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Abstract001

Despite Large Language Models (LLMs)002
demonstrating superior translation perfor-003
mance and long-context capabilities, evaluation004
methodologies remain constrained to sentence-005
level assessment due to dataset limitations, to-006
ken number restrictions in metrics, and rigid007
sentence boundary requirements. We introduce008
an evaluation scheme that extends existing auto-009
matic metrics to long-document translation by010
treating documents as continuous text and ap-011
plying sentence segmentation and alignment012
methods. Our approach enables previously013
unattainable document-level evaluation, han-014
dling translations of arbitrary length generated015
with document-level prompts while accounting016
for under-/over-translations and varied sentence017
boundaries. Experiments show our scheme sig-018
nificantly outperforms existing long-form doc-019
ument evaluation schemes, while comparable020
to evaluations performed with groundtruth sen-021
tence alignments. Additionally, we apply our022
scheme to book-length texts and newly demon-023
strate that many open-weight LLMs fail to ef-024
fectively translate documents at their reported025
maximum context lengths.026

1 Introduction027

Since the inception of Large Language Models028

(LLMs), the paradigm of machine translation (MT)029

has been shifting toward an LLM-based approach.030

In the WMT 2024 general translation shared task031

(Kocmi et al., 2024), LLM-based systems demon-032

strated strong performance, ultimately dominating033

submissions across all language pairs. Additionally,034

because of their long context windows, LLM-based035

systems may potentially be able to generate transla-036

tions that better capture discourse-level phenomena037

and maintain coherence across longer spans of text.038

This development aligns with the long-standing039

trend in MT research to move beyond sentence-040

level processing toward paragraph-level (Deutsch041

et al., 2023), discourse-level (Bawden et al., 2018), 042

and document-level (Zhu et al., 2024) translation. 043

However, despite claims that modern LLMs can 044

process inputs of up to 1M tokens (Yang et al., 045

2025), evaluations of LLM-based translations re- 046

main largely confined to sentence-level or segment- 047

level, in that they are only prompted to translate 048

one sentence or segment at a time. This forms a sig- 049

nificant gap between what LLMs can generate and 050

what existing metrics can evaluate. This limitation 051

stems from several challenges: 052

1. Many existing MT datasets (e.g., FLORES 053

(Costa-jussà et al., 2022)) are inherently de- 054

signed only for sentence-level assessment. 055

2. Commonly used model-based evaluation met- 056

rics have relatively low maximum token length 057

limitations (e.g., 512 tokens for COMET). 058

3. Current automatic evaluation metrics require 059

adherence to pre-defined sentence boundaries. 060

This forces evaluators to either use sentence- 061

level prompting or add artificial boundaries. 062

The first issue is partially addressed with the 063

introduction of new datasets such as WMT24++ 064

(Deutsch et al., 2025), which contains full docu- 065

ments instead of isolated sentences. However, sig- 066

nificant lack of datasets remains when evaluating a 067

model’s capability to translate longer documents, 068

such as book-length texts. Meanwhile, the issues 069

of token length limitations and requirements for 070

rigid sentence boundaries remain unresolved. 071

In this paper, we propose a solution to these chal- 072

lenges by introducing a scheme that extends exist- 073

ing automatic evaluation metrics to long documents. 074

To summarize, our approach applies to arbitrar- 075

ily long documents by using sentence segmenters 076

and aligners to create appropriate sentence-level 077

alignments. We treat those automatically aligned 078

sentence pairs in two different ways. In the case 079

where a valid sentence alignment is found, we ap- 080

ply the existing evaluation metric to the sentence 081
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pair. In the case where translation errors occur - ei-082

ther when content from the source text is missing in083

the translation (under-translation) or when there is084

hallucinated content that is not present in the source085

(over-translation) - we detect these as null align-086

ments and assign a fixed penalty. At the end, along087

with metric scores, we also report an auxiliary met-088

ric that reflect the ratio of null alignments to help089

track these over-translation and under-translation090

errors, which current MT evaluation metrics are091

having trouble detecting reliably.092

Our experiments demonstrate that this scheme093

evaluates translations with comparable perfor-094

mance to existing sentence-level metrics when095

applied to cases with over-translation and under-096

translation. In addition, it handles cases where097

LLMs are liberal with sentence-boundaries, which098

create many-to-one and one-to-many sentence099

alignments. Lastly, we newly demonstrate that100

we can successfully apply this scheme to evaluate101

translations of book-length texts, and reveal that102

many open-weight LLMs cannot translate docu-103

ments of their reported context length, because the104

number of under- and over-translation errors rise105

sharply as the input length gets longer. Our code106

and artifacts will be available at anonymous.url.107

2 Related Work108

2.1 Document-Level Translation109

Document-level MT extends translation beyond110

isolated sentences by leveraging broader context111

for coherence. Existing approaches include sim-112

ply concatenating adjacent sentences as a larger113

input to a standard MT model (Scherrer et al.,114

2019; Junczys-Dowmunt, 2019; Sun et al., 2022),115

as well as more advanced architectures that in-116

troduce context-specific modules: multi-encoder117

models encode previous sentences with separate118

encoders and hybrid attention mechanisms (Jean119

et al., 2017; Bawden et al., 2018; Voita et al., 2019;120

Miculicich et al., 2018; Maruf et al., 2019; Herold121

and Ney, 2023). Recent work has also focused on122

improving the quality of document-level transla-123

tion by utilizing larger-scale document-level cor-124

pus (Thai et al., 2022; Al Ghussin et al., 2023; Post125

and Junczys-Dowmunt, 2023; Pal et al., 2024), as126

well as leveraging large language models (LLMs)127

(Karpinska and Iyyer, 2023; Wang et al., 2023).128

Despite the progress, document-level transla-129

tion still has a few limitations. First, a lot of130

work stick to a relatively small number of max-131

imum input/output length. For example, Scherrer 132

et al. (2019); Post and Junczys-Dowmunt (2023) 133

both have maximum context length of 250 tokens, 134

while Al Ghussin et al. (2023); Pal et al. (2024) 135

have 512. Besides, some work (Junczys-Dowmunt, 136

2019; Post and Junczys-Dowmunt, 2023) introduce 137

artificial sentence boundaries to the input, which 138

provides native sentence segmentations for eval- 139

uation. This requires specialized training data or 140

prompt, and there is no guarantee that the system 141

will generate matching sentence boundaries as the 142

input document. 143

2.2 Machine Translation Evaluation 144

Machine translation evaluation has shifted from 145

string-based metrics (e.g., BLEU (Papineni et al., 146

2002), chrF (Popović, 2015)) to model-based met- 147

rics (e.g., COMET (Rei et al., 2020), MetricX 148

(Juraska et al., 2024), GEMBA (Kocmi and Fe- 149

dermann, 2023)). Human evaluations like direct as- 150

sessment (DA) and multi-dimensional quality met- 151

rics (MQM) played a crucial role in this paradigm 152

shift by providing meta-evaluations and training 153

data for model-based metrics. 154

Most model-based metrics are trained and evalu- 155

ated on the segment-level. For example, COMET 156

limits each input (source, target, and reference) to 157

512 tokens, while MetricX has a combined limit of 158

1,536 tokens across all inputs. In contrast, Qwen- 159

2.5 (Yang et al., 2024), a recent open-source LLM, 160

can handle input of 131,072 tokens and generate 161

up to 8,192 tokens. Prior efforts have explored 162

extending MT evaluation metrics beyond sentence- 163

level. Vernikos et al. (2022) proposed adding prior 164

sentences as context when training model-based 165

metrics. Deutsch et al. (2023) trained metrics on 166

paragraph-level data but found limited benefits. 167

These studies are orthogonal to ours – they focus 168

on building new model-based metrics with longer 169

maximum input length, while we focus on applying 170

existing metrics to long-form text. 171

Closest to the spirit of our work is MWERSeg- 172

menter (Matusov et al., 2005). It is a joint sen- 173

tence segmentation and alignment scheme that has 174

been the long-standing evaluation standard for un- 175

segmented speech translation1. The high-level 176

idea is to jointly segment and align long-form 177

model output by minimizing the word error rate 178

(WER) between the segmented text and the already- 179

1Specifically, MWERSegmenter has been the evaluation
standard for the IWSLT speech translation shared tasks
(https://iwslt.org/)
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segmented reference text. The assumption behind180

the idea is that perfectly segmented and aligned181

sentences are more likely to be translated well,182

and thus should have a low WER. Similar to MW-183

ERSegmenter, Wang et al. (2023) implemented184

a segmentation and alignment scheme based on185

Bleualign (Sennrich and Volk, 2010), but there was186

no extensive discussion regarding the validity of187

the scheme. Apart from that, Raunak et al. (2024)188

proposed to extend existing metrics based on run-189

ning evaluations on aligned sliding windows over190

sentences in a document, but the algorithm is still191

limited to the sentence-level prompting paradigm.192

A few recent investigations (Salesky et al., 2023;193

Sperber et al., 2024) of MWERSegmenter in the194

context of long-form audio data raised concerns195

about the segmentation quality. The reader shall196

see that our results corroborate the concerns.197

2.3 Long-Context LLM Evaluation198

Recent progress in extending LLM architectures199

to handle longer contexts has spurred considerable200

research interest. Parallel to architectural advances,201

there has been growing attention toward systemati-202

cally evaluating the capabilities of LLMs on long-203

context tasks. Kamradt (2023) developed an evalua-204

tion focusing on models’ abilities to retrieve deeply205

nested information. Similarly, Bai et al. (2024) in-206

troduced a long-context bilingual benchmark for207

assessing models’ comprehension and reasoning208

abilities, while An et al. (2024) shows that stan-209

dardized evaluation criteria across multiple long-210

context scenarios are essential for comprehensive211

model assessment. Furthermore, Hsieh et al. (2024)212

highlights that there are discrepancies between the-213

oretical capabilities and effective usable context214

lengths of contemporary LLMs.215

Despite these advances, the evaluation method-216

ologies have predominantly focused on general217

comprehension tasks rather than specialized ap-218

plications like long-context machine translation.219

Existing metrics face limitations such as fixed max-220

imum token lengths and rigid assumptions about221

sentence boundaries, which hinder effective evalu-222

ation of extensive, continuous texts, like books.223

3 Preliminaries224

Our ultimate goal is to find a way to evaluate the225

translation quality in the following scenarios:226

• For translations of documents of arbitrary227

length generated with document-level prompts,228
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Figure 1: The Kendall’s τ correlations of MetricX-24
and MetricX-24-QE show limited sensitivity to over-
and under-translation; sentences with more than three
drops are insufficient to estimate correlations reliably.

while handling under-/over-translations and var- 229

ied sentence boundaries 230

• For both reference-based and reference-free 231

evaluations, thus enabling broader applications 232

like curating high-quality training data for 233

LLMs (similar to Finkelstein et al., 2024) 234

We start by justifying why extensions of existing 235

metrics are required for document-level MT eval- 236

uation, rather than directly feeding concatenated 237

sentence pairs from a document into existing met- 238

rics. A key limitation of the direct concatenation 239

approach is that commonly used model-based eval- 240

uation metrics have relatively low maximum token 241

length limits. Additionally, even for documents 242

that are within the maximum token length limit, 243

we show with a preliminary study in this section 244

that directly applying state-of-the-art MT metrics 245

to concatenated sentences is actually not able to 246

reliably detect under- and over-translation errors.2 247

We evaluate the performance of MetricX-24 248

(Juraska et al., 2024) on such concatenation ap- 249

proach. To avoid going over the maximum to- 250

ken length limit of MetricX-24, we filter out cases 251

where the concatenation of source and target in- 252

puts exceed 1024 tokens in length. We compute 253

both MetricX-24 and its reference-free variant, 254

2The conclusion may seem different from a prior study
Deutsch et al. (2023), but it’s actually not a direct contradic-
tion, because the evaluation in Deutsch et al. (2023) focuses
only on cases where one-to-one mapping between source,
target, and reference exists.
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Figure 2: The effect of the skip cost (βskip) on alignment behavior under over-translation. Higher skip costs increase
the risk of over-insertion by allowing loose semantic matches to align, while lower skip costs enforce stricter
alignment, leading to over-deletion. Over-deletion is indicated by spikes in the null alignment ratio (NA ratio) and
low alignment costs, both shown in red.

MetricX-24-QE, across three language pairs: En-255

glish–German (en-de), English–Spanish (en-es),256

and Japanese–Chinese (ja-zh). We use the dataset257

from the WMT 2024 Metrics Shared Task (Freitag258

et al., 2024). To simulate translation errors, we ma-259

nipulate the texts in two ways: for over-translation,260

we remove one or two sentences from both source261

and reference texts, while for under-translation, we262

remove sentences only from the target side.3 We263

measure the performance of the metrics by com-264

puting Kendall’s τ correlations between the metric265

outputs and human evaluation scores.4266

The results of this preliminary study (Figure 1)267

confirm that MetricX-24 and MetricX-24-QE have268

limited sensitivity to over- and under-translations,269

even within token length limits. This empirical evi-270

dence shows that the direct concatenation approach271

is inadequate for document-level MT evaluation.272

To apply existing MT metrics to document-level273

MT evaluation, we need an extension scheme that274

can properly handle these translation errors while275

working within the constraints of existing metrics.276

4 Method277

We now turn to our proposed extension scheme.278

Our approach consists of the following steps:279

1. Segment the document-level system transla-280

tion into indivudual sentences281

2. Align the source and system translations282

3We limit ourselves to removing at most two sentences
since removing more would leave too few documents for
reliable Kendall’s τ correlation calculations.

4For more details on meta-evaluation, see Section 5.1.

3. Apply existing metrics to the individual 283

aligned sentences, then average sentence-level 284

scores to obtain a document-level score 285

4.1 Sentence Segmentation 286

We use off-the-shelf sentence segmentation models 287

to segment documents into sentences. We exper- 288

imented with ersatz (Wicks and Post, 2021) and 289

spaCy (Honnibal et al., 2020). 290

4.2 Sentence Alignment 291

Given a sentence-segmented source document 292

S = {s1, . . . , sN} and its translation T = 293

{t1, . . . , tM}, the goal of sentence alignment is to 294

identify a minimal-cost alignment path that maps 295

contiguous spans of source sentences to contiguous 296

spans of target sentences. We use Vecalign (Thomp- 297

son and Koehn, 2019) to perform such alignment, 298

with a few changes detailed below. 299

Adaptive Penalty Search Ideally, all over- and 300

under-translations errors will result in null align- 301

ments. In Vecalign, null alignments are mod- 302

eled via a skip cost, which is parameterized by a 303

percentile-based threshold βskip. If the skip cost is 304

set too high, many alignments are forced between 305

unrelated sentence blocks – essentially reverting to 306

the scenario in our preliminary experiment. Con- 307

versely, if the skip cost becomes too low, the aligner 308

will start to assign null alignments even to semanti- 309

cally related sentence pairs. Figure 2 illustrates an 310

example of over-translation and demonstrates how 311

different βskip values impact the alignment result. 312
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Given that the optimal value of βskip can vary313

depending on the severity of over- or under-314

translation in each individual document, we im-315

plement an adaptive search strategy to enhance ro-316

bustness. We leverage the insight that over-deletion317

is often signaled by sudden spikes in the null align-318

ment ratio and abnormally low average alignment319

costs. Since the optimal alignment typically oc-320

curs just before over-deletion sets in, our approach321

starts with a relatively high βskip and progressively322

decreases it in small steps.323

At each step, alignment quality is monitored324

using two heuristics to determine whether to ter-325

minate the search: (a) when the average alignment326

cost drops below a threshold, indicating excessive327

skipping, or (b) when the null alignment ratio ex-328

ceeds a predefined limit at a step. Both patterns329

typically suggest that the skip penalty has become330

too lenient. In such cases, we revert to the previ-331

ous step and treat it as the final alignment result.332

See Appendix B for implementation details and333

heuristic settings.334

Building Better Text Embeddings Text embed-335

ding models are crucial for sentence alignment.336

We observe that sentence segmentation granulari-337

ties vary across languages, which strains existing338

text embedding models. For example, suppose we339

have a long source sentence s that should align to340

smaller target sentences {t1, . . . , tM}. In Vecalign,341

the scoring function calculates similarity between342

s and all consecutive blocks of {t1, . . . , tM}. This343

is not what text embedding models are trained for,344

leading to suboptimal alignments.345

Motivated by this observation, we build our own346

text embedding model that is specifically designed347

to handle the sentence segmentation granularities348

we described above. Our model is fine-tuned from349

BGE-M3 (Chen et al., 2024), which achieves high350

performance on bitext-mining task with only 568M351

parameters and without relying on instructions.352

The fine-tuning is performed on a synthetic dataset353

with query, positive and negative example triplets354

built from the News Commentary v185 dataset (see355

more details in Appendix B.3), with the FlagEm-356

bedding toolkit6. The readers shall see that our357

fine-tuned text embedding model outperforms both358

LASER (Artetxe and Schwenk, 2019) and BGE-359

M3 text embedding models in our experiments.360

5https://data.statmt.org/news-commentary/v18.1/
6https://github.com/FlagOpen/FlagEmbedding

4.3 Evaluation via Existing Metrics 361

Once the target translation is segmented and 362

aligned with the source document, we calculate 363

the segment-level translation quality using exist- 364

ing metrics, then average the scores to obtain a 365

document-level score. Two numbers are reported 366

per document: the average segment score and ra- 367

tio of null alignments over aligned sentence pairs 368

("NA ratio"). For each null alignment, we assign 369

the worst possible score (0 for COMET, 25 for 370

MetricX) and include it in the average calculation. 371

5 Experiments 372

Our experiments are aimed to test if the proposed 373

evaluation scheme can achieve the two goals stated 374

in Section 3 – in other words, whether it is (1) 375

robust to all kinds of anomalies in system transla- 376

tions and (2) effective with both reference-based 377

and reference-free metrics. Our data and metric 378

setup reflect the above goals. 379

To establish meaningful comparisons, we com- 380

pare with two baselines. One is calculating metric 381

scores using the groundtruth sentence boundaries 382

and alignments provided by the dataset ("Gold"), 383

which serves as a performance upper bound.7 The 384

other is calculating metric scores using the sentence 385

boundaries and alignments derived by MWERSeg- 386

menter ("MWER"). 387

Our experimental results demonstrate that our 388

method consistently outperforms MWER while 389

achieving comparable performance to Gold, val- 390

idating its effectiveness. We further conduct an 391

ablation study to examine how different sentence 392

embeddings and segmenters affect performance. 393

5.1 Setup 394

Dataset We use the same dataset from prelimi- 395

nary experiments in Section 3. In all experiments, 396

we merge existing sentence boundaries in the sys- 397

tem translation to simulate system translations gen- 398

erated at document-level. We adhere to the same 399

sentence boundaries on the source and reference 400

sides during evaluation. 401

There are significant limitations if we only con- 402

duct meta-evaluation on the original test set, be- 403

cause the original test set is always guaranteed 404

to have perfect sentence alignments (i.e., no null 405

7As the reader shall see, there are times when our score
is higher than the upper bound performance. This is likely
caused by the sentence segmentation variations between the
sentence segmenter and boundaries in the test set. It shouldn’t
be interpreted as our method being better in a meaningful way.
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COMET COMET-QE MetricX MetricX-QE NA Ratio (|∆Gold|)

Original
Gold 0.3107 0.2785 0.3131 0.2748 0.0% (–)
Ours 0.3113 0.2773 0.3139 0.2728 0.7% (0.7%)
MWER 0.2964 0.2661 0.2965 0.2565 0.0% (0.0%)

Over-Translate
Gold 0.3843 0.3551 0.3603 0.3037 10.0% (–)
Ours 0.3572 0.3409 0.3528 0.3141 11.2% (1.2%)
MWER 0.3501 0.3261 0.3209 0.2711 0.0% (10.0%)

Under-Translate
Gold 0.3543 0.3216 0.3043 0.2857 10.0% (–)
Ours 0.3509 0.3347 0.3239 0.2861 5.8% (4.2%)
MWER 0.1893 0.1729 0.1463 0.1268 2.5% (7.5%)

Flex-Boundary
Gold 0.3093 0.2778 0.3113 0.2726 0.0% (–)
Ours 0.3046 0.2728 0.3073 0.2670 1.2% (1.2%)
MWER 0.2589 0.2339 0.2551 0.2187 0.0% (0.0%)

Table 1: Correlation between document-level scores and human judgments under different evaluation settings. The
first four columns are Kendall’s τ correlation coefficients (↑), with the last column being the average NA ratio
and the absolute difference from the groundtruth (|∆Gold|). All numbers are averaged across three language pairs
(en-de, en-es, ja-zh), and all reported numbers of our method are calculated with ersatz sentence segmenter and our
fine-tuned BGE-M3 text embedding model.

alignments). Hence, in addition to the original test406

set ("original" case), we create three synthetic test407

sets by introducing anomalies into the original test408

set, namely "over-translate", "under-translate", and409

"flex-boundary" cases. The first two cases are cre-410

ated by randomly removing 10% of the sentences411

from the source/reference sides and system trans-412

lations, respectively. The last case is created by413

merging 10% of the neighboring sentences in the414

system translations with GPT-4o. For more details,415

please refer to Appendix A.416

Metric Our experiments cover both reference-417

based and reference-free ("QE") variants of418

COMET and MetricX.419

Meta-Evaluation Similar to previous work and420

preliminary experiments, we use correlation be-421

tween document-level scores and human judgments422

as the primary metric. Although both system423

translation and human judgments are performed424

at segment-level, previous work (Deutsch et al.,425

2023) has shown that MQM annotations are done426

with context of surrounding sentences, and sen-427

tences appear in document order. Hence, they are a428

good proxy for document translation quality. For429

cases with introduced null alignments, we assign430

25 as the human-annotated MQM score for each431

null alignment, which is then converted into z-score432

in accordance with each human annotator’s scor-433

ing distribution. Like previous work, we average 434

the segment-level human judgment scores as the 435

document-level scores. 436

We also report NA ratio for each method as the 437

auxiliary metric. Ideally, we would like to achieve 438

the same NA ratio as the groundtruth (|∆Gold| = 0), 439

but the reader should note the following caveats: 440

• Perfect NA ratio on its own doesn’t necessarily 441

imply a good evaluation scheme.8 The corre- 442

lation with human judgments is the ultimate 443

measure of a good evaluation scheme. 444

• NA ratio is sometimes ill-defined for MWER. 445

5.2 Results 446

Main Results Table 1 shows a concise version 447

of our main results (averaged across three lan- 448

guage pairs). In terms of correlation with hu- 449

man judgments, our method achieves near-ideal 450

performance, outperforming MWER while main- 451

taining comparable correlation with human judg- 452

ments to Gold. The trend is especially clear 453

for "under-translate" and "flex-boundary" cases, 454

where MWER suffers significant performance 455

drops while our method remains robust. For a de- 456

tailed version with per-language-pair breakdown, 457

please refer to Appendix C. The readers shall see 458

8For example, in the "original" case, a very bad hypothet-
ical evaluation scheme that aligns a random segment to the
source can achieve the same 0% NA ratio as groundtruth.
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COMET MetricX NA Ratio (|∆Gold|)

Original
ersatz+LASER 0.3021 0.3067 1.2% (1.2%)
ersatz+BGE-m3 0.3021 0.3094 1.3% (1.3%)
ersatz+BGE-m3-ft 0.3113 0.3139 0.7% (0.7%)
spacy+BGE-m3-ft 0.3066 0.3096 1.4% (1.4%)

Over-Translate
ersatz+LASER 0.3313 0.3370 8.6% (1.4%)
ersatz+BGE-m3 0.3212 0.3234 9.8% (0.2%)
ersatz+BGE-m3-ft 0.3572 0.3528 11.2% (1.2%)
spacy+BGE-m3-ft 0.3555 0.3508 10.1% (0.1%)

Under-Translate
ersatz+LASER 0.3414 0.3145 6.3% (3.7%)
ersatz+BGE-m3 0.3347 0.3094 4.2% (5.8%)
ersatz+BGE-m3-ft 0.3509 0.3239 5.8% (4.2%)
spacy+BGE-m3-ft 0.3483 0.3215 6.0% (4.0%)

Flex-Boundary
ersatz+LASER 0.3000 0.3043 1.9% (1.9%)
ersatz+BGE-m3 0.2979 0.3049 2.2% (2.2%)
ersatz+BGE-m3-ft 0.3046 0.3073 1.2% (1.2%)
spacy+BGE-m3-ft 0.3022 0.3050 1.5% (1.5%)

Table 2: Ablation study on different sentence embed-
dings and segmenters. Numbers are calculated similarly
to Table 1 but only include reference-based metrics due
to space limits. Boldface numbers indicate the highest
correlation for the first two columns, and the NA ratio
with the smallest |∆Gold| for the last column.

that the general trend shown in Table 1 is consistent459

across all language pairs.460

For NA ratio, we can observe that MWER per-461

fectly matches the groundtruth in two settings462

("original" and "flex-boundary"). However, upon463

closer inspection, we conclude that this is not be-464

cause MWER can more accurately estimate the NA465

ratio, but rather because MWER was not designed466

to account for certain translation anomalies. For ex-467

ample, MWER by design is not able to handle null468

alignments on the source side. Hence, in the "over-469

translate" case, MWERSegmenter simply merges470

over-translating system output to an arbitrary neigh-471

boring sentence, resulting in worse correlation with472

human judgments. Another such example lies473

in the "under-translate" case, where MWERSeg-474

menter often segments a single system output into475

random small chunks. As for our method, while476

it is also not perfect with its NA ratio estimation,477

we argue that this auxiliary metric is still an useful478

indicator as to when under-/over-translation starts479

to get prevalent. Besides, compared to MWER, the480

misalignments introduced by our method are less481

likely to translate into catastrophic performance482

drops like MWER in the "under-translate" case.483

While the lack of source code for MWERSeg-484

menter makes it difficult to pinpoint the exact rea-485

son for its performance drop, looking at the seg-486

mented text, it is clear that MWER’s algorithm 487

struggles to distinguish between deletion and sub- 488

stitution errors, leading to erroneous choices in 489

segmentation and alignment. Such case is wors- 490

ened by poor translation quality, as the path to 491

minimize WER becomes more obscure. This ex- 492

emplifies the limitation of using WER, instead of a 493

semantic-based score, as the scoring function for 494

segmentation and alignment. Interestingly, while 495

seemingly a symmetric case, insertion errors are 496

less prone to this problem, likely because inser- 497

tion errors are harder to distribute across multiple 498

segments without introducing new errors. 499

Impact of Sentence Embedding Table 2 shows 500

a comparison of our method with different sen- 501

tence embeddings. It can be observed that our 502

fine-tuned BGE-M3 embedding consistently out- 503

performs LASER and the original BGE-M3 em- 504

bedding in all data configurations. While the gap 505

in correlation averaged across languages is small, 506

we observe in the full breakdown (Table 4) that the 507

effect of fine-tuning is most significant for ja-zh 508

language pair. This happens to be the language 509

pair with a lot of long sentences on the source side, 510

which is more sensitive to the quality of sentence 511

embedding. Being able to maintain robustness in 512

that pair shows that our proposed embedding fine- 513

tuning process successfully specializes the embed- 514

ding model for the task of sentence alignment. 515

Impact of Sentence Segmenter Most of the 516

numbers reported in this paper are calculated with 517

the ersatz sentence segmenter. We also experi- 518

mented with spaCy as the sentence segmenter as 519

another ablation study, also shown in Table 2. We 520

observed a small but consistent performance drop, 521

likely due to the tendancy of spaCy segmenting 522

sentences into smaller units, which does not align 523

well with the long segments in WMT test sets. 524

6 Evaluation of Book-Length Translation 525

Capability of Existing LLMs 526

Now that we have validated our evaluation method 527

on WMT 2024 metrics shared task dataset, we 528

briefly demonstrate that our method can be applied 529

to assess the book-length translation capability of 530

existing LLMs by conducting a similar experiment 531

as Wang et al. (2024a). Our dataset comes from the 532

Chinese-English (zh-en) section of the WMT 2024 533

Discourse-Level Literary Translation task (Wang 534

et al., 2024b). Because the test set only contains 535
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Model ID Reference

utter-project/EuroLLM-9B-Instruct Martins et al. (2024)
Qwen/Qwen2.5-14B-Instruct Yang et al. (2024)
Qwen/Qwen2.5-72B-Instruct Yang et al. (2024)
meta-llama/Llama-3.1-8B-Instruct Dubey et al. (2024)
meta-llama/Llama-3.1-70B-Instruct Dubey et al. (2024)
CohereForAI/aya-expanse-8b Dang et al. (2024)
CohereForAI/aya-expanse-32b Dang et al. (2024)

Table 3: List of LLMs evaluated for book-length trans-
lation capability.

book chapters instead of full books, we randomly536

pick a book with ID 2-xzltq from the training split537

of the dataset and use it as our test set.538

The LLMs evaluated are listed in Table 3. For539

simplicity, we adopted the same prompt and trans-540

lation extraction procedure as used in WMT 2024541

general machine translation shared task9 for all the542

LLMs. Since current LLMs are constrained by543

maximum generation lengths and cannot translate544

the entire book in a single pass, we divide the con-545

tent into segments of 1k, 2k, 4k, and 8k tokens,546

using tokenization from the tiktoken tokenizer10.547

Most of these models have a maximum generation548

length of 8k tokens, except for EuroLLM, which is549

capped at 4k.550

Figure 3 shows the translation quality and NA551

ratio of the LLMs at different context lengths. Most552

models exhibit a sharp degradation in translation553

quality at context length of 4k or 8k. For example,554

at 4k context length, EuroLLM refuses to translate555

as instructed, but rather resorting to summarizing556

the input document in the target language. Compar-557

ing with the trend in NA ratio, it is also clear that558

under-translation/over-translation errors played a559

significant role in such degradation. The only560

noteworthy exception is Qwen2.5-72B-Instruct,561

which shows a much more stable performance562

across different context lengths. In fact, with the563

increasing context length up to 4k, there is a small564

improvement in translation quality, which shows its565

ability to utilize long-context information to obtain566

better translations.567

This benchmark shows a significant gap between568

claimed max generation length and the actual ca-569

pability of LLMs to translate long-context docu-570

ments. As future work keeps improving LLM’s571

long-context processing capabilities, we call on the572

9https://github.com/wmt-conference/
wmt-collect-translations/blob/
704b3825730f93a3ee3a0fda44af9414937b6d5a/tools/
prompts.py#L23

10https://github.com/openai/tiktoken
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Figure 3: LLM Translation Performance at Different
Context Lengths

community to adopt this evaluation practice to gain 573

better insights into such capabilities in downstream 574

applications such as machine translation. 575

7 Conclusion 576

We propose a novel extension scheme that en- 577

ables evaluation metrics to evaluate unsegmented 578

document-level translations of arbitrary lengths. 579

Our scheme works with any existing evaluation 580

metric and eliminates the dependency on sentence- 581

level prompting and pre-segmented reference trans- 582

lations. Experimental results show that our ex- 583

tension scheme achieves strong correlation with 584

human judgments while demonstrating robustness 585

to common LLM translation anomalies like over- 586

and under-translation. Through this work, we aim 587

to facilitate machine translation research in its on- 588

going shift away from sentence-level paradigm, 589

while also offering new perspectives for evaluating 590

LLMs’ long-context generation capabilities. 591
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Limitations592

We acknowledge that an LLM-based metric based593

on long-context, open-source LLMs is a promising594

(and probably the eventual) solution to the problem595

of long-context MT evaluation. While previous596

work has shown that LLM-based metrics such as597

GEMBA (Kocmi and Federmann, 2023) or Au-598

toMQM (Fernandes et al., 2023) can perform on-599

par as state-of-the-art BERT-based metrics such as600

COMET, they have to rely on GPT-4 or GPT-4o as601

the underlying LLM and are currently prohibitively602

expensive for MT evaluation of book-length doc-603

uments. Their open-source LLM counterparts, on604

the other hand, are not able to match the perfor-605

mance of state-of-the-art metrics. Hence, we leave606

exploration of this direction as future work and fo-607

cus on extending existing metrics for long-context608

MT evaluation in this study.609

Our meta-evaluation is also limited in the sense610

that none of the metrics evaluated with our pro-611

posed extension scheme explicitly captures any612

discourse-level information (e.g. co-reference, con-613

sistency in word choice, etc.). This is partially due614

to the fact that most of the metrics that incorporate615

these information are targeted evaluations that de-616

pend on specific datasets to operate, and not easily617

extendable to WMT test sets. Another aspect worth618

considering is that the human judgments used in619

our evaluation do not explicitly instruct the annota-620

tors to consider discourse-level information. Hence,621

whether those extra information will show bene-622

fits in meta-evaluations based on current human623

judgments remains unclear.624

The extra sentence segmentation and alignment625

step involved in our proposed extension scheme626

may introduce certain biases and noises. For exam-627

ple, since merging sentences during translation may628

result in alignment errors, the proposed extension629

scheme may unfairly prefer systems that adheres630

to the sentence boundaries in the original source631

document. We have extensively validated in our632

empirical experiments that such biases, if existing,633

would have minimal impact on the evaluation. We634

would also like to point out that even state-of-the-635

art MT metrics have their own biases (as pointed636

out in Section 3). Since existing work (Amrhein637

and Sennrich, 2022) has already proposed methods638

to reveal the pathologies of model-based MT met-639

rics, we believe conducting a similar study with640

our proposed extension scheme will provide more641

comprehensive insights into its limitations.642

The fine-tuned BGE-m3 embedding model used 643

in our proposed extension scheme is largely a proof- 644

of-concept, due to the fact that it is trained on a 645

small dataset, covering only languages of our inter- 646

est. We believe that a specialized text embedding 647

model for sentence alignment is not only useful 648

for our proposed extension scheme, but also for 649

its more traditional use cases, such as curation of 650

web-crawled data. In the future, we plan to explore 651

extending the volume of the training data and sup- 652

ported languages to improve the usability of our 653

proposed extension scheme. 654
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A Synthetic Test Data Creation1022

To evaluate the robustness of our evaluation frame-1023

work, we construct synthetic test data simulating1024

three common alignment challenges: under-/over-1025

translation and varied sentence boundaries.1026

A.1 Synthetic Under- and Over-Translations1027

We simulate under- and over-translation scenar-1028

ios by randomly removing 10% of the segments1029

from either the source/reference sides or the system1030

translations, respectively. To maintain meaningful1031

context, we avoid sampling from documents that1032

contain only a single segment.1033

A.2 Synthetic Sentence Boundary Variation1034

To simulate sentence boundary variation, we gen-1035

erate synthetic test data by merging 10% of adja-1036

cent segments in the source side. This process is1037

conducted using GPT-4o, with the following con-1038

straints:1039

• Only segments that are neither the first nor the1040

last in a document are eligible for merging.1041

• For each eligible candidate, an attempt is made1042

to merge it with its subsequent segment.1043

• Merging is only accepted if the semantic differ-1044

ence between the merged and original segments1045

is minimal. We use BLEURT (Sellam et al.,1046

2020) to assess the semantic similarity, accept-1047

ing only merges with a BLEURT score greater1048

than 0.85. If a candidate pair fails this criterion,1049

another eligible pair is sampled.1050

GPT-4o is instructed to merge adjacent segments1051

into a single, fluent sentence without changing the1052

original meaning, vocabulary, or the order of infor-1053

mation. Figure 4 shows the prompt template used1054

to guide the model.1055

Figure 5 provides an example of the merging1056

process before and after GPT-4o rewriting. The1057

sentences initially presented separately are trans-1058

formed into a single sentence using appropriate1059

transitional phrases.1060

This procedure enables us to test our evaluation1061

method’s robustness in conditions reflecting real-1062

istic variations in sentence boundary alignments1063

while ensuring that human annotations remain valid1064

and can be directly reused without recalibration.1065

B Implementation Details 1066

In this section, we provide detailed implementa- 1067

tion information on extending existing evaluation 1068

metrics to book-length documents. Our proposed 1069

approach is designed as a flexible framework where 1070

the underlying models can be readily substituted. 1071

Here, we specifically outline the experimental con- 1072

figurations used in this study. 1073

B.1 Sentence Segmentation 1074

For sentence segmentation, our experiments em- 1075

ploy two different models: SpaCy and ersatz. 1076

SpaCy requires specification of the target language, 1077

whereas ersatz is language-agnostic, making it 1078

suitable for multilingual segmentation tasks. 1079

The experiments in this paper cover five lan- 1080

guages: English, German, Spanish, Japanese, and 1081

Chinese. Corresponding SpaCy models for each 1082

language are as follows: 1083

• English (en): en_core_web_sm 1084

• German (de): de_core_news_sm 1085

• Spanish (es): es_core_news_sm 1086

• Japanese (ja): ja_core_news_sm 1087

• Chinese (zh): zh_core_web_sm 1088

B.2 Sentence Alignment 1089

We adopt a robust sentence alignment strategy 1090

based on Vecalign (Thompson and Koehn, 2019), 1091

leveraging multilingual sentence embeddings and 1092

an efficient dynamic programming approximation 1093

to identify many-to-many alignments between sen- 1094

tence segments. 1095

In our experiments, we set the maximum number 1096

of allowed overlap size to 16. This allows us to 1097

search for source-target sentence alignments of size 1098

N–M , where N +M ≤ 16. While we use a fixed 1099

overlap size in our experiments, it can be estimated 1100

from reference documents. Detailed explanations 1101

are provided in Appendix B.4. 1102

Adaptive Penalty Search. In Vecalign, null 1103

alignments are handled via a skip cost, parame- 1104

terized by a percentile-based threshold βskip, repre- 1105

senting a quantile in the empirical distribution of 1106

1-1 alignment costs. To identify the optimal βskip, 1107

we perform a search starting from 0.2, which is 1108

the default value in Vecalign, and progressively de- 1109

crease it in small steps of 0.005. At each step, we 1110

detect signals of over-deletion. Upon detection, we 1111

revert to the previous step and treat it as the final 1112

alignment result. 1113
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System:
You are a helpful assistant.

User :
Please merge these two segments into one sentence while preserving their original meaning, word choice, and order.
Instead of simply concatenating them, use appropriate transitional expressions so that the segments are naturally connected without merely
inserting a period or extra whitespace.
Ensure the final result flows coherently and no important information is omitted.
Return only the merged text on a single line, with no additional commentary or extraneous text.
First segment: <first segment>
Second segment: <second segment>

Figure 4: Prompt used for instructing GPT-4o to merge sentences.

First segment:
Move will also help transform land at the derelict Gartshore Works site.

Second segment:
A Scottish recycling business that has already processed more than a million tonnes of construction waste has opened a second plant following a
multi-million pound investment.

After GPT-4o merging:
Move will also help transform land at the derelict Gartshore Works site as a Scottish recycling business that has already processed more than a
million tonnes of construction waste has opened a second plant following a multi-million pound investment.

Figure 5: Example of merged sentences before and after GPT-4o rewriting.

Heuristic Termination Conditions. The search1114

is terminated based on two heuristic signals that1115

indicate over-deletion:1116

(a) The average alignment cost falls below 0.3.1117

(b) The null alignment ratio at a step exceeds 0.15.1118

Both patterns suggest that the skip cost has become1119

too lenient, leading to excessive null alignments.1120

In addition, two rare edge cases are handled with1121

early stopping:1122

(a) If the average alignment cost increases rather1123

than decreases at a step, indicating misalign-1124

ments with semantically distant content.1125

(b) If the average alignment cost exceeds 0.7, indi-1126

cating poor alignment quality overall.1127

Parameter Tuning. These heuristic termination1128

conditions were tuned empirically on the test set1129

from the WMT24 Discourse-Level Literary Trans-1130

lation shared task, using only the Chinese→English1131

portion. To remain within the context length of1132

our selected LLMs, we segment each instance1133

from the training and validation sets into chunks1134

of up to 1024 tokens. Translations are generated1135

using meta-llama/Llama-3.1-8B-Instruct and1136

GPT-4o 2024-08-06, and sentence embeddings are1137

computed using LASER. We empirically validate1138

alignment quality by manually inspecting whether1139

translation errors are consistently marked as null1140

alignments. Once verified, the same configuration 1141

is used for all experiments in this paper. 1142

While the heuristic termination conditions are ro- 1143

bust in our experiments, they may vary depending 1144

on the translation direction and source/reference 1145

sentence boundaries. These parameters can be fur- 1146

ther refined using reference translations, which are 1147

typically assumed to be perfectly aligned – i.e., 1148

with a null alignment (NA) ratio of zero. This pro- 1149

vides a basis for estimating how much the NA ratio 1150

increases when the skip cost becomes too lenient, 1151

as well as the expected alignment cost under ideal 1152

conditions. These estimates can then inform the 1153

selection of appropriate heuristic parameters when 1154

evaluating future system translations. 1155

B.3 Details for Text Embedding Model 1156

Fine-Tuning 1157

We used News Commentary 18.1 parallel data from 1158

any language pairs that is a combination of Chinese 1159

(zh), English (en), German (de), Japanese (ja), and 1160

Spanish (es), which are the languages of interest 1161

in our evaluation. For each language pair, we use 1162

either the full dataset or only first 10,000 lines of 1163

the dataset, whichever is smaller. We build the ex- 1164

ample triplets with the following: we concatenate 1165

each of the two neighboring sentence pairs in the 1166

parallel corpus and use the source/target side as the 1167

query/positive example, respectively. As for the 1168

negative example, we always construct two vari- 1169
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ants: (1) we randomly drop on of the two sentences1170

on the target side (2) we retrieve a nearby sentence1171

by randomly looking forward 1 to 3 sentences in the1172

dataset and use it to substitute the second sentence1173

on the target side. The intuition behind these exam-1174

ple triplets is for the model to better distinguish a1175

good translation from (1) an incomplete translation,1176

and (2) a sentence that has a similar topic but is not1177

a translation. The resulting synthetic dataset has1178

130,436 examples.1179

We fine-tune the BGE-M3 embedding on the1180

synthetic dataset with InfoNCE loss (van den Oord1181

et al., 2018) for two epochs. We did not conduct an1182

extensive hyperparameter search, but simply use1183

the setup in the fine-tuning tutorial in the FlagEm-1184

bedding package11. We directly used the check-1185

point at the end of the training without using a1186

validation set to select the best checkpoint.1187

B.4 Setting Overlap Size for Alignment1188

Beyond the text embedding model, we also ob-1189

serve that the choice of overlap size in Vecalign1190

can significantly impact the alignment quality. The1191

overlap size defines the size of the blocks that are1192

compared to each other in the alignment search. A1193

small overlap size causes some ideal alignments to1194

fall out of search space. For example, if the overlap1195

size is set to 8, but a long source sentence should be1196

aligned to a sentence block of size 16 on the target1197

side, such groundtruth alignment will never be con-1198

sidered by the search algorithm. On the other hand,1199

a large overlap size will increase the computational1200

cost.1201

With datasets that comes with human-segmented1202

sentence boundaries and alignment (which covers1203

the vast majority of use cases), one can easily and1204

accurately estimate the appropriate overlap size by1205

re-segmenting the reference documents with sen-1206

tence segmenter, calculate the maximum ratio of1207

sentences as segmented by human and by the sen-1208

tence segmenter. With datasets that does not come1209

with human-segmented sentence boundaries or ref-1210

erences, one would have to first conduct a pilot1211

study with sentence-level translation to estimate1212

the appropriate overlap size. However, the good1213

news is that with a given sentence segmenter, the1214

overlap size only needs to be estimated once per1215

language, and can be reused for different datasets.1216

Besides, in the case where estimation is not very1217

11https://github.com/FlagOpen/FlagEmbedding/
blob/024e789d599eb4cf9a208e98d27508ad455f5ecb/
Tutorials/7_Fine-tuning/7.1.2_Fine-tune.ipynb

accurate, one can always err on the safe side and 1218

set a larger overlap size. 1219

C Supplementary Results 1220

Since the results in the main paper are condensed 1221

versions with averaging across different language 1222

pairs or showing only a subset of the metrics evalu- 1223

ated, we attach the full breakdown of the results in 1224

Table 4 for readers’ reference. 1225

D Licensing of Artifacts 1226

Almost all code, model, and data artifacts we used 1227

in this paper are publicly available with permissive 1228

licenses (MIT/Apache 2.0/CC-BY-4.0). The only 1229

exceptions are Aya models (CC-BY-NC 4.0), and 1230

GPT-4o (OpenAI API Terms of Use), which still 1231

allows research use. We also plan to release all 1232

created code, model, and data artifacts under a 1233

permissive license. 1234

E Use of AI Assistants 1235

We used a code editor with generative AI function- 1236

alities during code development and paper writing 1237

(in the latter case, it only assists with LaTeX code 1238

completion and minor text editing). We also used 1239

various AI assistants for creating miscellaneous 1240

single-use data processing scripts, as well as all 1241

the figures in this paper. All AI-generated artifacts 1242

were carefully reviewed and accepted by the au- 1243

thors. 1244
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