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ABSTRACT

We address the problem of solving strongly convex and smooth minimization
problems using stochastic gradient descent (SGD) algorithm with a constant step
size. Previous works suggested to combine the Polyak-Ruppert averaging proce-
dure with the Richardson-Romberg extrapolation technique to reduce the asymp-
totic bias of SGD at the expense of a mild increase of the variance. We signif-
icantly extend previous results by providing an expansion of the mean-squared
error of the resulting estimator with respect to the number of iterations n. More
precisely, we show that the mean-squared error can be decomposed into the sum
of two terms: a leading one of order O(n−1/2) with explicit dependence on a
minimax-optimal asymptotic covariance matrix, and a second-order term of or-
der O(n−3/4) where the power 3/4 is best known. We also extend this result
to the p-th moment bound keeping optimal scaling of the remainders with re-
spect to n. Our analysis relies on the properties of the SGD iterates viewed as
a time-homogeneous Markov chain. In particular, we establish that this chain
is geometrically ergodic with respect to a suitably defined weighted Wasserstein
semimetric.

1 INTRODUCTION

Stochastic gradient methods are a fundamental approach for solving a wide range of optimization
problems, with a broad range of applications including generative modeling (Goodfellow et al.,
2014; 2016), empirical risk minimization (Van der Vaart, 2000), and reinforcement learning (Sutton
& Barto, 2018; Schulman et al., 2015; Mnih et al., 2015). These methods are devoted to solving the
stochastic minimization problem

minθ∈Rd f(θ) , ∇f(θ) = Eξ∼Pξ
[∇F (θ, ξ)] , (1)

where ξ is a random variable on (Z,Z) and we can access the gradient ∇f of the function f only
through (unbiased) noisy estimates ∇F . Throughout this paper, we consider strongly convex min-
imization problems admitting a unique solution θ⋆. Arguably the simplest and one of the most
widely used approaches to solve (1) is the stochastic gradient descent (SGD), defining the sequence
of updates

θk+1 = θk − γk+1∇F (θk, ξk+1) , θ0 ∈ Rd , (2)
where {γk}k∈N are step sizes, either diminishing or constant, and {ξk}k∈N is an i.i.d. sequence
with distribution Pξ. The algorithm (2) can be viewed as a special instance of the Robbins-Monro
procedure (Robbins & Monro, 1951). While the SGD algorithm remains one of the core algorithms
in statistical inference, its performance can be enhanced by means of additional techniques that use
e.g., momentum (Qian, 1999), averaging (Polyak & Juditsky, 1992), or variance reduction (Defazio
et al., 2014; Nguyen et al., 2017). In particular, the celebrated Polyak-Ruppert algorithm proceeds
with a trajectory-wise averaging of the estimates

θ̄n0,n = 1
n

∑n+n0

k=n0+1 θk (3)

for some n0 > 0. It is known (Polyak & Juditsky, 1992; Fort, 2015), that under appropriate assump-
tions on f and γk, the sequence of estimates {θ̄n0,n}n∈N is asymptotically normal, that is,

√
n(θ̄n0,n − θ⋆)

d→ N(0,Σ∞) , n→ ∞ (4)
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where d→ denotes the convergence in distribution and N(0,Σ∞) denotes the zero-mean Gaussian dis-
tribution with covariance matrix Σ∞, which is asymptotically optimal from the Rao-Cramer lower
bound, see Fort (2015) for a discussion. On the other hand, quantitative counterparts of (4) rely on
the mean-squared error bounds of the form

E1/2[∥θ̄n0,n − θ⋆∥2] ≤
√
TrΣ∞

n1/2
+
C(f, d)

n1/2+δ
+R(∥θ0 − θ⋆∥, n) . (5)

Here R(∥θ0 − θ⋆∥, n) is a remainder term which reflects the dependence upon initial condition,
C(f, d) is some instance-dependent constant and δ > 0. There are many studies establishing (5)
for Polyak-Ruppert averaged SGD under various model assumptions, including Bach & Moulines
(2013), Gadat & Panloup (2023). In particular, Li et al. (2022) derived the bound (5) with the rate
δ = 1/4 and proved that the second order term is unavoidable under a natural setup. However,
their results apply a modified algorithm with control variates and multiple restarts. In our work, we
show that the same non-asymptotic upper bound is achieved by a simple modification of the estimate
θ̄n0,n based on Richardson-Romberg extrapolation. The main contributions of the current paper are
as follows:

• We show that a version of SGD algorithm with constant step size, Polyak-Ruppert averag-
ing, and Richardson-Romberg extrapolation lead to the root-MSE bound (5) with δ = 1/4
when applied to strongly convex minimization problems. We obtain this result by lever-
aging the analysis of iterates generated by the constant step-size SGD as a Markov chain.
This process turns out to be geometrically ergodic with respect to a carefully designed
Wasserstein semi-metric (see detailed discussion in Section 3). It is important to note that
this result is obtained for a fixed step size γ of order 1/

√
n with n being a total number of

iterations. This result requires that the number of samples, n, is known a priori to optimize
the step size γ.

• We generalize the above result to the p-th moment error bounds. Under a similar step size
γ ≍ 1/

√
n, we obtain the error bound of the order

E1/p[∥θ̄(RR)
n − θ⋆∥p] ≤ Cp1/2

√
TrΣ∞

n1/2
+
C(f, d, p)

n3/4
+R(∥θ0 − θ⋆∥, n, p) , (6)

whereC is a universal constant, and θ̄(RR)
n is a counterpart of the quantity θ̄n0,n when using

Richardson-Romberg extrapolation, see related definitions at Section 4. Our proof is based
on a novel version of the Rosenthal inequality, which might be of independent interest.

The rest of the paper is organized as follows. First, we provide a literature review on the non-
asymptotic analysis of the first order optimization methods, with an emphasis on the constant step-
size algorithms and Richardson-Romberg procedure in Section 2. Then, we provide analysis of the
constant step size SGD viewed as a Markov chain together with the properties of the Polyak-Ruppert
averaged estimator (3) in Section 3. In Section 4, we discuss the Richardson-Romberg extrapolation
applied to the Polyak-Ruppert averaged SGD and derive the respective 2-nd and p-th moment error
bounds.

Notations and definitions. For θ1, . . . , θk being the iterates of stochastic first-order method, we
denote Fk = σ(θ0, θ1, . . . , θk) and Ek be an alias for E

[
·|Fk

]
. We call a function c : Z× Z → R+

a distance-like function, if it is symmetric, lower semi-continuous and c(x, y) = 0 if and only if
x = y, and there exists q ∈ N such that (d(x, y) ∧ 1)q ≤ c(x, y). For two probability measures
ξ and ξ′ we denote by C (ξ, ξ′) the set of couplings of two probability measures, that is, for any
C ∈ C (ξ, ξ′) and any A ∈ Z it holds C(Z × A) = ξ′(A) and C(A × Z) = ξ(A). We define the
Wasserstein semi-metrics associated to the distance-like function c(·, ·), as

Wc(ξ, ξ
′) = inf

C∈C (ξ,ξ′)

∫
Z×Z

c(z, z′)C(dz,dz′) . (7)

Note that Wc(ξ, ξ
′) is not necessarily a distance, as it may fail to satisfy the triangle inequality.

In the particular case of Z = Rd, and cp(x, y) = ∥x − y∥p, x, y ∈ Rd, p ≥ 1, we denote the
corresponding Wasserstein metrics by Wp(ξ, ξ

′). Let Q(z,A) be a Markov kernel on (Z,Z). We
say that K is a Markov coupling of Q if for all (z, z′) ∈ Z2 andA ∈ Z , K((z, z′), A×Z) = Q(z,A)
and K((z, z′),Z×A) = Q(z′, A). If K is a kernel coupling of Q, then for all n ∈ N, Kn is a kernel
coupling of Qn and for any C ∈ C (ξ, ξ′), CKn is a coupling of (ξQn, ξ′Qn) and it holds

Wc(ξQ
n, ξ′Qn) ≤

∫
Z×Z

Knc(z, z′)C(dzdz′) ,

2
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see (Douc et al., 2018, Corollary 20.1.4). For any probability measure C on (Z2,Z⊗2), we de-
note by PK

ζ and EK
ζ the probability and the expectation on the canonical space ((Z2)N, (Z⊗2)⊗N)

such that the canonical process {(Zn, Z
′
n), n ∈ N} is a Markov chain with initial probability C

and Markov kernel K. We write EK
z,z′ instead EK

δz,z′
. For all x, y ∈ Rd denote by x ⊗ y the

tensor product of x and y and by x⊗k the k-th tensor power of x. In addition, for a function
f : Rd → R we denote by ∇kf(θ) the k-th differential of f , that is ∇kf(θ)i1,··· ,ik = ∂kf∏k

j=1 ∂xij

.

For any tensor M ∈ (Rd)⊗(k−1), we define ∇kf(θ)M ∈ Rd by the relation (∇kf(θ)M)l =∑
i1,...,ik−1

Mi1,··· ,ik−1
∇kf(θ)i1,··· ,ik−1,l, where l ∈ {1, . . . , d}. For two sequences {an}n∈N and

{bn}n∈N we write an ≲ bn, if there is an absolute constant c0, such that an ≤ c0bn. Throughout
this paper we use c0 for an absolute constant, which values may vary from line to line.

2 LITERATURE REVIEW

Gadat & Panloup (2023) derive (5) with δ = 1/8 for a certain class of functions f , including strongly
convex functions, improving Moulines & Bach (2011) which obtain this result for δ = 1/12. Li et al.
(2022) suggested the Root-SGD algorithm combining the ideas of the Polyak-Ruppert averaged
SGD with control variates and established (5) with δ = 1/4. The recent series of papers (Huo
et al., 2023; Zhang & Xie, 2024; Zhang et al., 2024) investigate stochastic approximation algorithms
with both i.i.d. and Markovian data and constant step sizes. The authors consider both linear SA
problems and Q-learning, quantify bias, and propose precise characterization of the bias together
with a Richardson-Romberg extrapolation procedure. However, these results only consider 2-nd
moment of the error and provide MSE bounds of order O(1/n) +O(γ) with no explicit expression
for the leading term.

Richardson-Romberg extrapolation. Richardson-Romberg extrapolation is a technique used to
improve the accuracy of numerical approximations (Hildebrand, 1987), such as those from numeri-
cal differentiation or integration. It involves using approximations with different step sizes and then
extrapolating to reduce the error, typically by removing the leading term in the error expansion. The
one-step Richardson-Romberg was introduced to reduce the discretization error induced by an Euler
scheme to simulate stochastic differential equation in Talay & Tubaro (1990), and later generalized
for non-smooth functions in Bally & Talay (1996). This technique was extended using multistep
discretizations in Pagès (2007). Finally, Richardson-Romberg extrapolation have been applied to
Stochastic Gradient Descent (SGD) methods in Durmus et al. (2016), Merad & Gaı̈ffas (2023) and
Huo et al. (2024b), to improve convergence and reduce error in optimization problems, particularly
when dealing with noisy or high-variance gradient estimates.

3 FINITE-TIME ANALYSIS OF THE SGD DYNAMICS FOR STRONGLY CONVEX
MINIMIZATION PROBLEMS

3.1 GEOMETRIC ERGODICITY OF SGD ITERATES

We consider the following assumption on the function f in the minimization problem (1).
A1. The function f is µ-strongly convex on Rd, that is, it is continuously differentiable and there
exists a constant µ > 0, such that for any θ, θ′ ∈ Rd, it holds that

µ

2
∥θ − θ′∥2 ≤ f(θ)− f(θ′)− ⟨∇f(θ′), θ − θ′⟩ . (8)

A2. The function f is 4 times continuously differentiable and L2-smooth on Rd, i.e., it is continu-
ously differentiable and there is a constant L2 ≥ 0, such that for any θ, θ′ ∈ Rd,

∥∇f(θ)−∇f(θ′)∥ ≤ L2 ∥θ − θ′∥ . (9)
Moreover, f has uniformly bounded 3-rd and 4-th derivatives, there exist L3,L4 ≥ 0 such that

∥∇if(θ)∥ ≤ Li for i ∈ {3, 4} . (10)

We aim to solve the problem (1) using SGD with a constant step size, starting from initial distribution
ν. That is, for k ≥ 0 and a step size γ ≥ 0, we consider the following recurrent scheme

θ
(γ)
k+1 = θ

(γ)
k − γ∇F (θ(γ)k , ξk+1) , θ

(γ)
0 = θ0 ∼ ν , (11)

where {ξk}k∈N is a sequence satisfying the following condition.

3
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A3 (p). {ξk}k∈N is a sequence of independent and identically distributed (i.i.d.) random variables
with distribution Pξ, such that ξi and θ0 are independent and for any θ ∈ Rd it holds that

Eξ∼Pξ
[∇F (θ, ξ)] = ∇f(θ) .

Moreover, there exists τp, such that E1/p[∥∇F (θ⋆, ξ)∥p] ≤ τp, and for any q = 2, . . . , p it holds
with some L1 > 0 that for any θ1, θ2 ∈ Rd,

Lq−1
1 ∥θ1 − θ2∥q−2⟨∇f(θ1)−∇f(θ2), θ1 − θ2⟩ ≥ Eξ∼Pξ

[∥∇F (θ1, ξ)−∇F (θ2, ξ)∥q] . (12)

Assumption A3(p) generalizes the well-known L1-co-coercivity assumption, see Dieuleveut et al.
(2020). A sufficient condition which allows for A3(p) is to assume that F (θ, ξ) is Pξ-a.s. convex
with respect to θ ∈ Rd. For ease of notation, we set

L = max(L1,L2,L3,L4) , (13)

and trace only L in our subsequent bounds. In this paper we focus on the convergence to θ⋆ of the
Polyak-Ruppert averaging estimator defined for any n ≥ 0,

θ̄
(γ)
n = 1

n

∑2n
k=n+1 θ

(γ)
k . (14)

Many previous studies instead consider ϑ̄(γ)n = 1
n−n0

∑n
k=n0+1 θ

(γ)
k rather than θ̄(γ)n , where n ≥

n0 + 1 and n0 denotes a burn-in period. However, when the sample size n is sufficiently large, the
choice of the optimal burn-in size n0 affects the leading terms in the MSE bound of θ̄(γ)n −θ⋆ only by
a constant factor. Therefore, we focus on (14), or equivalently, use 2n observations and set n0 = n.

Properties of {θ(γ)k }k∈N viewed as a Markov chain. Under assumptions A1, A2 and A3(2),
the sequence {θ(γ)k }k∈N defined by the relation (11) is a time-homogeneous Markov chain with the
Markov kernel

Qγ(θ,A) =

∫
Rd

1A(θ − γ∇F (θ, z))Pξ(dz) , θ ∈ Rd , A ∈ B(Rd) , (15)

where B(Rd) denoted the Borel σ-field of Rd. In Dieuleveut et al. (2020) it has been established
that, under the stated assumptions, Qγ admits a unique invariant distribution πγ , if γ is small enough.
Previous studies, such as Dieuleveut et al. (2020) or Merad & Gaı̈ffas (2023), studied the conver-
gence of the distributions of {θ(γ)k }k∈N to πγ in the 2-Wasserstein distance W2, associated with the
Euclidean distance in Rd. However, our main results would require to switch to the non-standard
distance-like function, which is defined under A1 and A3(2) as follows:

c(θ, θ′) = ∥θ − θ′∥
(
∥θ − θ∗∥ + ∥θ′ − θ∗∥ +

2
√
2τ2

√
γ√

µ

)
, θ, θ⋆ ∈ Rd . (16)

Here the constants τ2 and µ are given in A3(2) and A1, respectively. Note that this distance-like
function is specifically designed to analyze {θ(γ)k }k∈N under A1 and A3(2). In particular, it depends
on the step size γ and θ⋆. Our first main result establishes geometric ergodicity of the Markov kernel
Qγ with respect to the distance-like function c from (16).
Proposition 1. Assume A1, A2, and A3(2). Then for any γ ∈ (0; 1/(2 L)], the Markov kernel Qγ

defined in (15) admits a unique invariant distribution πγ . Moreover, Qγ is geometrically ergodic
with respect to the cost function c, that is, for any initial distribution ν on Rd and k ∈ N,

Wc(νQ
k
γ , πγ) ≤ 4(1/2)k/m(γ)Wc(ν, πγ) , (17)

where m(γ) = ⌈2 log 4/(γµ)⌉.

Discussion. The proof of Proposition 1 is provided in Appendix A.1. Properties of the invariant
distribution πγ were previously studied in literature, see e.g. Dieuleveut et al. (2020). It particular, it
is known (Dieuleveut et al., 2020, Lemma 13), that the 2-nd moment of θ(γ)∞ , where θ(γ)∞ is distributed
according to the stationary distribution πγ , scales linearly with γ:∫

Rd ∥θ − θ⋆∥2πγ(dθ) ≲ γτ2
µ . (18)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

This property yields, using Lyapunov’s inequality, that∫
Rd×Rd ∥θ − θ′∥πγ(dθ)πγ(dθ′) ≲

√
γτ2
µ .

At the same time, expectation of the cost function c(θ, θ′) scale linearly with the step size γ:∫
Rd c(θ, θ

′)π(dθ)π(dθ′) ≲ γτ2
µ . (19)

The property (19) is crucial to obtain tighter (with respect to the step size γ) error bounds for the
Richardson-Romberg estimator, as well as in the Rosenthal inequality for additive functional of
{θ(γ)k }k∈N derived in Proposition 8. Precisely, the additional

√
γ factor obtained in (19) would

allow us to obtain sharper bounds on the remainder terms in Theorem 6.

Next, we analyze the error θ(γ)∞ −θ⋆ where θ(γ)∞ is distributed according to the stationary distribution
πγ . To this end, we consider the following condition.
C1 (p). There exist constants Dlast,p,Cstep,p ≥ 2 depending only on p, such that for any step size
γ ∈ (0, 1/(LCstep,p)], and any initial distribution ν it holds that

E
2/p
ν

[
∥θ(γ)k − θ⋆∥p

]
≤ (1− γµ)kE

2/p
ν

[
∥θ0 − θ⋆∥p

]
+ Dlast,pγτ

2
p/µ . (20)

Moreover, for the stationary distribution πγ it holds that

E2/p
πγ

[
∥θ(γ)∞ − θ⋆∥p

]
≤ Dlast,pγτ

2
p/µ . (21)

Note that, since L ≥ µ, it holds that γµ ≤ 1/2. It is important to recognize that C1 is not independent
from the previous assumptions A1 - A3(p). In particular, Dieuleveut et al. (2020, Lemma 13) implies
that, under A1, A3(p) with p ≥ 2, and A2, the bound (21) holds for γ ∈ (0, 1/(LCstep,p)] with
some constants Dlast,p and Cstep,p, which depends only upon p. Unfortunately, it is complicated to
obtain precise dependence of Cstep,p and Dlast,p upon p, as well as to obtain the bound (21) with
tight numerical constants. The results available in the literature (Gadat & Panloup, 2023; Li et al.,
2022; Merad & Gaı̈ffas, 2023) either are obtained under alternative set of assumptions, or are not
explicit with respect to their dependence upon p. That is why we prefer to state C1(p) as a separate
assumption. In the subsequent bounds we use C1(p) together with A1, A3(p) with p ≥ 2, and A2,
tracking the dependence of our bounds upon Cstep,p and Dlast,p. We leave the problem of deriving
C1(p) with sharp constants Dlast,p,Cstep,p as an interesting direction for the future research.

Under the assumption C1, we control the fluctuations of {θ(γ)k } around the solution θ⋆ of (1). How-
ever, unless the function f is quadratic, it is known that

∫
Rd θπγ(dθ) ̸= θ⋆. In the following propo-

sition, we quantify this bias under milder assumptions compared to the ones from Dieuleveut et al.
(2020, Theorem 4). Namely, the following result holds:
Proposition 2. Assume A1, A2, A3(6), and C1(6). Then there exist such ∆1 ∈ Rd,∆2 ∈ Rd×d, not
depending upon γ, that for any γ ∈ (0, 1/(LCstep,6)], it holds

θ̄γ :=

∫
Rd

θπγ(dθ) = θ⋆ + γ∆1 +B1γ
3/2 , (22)

Σ̄γ :=

∫
Rd

(θ − θ⋆)⊗2πγ(dθ) = γ∆2 +B2γ
3/2 . (23)

Here B1 ∈ Rd and B2 ∈ Rd×d satisfy ∥Bi∥ ≤ C1, i = 1, 2, where C1 defined in (51) is a constant
independent of γ. Moreover, for any initial distribution ν on Rd, it holds that

Eν [θ̄
(γ)
n ] = θ⋆ + γ∆1 +B1γ

3/2 +R1(θ0 − θ⋆, γ, n) , (24)

where
∥R1(θ0 − θ⋆, γ, n)∥ ≲ e−γµ(n+1)/2

nγµ

(
E
1/2
ν

[
∥θ0 − θ⋆∥2

]
+

√
γτ2√
µ

)
. (25)

The proof is postponed to Appendix A. Results of this type were already obtained in the literature
for stochastic approximation algorithms, see e.g. Huo et al. (2024a) and Allmeier & Gast (2024). As
already highlighted, the additive term ∆1 vanishes in the case of minimizing the quadratic function
f , see Bach & Moulines (2013).

5
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3.2 ANALYSIS OF THE POLYAK-RUPPERT AVERAGED ESTIMATOR θ̄
(γ)
n .

In this section, we analyze the finite-sample properties of the estimator θ̄(γ)n from (14). The analysis
is based on techniques previously used in Moulines & Bach (2011), as well as in the analysis of
the Polyak-Ruppert averaged LSA (Linear Stochastic Approximation) algorithms, see Mou et al.
(2020); Durmus et al. (2024). Next, we define the k-th step noise level at the point θ ∈ Rd by:

εk(θ) = ∇F (θ, ξk)−∇f(θ) , (26)

Note that εk+1(θ
(γ)
k ) is a martingale-difference sequence w.r.t. the filtration (Fk)k∈N. With these

notations, (11) writes

θ
(γ)
k+1 − θ⋆ = θ

(γ)
k − θ⋆ − γ

(
∇f(θ(γ)k ) + εk+1(θ

(γ)
k )
)
. (27)

Setting
η(θ) = ∇f(θ)−H⋆(θ − θ⋆) , (28)

with
H⋆ = ∇2f(θ⋆) ∈ Rd×d . (29)

we get from (27) with additional rearranging the terms, that

H⋆(θ
(γ)
k − θ⋆) =

θ
(γ)
k − θ

(γ)
k+1

γ
− εk+1(θ

(γ)
k )− η(θ

(γ)
k ) . (30)

Taking average of (30) with k = n+ 1 to 2n, we arrive at the final representation:

H⋆(θ̄(γ)n − θ⋆) =
θ
(γ)
n+1 − θ⋆

γn
− θ

(γ)
2n − θ⋆

γn
− 1

n

2n∑
k=n+1

εk+1(θ
γ
k)−

1

n

2n∑
k=n+1

η(θγk) . (31)

Representation (31) is the key ingredient in the proof of the next result where the variance of noise
εk(θ

⋆) measured at the optimal point θ⋆ naturally appears, that is,

Σ⋆
ε = Eξ∼Pξ

[∇F (θ⋆, ξ)⊗2] . (32)

Note that Σ⋆
ε does not depend on the step size γ of (11) and is related to the ”optimal” covariance

matrix of the Polyak-Ruppert averaged iterates θ̄(γ)n , see Fort (2015). In our first main result below,
we establish non-asymptotic properties of the averaged Polyak-Ruppert estimator (14).

Theorem 3. Assume A1, A2, A3(6), and C1(6). Then for any γ ∈ (0, 1/(LCstep,6)], n ∈ N, and
initial distribution ν on Rd, the sequence of Polyak-Ruppert estimates (14) satisfies

E1/2
ν [∥H⋆(θ̄(γ)n − θ⋆)∥2] ≤

√
TrΣ⋆

ε√
n

+
C2

γ1/2n
+ C3γ +

C4γ
1/2

n1/2
+R2(n, γ, ∥θ0 − θ⋆∥) , (33)

where the constants C2 to C4 are defined in Appendix B (see equation (61)), and

R2(n, γ, ∥θ0 − θ⋆∥) = c0(1− γµ)(n+1)/2 L

γµn
E1/2
ν

[
∥θ0 − θ⋆∥2

]
+
c0 L(1− γµ)n+1

2nγµ
E1/2
ν

[
∥θ0 − θ⋆∥4

]
,

where c0 is an absolute (numerical) constant.

The version of Theorem 3 with explicit constants together with the proof is provided in Appendix B,
see Theorem 13. Note that the result of Theorem 3 is valid for arbitrary γ ∈ (0, 1/(LCstep,6)]. At
the same time, this bound can be optimized over step size of the form γ = n−β , β ∈ (0, 1).

Corollary 4. Under the assumptions of Theorem 3, by setting γ = n−2/3 with n ≥ (LCstep,6)
3/2

it holds that

E
1/2
ν [∥H⋆(θ̄

(γ)
n − θ⋆)∥2] ≤

√
TrΣ⋆

ε

n1/2 +O
(
n−2/3

)
+R2(n, 1/n

2/3, ∥θ0 − θ⋆∥) . (34)
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Corollary 4 implies that, if n is known in advance and γ ≍ n−2/3, then θ̄
(γ)
n satisfies (5) with

δ = 1/6. A closer inspection of the sum (31) reveals that Eπγ
[η(θγk)] ≍ γ meaning that we can not

hope to provide a better bound for the term 1
n

∑2n
k=n+1 η(θ

γ
k) compared to the one coming from the

Minkowski’s inequality. Thus, this is the bias of the stationary distribution, which prevents us from
gaining the optimal second-order term w.r.t. the sample size n from Corollary 4.

Note that in case of deterministic problems εk(θ) = 0 for any k and θ, and C1(6) is satisfied for
any p ≥ 2 with Dlast,p = 0. In such a setting, Σ⋆

ε = 0, and the remainder terms are proportional to
Dlast,p with p = 2, 4, or 6, and therefore also vanishes. Therefore, Theorem 3 provides exponential
convergence bounds, which are embedded in the remainder term. The decay rate of the second-order
(w.r.t. n) term in (34) is well studied in the literature. In particular, Moulines & Bach (2011) obtained
a second order term of order n−5/8 for the SGD algorithm with Polyak-Ruppert averaging. A similar
rate under more general assumptions was reported in (Gadat & Panloup, 2023, Theorem 2) for p-th
moment bounds. However, all these results are known to be suboptimal for first-order methods. The
recent work by Li et al. (2022) shows that the best known second-order error term in the bounds
(34) is of order O

(
n−3/4

)
and can be achieved by the Root-SGD algorithm. In the next section we

can mirror this bound using the constant step-size SGD algorithm combined with the Richardson-
Romberg extrapolation technique (Dieuleveut et al., 2020).

4 RICHARDSON-ROMBERG EXTRAPOLATION

Our analysis presented in Theorem 3 was based on the summation by parts formula (31) and Taylor
expansion of the gradient ∇f(θ) in the vicinity of θ⋆, yielding the remainder quantity η(θ). It is
important to notice that ∫

Rd η(θ)πγ(dθ) ̸= 0 , (35)

which prevents us from using more aggressive (larger) step sizes γ in the optimized bound (34). In
this section we show that Richardson-Romberg extrapolation technique is sufficient to significantly
reduce the bias associated with η(θ) and improve the second-order term in the MSE bound (34).
Instead of considering a single SGD trajectory {θ(γ)k }k∈N, and then relying on the tail-averaged
estimator θ̄(γ)n , we construct two parallel chains based on the same sequence {ξk}k∈N:

θ
(γ)
k+1 = θ

(γ)
k − γ∇F (θ(γ)k , ξk+1) , θ̄

(γ)
n = 1

n

∑2n
k=n+1 θ

(γ)
k ,

θ
(2γ)
k+1 = θ

(2γ)
k − 2γ∇F (θ(2γ)k , ξk+1) , θ̄

(2γ)
n = 1

n

∑2n
k=n+1 θ

(2γ)
k .

(36)

Based on θ̄(γ)n and θ̄(2γ)n defined above, we construct a Richardson-Romberg estimator as

θ̄(RR)
n := 2θ̄(γ)n − θ̄(2γ)n . (37)

Note that it is possible to use different sources of randomness {ξk}k∈N and {ξ′k}k∈N when construct-
ing the sequences {θ(γ)k }k∈N and {θ(2γ)k }k∈N, respectively. At the same time, it is possible to show
the benefits of using the same sequence of random variables {ξk}k∈N in (36). Indeed, consider the
decomposition (31) and further expand the term η(θ) defined in (28) as

η(θ) = ψ(θ) +G(θ) ,

where we have defined, for θ ∈ Rd, the following vector-valued functions:

ψ(θ) = (1/2)∇3f(θ∗)(θ − θ⋆)⊗2 ,

G(θ) = (1/6)
(∫ 1

0
∇4f(tθ⋆ + (1− t)θ) dt

)
(θ − θ⋆)⊗3 .

(38)

We further rewrite the decomposition (31) as

H⋆(θ̄(γ)n − θ⋆) =
θ
(γ)
n+1 − θ⋆

γn
− θ

(γ)
2n − θ⋆

γn
− 1

n

2n∑
k=n+1

εk+1(θ
⋆)

− 1

n

2n∑
k=n+1

{εk+1(θ
(γ)
k )− εk+1(θ

⋆)} − 1

n

2n∑
k=n+1

ψ(θ
(γ)
k )− 1

n

2n∑
k=n+1

G(θ
(γ)
k ) . (39)
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Note that in the decomposition (39), the linear statistics W = n−1
∑2n

k=n+1 εk+1(θ
⋆) does not

depend upon γ. Moreover, when setting the step size γ ≃ n−β with an appropriate β ∈ (0, 1),
we can show that the moments of all other terms except for W in the r.h.s. of (39) are small (see
Theorem 9 for more details). Hence, using the same sequence {ξk}k∈N of noise variables in (36)
yields an estimator θ̄(RR)

n , such that its leading component of the variance still equals W . Hence,
using the Richardson-Romberg procedure will increase only the second-order (w.r.t. n) components
of the variance. At the same time, using different random sequences {ξk}k∈N and {ξ′k}k∈N for θ̄(γ)n

and θ̄(2γ)n increase the leading component of the MSE by a constant factor. Hence, it is preferable to
use synchronous noise construction as introduced in (36).

Proposition 2 implies the following improved bound on the bias of θ̄(RR)
n :

Proposition 5. Assume A1, A2, A3(6), and C1(6). Then, for any γ ∈ (0, 1/(LCstep,6)], and any
initial distribution ν on Rd, it holds that

Eν [θ̄
(RR)
n ] = θ⋆ +B3γ

3/2 +R3(θ0 − θ⋆, γ, n) , (40)

where B3 ∈ Rd is a vector such that ∥B3∥ ≤ C1, and

∥R3(θ0 − θ⋆, γ, n)∥ ≲ e−γµ(n+1)/2

nγµ

(
E
1/2
ν

[
∥θ0 − θ⋆∥2

]
+

√
γτ2√
µ

)
.

The proof of Proposition 5 is provided in Appendix A. This result is a simple consequence of Propo-
sition 5, since the linear in γ component of the bias γ∆1 from (24) cancels out when computing
θ̄
(RR)
n . We are now ready to formulate the main result for the Richardson-Romberg estimate θ̄(RR)

n .
Theorem 6. Assume A1, A2, A3(6), and C1(6). Then for any γ ∈ (0, 1/(LCstep,6)], initial distribu-
tion ν and n ∈ N, the Richardson-Romberg estimator θ̄(RR)

n defined in (37) satisfies

E1/2
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥2] ≤
√
TrΣ⋆

ε

n1/2
+

CRR,1γ
1/2

n1/2
+

CRR,2

γ1/2n
+ CRR,3γ

3/2 +
CRR,4γ

n1/2

+R4(n, γ, ∥θ0 − θ⋆∥) ,

where the constants CRR,1 to CRR,4 are defined in (69) and

R4(n, γ, ∥θ0 − θ⋆∥) = c0 L(1−γµ)(n+1)/2

nγµ

×
(
E
1/2
ν [∥θ0 − θ⋆∥6] + E

1/2
ν [∥θ0 − θ⋆∥4] + E

1/2
ν [∥θ0 − θ⋆∥2] + Dlast,4γτ

2
4

µ

)
,

with c0 being an absolute constant.

Proof of Theorem 6 is provided in Appendix C. Similarly to Theorem 3, we can optimize the above
bound setting γ depending upon n.

Corollary 7. Under the assumptions of Theorem 6, by setting γ = n−1/2 with n ≥ (LCstep,6)
2, it

holds that

E1/2
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥2] ≤
√

TrΣ⋆
ε

n1/2
+O

(
n−3/4

)
+R4(n, 1/

√
n, ∥θ0 − θ⋆∥) . (41)

Discussion. Note that the result of Corollary 7 is a counterpart of (5) with δ = 1/4. This decay
rate of the second order term is the same as for the Root-SGD algorithm, and in general can not be
improved, see Li et al. (2022). However, the assumptions of Theorem 6 are stronger compared to
the ones imposed by Li et al. (2022). In particular, in A2 we require that f is 4 times continuously
differentiable and uniformly bounded. At the same time, Li et al. (2022) impose Lipschitz continuity
of the Hessian of f , which is essentially equivalent to bounded 3-rd derivative of f . Our proof of
Theorem 6 essentially relies on the 4-th order Taylor expansion, and it is not clear, if this assumption
can be relaxed. We leave further investigations of this question for future research.

Now we aim to generalize the previous result for the p-th moment bounds with p ≥ 2. The key
technical element of our proof for the p-th moment bound is the following statement, which can be
viewed as a version of Rosenthal’s inequality (Rosenthal, 1970; Pinelis, 1994).
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Proposition 8. Let p ≥ 2 and assume A 1, A 2, A 3(2p), and C 1(2p). Then for any γ ∈
(0, 1/(LCstep,2p)], it holds that

E
1/p
πγ

[
∥
∑n−1

k=0{ψ(θ
(γ)
k )− πγ(ψ)∥p

]
≲

LDlast,2ppτ
2
2p
√
nγ

µ3/2
+

LDlast,2pτ2p
µ2

, (42)

where ψ is defined in (38).

Discussion. The proof of Proposition 8 is provided in Appendix D.1. It is important to acknowl-
edge that there are numerous Rosenthal-type inequalities for dependent sequences in the literature.
Proposition 8 can be viewed as an analogue to the classical Rosenthal inequality for strongly mixing
sequences, see (Rio, 2017, Theorem 6.3). However, it should be emphasized that the Markov chain
{θ(γ)k }k∈N is geometrically ergodic under the assumptions A1-A3(p) only in sense of the weighted
Wasserstein semi-metric Wc(ξ, ξ

′) with respect to a cost function c defined in (16). As a result,
the sequence {θ(γ)k }k∈N does not necessarily satisfy strong mixing conditions. At the same time,
{θ(γ)k }k∈N satisfies the τ -mixing condition, see Merlevède et al. (2011). However, the considered
function ψ(θ) is quadratic, which makes the respective result of (Merlevède et al., 2011, Theorem 1)
inapplicable. Similar Rosenthal-type inequalities have been explored in (Durmus et al., 2023), but
in Proposition 8 we obtain the bound with tighter dependence of the right-hand side upon γ. Below
we provide the p-th moment bound together with corollary for the step size γ optimized w.r.t. n.

Theorem 9. Let p ≥ 2 and assume A1, A2, A3(3p), and C1(3p). Then for any step size γ ∈
(0, 1/(LCstep,3p)], initial distribution ν, and n ∈ N, the estimator θ̄(RR)

n defined in (37) satisfies

E1/p
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥p] ≤
c1
√
TrΣ⋆

εp
1/2

n1/2
+

CRR,5

nγ1/2
+

CRR,6γ
1/2

n1/2
+ CRR,7γ

3/2

+
c2pτp
n1−1/p

+
CRR,8

n
+R5(n, γ, ∥θ0 − θ⋆∥) ,

(43)

where c1 and c2 the absolute constants form the Pinelis version of Rosenthal inequality (Pinelis,
1994, Theorem 4.1), problem-specific constants CRR,5 to CRR,8 are defined in (96), and

R5(n, γ, ∥θ0−θ⋆∥) = (1−γµ)(n+1)/2Cf,p

(
E
1/p
ν

[
∥θ0−θ⋆∥p

]
+E

1/p
ν

[
∥θ0−θ⋆∥2p

]
+E

1/p
ν

[
∥θ0−θ⋆∥3p

])
.

Here constant Cf,p can be traced from (97).

Corollary 10. Under the assumptions of Theorem 9, by setting γ = n−1/2 with n ≥ (LCstep,3p)
2,

it holds that

E1/p
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥p] ≲
√
TrΣ⋆

εp
1/2

n1/2
+O

(
n−3/4

)
+R5(n, 1/

√
n, ∥θ0 − θ⋆∥) . (44)

Discussion. Proof of Theorem 9 is provided in Appendix D. Note that the result above is a direct
generalization of Theorem 6, which reveals the same optimal scaling of the step size γ with respect
to n. To the best of our knowledge, this is the first analysis of a first-order method, which provides a
bound for the second-order term of order O

(
n−3/4

)
while keeping the precise leading term related to

the minimax-optimal covariance matrix H⋆. Such results were previously known only for the setting
of linear stochastic approximation (LSA), which corresponds to the case of quadratic function f
in the initial minimization problem (1), see Durmus et al. (2024). In such a case, no bias occurs:∫
Rd θπγ(dθ) = θ⋆, and Polyak-Ruppert averaging with the step size γ ≃ n−1/2 allows for the same

scaling of the remainder terms in n, as in (44). This result can be found, for example, in Durmus
et al. (2024, Theorem 1). Hence, the main result of Theorem 9 is as follows: Richardson-Romberg
extrapolation applied to strongly convex minimization problems allows to restore the p-th moment
error moment bounds from the LSA setting.

5 NUMERICAL RESULTS

In this section we illustrate numerically the scale of the second-order terms in Corollary 7, that
is, in (41). We recall the error representation (39), and move the term 1

n

∑2n
k=n+1 εk+1(θ

⋆) to the

9
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Figure 1: Left picture: Richardson-Romberg experimental error with and without the main term
1
n

∑2n
k=n+1 εk+1(θ

⋆). Right picture: same errors after rescaling by n1/2 and n3/4, respectively.

right-hand side:

H⋆(θ̄
(γ)
n − θ⋆) + 1

n

∑2n
k=n+1 εk+1(θ

⋆) =
θ
(γ)
n+1−θ⋆

γn − θ
(γ)
2n −θ⋆

γn

− 1
n

∑2n
k=n+1{εk+1(θ

(γ)
k )− εk+1(θ

⋆)} − 1
n

∑2n
k=n+1 ψ(θ

(γ)
k )− 1

n

∑2n
k=n+1G(θ

(γ)
k ) . (45)

Under A3(6), the statistics 1
n

∑2n
k=n+1 εk+1(θ

⋆) is a sum of independent random variables, and

n−2E[∥
∑2n

k=n+1 εk+1(θ
⋆)∥2] = TrΣ⋆

ε

n .

Hence, in order to trace the rate of the second-order terms in (41), it is enough to find the decay
rate of the right-hand side in (45). We show that, for a particular minimization problem, setting
γ = n−1/2, we achieve the desired scaling of order n−3/4. We consider the minimization problem

f(θ) = θ2 + cos θ → min
θ∈R

,

with the stochastic gradient oracles ∇F (θ, ξ) given by ∇F (θ, ξ) = 2θ− sin θ+ ξ , ξ ∼ N (0, 1).
This example clearly satisfies the assumptions A1, A2, A3(p) with any p ≥ 2. We selected different
sample sizes n = 250 × 2k, where k = 0, . . . , 14, and run the SGD procedure (2) based on the
constant step sizes γ and 2γ, selecting γ = 1/

√
n. Then we construct the associated estimates

{θ̄(γ)n } and {θ̄(2γ)n }. Then for each n we compute the Richardson-Romberg estimates θ̄(RR)
n from

(36) alongside with its versions without the leading term in n, i.e. θ̄(RR)
n + 1

n

∑2n
k=n+1 εk+1(θ

⋆).

We provide first the plot for ∥θ̄(RR)
n − θ⋆∥ and ∥θ̄(RR)

n + 1
n

∑2n
k=n+1 εk+1(θ

⋆) − θ⋆∥ in Figure 1.
On the same figure we also provide the plots for rescaled errors

n1/2∥θ̄(RR)
n − θ⋆∥ and n3/4∥θ̄(RR)

n + n−1
∑2n

k=n+1 εk+1(θ
⋆)− θ⋆∥ .

The corresponding plot indicates that the proper scaling of the r.h.s. is n−3/4,
as predicted by Corollary 7. We provide code to reproduce the experiments at
https://anonymous.4open.science/r/richardson romberg example-3DD4/.

6 CONCLUSION

In this paper, we have demonstrated that Polyak-Ruppert averaged SGD iterates with a constant step
size achieve optimal root-MSE and p-th moment error bounds. More precisely, we have shown that
these bounds admit both the sharp, optimal leading term, which aligns with the optimal covariance
matrix Σ∞, and a second-order term of order O(n−3/4), which is best known among the first order
methods. Directions for future research include, firstly, generalizing the proposed algorithm to the
setting of dependent noise sequences {ξk}k∈N in the stochastic gradients (1). Another natural ques-
tion is to study the properties of θ̄(RR)

n under relaxed assumptions on f . In particular, it would be
interesting to remove additional smoothness assumptions on f (bounded 3-rd and 4-th derivatives),
and to relax the strong convexity condition A1. One more research direction is to study a relation
between the parameter δ in (5) and rates in the corresponding Berry-Esseen type results, following
the technique of Shao & Zhang (2022).
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A PROOF OF PROPOSITION 2 AND PROPOSITION 5

Throughout this appendix we use c0 for an absolute constant, which values may vary from line to
line.

A.1 PROOF OF PROPOSITION 1

Consider the synchronous coupling construction defined by the recursions

θ
(γ)
k+1 = θ

(γ)
k − γ∇F (θ(γ)k , ξk+1) , θ

(γ)
0 = θ ∈ Rd ,

θ̃
(γ)
k+1 = θ̃

(γ)
k − γ∇F (θ̃(γ)k , ξk+1) , θ̃

(γ)
0 = θ̃ ∈ Rd .

(46)

The pair (θ(γ)k , θ̃
(γ)
k )k∈N defines a Markov chain with the Markov kernel Kγ(·, ·), which is a cou-

pling kernel of (Qγ ,Qγ). From now on we omit an upper index (γ) and write simply (θk, θ̃k)k∈N.
Applying now A3(2), for γ ≤ 2/L, we get that

Eν [∥θk+1 − θ̃k+1∥2|Fk] = E[∥θk − θ̃k − γ(∇F (θk, ξk+1)−∇F (θ̃k, ξk+1))∥2|Fk]

= ∥θk − θ̃k∥2 + γ2E[∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥2|Fk]

− 2γ⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩
≤ (1− γµ)∥θk − θ̃k∥2, (47)

where in the last inequality we additionally used (1 − 2γµ(1 − γ L /2)) ≤ 1 − γµ. Similarly, for
a cost function c defined in (16), we get using Hölder’s and Minkowski’s inequalities, that for any
r ∈ N

E[c(θk+r, θ̃k+r)|Fk] ≤ E1/2[∥θk+r − θ̃k+r∥2|Fk]
(
E1/2[∥θk+r − θ⋆∥2|Fk]

+ E1/2[∥θ̃k+r − θ⋆∥2|Fk] +
23/2γ1/2τ2

µ1/2

)
.

Combining the above inequalities and using (64), we obtain

E[c(θk+r, θ
′
k+r)|Fk] ≤ (1− γµ)r/2∥θk − θ̃k∥

(
(1− γµ)r/2(∥θk − θ⋆∥ + ∥θ̃k − θ⋆∥) + 25/2γ1/2τ2

µ1/2

)
≤ 2(1− γµ)r/2c(θk, θ

′
k) .

Note that 2(1−γµ)r/2 ≤ 2 for any r ≤ m(γ)−1 and 2(1−γµ)m(γ)/2 ≤ 1/2. Hence, applying the
theorem Douc et al. (2018, Theorem 20.3.4), we obtain that the Markov kernel Qγ admits a unique
invariant distribution πγ . Moreover,

Wc(νQ
k
γ , πγ) ≤ 2(1/2)⌊k/m(γ)⌋Wc(ν, πγ) . (48)

It remains to note that (1/2)⌊k/m(γ)⌋ ≤ 2(1/2)k/m(γ).

A.2 PROOF OF PROPOSITION 2

We begin with proving (22) and (23). First we introduce some additional notations. Under assump-
tions A1 – A3(2), we define a matrix-valued function C(θ) : Rd → Rd×d as

C(θ) = E[ε1(θ)
⊗2] . (49)

The result below is essentially based on an appropriate modification of the bounds presented in
Dieuleveut et al. (2020, Lemma 18). A careful inspection of the respective proof reveals that we do
not need specific assumptions for C(θ) defined in (49), instead we use Lemma 12. For completeness,
we present the respective result below:
Lemma 11. Assume A1, A2, A3(6), and C1(6). Then, for any γ ∈ (0, 1/(LCstep,6)], it holds

θ̄γ − θ⋆ = −(γ/2){H⋆}−1{∇3f(θ⋆)}TC(θ⋆) +B1γ
3/2 , (50)
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where θ̄γ is defined in (22), C(θ) is defined in (49), and B1 ∈ Rd satisfies ∥B1∥ ≤ C1, where

C1 =

(
L2 Dlast,2√

µ
+

L
√

Dlast,2√
µ

)
τ22
µ

+
L

µ
. (51)

Moreover,
Σ̄γ = γTC(θ⋆) +B2γ

3/2 , (52)

where the operator T : Rd×d → Rd×d is defined by the relation

vec (TA) = (H⋆ ⊗I + I⊗H⋆)−1 vec (A)

for any matrix A ∈ Rd×d, and B2 ∈ Rd×d is a matrix, such that ∥B2∥ ≤ C1.

Proof. Let (θ(γ)k )k∈N be a recurrence defined in (11) with initial distribution θ0 ∼ πγ . Moreover,
we assume that θ0 is independent of the noise variables (ξk)k≥1. First, applying a third-order Taylor
expansion of ∇f(θ) around θ⋆, for any θ ∈ Rd, we obtain

∇f(θ) = H⋆(θ − θ⋆) + (1/2){∇3f(θ⋆)}(θ − θ⋆)⊗2 +G(θ) , (53)

where G(θ) is defined in (38) and writes as

G(θ) =
1

6

(∫ 1

0

∇4f(tθ⋆ + (1− t)θ) dt

)
(θ − θ⋆)⊗3 .

Thus, using A2,
∥G(θ)∥ ≲ L4 ∥θ − θ⋆∥3 .

Thus, integrating (53) with respect to πγ , we get from (53) that

H⋆(θ̄γ − θ⋆) + (1/2){∇3f(θ⋆)}
[∫

Rd

(θ − θ⋆)⊗2πγ(dθ)

]
= −

∫
Rd

G(θ)πγ(dθ) . (54)

Now we need to provide an explicit expression for the covariance matrix

Σ̄γ =

∫
Rd

(θ − θ⋆)⊗2πγ(dθ) . (55)

Using the recurrence (11), we obtain that

θ1 − θ⋆ = (I− γH⋆)(θ0 − θ⋆)− γε1(θ0)− γη(θ0) ,

where the function η(·) is defined in (28). Hence, taking second moment w.r.t. πγ from both sides,
we get that

Σ̄γ = (I− γH⋆)Σ̄γ(I− γH⋆) + γ2
∫
Rd

C(θ)πγ(dθ) + γ2
∫
Rd

{η(θ)}⊗2πγ(dθ)

− γ

∫
Rd

[
(I− γH⋆)(θ − θ⋆){η(θ)}⊤ + η(θ)(θ − θ⋆)⊤(I− γH⋆)

]
πγ(dθ) . (56)

In the above equation C(θ) is defined in (49), and we additionally used that E
[
ε1(θ0)|F0

]
= 0.

Moreover, (49) together with C1(6) implies that∫
Rd

C(θ)πγ(dθ) = C(θ⋆) +Bγ1/2 ,

where B ∈ Rd×d satisfies ∥B∥ ≤ C2. Thus, from (56) together with C1(6) we obtain that Σ̄γ is a
solution to the matrix equation

H⋆ Σ̄γ + Σ̄γ H
⋆ −γH⋆ Σ̄γ H

⋆ = γC(θ⋆) +Bγ3/2 ,

which can be written using the vectorization operation as

vec
(
Σ̄γ

)
= γ(H⋆ ⊗I+I⊗H⋆ −γH⋆ ⊗H⋆)−1 vec (C(θ⋆))+γ3/2(H⋆ ⊗I+I⊗H⋆ −γH⋆ ⊗H⋆)−1 vec (B) .
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Now we check that the latter operator H⋆ ⊗I + I ⊗ H⋆ −γH⋆ ⊗H⋆ is indeed invertible for γ ∈
(0, 2/L). Moreover, assumption A1 guarantees that the symmetric matrix H⋆ is non-degenerate and
positive-definite. Let u1, . . . , ud ∈ Rd and λ1 ≥ λ2 ≥ . . . ≥ λd ≥ µ > 0 be its eigenvectors and
eigenvalues, respectively. Then we notice that

H⋆ ⊗I + I⊗H⋆ −γH⋆ ⊗H⋆ = H⋆ ⊗(I− (γ/2)H⋆) + (I− (γ/2)H⋆)⊗H⋆ .

Hence, the latter operator is also diagonalizable in the orthogonal basis ui ⊗ uj in Rd2

with the
respective eigenvalues being equal to λi(1− (γ/2)λj) + λj(1− (γ/2)λi). Set now

S = H⋆ ⊗I + I⊗H⋆ ∈ Rd2×d2

R = H⋆ ⊗H⋆ ∈ Rd2×d2

.
(57)

Then it is easy to observe that

(S − γR)−1 = S−1 + S−1
∞∑
k=1

γk(RS−1)k ,

provided that γ∥RS−1∥ ≤ 1. Sice R and S are diagonalizable in the same orthogonal basis {ui ⊗
uj}1≤i,j≤d with the eigenvalues λiλj and λi + λj , respectively, the condition γ∥RS−1∥ ≤ 1 holds
provided that γ ≤ 2/L. Hence, for γ ≤ 1/L, it holds that

(H⋆ ⊗I + I⊗H⋆ −γH⋆ ⊗H⋆)−1 = (H⋆ ⊗I + I⊗H⋆)−1 +D ,

where D ∈ Rd2×d2

satisfies

∥D∥ ≲ γ∥S∥−1∥RS−1∥ ≲
γ L

µ
.

Combining the above bounds in (54), we arrive at the expansion formula (50).

We now state an auxiliary lemma about the function C(θ) from (49).
Lemma 12. Assume A1, A2, A3(2), and C1(2). Then, for any γ ∈ (0, 1/(LCstep,2)], it holds

∥
∫
Rd

C(θ)πγ(dθ)− C(θ⋆)∥ ≤ C2γ
1/2 ,

where the constant C2 is given by

C2 =

(
L2 Dlast,2√

µ
+

L
√
Dlast,2√
µ

)
τ22 . (58)

Proof. Recall that

ε1(θ) = ∇F (θ, ξ1)−∇f(θ) .
Hence, using the definition of C(θ) in (49), we get

C(θ)− C(θ⋆) = Eξ1∼Pξ
[(ε1(θ)− ε1(θ

⋆))(ε1(θ)− ε1(θ
⋆))T ] + Eξ1∼Pξ

[ε1(θ
⋆)(ε1(θ)− ε1(θ

⋆))T ]

+Eξ1∼Pξ
[(ε1(θ)− ε1(θ

⋆))ε1(θ
⋆)T ].

Using A3(2), we obtain

Eξ[∥ε1(θ)− ε1(θ
⋆)∥2] ≲ L⟨∇f(θ)−∇f(θ⋆), θ − θ⋆⟩ − ∥∇f(θ)−∇f(θ⋆)∥2 ≲ L2 ∥θ − θ⋆∥2.

Hence, combining the previous inequalities and using Hölder’s inequality, we obtain for any θ ∈ Rd,
that

∥C(θ)− C(θ⋆)∥ ≲ L2 ∥θ − θ⋆∥2 + τ2 L ∥θ − θ⋆∥.
Applying now C1(2), we obtain

∥
∫
Rd

C(θ)πγ(dθ)− C(θ⋆)∥ ≤
∫
Rd

∥C(θ)− C(θ⋆)∥πγ(dθ) ≲ L2 Dlast,2γτ
2
2

µ
+ τ2 L

√
Dlast,2γτ22

µ
.

We conclude the proof by noting that γµ ≤ 1.
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Now we prove (24). We use synchronous coupling construction defined by the pair of recursions:

θk+1 = θk − γ∇F (θk, ξk+1), θ0 ∼ ν

θ̃k+1 = θ̃k − γ∇F (θ̃k, ξk+1), θ̃0 ∼ πγ .

Recall that the corresponding coupling kernel is denoted as Kγ(·, ·). Then we obtain

Eν [θ̄n]− θ⋆ = n−1
2n∑

k=n+1

EKγ
ν,πγ

[θk − θ̃k] + n−1
2n∑

k=n+1

Eπγ [θ̃k − θ⋆]

= n−1
2n∑

k=n+1

EKγ
ν,πγ

[θk − θ̃k] + (θ̄γ − θ⋆) .

Using (47) and C1(2), we obtain

∥EK
ν,πγ

[{θk − θ̃k}]∥ ≤ (1− γµ)k/2{EKγ
ν,πγ

∥θ0 − θ̃0∥2}1/2

≤ (1− γµ)k/2(E1/2
ν

[
∥θ0 − θ⋆∥2

]
+

√
2γτ2√
µ

) .

Summing the above bounds for k from n+ 1 to 2n, we obtain (24).

A.3 PROOF OF PROPOSITION 5

Note that
Eν [θ̄

(RR)
n − θ⋆] = 2Eν [θ̄

γ
n − θ⋆]− Eν [θ̄

2γ
n − θ⋆].

Applying (24), we obtain

∥Eν [θ̄
(RR)
n − θ⋆]∥ ≲ C1γ

3/2 +R3(θ0 − θ⋆, γ, n), (59)

where

∥R3(θ0 − θ⋆, γ, n)∥ ≲
(1− γµ)(n+1)/2

nγµ
(E1/2

ν

[
∥θ0 − θ⋆∥2

]
+

√
γτ2√
µ

) . (60)
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B PROOF OF THEOREM 3

Theorem 13 (Version of Theorem 3 with explicit constants). Assume A1, A2, A3(6), and C1(6).
Then for any γ ∈ (0, 1/(LCstep,6)], n ∈ N, and initial distribution ν on Rd, the sequence of
Polyak-Ruppert estimates (14) satisfies

E1/2
ν [∥H⋆(θ̄(γ)n − θ⋆)∥2] ≤

√
TrΣ⋆

ε√
n

+
C2

γ1/2n
+ C3γ +

C4γ
1/2

n1/2
+R2(n, γ, ∥θ0 − θ⋆∥) ,

where we have set

C2 = c0D
1/2
last,2τ2 , C3 = c0

LDlast,4τ
2
4

2µ
, C4 = c0 LD

1/2
last,2τ2 . (61)

and the remainder term R2(n, γ, ∥θ0 − θ⋆∥) is given by

R2(n, γ, ∥θ0 − θ⋆∥) = c0 L(1− γµ)(n+1)/2

γµn
E1/2
ν

[
∥θ0 − θ⋆∥2

]
+

L c0(1− γµ)n+1

2nγµ
E1/2
ν

[
∥θ0 − θ⋆∥4

]
. (62)

Proof. Throughout the proof we omit upper index (γ) both for the elements of the sequence
{θ(γ)k }k∈N and Polyak-Ruppert averaged estimates θ̄(γ)n . Instead, we write simply θk and θ̄n, re-
spectively. Summing the recurrence (31), we obtain that

H⋆(θ̄n − θ⋆) =
θn+1 − θ⋆

γn
− θ2n − θ⋆

γn
− 1

n

2n∑
k=n+1

εk+1(θk)−
1

n

2n∑
k=n+1

η(θk) . (63)

Applying the 3-rd order Taylor expansion with integral remainder, we get that

∇f(θk) = H⋆(θk − θ⋆) +
1

2

(∫ 1

0

∇3f(tθ⋆ + (1− t)θk) dt

)
(θk − θ⋆)⊗2 ,

where ∇3f(·) ∈ Rd×d×d. Using A2, we thus obtain that

∥η(θk)∥ ≤ 1

2
L3 ∥θk − θ⋆∥2 .

Applying Minkowski’s inequality to the decomposition (33) and to the last term therein, we get

E1/2
ν [∥H⋆(θ̄n − θ⋆)∥2] ≤ E

1/2
ν [∥θn+1 − θ⋆∥2]

γn
+

E
1/2
ν [∥θ2n − θ⋆∥2]

γn
+

1

n
E1/2
ν

[
∥

2n∑
k=n+1

εk+1(θk)∥2
]

+
L3

2n

2n∑
k=n+1

E1/2
ν

[
∥θk − θ⋆∥4

]
.

Applying C1(2), we obtain that for γ ∈ (0; 1/(LCstep,2)] it holds that

Eν∥θk − θ⋆∥2 ≲ (1− γµ)kEν

[
∥θ0 − θ⋆∥2

]
+

Dlast,2γτ
2
2

µ
. (64)

Moreover, from γ ∈ (0; 1/(LCstep,4)] it holds that

E1/2
ν ∥θk − θ⋆∥4 ≲ (1− γµ)kE1/2

ν

[
∥θ0 − θ⋆∥4

]
+

Dlast,4γτ
2
4

µ
. (65)

Combining Lemma 14 with previous inequalities, we obtain

E1/2
ν [∥H⋆(θ̄n − θ⋆)∥2] ≲

√
TrΣ⋆

ε√
n

+
D

1/2
last,2τ2

γ1/2n
+

LDlast,4γτ
2
4

2µ
+

LD
1/2
last,2γ

1/2τ2

µ1/2n1/2

+
(1− γµ)(n+1)/2

γn

(
L

µ
+ 1

)
E1/2
ν

[
∥θ0 − θ⋆∥2

]
+

L(1− γµ)n+1

nγµ
E1/2
ν

[
∥θ0 − θ⋆∥4

]
,

and the result follows.
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Lemma 14. Assume A1, A3(2), A2, and C1(2). Then for any γ ∈ (0; 1/(LCstep,2)] and any n ∈ N,
it holds

E1/2
ν [∥

2n∑
k=n+1

{εk+1(θk)−εk+1(θ
⋆)}∥2] ≲

LD
1/2
last,2

√
γnτ2

µ1/2
+
L(1− γµ)(n+1)/2

γµ
E1/2
ν

[
∥θ0−θ⋆∥2

]
.

(66)
Moreover, under A1, A3(p), A2, and C1(p), for any γ ∈ (0; 1/(LCstep,p)] and n ∈ N it holds that

E1/p
ν [∥

2n∑
k=n+1

{εk+1(θk)− εk+1(θ
⋆)}∥p] ≲

LD
1/2
last,p

√
γnpτp

µ1/2

+
L p(1− γµ)(n+1)/2

µ1/2γ1/2
E1/p
ν [∥θ0 − θ⋆∥p] .

(67)

Proof. Since {εk+1(θk) − εk+1(θ
⋆)} is a martingale-difference sequence with respect to Fk, we

have

Eν

[
∥

2n∑
k=n+1

{εk+1(θk)− εk+1(θ
⋆)}∥2

]
=

2n∑
k=n+1

Eν

[
∥{εk+1(θk)− εk+1(θ

⋆)}∥2
]
.

where εk+1(θ
⋆) = ∇F (θ⋆, ξk+1) uses the same noise variable ξk+1 as F (θk, ξk+1). Note that

Eν [∥εk+1(θk)− εk+1(θ
⋆)∥2] = Eν [∥∇F (θk, ξk+1)−∇F (θ⋆, ξk+1)∥2

− 2Eν

[
⟨∇F (θk, ξk+1)−∇F (θ⋆, ξk+1),∇f(θk)−∇f(θ⋆)⟩

]
+ ∥∇f(θk)−∇f(θ⋆)∥2] .

Using A2, A3(2), and taking conditional expectation with respect to Fk, we obtain

Eν [∥εk+1(θk)− εk+1(θ
⋆)∥2] ≤ Eν [L⟨∇f(θk)−∇f(θ⋆), θk − θ⋆⟩ − ∥∇f(θk)−∇f(θ⋆)∥2]

≤ L2 Eν [∥θk − θ⋆∥2].

Thus, we obtain that

Eν [∥
2n∑

k=n+1

{εk+1(θk)− εk+1(θ
⋆)}∥2] ≤ L2

2n∑
k=n+1

Eν [∥θk − θ⋆∥2] ,

and the statement (66) follows from the assumption C 1(2). In order to prove (67), we apply
Burkholder’s inequality Osekowski (2012, Theorem 8.6) and obtain

E1/p
ν [∥

2n∑
k=n+1

{εk+1(θk)− εk+1(θ
⋆)}∥p] ≤ pE1/p

ν

[( 2n∑
k=n+1

∥εk+1(θk)− εk+1(θ
⋆)∥2

)p/2]
≤ p
( 2n∑
k=n+1

E2/p
ν

[
∥εk+1(θk)− εk+1(θ

⋆)∥p
])1/2

≲ pL
( 2n∑
k=n+1

E2/p
ν

[
∥θk − θ⋆∥p

])1/2
(a)

≲
LD

1/2
last,p

√
γnpτp

µ1/2
+

L p(1− γµ)(n+1)/2

µ1/2γ1/2
E1/p
ν [∥θ0 − θ⋆∥p] ,

where in (a) we have additionally used C1(p).
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C PROOF OF THEOREM 6

Within this section we often use the definition of the function ψ : Rd → Rd from (38):

ψ(θ) = (1/2)∇3f(θ∗)(θ − θ⋆)⊗2 (68)

Theorem 15 (Version of Theorem 6 with explicit constants). Assume A1, A2, A3(6), and C1(6).
Then for any γ ∈ (0, 1/(LCstep,6)], initial distribution ν and n ∈ N, the Richardson-Romberg
estimator θ̄(RR)

n defined in (37) satisfies

E1/2
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥2] ≤
√
TrΣ⋆

ε

n1/2
+

CRR,1γ
1/2

n1/2
+

CRR,2

γ1/2n
+ CRR,3γ

3/2 +
CRR,4γ

n1/2

+R4(n, γ, ∥θ0 − θ⋆∥) ,
where we have set

CRR,1 =
c0Dlast,4 L τ

2
4

µ3/2
+
c0 LD

1/2
last,2τ2

µ1/2
, CRR,2 =

c0D
1/2
last,2τ2

µ1/2

CRR,3 = c0

(
LD

3/2
last,6τ

3
6

µ3/2
+ C1

)
, CRR,4 =

c0Dlast,4 L τ
2
4

µ
,

(69)

C1 is defined in (51), and the remainder term R4(n, γ, ∥θ0 − θ⋆∥) is given by

R4(n, γ, ∥θ0 − θ⋆∥) = c0 L(1− γµ)(n+1)/2

nγµ

×
(
E1/2
ν [∥θ0 − θ⋆∥6] + E1/2

ν [∥θ0 − θ⋆∥4] + E1/2
ν [∥θ0 − θ⋆∥2] + Dlast,4γτ

2
4

µ

)
. (70)

Proof. Using the recursion (31), we obtain that

H⋆(θ̄(RR)
n − θ⋆) =

2(θ
(γ)
n+1 − θ⋆)

γn
− 2(θ

(γ)
2n − θ⋆)

γn
−
θ
(2γ)
n+1 − θ⋆

2γn
+
θ
(2γ)
2n − θ⋆

2γn

− 1

n

2n∑
k=n+1

[2εk+1(θ
(γ)
k )− εk+1(θ

(2γ)
k )]− 1

n

2n∑
k=n+1

[2η(θ
(γ)
k )− η(θ

(2γ)
k )] . (71)

Therefore, applying Minkowski’s inequality to the decomposition (71), we obtain for any initial
distribution ν that

E1/2
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥2] ≲ 1

n
E1/2
ν [∥

2n∑
k=n+1

εk+1(θ
⋆)∥2]︸ ︷︷ ︸

T1

+
1

γn
E1/2
ν [∥θ(γ)n+1 − θ⋆∥2] + 1

γn
E1/2
ν [∥θ(γ)2n − θ⋆∥2]︸ ︷︷ ︸

T2

+
1

γn
E1/2
ν [∥θ(2γ)n+1 − θ⋆∥2] + 1

γn
E1/2
ν [∥θ(2γ)2n − θ⋆∥2]︸ ︷︷ ︸

T3

+
1

n
E1/2
ν [∥

2n∑
k=n+1

εk+1(θ
(γ)
k )− εk+1(θ

⋆)∥2]︸ ︷︷ ︸
T4

+
1

n
E1/2
ν [∥

2n∑
k=n+1

εk+1(θ
(2γ)
k )− εk+1(θ

⋆)∥2]︸ ︷︷ ︸
T5

+ ∥2πγ(ψ)− π2γ(ψ)∥︸ ︷︷ ︸
T6

+
1

n
E1/2
ν [∥

2n∑
k=n+1

η(θ
(γ)
k )− πγ(ψ)∥2] +

1

n
E1/2
ν [∥

2n∑
k=n+1

η(θ
(2γ)
k )− π2γ(ψ)∥2]︸ ︷︷ ︸

T7

.
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Now we upper bound the terms in the right-hand side of the above bound separately. First, we note
that

T1 =

√
TrΣ⋆

ε√
n

.

Using C1(2), we get

T2 + T3 ≲
(1− γµ)n+1/2

γn
E1/2
ν [∥θ0 − θ⋆∥2] +

D
1/2
last,2τ2

µ1/2γ1/2n
.

Applying Lemma 14, we get

T4 + T5 ≲
LD

1/2
last,2γ

1/2τ2

µ1/2n1/2
+

L(1− γµ)(n+1)/2

µγn
E1/2
ν

[
∥θ0 − θ⋆∥2

]
.

Now we proceed with the term T6. Applying the recurrence (11), we obtain that

θ
(γ)
1 − θ⋆ = (I− γH⋆)(θ

(γ)
0 − θ⋆)− γε1(θ

(γ)
0 )− γη(θ

(γ)
0 ) . (72)

Thus, taking expectation w.r.t. πγ in both sides above, we get

H⋆(θ̄γ − θ⋆) = Eπγ

[
η(θ

(γ)
0 )
]
= πγ(ψ) + πγ(G) ,

where G(θ) is defined in (38) and writes as

G(θ) =
1

6

(∫ 1

0

∇4f(tθ⋆ + (1− t)θ) dt

)
(θ − θ⋆)⊗3 .

Hence, applying A2 together with Proposition 2, we obtain that

T6 = ∥2πγ(ψ)− π2γ(ψ)∥ ≲ C1γ
3/2 . (73)

Finally, using Lemma 19, Lemma 18, and Lemma 16, we obtain that

T7 ≲
Dlast,4 L γτ

2
4

µn1/2
+

Dlast,4 L γ
1/2τ24

µ3/2n1/2
+

LD
3/2
last,6γ

3/2τ36

µ3/2

+
L(1− γµ)(n+1)/2

nγµ

(
E1/2
ν [∥θ0 − θ⋆∥6] + E1/2

ν [∥θ0 − θ⋆∥4] + Dlast,4γτ
2
4

µ

)
.

Combining the bounds above completes the proof.

Below we provide some auxiliary technical lemmas.
Lemma 16. Assume A1, A2, A3(4), and C1(4). Then for any γ ∈ (0; 1/(LCstep,4)] and any n ∈ N
it holds

n−1E1/2
πγ

[
∥

2n∑
k=n+1

{ψ(θk)− πγ(ψ)}∥2
]
≲

Dlast,4 L3 γτ
2
4

µn1/2
+

Dlast,4 L3 γ
1/2τ24

µ3/2n1/2
. (74)

Proof. Using the fact that πγ is a stationary distribution, we obtain that

Eπγ

[
∥

2n∑
k=n+1

{ψ(θk)− πγ(ψ)}∥2
]
= nEπγ

[∥ψ(θ0)− πγ(ψ)∥2]

+

n−1∑
k=1

(n− k)Eπγ
[(ψ(θ0)− πγ(ψ))

T (ψ(θk)− πγ(ψ))]

Using the Markov property, Cauchy–Schwartz inequality, Proposition 1, and Lemma 20, we obtain

Eπγ
[(ψ(θ0)− πγ(ψ))

T (ψ(θk)− πγ(ψ))] (75)

= Eπγ
[(ψ(θ0)− πγ(ψ))

T (Qk
γψ(θ0)− πγ(ψ))] (76)

(a)

≲ (1/2)k/m(γ) L3 Eπγ

[
∥ψ(θ0)− πγ(ψ)∥

∫
c(θ0, ϑ)dπγ(ϑ)

]
, (77)
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where in (a) we additionally used the fact that

Wc(δθ0 , πγ) =

∫
c(θ0, ϑ)dπγ(ϑ) .

Using C1(4), we get

Eπγ
[∥ψ(θ0)− πγ∥2] ≤ Eπγ

[∥ψ(θ0)∥2] ≤ L2
3 Eπγ

[∥θ0 − θ⋆∥4] ≤ L2
3 Dlast,4γ

2τ44
µ2

, (78)

and, using C1(2) and C1(4), we get∫ ∫
c2(θ0, ϑ)dπγ(ϑ)dπγ(θ0) (79)

≤
∫ ∫

∥θ0 − ϑ∥2
(
∥θ0 − θ⋆∥ + ∥ϑ− θ⋆∥ +

23/2γ1/2τ2
µ1/2

)2

dπγ(ϑ)dπγ(θ0) (80)

≲
∫ ∫

(∥θ0 − θ⋆∥4 + ∥ϑ− θ⋆∥4) + γτ22
µ

(∥θ0 − θ⋆∥2 + ∥ϑ− θ⋆∥2)dπγ(ϑ)dπγ(θ0) (81)

≲
Dlast,4γ

2τ24
µ2

+
Dlast,2γ

2τ42
µ2

≲
Dlast,4γ

2τ44
µ2

. (82)

Using (78), (79), and Cauchy–Schwartz inequality for (75), we obtain

Eπγ
[(ψ(θ0)− πγ(ψ))

T (ψ(θk)− πγ(ψ))] ≲ (1/2)k/m(γ)L3 Dlast,4γ
2τ44

µ2
.

Combining the inequalities above and using that m(γ) = ⌈2 log 4
γµ ⌉ ≤ 2 log 4+1

γµ , we get

n−1E1/2
πγ

[
∥

2n∑
k=n+1

{ψ(θk)− πγ(ψ)}∥2
]
≤
(
Dlast,4 L

2
3 γ

2τ44
µ2n

+
Dlast,4m(γ) L2

3 γ
2τ44

µ2n

)1/2

≲
Dlast,4 L3 γτ

2
4

µn1/2
+

Dlast,4 L3 γ
1/2τ24

µ3/2n1/2
.

Lemma 17. Assume A1, A2, A3(4). Then for any γ ∈ (0; 2
11L ], and any k ∈ N it holds that

E[∥θk+1 − θ̃k+1∥4|Fk] ≤ (1− γµ)2∥θk − θ̃k∥4. (83)

Proof. Recall that the sequences {θk}k∈N and {θ̃k}k∈N are defined by the recurrences

θk+1 = θk − γ∇F (θk, ξk+1) , θ0 = θ ∈ Rd , (84)

θ̃k+1 = θ̃k − γ∇F (θ̃k, ξk+1) , θ̃0 = θ̃ ∈ Rd . (85)

Expanding the brackets, we obtain that

∥θk+1 − θ̃k+1∥4 = ∥θk − θ̃k∥4 + γ4∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥4

+ 4γ2⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk − θ̃k⟩2

+ 2γ2∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥2∥θk − θ̃k∥2

− 4γ⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk − θ̃k⟩∥θk − θ̃k∥2

− 4γ3⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk − θ̃k⟩∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥2

Using A3(4) and Cauchy–Schwartz inequality, we get

E[∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥4|Fk] ≤ L3⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩∥θk − θ̃k∥2,
E[⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk − θ̃k⟩2|Fk] ≤ L⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩∥θk − θ̃k∥2,

E[∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥2∥θk − θ′k∥2|Fk] ≤ L⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩∥θk − θ̃k∥2

E[⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk − θ̃k⟩∥θk − θ̃k∥2|Fk] = ⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩∥θk − θ̃k∥2 .
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Similarly,

E[⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk − θ̃k⟩∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥2|Fk]

≤ L2⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩∥θk − θ̃k∥2

Combining all inequalities above, we obtain

E[∥θk+1 − θ′k+1∥4|Fk] ≤ ∥θk − θ̃k∥4

− (4γ − γ4 L3 −4γ2 L−2γ2 L−4γ3 L2)⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩∥θk − θ̃k∥2

Using A1 and since 1− γ3 L3 /4− 3γ L /2− γ2 L2 ≥ 1− 11γ L /4, we get

E[∥θk+1 − θ̃k+1∥4|Fk] ≤ (1− 4γµ(1− 11γ L /4))∥θk − θ̃k∥4

≤ (1− 2γµ(1− 11γ L /4))2∥θk − θ̃k∥4 .
Since 1− 11γ L /4 ≥ 1/2 for γ ≤ 2/(11 L), we complete the proof.

Lemma 18. Assume A1, A2, A3(4), and C1(4). Then for any γ ∈ (0; 1/(LCstep,4)], any n ∈ N and
initial distribution ν it holds

n−1E1/2
ν [∥

2n∑
k=n+1

{ψ(θk)− πγ(ψ)}∥2] ≲ n−1E1/2
πγ

[∥
2n∑

k=n+1

{ψ(θk)− πγ(ψ)}∥2]

+
L3(1− γµ)(n+1)/2

nγµ

(
E1/2
ν [∥θ0 − θ⋆∥4] + Dlast,4γτ

2
4

µ

)
.

Proof. Using the synchronous coupling construction defined in (46) and the corresponding coupling
kernel Kγ , we obtain that

E1/2
ν [∥

2n∑
k=n+1

{ψ(θk)− πγ(ψ)}∥2] = (EKγ
ν,πγ

[∥
2n∑

k=n+1

{ψ(θk)− πγ(ψ)}∥2])1/2

≤ E1/2
πγ

[∥
2n∑

k=n+1

{ψ(θ̃k)− πγ(ψ)}∥2] + (EKγ
ν,πγ

[∥
2n∑

k=n+1

{ψ(θk)− ψ(θ̃k)}∥2])1/2
(86)

Applying Minkowski’s inequality to the last term and using Lemma 20, we get

(EKγ
ν,πγ

[∥
2n∑

k=n+1

{ψ(θk)− ψ(θ̃k)}∥2])1/2 ≤
2n∑

k=n+1

(EK
ν,πγ

[∥{ψ(θk)− ψ(θ̃k)}∥2])1/2

≤ L3

2

2n∑
k=n+1

(EKγ
ν,πγ

[c2(θk, θ̃k)])
1/2 .

Using Hölder’s and Minkowski’s inequality and applying Lemma 17 , (64) and (65), we obtain

(EKγ
ν,πγ

[c2(θk, θ̃k)])
1/2

≤ (EKγ
ν,πγ

[∥θk − θ̃k∥4])1/4
(
E1/4
πγ

[∥θ̃k − θ⋆∥4] + E1/4
η [∥θk − θ⋆∥4 + γ1/2τ2

µ1/2
]
)

≤ (1− γµ)k/2(EKγ
ν,πγ

[∥θ0 − θ̃0∥4])1/4(E1/4
η [∥θ0 − θ⋆∥4] +

D
1/2
last,4γ

1/2τ4

µ1/2
+
γ1/2τ2
µ1/2

)

≲ (1− γµ)k/2
(
Dlast,4γτ

2
4

µ
+ E1/2

ν ∥θ0 − θ⋆∥4
)

Combining all inequalities above, we get

(EKγ
ν,πγ

[∥
2n∑

k=n+1

{ψ(θk)−ψ(θ′k)}∥2])1/2 ≲
L3(1− γµ)(n+1)/2

γµ

(
E1/2
ν [∥θ0 − θ⋆∥4] + Dlast,4γτ

2
4

µ

)
.

Substituting the last inequality into (86) we complete the proof.
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Lemma 19. Assume A1, A2, A3(6), and C1(6). Then for any γ ∈ (0; 1/(LCstep,6)], n ∈ N, and
initial distribution ν, it holds that

n−1E1/2
ν [

2n∑
k=n+1

∥η(θk)− πγ(ψ)∥2] ≤ n−1E1/2
ν

[ 2n∑
k=n+1

∥ψ(θk)− πγ(ψ)∥2
]

+
L4(1− γµ)(n+1)/2

nγµ
E1/2
ν [∥θ0 − θ⋆∥6] +

L4 D
3/2
last,6γ

3/2τ36

3µ3/2
.

(87)

Proof. Applying the 4-rd order Taylor expansion with integral remainder, we get that

η(θ) = ψ(θ) +
1

6

(∫ 1

0

∇4f(tθ⋆ + (1− t)θ) dt

)
(θ − θ⋆)⊗3 , (88)

and using A2, we obtain

∥
(∫ 1

0

∇4f(tθ⋆ + (1− t)θ) dt

)
(θ − θ⋆)⊗3∥ ≤ L4 ∥θ − θ⋆∥3 . (89)

Therefore, combining (88), A2, and applying Minkowski’s inequality, we get

E1/2
ν

[ 2n∑
k=n+1

∥η(θk)− πγ(ψ)∥2
]
≤ E1/2

ν

[ 2n∑
k=n+1

∥ψ(θk)− πγ(ψ)∥2
]

+
L4

6

2n∑
k=n+1

E1/2
ν [∥θk − θ⋆∥6] (90)

Applying C1(6) for the last term of (90), we get

E1/2
ν

[ 2n∑
k=n+1

∥η(θk)− πγ(ψ)∥2
]
≲ E1/2

ν

[ 2n∑
k=n+1

∥ψ(θk)− πγ(ψ)∥2
]
+

L4 nD
3/2
last,6γ

3/2τ36

µ3/2

+
L4(1− γµ)3(n+1)/2

1− (1− γµ)3/2
E1/2
ν [∥θ0 − θ⋆∥6] .

(91)

In remains to notice that (1− γµ)3/2 ≤ (1− γµ), and the statement follows.

We conclude this section with a technical statement on the properties of the function ψ from (68).

Lemma 20. Let ψ(·) be a function defined in (68). Then for any θ, θ′ ∈ Rd, it holds that

∥ψ(θ)− ψ(θ′)∥ ≤ 1

2
L3 c(θ, θ

′).

Proof. For simplicity, let us denote T = ∇3f(θ∗). Hence,

∥ψ(θ)− ψ(θ′)∥ ≤ 1

2
∥T (θ − θ⋆)⊗2 − T (θ′ − θ⋆)⊗2∥. (92)

Note that

∥T∥ = sup
x ̸=0,y ̸=0,z ̸=0

∑
i,j,k

Tijkxiyjzk

∥x∥∥y∥∥z∥
≥ sup

x̸=0,y ̸=0
sup
z ̸=0

∑
k

zk
∑
i,j

Tijkxiyj

∥z∥∥y∥∥x∥
= sup

x ̸=0,y ̸=0

∥t(x, y)∥
∥y∥∥x∥

, (93)

where t(x, y)k =
∑
i,j

Tijkxiyj . Therefore, for any x, y ∈ Rd, it holds that

∥t(x, y)∥ ≤ ∥x∥∥y∥∥T∥ (94)
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We denote v = Tx⊗2 − Ty⊗2. Then

vk =
∑
i,j

Tijk(xixj − yiyj) =
∑
i,j

Tijk((xi − yi)xj + (xi − yi)yj) =∑
i,j

Tijk(xi − yi)xj +
∑
i,j

Tijk(xi − yi)yj , (95)

where the first inequality is true since Tijk = Tjik by definition of T . Combining (94) and (C) and
using triangle inequality, we obtain

∥v∥ ≤ ∥T∥∥x− y∥(∥x∥ + ∥y∥) ≤ ∥T∥∥x− y∥(∥x∥ + ∥y∥ +
2
√
2τ2

√
γ

√
µ

).

We complete the proof setting x = θ − θ⋆, y = θ′ − θ⋆
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D PROOF OF THEOREM 9

Theorem 21 (Version of Theorem 9 with explicit constants). Let p ≥ 2 and assume A1, A2, A3(3p),
and C1(3p). Then for any γ ∈ (0; 1/(LCstep,3p)], initial distribution ν, and n ∈ N, the estimator
θ̄
(RR)
n defined in (37) satisfies

E1/p
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥p] ≤
c1
√
TrΣ⋆

εp
1/2

n1/2
+

c2pτp
n1−1/p

+
CRR,5

nγ1/2
+

CRR,6γ
1/2

n1/2
+ CRR,7γ

3/2

+
CRR,8

n
+R5(n, γ, ∥θ0 − θ⋆∥) ,

where we have set

CRR,5 =
c0D

1/2
last,pτp

µ1/2
, CRR,6 =

c0 LD
1/2
last,ppτp

µ1/2
+
c0 LDlast,2ppτ

2
2p

µ3/2
,

CRR,7 = c0

(
C1 +

LD
3/2
last,3pτ

3
3p

µ3/2

)
, CRR,8 =

c0 LDlast,2pτ2p
µ2

,

(96)

C1 is defined in (51), and the remainder term R5(n, γ, ∥θ0 − θ⋆∥) is given by

R5(n, γ, ∥θ0−θ⋆∥) =
c0(1− γµ)(n+1)/2

γn
E1/p
ν

[
∥θ0−θ⋆∥p

]
+
c0 L p(1− γµ)(n+1)/2

µ1/2γ1/2n
E1/p
ν [∥θ0−θ⋆∥p]

+
c0 L(1− γµ)(n+1)/2p2

γµ2
E1/p
ν

[
∥θ0 − θ⋆∥2p

]
+
c0 L(1− γµ)(3/2)n

γµ
E1/p
ν

[
∥θ0 − θ⋆∥3p

]
(97)

Proof. Using the decomposition (71), we obtain that for any p ≥ 2, it holds that

E1/p
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥p] ≲ 1

n
E1/p
ν [∥

2n∑
k=n+1

εk+1(θ
⋆)∥p]︸ ︷︷ ︸

T1

+
1

γn
E1/p
ν [∥θ(γ)n+1 − θ⋆∥p] + 1

γn
E1/p
ν [∥θ(γ)2n − θ⋆∥p]︸ ︷︷ ︸

T2

+
1

γn
E1/p
ν [∥θ(2γ)n+1 − θ⋆∥p] + 1

γn
E1/p
ν [∥θ(2γ)2n − θ⋆∥p]︸ ︷︷ ︸

T3

+
1

n
E1/p
ν [∥

2n∑
k=n+1

εk+1(θ
(γ)
k )− εk+1(θ

⋆)∥p]︸ ︷︷ ︸
T4

+
1

n
E1/p
ν [∥

2n∑
k=n+1

εk+1(θ
(2γ)
k )− εk+1(θ

⋆)∥p]︸ ︷︷ ︸
T5

+ ∥2πγ(ψ)− π2γ(ψ)∥︸ ︷︷ ︸
T6

+
1

n
E1/p
ν [∥

2n∑
k=n+1

ψ(θ
(γ)
k )− πγ(ψ)∥p] +

1

n
E1/p
ν [∥

2n∑
k=n+1

ψ(θ
(2γ)
k )− π2γ(ψ)∥p]︸ ︷︷ ︸

T7

+
1

n

2n∑
k=n+1

E1/p
ν

[
∥G(θ(γ)k )∥p

]
+

1

n

2n∑
k=n+1

E1/p
ν

[
∥G(θ(2γ)k )∥p

]
︸ ︷︷ ︸

T8

.

Now we upper bounds the terms above separately. Applying first the Pinelis version of Rosenthal
inequality (Pinelis, 1994) together with A3(p), we obtain that

T1 ≤
c1
√
TrΣ⋆

εp
1/2

n1/2
+

c2pτp
n1−1/p

.
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Applying C1(p) (which is implied by C1(3p)), we obtain that

T2 + T3 ≲
D

1/2
last,pτp

µ1/2nγ1/2
+

(1− γµ)(n+1)/2

γn
E1/p
ν

[
∥θ0 − θ⋆∥p

]
.

Applying Lemma 14 (see the bound (67)), we get that

T4 + T5 ≲
LD

1/2
last,pγ

1/2pτp

µ1/2n1/2
+

L p(1− γµ)(n+1)/2

µ1/2γ1/2n
E1/p
ν [∥θ0 − θ⋆∥p] .

Using the bounds (72) and (73), we obtain

T6 ≲ C1γ
3/2 .

Applying Proposition 8, we get

1

n
E1/p
ν [∥

2n∑
k=n+1

ψ(θ
(γ)
k )− πγ(ψ)∥p] ≲

LDlast,2ppτ
2
2pγ

1/2

µ3/2n1/2
+

LDlast,2pτ2p
µ2n

.

Using this bound and adopting the result of (Durmus et al., 2023, Theorem 4), we obtain that

T7 ≲
LDlast,2ppτ

2
2pγ

1/2

µ3/2n1/2
+

LDlast,2pτ2p
µ2n

+
L(1− γµ)(n+1)/2p2

γµ2
E1/p
ν

[
∥θ0 − θ⋆∥2p

]
.

Finally, applying the definition of G(θ) in (38) together with C1(3p), we obtain that

T8 ≲
LD

3/2
last,3pγ

3/2τ33p

µ3/2
+

L

n

2n∑
k=n+1

(1− γµ)(3/2)kE1/p
ν

[
∥θ0 − θ⋆∥3p

]
≲

LD
3/2
last,3pγ

3/2τ33p

µ3/2
+

L(1− γµ)(3/2)n

γµ
E1/p
ν

[
∥θ0 − θ⋆∥3p

]
.

To complete the proof it remains to combine the bounds for T1 to T8.

D.1 PROOF OF PROPOSITION 8

In the proof below we use the notation

ψ̄(θ) = ψ(θ)− πγ(ψ) .

We proceed with the blocking technique. Indeed, let us set the parameter

m = m(γ) =

⌈
2 log 4

γµ

⌉
. (98)

Our choice of parameter m(γ) is due to Proposition 1. For notation conciseness we write it simply
as m, dropping its dependence upon γ. Using Minkowski’s inequality, we obtain that

E1/p
πγ

[
∥
n−1∑
k=0

ψ̄(θk)∥p
]
≤ E1/p

πγ

[
∥
⌊n/m⌋m−1∑

k=0

ψ̄(θk)∥p
]
+mE1/p

πγ

[
∥ψ̄(θ0)∥p

]
. (99)

Now we consider the Poisson equation, associated with Qm
γ and function ψ̄, that is,

gm(θ)−Qm
γ gm(θ) = ψ̄(θ) . (100)

The function

gm(θ) =

∞∑
k=0

Qkm
γ ψ̄(θ) (101)

is well-defined under the assumptions A1, A2, A3(2p), and C1(2p). Moreover, gm is a solution of
the Poisson equation (100). Define q := ⌊n/m⌋, then we have

qm−1∑
k=0

ψ̄(θk) =

m−1∑
r=0

Bm,r , with Bm,r =

q−1∑
k=0

{
gm(θkm+r)−Qm

γ gm(θkm+r)
}
. (102)
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Using Minkowski’s inequality, we get from (99), that

E1/p
πγ

[
∥
n−1∑
k=0

ψ̄(θk)∥p
]
≤ mE1/p

πγ

[
∥

q∑
k=1

{
gm(θkm)−Qm

γ gm(θ(k−1)m)
}
∥p
]
+ 2mE1/p

πγ

[
∥ψ(θ0∥p

]
(103)

Now we upper bound both terms of (103) separately. Under assumption A2, and applying C1(2p),
we get

E1/p
πγ

[
∥ψ(θ0∥p

]
≤ L

2
E1/p
πγ

[
∥θ0 − θ⋆∥2p

]
≤

LDlast,2pγτ
2
2p

2µ
. (104)

To proceed with the first term, we apply Burkholder’s inequality (Osekowski, 2012, Theorem 8.6),
and obtain that

E1/p
πγ

[
∥

q∑
k=1

{
gm(θkm)−Qm

γ gm(θ(k−1)m)
}
∥p
]

≤ pE1/p
πγ

[( q∑
k=1

∥
{
gm(θkm)−Qm

γ gm(θ(k−1)m)
}
∥2
)p/2]

. (105)

Applying now Minkowski’s inequality again, we get

E2/p
πγ

[( q∑
k=1

∥
{
gm(θkm)−Qm

γ gm(θ(k−1)m)
}
∥2
)p/2] ≤ qE2/p

πγ

[
∥
{
gm(θkm)−Qm

γ gm(θ(k−1)m)
}
∥p
]

≲ q
(
E2/p
πγ

[∥gm(θ0)∥p] + E2/p
πγ

[∥Qm
γ gm(θ0)∥p]

)
≲ qE2/p

πγ
[∥gm(θ0)∥p] .

It remains to upper bound the moment E2/p
πγ [∥gm(θ0)∥p]. In order to do this, we first note that due to

the duality theorem (Douc et al., 2018, Theorem 20.1.2.), we get that for any k ∈ N,

∥Qmkψ(θ)− πγ(ψ)∥ ≤ 1

2
L3 Wc(δθQ

km
γ , πγ) ≤ 2L3(1/2)

kWc(δθ, πγ) ,

where the last inequality is due to Proposition 1. Hence, applying the definition of gm(θ) in (101),
we obtain that

E1/p
πγ

[∥gm(θ0)∥p] ≤
∞∑
k=0

E1/p
πγ

[
∥Qkm

γ ψ̄(θ)∥p
]
≤ 2L3

∞∑
k=0

(1/2)kE1/p
πγ

[
{Wc(δθ, πγ)}p

]
.

To control the latter term, we simply apply the definition of Wc(δθ, πγ) and a cost function c(θ, θ′)
together with C1(2p), we get

E1/p
πγ

[
{Wc(δθ, πγ)}p

]
≲

(∫
Rd×Rd

∥θ − θ′∥p
(
∥θ − θ⋆∥ + ∥θ′ − θ⋆∥ +

τ2
√
γ

√
µ

)p

πγ(dθ)πγ(dθ
′)

)1/p

≤
(∫

∥θ − θ′∥2pπγ(dθ)πγ(dθ′)
)1/2p(∫ (∥θ − θ⋆∥ + ∥θ′ − θ⋆∥ +

τ2
√
γ

√
µ

)2p

πγ(dθ)πγ(dθ
′)
)1/2p

≲
Dlast,2pτ

2
2pγ

µ
.

Combining now the bounds above in (105), we get that

E1/p
πγ

[
∥

q∑
k=1

{
gm(θkm)−Qm

γ gm(θ(k−1)m)
}
∥p
]
≲

Dlast,2ppL3 τ
2
2pγ

√
q

µ
, (106)

and, hence, substituting into (99), we get

E1/p
πγ

[
∥
n−1∑
k=0

ψ̄(θk)∥p
]
≲

Dlast,2ppL3 τ
2
2pγ

√
qm

µ
+

LDlast,2pτ
2
2pγm

2µ
. (107)

Now the statement follows from the definition of m = m(γ) in (98) and q = ⌊n/m⌋ ≤ n/m.
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