the source side. Hence, in the "over-
translate" case, MWERSegmenter simply merges
over-translating system output to an arbitrary neigh-
boring sentence, resulting in worse correlation with
human judgments. Another such example lies
in the "under-translate” case, where MWERSeg-
menter often segments a single system output into
random small chunks. As for our method, while
it is also not perfect with its NA ratio estimation,
we argue that this auxiliary metric is still an useful
indicator as to when under-/over-translation starts
to get prevalent. Besides, compared to MWER, the
misalignments introduced by our method are less
likely to translate into catastrophic performance
drops like MWER in the "under-translate" case.

While the lack of source code for MWERSeg-
menter makes it difficult to pinpoint the exact rea-
son for its performance drop, looking at the seg-

mented text, it is clear that MWER’s algorithm
struggles to distinguish between deletion and sub-
stitution errors, leading to erroneous choices in
segmentation and alignment. Such case is wors-
ened by poor translation quality, as the path to
minimize WER becomes more obscure. This ex-
emplifies the limitation of using WER, instead of a
semantic-based score, as the scoring function for
segmentation and alignment. Interestingly, while
seemingly a symmetric case, insertion errors are
less prone to this problem, likely because inser-
tion errors are harder to distribute across multiple
segments without introducing new errors.

Impact of Sentence Embedding Table 2 shows
a comparison of our method with different sen-
tence embeddings. It can be observed that our
fine-tuned BGE-M3 embedding consistently out-
performs LASER and the original BGE-M3 em-
bedding in all data configurations. While the gap
in correlation averaged across languages is small,
we observe in the full breakdown (Table 4) that the
effect of fine-tuning is most significant for ja-zh
language pair. This happens to be the language
pair with a lot of long sentences on the source side,
which is more sensitive to the quality of sentence
embedding. Being able to maintain robustness in
that pair shows that our proposed embedding fine-
tuning process successfully specializes the embed-
ding model for the task of sentence alignment.

Impact of Sentence Segmenter Most of the
numbers reported in this paper are calculated with
the ersatz sentence segmenter. We also experi-
mented with spaCy as the sentence segmenter as
another ablation study, also shown in Table 2. We
observed a small but consistent performance drop,
likely due to the tendancy of spaCy segmenting
sentences into smaller units, which does not align
well with the long segments in WMT test sets.

6 Evaluation of Book-Length Translation
Capability of Existing LLMs

Now that we have validated our evaluation method
on WMT 2024 metrics shared task dataset, we
briefly demonstrate that our method can be applied
to assess the book-length translation capability of
existing LLMs by conducting a similar experiment
as Wang et al. (2024a). Our dataset comes from the
Chinese-English (zh-en) section of the WMT 2024
Discourse-Level Literary Translation task (Wang
et al., 2024b). Because the test set only contains
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Qwen/Qwen2.5-14B-Instruct
Qwen/Qwen2.5-72B-Instruct
meta-1lama/Llama-3.1-8B-Instruct
meta-1lama/Llama-3.1-70B-Instruct
CohereForAI/aya-expanse-8b
CohereForAl/aya-expanse-32b

Martins et al. (2024)
Yang et al. (2024)
Yang et al. (2024)
Dubey et al. (2024)
Dubey et al. (2024)
Dang et al. (2024)
Dang et al. (2024)

Table 3: List of LLMs evaluated for book-length trans-
lation capability.

book chapters instead of full books, we randomly
pick a book with ID 2-xz1tq from the training split
of the dataset and use it as our test set.

The LLMs evaluated are listed in Table 3. For
simplicity, we adopted the same prompt and trans-
lation extraction procedure as used in WMT 2024
general machine translation shared task® for all the
LLMs. Since current LLMs are constrained by
maximum generation lengths and cannot translate
the entire book in a single pass, we divide the con-
tent into segments of 1k, 2k, 4k, and 8k tokens,
using tokenization from the tiktoken tokenizer'?.
Most of these models have a maximum generation
length of 8k tokens, except for EuroLLM, which is
capped at 4k.

Figure 3 shows the translation quality and NA
ratio of the LLMs at different context lengths. Most
models exhibit a sharp degradation in translation
quality at context length of 4k or 8k. For example,
at 4k context length, EuroLLM refuses to translate
as instructed, but rather resorting to summarizing
the input document in the target language. Compar-
ing with the trend in NA ratio, it is also clear that
under-translation/over-translation errors played a
significant role in such degradation. The only
noteworthy exception is Qwen2.5-72B-Instruct,
which shows a much more stable performance
across different context lengths. In fact, with the
increasing context length up to 4k, there is a small
improvement in translation quality, which shows its
ability to utilize long-context information to obtain
better translations.

This benchmark shows a significant gap between
claimed max generation length and the actual ca-
pability of LLMs to translate long-context docu-
ments. As future work keeps improving LLM’s
long-context processing capabilities, we call on the

9https://github.com/wmt—conference/
wmt-collect-translations/blob/
704b3825730f93a3ee3a0fdad4af9414937b6d5a/tools/
prompts.py#L23

10https://github.com/openai/tiktoken
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Figure 3: LLM Translation Performance at Different
Context Lengths

community to adopt this evaluation practice to gain
better insights into such capabilities in downstream
applications such as machine translation.

7 Conclusion

We propose a novel extension scheme that en-
ables evaluation metrics to evaluate unsegmented
document-level translations of arbitrary lengths.
Our scheme works with any existing evaluation
metric and eliminates the dependency on sentence-
level prompting and pre-segmented reference trans-
lations. Experimental results show that our ex-
tension scheme achieves strong correlation with
human judgments while demonstrating robustness
to common LLM translation anomalies like over-
and under-translation. Through this work, we aim
to facilitate machine translation research in its on-
going shift away from sentence-level paradigm,
while also offering new perspectives for evaluating
LLMs’ long-context generation capabilities.


https://github.com/wmt-conference/wmt-collect-translations/blob/704b3825730f93a3ee3a0fda44af9414937b6d5a/tools/prompts.py#L23
https://github.com/wmt-conference/wmt-collect-translations/blob/704b3825730f93a3ee3a0fda44af9414937b6d5a/tools/prompts.py#L23
https://github.com/wmt-conference/wmt-collect-translations/blob/704b3825730f93a3ee3a0fda44af9414937b6d5a/tools/prompts.py#L23
https://github.com/wmt-conference/wmt-collect-translations/blob/704b3825730f93a3ee3a0fda44af9414937b6d5a/tools/prompts.py#L23
https://github.com/openai/tiktoken

Limitations

We acknowledge that an LLM-based metric based
on long-context, open-source LLMs is a promising
(and probably the eventual) solution to the problem
of long-context MT evaluation. While previous
work has shown that LLM-based metrics such as
GEMBA (Kocmi and Federmann, 2023) or Au-
toMQM (Fernandes et al., 2023) can perform on-
par as state-of-the-art BERT-based metrics such as
COMET, they have to rely on GPT-4 or GPT-40 as
the underlying LLM and are currently prohibitively
expensive for MT evaluation of book-length doc-
uments. Their open-source LLM counterparts, on
the other hand, are not able to match the perfor-
mance of state-of-the-art metrics. Hence, we leave
exploration of this direction as future work and fo-
cus on extending existing metrics for long-context
MT evaluation in this study.

Our meta-evaluation is also limited in the sense
that none of the metrics evaluated with our pro-
posed extension scheme explicitly captures any
discourse-level information (e.g. co-reference, con-
sistency in word choice, etc.). This is partially due
to the fact that most of the metrics that incorporate
these information are targeted evaluations that de-
pend on specific datasets to operate, and not easily
extendable to WMT test sets. Another aspect worth
considering is that the human judgments used in
our evaluation do not explicitly instruct the annota-
tors to consider discourse-level information. Hence,
whether those extra information will show bene-
fits in meta-evaluations based on current human
judgments remains unclear.

The extra sentence segmentation and alignment
step involved in our proposed extension scheme
may introduce certain biases and noises. For exam-
ple, since merging sentences during translation may
result in alignment errors, the proposed extension
scheme may unfairly prefer systems that adheres
to the sentence boundaries in the original source
document. We have extensively validated in our
empirical experiments that such biases, if existing,
would have minimal impact on the evaluation. We
would also like to point out that even state-of-the-
art MT metrics have their own biases (as pointed
out in Section 3). Since existing work (Amrhein
and Sennrich, 2022) has already proposed methods
to reveal the pathologies of model-based MT met-
rics, we believe conducting a similar study with
our proposed extension scheme will provide more
comprehensive insights into its limitations.

The fine-tuned BGE-m3 embedding model used
in our proposed extension scheme is largely a proof-
of-concept, due to the fact that it is trained on a
small dataset, covering only languages of our inter-
est. We believe that a specialized text embedding
model for sentence alignment is not only useful
for our proposed extension scheme, but also for
its more traditional use cases, such as curation of
web-crawled data. In the future, we plan to explore
extending the volume of the training data and sup-
ported languages to improve the usability of our
proposed extension scheme.
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A Synthetic Test Data Creation

To evaluate the robustness of our evaluation frame-
work, we construct synthetic test data simulating
three common alignment challenges: under-/over-
translation and varied sentence boundaries.

A.1 Synthetic Under- and Over-Translations

We simulate under- and over-translation scenar-
ios by randomly removing 10% of the segments
from either the source/reference sides or the system
translations, respectively. To maintain meaningful
context, we avoid sampling from documents that
contain only a single segment.

A.2 Synthetic Sentence Boundary Variation

To simulate sentence boundary variation, we gen-
erate synthetic test data by merging 10% of adja-
cent segments in the source side. This process is
conducted using GPT-40, with the following con-
straints:

* Only segments that are neither the first nor the
last in a document are eligible for merging.

* For each eligible candidate, an attempt is made
to merge it with its subsequent segment.

* Merging is only accepted if the semantic differ-
ence between the merged and original segments
is minimal. We use BLEURT (Sellam et al.,
2020) to assess the semantic similarity, accept-
ing only merges with a BLEURT score greater
than 0.85. If a candidate pair fails this criterion,
another eligible pair is sampled.

GPT-4o is instructed to merge adjacent segments
into a single, fluent sentence without changing the
original meaning, vocabulary, or the order of infor-
mation. Figure 4 shows the prompt template used
to guide the model.

Figure 5 provides an example of the merging
process before and after GPT-40 rewriting. The
sentences initially presented separately are trans-
formed into a single sentence using appropriate
transitional phrases.

This procedure enables us to test our evaluation
method’s robustness in conditions reflecting real-
istic variations in sentence boundary alignments
while ensuring that human annotations remain valid
and can be directly reused without recalibration.
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B Implementation Details

In this section, we provide detailed implementa-
tion information on extending existing evaluation
metrics to book-length documents. Our proposed
approach is designed as a flexible framework where
the underlying models can be readily substituted.
Here, we specifically outline the experimental con-
figurations used in this study.

B.1 Sentence Segmentation

For sentence segmentation, our experiments em-
ploy two different models: SpaCy and ersatz.
SpaCy requires specification of the target language,
whereas ersatz is language-agnostic, making it
suitable for multilingual segmentation tasks.

The experiments in this paper cover five lan-
guages: English, German, Spanish, Japanese, and
Chinese. Corresponding SpaCy models for each
language are as follows:

* English (en): en_core_web_sm
e German (de): de_core_news_sm
* Spanish (es): es_core_news_sm
* Japanese (ja): ja_core_news_sm
* Chinese (zh): zh_core_web_sm

B.2 Sentence Alignment

We adopt a robust sentence alignment strategy
based on Vecalign (Thompson and Koehn, 2019),
leveraging multilingual sentence embeddings and
an efficient dynamic programming approximation
to identify many-to-many alignments between sen-
tence segments.

In our experiments, we set the maximum number
of allowed overlap size to 16. This allows us to
search for source-target sentence alignments of size
N-M, where N + M < 16. While we use a fixed
overlap size in our experiments, it can be estimated
from reference documents. Detailed explanations
are provided in Appendix B.4.

Adaptive Penalty Search. In Vecalign, null
alignments are handled via a skip cost, parame-
terized by a percentile-based threshold [qip, repre-
senting a quantile in the empirical distribution of
1-1 alignment costs. To identify the optimal Sgip,
we perform a search starting from 0.2, which is
the default value in Vecalign, and progressively de-
crease it in small steps of 0.005. At each step, we
detect signals of over-deletion. Upon detection, we
revert to the previous step and treat it as the final
alignment result.



/System: \

You are a helpful assistant.

User :
Please merge these two segments into one sentence while preserving their original meaning, word choice, and order.
Instead of simply concatenating them, use appropriate transitional expressions so that the segments are naturally connected without merely
inserting a period or extra whitespace.
Ensure the final result flows coherently and no important information is omitted.
Return only the merged text on a single line, with no additional commentary or extraneous text.
First segment: <first segment>
\Second segment: <second segment>

/

Figure 4: Prompt used for instructing GPT-40 to merge sentences.

First segment:
Move will also help transform land at the derelict Gartshore Works site.

Second segment:
A Scottish recycling business that has already processed more than a million tonnes of construction waste has opened a second plant following a
multi-million pound investment.

After GPT-40 merging:
Move will also help transform land at the derelict Gartshore Works site as a Scottish recycling business that has already processed more than a
million tonnes of construction waste has opened a second plant following a multi-million pound investment.

Figure 5: Example of merged sentences before and after GPT-40 rewriting.

Heuristic Termination Conditions. The search
is terminated based on two heuristic signals that
indicate over-deletion:

(a) The average alignment cost falls below 0.3.
(b) The null alignment ratio at a step exceeds 0.15.

Both patterns suggest that the skip cost has become
too lenient, leading to excessive null alignments.
In addition, two rare edge cases are handled with
early stopping:

(a) If the average alignment cost increases rather
than decreases at a step, indicating misalign-
ments with semantically distant content.

(b) If the average alignment cost exceeds 0.7, indi-
cating poor alignment quality overall.

Parameter Tuning. These heuristic termination
conditions were tuned empirically on the test set
from the WMT?24 Discourse-Level Literary Trans-
lation shared task, using only the Chinese—English
portion. To remain within the context length of
our selected LLLMs, we segment each instance
from the training and validation sets into chunks
of up to 1024 tokens. Translations are generated
using meta-1llama/Llama-3.1-8B-Instruct and
GPT-40 2024-08-06, and sentence embeddings are
computed using LASER. We empirically validate
alignment quality by manually inspecting whether
translation errors are consistently marked as null
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alignments. Once verified, the same configuration
is used for all experiments in this paper.

While the heuristic termination conditions are ro-
bust in our experiments, they may vary depending
on the translation direction and source/reference
sentence boundaries. These parameters can be fur-
ther refined using reference translations, which are
typically assumed to be perfectly aligned — i.e.,
with a null alignment (NA) ratio of zero. This pro-
vides a basis for estimating how much the NA ratio
increases when the skip cost becomes too lenient,
as well as the expected alignment cost under ideal
conditions. These estimates can then inform the
selection of appropriate heuristic parameters when
evaluating future system translations.

B.3 Details for Text Embedding Model
Fine-Tuning

We used News Commentary 18.1 parallel data from
any language pairs that is a combination of Chinese
(zh), English (en), German (de), Japanese (ja), and
Spanish (es), which are the languages of interest
in our evaluation. For each language pair, we use
either the full dataset or only first 10,000 lines of
the dataset, whichever is smaller. We build the ex-
ample triplets with the following: we concatenate
each of the two neighboring sentence pairs in the
parallel corpus and use the source/target side as the
query/positive example, respectively. As for the
negative example, we always construct two vari-



ants: (1) we randomly drop on of the two sentences
on the target side (2) we retrieve a nearby sentence
by randomly looking forward 1 to 3 sentences in the
dataset and use it to substitute the second sentence
on the target side. The intuition behind these exam-
ple triplets is for the model to better distinguish a
good translation from (1) an incomplete translation,
and (2) a sentence that has a similar topic but is not
a translation. The resulting synthetic dataset has
130,436 examples.

We fine-tune the BGE-M3 embedding on the
synthetic dataset with InfoNCE loss (van den Oord
et al., 2018) for two epochs. We did not conduct an
extensive hyperparameter search, but simply use
the setup in the fine-tuning tutorial in the FlagEm-
bedding package!'. We directly used the check-
point at the end of the training without using a
validation set to select the best checkpoint.

B.4 Setting Overlap Size for Alignment

Beyond the text embedding model, we also ob-
serve that the choice of overlap size in Vecalign
can significantly impact the alignment quality. The
overlap size defines the size of the blocks that are
compared to each other in the alignment search. A
small overlap size causes some ideal alignments to
fall out of search space. For example, if the overlap
size is set to 8, but a long source sentence should be
aligned to a sentence block of size 16 on the target
side, such groundtruth alignment will never be con-
sidered by the search algorithm. On the other hand,
a large overlap size will increase the computational
cost.

With datasets that comes with human-segmented
sentence boundaries and alignment (which covers
the vast majority of use cases), one can easily and
accurately estimate the appropriate overlap size by
re-segmenting the reference documents with sen-
tence segmenter, calculate the maximum ratio of
sentences as segmented by human and by the sen-
tence segmenter. With datasets that does not come
with human-segmented sentence boundaries or ref-
erences, one would have to first conduct a pilot
study with sentence-level translation to estimate
the appropriate overlap size. However, the good
news is that with a given sentence segmenter, the
overlap size only needs to be estimated once per
language, and can be reused for different datasets.
Besides, in the case where estimation is not very

11https://github.com/FlagOpen/FlagEmbedding/
blob/024e789d599eb4cf9a208e98d27508ad455f5ech/
Tutorials/7_Fine-tuning/7.1.2_Fine-tune.ipynb
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accurate, one can always err on the safe side and
set a larger overlap size.

C Supplementary Results

Since the results in the main paper are condensed
versions with averaging across different language
pairs or showing only a subset of the metrics evalu-
ated, we attach the full breakdown of the results in
Table 4 for readers’ reference.

D Licensing of Artifacts

Almost all code, model, and data artifacts we used
in this paper are publicly available with permissive
licenses (MIT/Apache 2.0/CC-BY-4.0). The only
exceptions are Aya models (CC-BY-NC 4.0), and
GPT-40 (OpenAl API Terms of Use), which still
allows research use. We also plan to release all
created code, model, and data artifacts under a
permissive license.

E Use of AI Assistants

We used a code editor with generative Al function-
alities during code development and paper writing
(in the latter case, it only assists with LaTeX code
completion and minor text editing). We also used
various Al assistants for creating miscellaneous
single-use data processing scripts, as well as all
the figures in this paper. All Al-generated artifacts
were carefully reviewed and accepted by the au-
thors.
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