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ABSTRACT

As mobile devices have become deeply integrated into daily life, users often in-
put sensitive data (i.e., PINs) to unlock services or authorize payments, which
introduces high risks of side-channel attacks. To defend against potential attacks,
in practice, soft keyboards for PIN entry are randomized in layout to mitigate
such threats. In this paper, we present RecSpy, a novel cognition-driven acoustic
side-channel attack that infers PINs on randomized soft keyboards. Unlike prior
work that relies on video, power, or electromagnetic emanations, RecSpy exploits
a previously unexplored vulnerability: distinct human recognition latencies for
symbolic numbers. By modeling cognitive latency patterns and leveraging acous-
tic keystroke signatures, RecSpy learns individual and digit-level recognition fea-
tures through contrastive and self-supervised learning. Furthermore, we also intro-
duce a novel Logic-Guided Inference Network that integrates recognition pat-
terns with the reasoning capabilities of a large language model (LLM) to prune
the hypothesis space and infer complete PIN sequences. We extensively evaluate
RecSpy on both Android and iOS devices, and results show that it improves the
probability of successful inference by up to 4000×, which demonstrates a practi-
cal threat to current mobile authentication systems and shows that representation
learning and LLMs can enable new side-channel attacks.

1 INTRODUCTION

As mobile devices have become deeply integrated into daily life, users frequently enter highly sen-
sitive data, such as card security codes or personal identification numbers (PINs). For instance, a
smartphone user may unlock a banking app with a six-digit PIN before authorizing a funds transfer.
While this common use case improves user convenience, it simultaneously creates an opportunity
for attackers to capture sensitive information. In other words, adversaries can exploit through side-
channel attacks to steal sensitive information for legitimate users Wang et al. (2019); Cronin et al.
(2021); Jin et al. (2021).

To launch these attacks, researchers have introduced several interesting approaches. Specifically,
shoulder-surfing-resistant blurred the app UI to bystanders against eavesdropping from side-view or
video recording Tang & Shin (2023). Charger-surfing used additional hardware to eavesdrop sensi-
tive data generated by legitimate users Cronin et al. (2021). Periscope leveraged customized antenna
and control board to listen EM emissions from smart devices Jin et al. (2021). However, these ap-
proaches either assume explicit access to legitimate users’ hardware or require additional devices to
launch the attack, which makes existing approaches impractical and unstealthy. For example, current
smart devices normally have OS-level indicators (e.g., LED lights) that illuminate when the camera
is active, which makes camera-based attacks detectable. In addition, recent research has proven that
even small physical-layer interference can disrupt signals leaked from smart devices Tang & Shin
(2023), which reduces attack success rates. Crucially, existing attacks target conventional keypads
with fixed layouts, while modern mobile applications (Apps) have employed randomized layouts
Kirkwood et al. (2022), which further reduces their practical feasibility.

Different from existing approaches, we introduce RecSpy, a novel side-channel attack that leverages
human cognitive recognition patterns for symbolic numbers to infer PINs entered on randomized
soft keyboards. Our threat model considers a practical setting where the victim’s device hosts a
malicious or seemingly benign app embedding third-party libraries with only minimal permissions
(e.g., microphone). Such microphone access is extremely common across mobile apps Kaspersky
(2025), which makes our attack both realistic and stealthy. In addition, since RecSpy only uses
cognitive-level differences in numeral recognition, it can be directly applied to various smart devices.
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However, to launch the attack, we need to overcome three key challenges: (i) How to stealthily
eavesdrop the keystroke signatures of user inputs? As camera permission is highly restrictive and
any explicit use of hardware is readily noticeable, it is particularly challenging to practically deploy
such attacks. To address this, we leverage built-in microphones to eavesdrop the keystroke acoustics
without requiring any additional hardware. (ii) How to obtain an individual’s detailed recognition
latency for each digit? Although keystroke signatures can be captured from acoustic recordings,
randomized soft keyboard layouts break the direct mapping between a keystroke event and the cor-
responding digit. This misalignment makes it infeasible to label per-digit latencies directly from
raw keystroke traces. To overcome this, motivated by prior findings that individuals exhibit distinct
recognition latencies to digits and this characteristic varies with age Nara et al. (2023); Schneider
et al. (2017), we design a novel Individual-level Recognition Mapper (IRM) and a Digit-level
Discrimination Network (DDN) to contrastively learn individual-specific patterns and refine them
into digit-level latencies. (iii) How to effectively narrow down the hypothesis space for infer-
ence? Even with a fully learned digit recognition pattern for each individual, PIN inference still
remains challenging. This is because subtle recognition differences cannot be effectively captured
using traditional classification models Sun et al. (2020). To overcome this challenge, we design an
innovative two-stage reasoning module that leverages the logical reasoning capability of a large
language model (LLM) to utilize extracted patterns and hidden cues for inference enhancement.

The contributions of this paper can be summarized as follows:

• To our knowledge, RecSpy is the first side-channel attack that leverages previously-unexplored
human cognition patterns for PINs inference on randomized soft keyboards.

• We introduce a novel Individual-level Recognition Mapper (IRM) and a Digit-level Discrimination
Network (DDN) to extract individuals’ recognition patterns. Additionally, we creatively leverage
the reasoning ability of an LLM to automatically extract the hidden semantic information of the
keystroke signatures to narrow the hypothesis space for PIN inference.

• We extensively evaluate RecSpy in real-world scenarios on both Android and iOS platforms. The
experiment results show that RecSpy effectively improves the probability of inference by up to 4000
times against the random guessing baseline of 10−6 for 6-digit PINs.

2 RELATED WORK

Researchers have demonstrated keystroke recovery using various external hardware. For example,
SpiderMon recovers PINs on physical keypads by analyzing reflected cellular signals Ling et al.
(2020); GazeRevealer infers PINs from eye movement reflections Wang et al. (2019). Screen-
gleaning reconstructs on-screen content using an antenna and SDR to recover sensitive information
Liu et al. (2020). Periscope places an antenna beneath a desk to eavesdrop keystrokes from EM
radiation changes Jin et al. (2021). On the other hand, acoustic-based PIN inference has been inves-
tigated by researchers. KeyListener uses both speaker and built-in microphone to localize finger taps
on a soft keyboard in real, noisy environments Lu et al. (2019). Shumailov solely leverages built-in
microphones to capture the propagation characteristics of touch-induced sounds on soft keyboards
to infer PIN digits Shumailov et al. (2019).

Although these attacks demonstrate feasibility in some scenarios, they either require external hard-
ware or assume that the attacker can pre-instrument the environment, which is impractical for real-
world deployments. More importantly, their attacks are typically demonstrated only on conventional
keyboard layouts. In contrast, our attack exploits human cognitive recognition patterns and only
requires the access to built-in microphones, which is more practical and can be directly applied to
randomized-layout soft keyboards.

3 BACKGROUND AND OBSERVATION

3.1 BACKGROUND: LAYOUT OF BUILT-IN MICROPHONES

In RecSpy, we mainly use smartphones to capture keystroke acoustics. Specifically, modern smart-
phones are equipped with multiple built-in microphones that support ambient noise suppression,
echo cancellation, and stereo recording Apple (2025); Developers (2023). As shown in Figure 1, the
primary microphone is typically located near the charging port. The front microphone is near the
front camera, and certain high-end devices also have rear microphones by the back camera. During
stereo recording, these microphones capture acoustic events and generate two-channel signals based
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on inter-channel time and intensity differences for spatial sound source tracking. In this work, we
also exploit this stereo recording capability to eavesdrop keystroke sounds.

3.2 BACKGROUND: PRINCIPLE OF NUMBER RECOGNITION

As shown in Figure 2, the general process of human number recognition follows a well-established
cognitive pathway Dehaene et al. (1993); Zorzi et al. (2011); Pollack & Price (2019). First, vi-
sual information of symbolic numbers (e.g., Arabic numerals or number words) and non-symbolic
numbers (e.g., dot patterns) are processed by the early visual system. Second, this information
stimulates the occipital visual cortex of the brain Goebel (2012) and is conveyed to the visual word
form area (VWFA), which identifies symbolic numbers. Third, the recognized digit is processed in
the intraparietal sulcus region (IPS), which is associated with the semantic processing of numerical
magnitude. Finally, the process leads to an observable behavior, such as button pressing. Building
on this pathway, researchers have demonstrated that the process of symbolic number recognition is
linked to non-symbolic quantity representations, and symbol shape complexity affects recognition
latency Piazza et al. (2007); Nieder (2016).

These studies have established two important conclusions: (i) different digits require different pro-
cessing times Nara et al. (2023), and (ii) this recognition ability declines with age Schneider et al.
(2017). Guided by these findings, we hypothesize that: recognition latency varies across digits
and individuals, and these cognitive differences leave measurable traces in everyday interactions,
such as PIN entry.

3.3 OBSERVATION: DIGIT RECOGNITION TIME

To study symbolic number recognition latency, we recruited 143 volunteers evenly distributed across
four age groups. Each participant tapped a continuously refreshed randomized keyboard for 50 trials
per digit, and the recognition duration was recorded by the smartphone’s internal clock, which we
denote as digit recognition latency. To support later model training, participants also completed full
PIN inputs, yielding 4,735 stereo keystroke instances. We preprocessed the 4,735 PIN-entry samples
by removing silence and aligning them to 4.41 seconds with zero-padding. Since the resulting per-
digit latencies closely matched those obtained from isolated single-digit trials, we show the average
digit recognition latencies across age groups in Figure 3.

Overall, younger participants (18 - 30) had the shortest average recognition latency (approximately
328ms). In contrast, the average recognition latency of older participants is around 440ms. This
difference reflects a clear age-related decline in recognition speed. Across all age groups, digits
with simple or distinctive shapes, such as 0, 1, and 7, showed shorter latencies. Meanwhile, visually
complex digits, including 8 and 9, had the highest latencies. The corresponding recognition latency
can be as high as 482ms. For participants aged 31 - 40 and 41 - 50, recognition latencies increased
gradually, but the relative differences among digits remained unchanged. In summary, digit recog-
nition latency increases with age and also depends on digit shape. Across all age groups, digits 0,
1, and 7 are recognized fastest, whereas 8 and 9 are consistently the slowest. These stable latency
differences indicate that digits can be reliably distinguished.

4 THREAT MODEL

• System Model. We consider a smartphone with a capacitive touchscreen and multiple built-in
microphones. The device runs common applications that require PIN-based authentication, such as
screen unlocking, mobile payments, or account logins. Users enter 6-digit PINs through the system-
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provided randomized soft keyboard. Each keystroke produces both visual feedback and an acoustic
event captured by the microphones at standard sampling rates (44.1–48 kHz).

Channel 1

3 8 5
1 6 4
9 2 7

0

PIN ***

Channel 2

RecSpy
LLM

“315262”

“315262”

AttackerVictim

Malicious Software

Figure 4: Attack Scenarios.

• Threat Model. Following prior reports that 10%–24%
of smartphones have hosted malicious apps at least once
Kotzias et al. (2021), we assume the adversary controls
a stealthy app installed on the victim’s device. This is
a reasonable assumption, since users may unknowingly
install such software via third-party app stores, phishing
links, IM app sharing, or through bundleware from seem-
ingly harmless apps. Once granted microphone permis-
sion, it records acoustic signals during PIN entry and up-
loads them for offline analysis. The adversary’s goal is to
reconstruct the victim’s full 6-digit PIN.

As illustrated in Figure 4, the victim enters a PIN on the randomized soft keyboard, and the built-in
microphones capture the resulting keystroke sounds as stereo signals. These signals are intercepted
by the malicious app and transmitted to the adversary. RecSpy then processes the two-channel
acoustic data and leverages an LLM-based reasoning module to infer the most likely PIN sequence.

• Assumptions. To ensure the practicality, we assume: (i) the victim’s device runs an unmodified
Android or iOS system; (ii) the victim enters PINs as in normal daily use; (iii) the adversary has
sufficient resources for machine learning–based inference. Importantly, we do not assume special
privileges such as modifying the keyboard layout or accessing screen buffers, and the attack is not
limited to a specific smartphone model.

5 DESIGN OVERVIEW

The design goal of RecSpy is to enable effective PIN inference on randomized soft keyboards. As
discussed in Section 1, this requires addressing three challenges: (i) capturing keystroke signatures
in a stealthy and practical manner, (ii) modeling an individual’s digit-specific recognition latency,
and (iii) narrowing the hypothesis space for reliable PIN inference. To overcome these challenges,
RecSpy consists of three novel modules: (i) the Individual-level Recognition Mapper, (ii) the Digit-
level Discrimination Network, and (iii) the Logic-Guided Inference Network.

• Individual-level Recognition Mapper (IRM). The IRM module aims to extract an individual’s
unique recognition pattern from the keystroke signatures. Unlike prior approaches that rely on addi-
tional hardware (e.g., cameras, antennas) or privileged OS access, RecSpy exploits acoustic signals
recorded by built-in microphones, which provides a stealthy and realistic attack vector. However,
extracting recognition patterns is challenging: keystroke sounds are weak, easily corrupted by noise,
and the differences across digits or users are subtle. To address this, IRM applies spectrogram en-
hancement and introduces a novel frequency-dependent weighting component that focuses on
the most informative spectral regions. Moreover, to further magnify the pattern differences across
individuals, IRM module is optimized using a contrastive learning strategy. Finally, IRM module
generates the individual’s recognition pattern for fine-grained digit-level pattern alignment.

• Digit-level Discrimination Network (DDN). The DDN module is used to capture digit-level
recognition latency patterns for each individual. However, since the recognition latencies are distinct
to each digit, it is difficult to make digit-specific modeling for each individual. To overcome this
challenge, we introduce an innovative Attention-based Conditioning Block (ACB) that aligns an
individual’s recognition pattern with specific digits. The ACB combines keystroke acoustics with
the recognition pattern through feature-wise linear modulation. To capture multi-scale digit-level
patterns, the DDN further stacks multiple ACBs in sequence. Since detailed latency annotations for
individual keystrokes are impractical to obtain, it is hard to train the DDN module. To address this
issue, we apply a self-supervised learning strategy to learn effective representations without explicit
labels. The resulting DDN produces fine-grained digit-level recognition latency patterns that support
accurate PIN inference.

• Logic-Guided Inference Network (LIN). The goal of LIN is to narrow the hypothesis space for
effective PIN inference. The core idea is to leverage the reasoning capability of large language
models (LLMs) to incorporate logical cues extracted from keystroke acoustics. Specifically, LIN
operates in two stages: Logic Extractor and Pruning Reasoner. In the Logic Extractor stage,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

LIN extracts hidden cues from the keystroke acoustics. To do this, the acoustic spectrogram is first
encoded into a sequence of tokens. These tokens are then paired with an instruction template and
fed into the LLM. Based on this input, the LLM produces position-wise priors that capture latent
recognition patterns. In the Pruning Reasoner stage, these priors are combined with recognition pat-
terns from earlier modules. The combined representation is then used to construct a new instruction
template. This template will guide the LLM to prune the hypothesis space and retain only the most
likely PIN candidates.

6 DETAILED DESIGN
6.1 INDIVIDUAL-LEVEL RECOGNITION MAPPER

The goal of the Individual-level Recognition Mapper (IRM) module is to obtain an individual’s
recognition pattern from the keystroke acoustics. To achieve this goal, as shown in Figure 5, we
design a recognition encoder that can differentiate the individual-specific recognition latencies even
from weak and noisy keystroke signals.
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Figure 5: The architecture of IRM.

First, to mitigate spectral leakage and noise
interference in the keystroke acoustics, we
introduce a two-layer Spectrogram Enhance-
ment Network (SEN) Yang et al. (2023). The
SEN removes leakage artifacts and sharp-
ens frequency components, particularly in the
mid-to-high frequency range (e.g., 4–10 kHz).
We transformed keystroke acoustics into the two-channel audio spectrogram using Short-Time-
Fourier-Transform (STFT) and input the spectrogram into the SENs. By doing this, the SENs restore
the corrupted spectral details. These enhanced inputs can help the subsequent layers to discriminate
recognition latencies. However, since traditional convolutional neural networks (CNNs) are shift-
invariant, spectral components at distinct frequencies are treated as equivalent patterns, which makes
frequency-specific details blurred. To address this limitation, we introduce a novel frequency-
dependent weighting component that assigns each frequency bin with a unique frequency-related
weight value. Specifically, the weight of the i-th frequency bin can be defined as:

ωi = α ·
ln
(
1 + β · i

N−1

)
ln(1 + β)

, i = 0, . . . , N − 1 (1)

where N is the number of frequency bins, and α and β are tunable parameters (α = 0.1 and β = 8 in
our design). This weighting scheme assigns larger weights to mid- and high-frequency bins, where
keystroke cues are most prominent. Meanwhile, the other bins receive relatively uniform weights.
As a result, the IRM module highlights the spectral regions of interest (ROIs) that carry the most
discriminative information. To extract recognition patterns from these ROIs, we first apply a CNN
layer to capture local spectral features. The outputs are then passed through a stack of six Long
Short-Term Memory (LSTM) layers. Lower layers focus on detecting event boundaries and their
associated latencies, while higher layers aggregate these signals into a coherent temporal represen-
tation. Finally, the aggregated features are projected into an individual’s recognition embedding,
which serves as the input for digit-level pattern alignment.

Training Scheme. To enhance inter-individual separation, we train the IRM module with a super-
vised contrastive learning strategy. This approach clusters embeddings with similar latency patterns
and separates those with different patterns. We use the dataset in Section 3, labeling each instance
by age group. To ensure balanced digit distribution, we downsample overrepresented digits, yielding
3,568 instances. In each training step, we sample 8 instances from each of the four age groups to
form a batch of 32. Each instance is treated as an anchor: samples from the same age group serve
as positives, while those from other groups serve as negatives. All instances are passed through the
IRM to obtain recognition patterns, which are projected by a two-layer MLP with ReLU activation.
Pattern similarities are optimized with the SupCon loss Khosla et al. (2020), using a temperature
parameter τ = 0.07 to sharpen the separation between positives and negatives. After training, the
IRM generates recognition patterns that are used for fine-grained digit-level pattern alignment.

6.2 DIGIT-LEVEL DISCRIMINATION NETWORK

In this section, we design a Digit-level Discrimination Network (DDN) module to learn an indi-
vidual’s digit-level recognition latency pattern under self-supervision. Specifically, since the recog-
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nition latency is distinct to each digit, it remains challenging to model the digit-level recognition
pattern solely from the recognition embedding. In addition, it is impractical to label detailed digit-
specific latencies. To overcome these challenges, our DDN module uses a novel Attention-based
Conditioning Block (ACB) to align the digit-level recognition pattern with the recognition embed-
ding from previous module.

MLP
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FTB Max
Pool Conv2d +
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Fx
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ACB

Conv2d

Recognition 

Embedding

Spectrogram

Internal Architecture of ACB
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Figure 6: The architecture of DDN.

As shown in Figure 6, the ACB is composed of
two branches. On the one branch, we adopt a
feature extractor that aims to extract digit-level
latency features. This feature extractor consists
of a frequency transformation block (FTB) fol-
lowed by max-pooling and a convolution layer.
The key idea is that the FTB can generate a
global time-frequency attention map to have
the full-frequency receptive field. Therefore,
we use the FTB to capture the global correla-
tions among the time and frequency dimensions.
Then, we apply max-pooling to the FTB out-
put to amplify the attention map in the regions
corresponding to keystroke events, since these
events manifest as spectral-energy peaks. Through this attention map, we can guide the CNN layer
to extract the digit-level latencies between these pronounced keystroke events. On the other branch,
we aim to personalize the feature extractor to specific individual’s recognition pattern. To do this, we
use the recognition pattern as a conditional vector to generate feature-scaling and feature-shifting pa-
rameters through multilayer perceptrons (MLPs). Then, we apply feature-wise linear modulation
to the extracted digit-level latency pattern:

Fc = f(c)⊙ norm(Fx) + h(c) (2)

where Fx is the output of the feature extraction, c is the recognition embeddings as the condition
features, and f(c) and h(c) are the scaling and shifting parameters. This modulation can amplify
discriminative components and suppress noise, which aligns the digit-level latency pattern with the
individual’s recognition pattern.

To further obtain the fine-grained digit-level pattern, we stack a CNN block and four ACBs with
output channels of 16, 32, 64, 128, and 256, respectively. First, the CNN block extracts local
spectral–temporal features from the keystroke spectrogram and projects them into an intermediate
representation space for subsequent alignment. Then, the stacked ACBs provide multi-scale fusion
to enlarge the effective receptive field for better pattern alignment, while simultaneously ensuring
sufficient capacity for representation learning without introducing unnecessary complexity.

Training Scheme. Since the detailed annotation for digit latencies is unrealistic, to effectively
optimize the DDN module for pattern alignment, we employ a decoder to apply self-supervision.
The ACB-stacked encoder extracts compact latent representations of digit-level recognition latency
patterns, while the decoder reconstructs the original spectrogram from these latent features, thereby
enforcing the preservation of fine-grained patterns. We train DDN with an L1 reconstruction loss
LL1 on the dataset from Section 3.3 for 80 epochs. After training, DDN produces individualized
digit-level latency patterns for each user.

6.3 LOGIC-GUIDED INFERENCE NETWORK
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Figure 7: The architecture of LIN.

The goal of the Logic-Guided Inference Net-
work (LIN) is to narrow the hypothesis space
for effective PIN inference. The LIN module
leverages a large language model (LLM) as a
reasoning engine to incorporate logical cues ex-
tracted from keystroke acoustics. As illustrated
in Figure 7, the module consists of two stages:
Logic Extractor and Pruning Reasoner. The
Logic Extractor employs the LLM to deduce
position-wise repetition–digit priors, while the Pruning Reasoner integrates these priors with the
individual’s digit-level latency patterns from the previous module to infer PINs.
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Logic Extractor. Prior studies show that users often choose PINs with repeated digits, leading to
a non-uniform distribution across positions Wang et al. (2017); Simon & Anderson (2013). Build-
ing on this observation, we design a novel Logic Extractor to derive position-wise repetition–digit
priors from keystroke acoustics. The pipeline consists of a pretrained acoustic spectrogram encoder
SSAST Gong et al. (2022), a Q-Former Li et al. (2023) as the translator, and Llama3.1-8B-Instruct
Dubey et al. (2024) as the reasoning engine. Unlike a shallow classifier, the LLM serves as an ex-
tensible reasoning component, allowing auxiliary side-channel information to be incorporated via
prompts to further improve PIN inference. To generate the repetition-digit priors, SSAST first ex-
tracts cues from the keystroke spectrogram. These representations are translated into continuous
tokens by the Q-Former and then passed to the LLM for reasoning. To constrain the LLM to autore-
gressively generate strictly formatted class tokens, we adopt an instruction template as input:

#USER: [Continuous Query Tokens] Please choose the active repetition classes (0–15) with
the associated confidence scores.
#ASSISTANT: Class: a, CONF: p, . . .

These predicted class tokens from the Assistant are decoded into a pre-defined upper-triangular
matrix with

(
6
2

)
= 15 unique entries. Each entry corresponds to a specific position pair. This matrix

provides a semantic representation of pairwise repetition probabilities and is used for subsequent
PIN inference.

Training Scheme of Logic Extractor. Although this process is effective, one critical issue is that the
LLM and Q-Former are primarily optimized for general-purpose semantics rather than task-specific
representations Sung et al. (2022); Li et al. (2023). Consequently, without appropriate adaptation,
they cannot capture the fine-grained cues required for position-wise repetition digits. To overcome
this critical challenge, we adopt a two-stage training scheme consisting of a short pretraining stage
followed by joint optimization.

In the first stage, we freeze the pretrained SSAST and LLM. Then, we train the Q-Former and
its projection layers with a binary cross-entropy loss Lpointer

BCE for 2 epochs. The output is mapped
to an upper-triangular binary matrix P ∈ [0, 1]6×6, following the same structured representation
as in the prior generation. This allows the Q-Former to distill spectrogram features into structured
tokens sensitive to digit repetitions. In the second stage, we optimize the full pipeline end-to-end
by fine-tuning the LLM with LoRA, enabling task-specific adaptation at minimal cost. Since at most
three repetition-digit position pairs can occur for a standard 6-digit PIN, we formulate the task as
multi-label classification. The Logic Extractor is trained with a multi-label binary cross-entropy loss
on the Assistant segment tokens, along with the auxiliary pointer loss on the Q-Former:

L = Lclass
BCE + λLpointer

BCE , (3)

where Lclass
BCE denotes the per-class binary cross-entropy across the 15 outputs. We set λ = 0.2 to

provide lightweight structural supervision to prevent the LLM from ignoring acoustic cues.

Pruning Reasoner The goal of the Pruning Reasoner is to incorporate the semantic position-wise
repetition-digit priors with the recognition patterns from early modules and narrow the hypothesis
space for effective PIN inference. To do this, we design the following instruction template:

#Prior: REP: (i,j); CONF: p #Recognition: [Er]
#USER: Individual pattern and repetition prior are given. Please infer the 6-digit PIN.
#ASSISTANT: PIN: [######]

Here, Prior is the textual tokens of the repetition-digit priors, and Er represents the projected recog-
nition patterns in the LLM embedding space. To ensure dimensional alignment, we use a trainable
MLP to adjust the dimension of Er from the recognition patterns in advance. Instead of continuous
embedding integration, this hybrid input has two main benefits: (i) It enables seamless integration
of recognition features with position-wise repetition priors in the same semantic space, which al-
lows the LLM to reason over them in a unified manner. (ii) It provides extensibility to incorporate
diverse auxiliary priors or leakage cues (e.g., partial digits, user-specific biases) directly as textual
instructions, thereby improving robustness and consistency under limited supervision.
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Figure 9: Inference performance when the ground-truth PIN is absent from
the Top-100: (a) digit-wise success rate; (b) position-wise success rate; (c)
maximum number of correctly matched digits within the Top-100 candidates.

Training Scheme of Pruning Reasoner. To align recognition features with the LLM space, we
adopt a two-stage optimization. In the first stage, we freeze the LLM and train only the projector
with cross-entropy loss on the Assistant tokens for 2 epochs. This prevents noisy gradients from
disrupting the LLM in the early stage. In the second stage, we jointly train the projector and the
LLM with the same cross-entropy loss using LoRA fine-tuning. This enables the LLM to integrate
recognition patterns with textual repetition-digit priors and effectively narrow the hypothesis space
for PIN inference.

7 IMPLEMENTATION AND EVALUATION

7.1 IMPLEMENTATION DETAILS

We evaluate RecSpy using a standard attacker–victim setting. The victim device is a smartphone
running either Android or iOS, while the attacker uses a desktop computer for training and inference.
We test three representative smartphones: Samsung Galaxy S24+ (Android 15), Samsung Galaxy
S25 Ultra (Android 15), and Apple iPhone 15 (iOS 18). The attacker’s software is deployed on these
devices as a covert background process with microphone access. For the user study, we recruited
40 volunteers aged 18–60. Each participant entered 10 random PINs on the supplied devices while
RecSpy silently recorded keystroke acoustics. Model training was conducted offline on an NVIDIA
A100 80GB GPU. We also include a random guessing approach as our baseline.

7.2 TOP-K CANDIDATE HIT RATE

In Figure 8, we first evaluate the correct hit rate within the top-ranked candidate set. RecSpy achieves
hit rates of 8.0%, 13.3%, and 29.3% for Top-20, Top-50, and Top-100, respectively. Interestingly,
the per-guess hit rate is not strictly monotonic (0.40%, 0.26%, and 0.29%). This is because sample
imbalance across age groups shifts some correct cases to lower ranks. Compared with the ran-
dom guessing baseline of 10−6 for 6-digit PINs, these results represent probability improvements
of roughly 4000×, 2600×, and 2900×. In summary, RecSpy elevates PIN inference from an in-
tractable random guess to a feasible targeted attack.

7.3 HIT RATE OF PARTIAL INFERENCE

In this part, we evaluate the digit-wise and position-wise hit rates when the ground truth is absent in
the Top-100 candidates.

• Digit-wise Hit Rate. Figure 9 (a) shows the digit-wise correct hit rate. The results support our
previous observation that the recognition latency reflects inherent biases in visual simplicity and
structural asymmetry. Specifically, digits 0 and 1 achieve the highest correct probabilities of 89.9%
and 83.5%, respectively. Digits 4 and 7 exhibit higher discriminability owing to their asymmetric
structure. Interestingly, since digit 8 has a near-symmetric shape, it also achieves a relatively high
probability of 70.2%. The remaining digits exhibit much lower probabilities, as they are more
visually confusable.

• Position-wise Hit Rate. Figure 9 (b) presents the position-wise correct guess probability. The
success probability has relatively small variations. This indicates that recognition latency patterns
are consistently exploitable across different digit positions within the PIN sequence.

• Maximum Number of Inferred Digits. Figure 9 (c) displays the distribution of the maximum
number of digits correctly matched within the Top-100 candidate PIN sequences. The results show
that even when the exact ground-truth PIN is absent, a large portion of the candidates still contain
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Figure 10: Hit rates of RecSpy in inferring re-
peated digits: (a) overall performance on position pairs
with/without LLM reasoning, (b) position-wise results.
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Figure 11: Top-20 Candidate Hit Rates Under (a)
different Scenarios and (b) different Mobile Devices.

partial matches. The majority of sequences can match three or more digits, and in some cases up to
five digits are correctly inferred. In summary, RecSpy can significantly reduce the uncertainty of
PIN inference and achieve effective attacks on legitimate users.

7.4 REPEATED DIGIT HIT RATE ON POSITION PAIRS

• Ablation Evaluation. To evaluate the contribution of the LLM-based reasoning component, we
design a RecSpy-LLM approach to directly infer repeated digits from an individual’s digit-level
recognition latency pattern. This approach does not use the LLM for prior extraction and logical
reasoning. Figure 10 (a) reveals a clear performance decline, with the hit rate for inferring repeated
digits across position pairs dropping from 95% to 30%.

• Position-wise Repeated-digit Hit Rate. In Figure 10 (b), we also evaluate the position-wise hit
rate for repeated digits, where the horizontal and vertical axes represent the digit positions. Each
cell denotes the probability that a repeated digit at the given position pair is correctly inferred. The
results show consistently high hit rates across all position pairs, with most values exceeding 80%,
which indicates that RecSpy can reliably infer repeated digits regardless of their relative positions.
In summary, the reasoning component of RecSpy is crucial for leveraging the hidden repetition
prior to narrow the effective search space for PIN inference.

7.5 GENERALIZATION TO DEVICES AND ENVIRONMENTS.

• Cross-Environment Performance. We evaluate the robustness of RecSpy under various indoor
environments with increasing ambient noise, including a quiet room, a shared office, and an open
workspace. Figure 11 (a) displays the Top-20 candidate hit rate in these scenarios. The results show
that RecSpy remains effective in quiet and moderately noisy conditions, with hit rates of 8.00% in
the quiet room, 6.63% in the office, and 2.40% in the noisy workspace. Although these numbers
may appear modest, they represent a practical threat in real settings: once a malicious app is
installed, an attacker can continuously collect data and attempt guesses over time. Therefore,
we believe that RecSpy is relatively robust under noisy scenarios. This is because RecSpy mainly
relies on keystroke acoustics to identify temporal interval patterns, rather than performing spatially
precise acoustic localization, making it less dependent on denoising or high-fidelity signal recovery.

• Cross-Device Performance. We further evaluate the cross-device performance of RecSpy. As
shown in Figure 11 (b), hit rates are largely consistent. In summary, RecSpy can achieve effective
attacks across diverse scenarios and devices.

8 CONCLUSION

In this paper, we presented RecSpy, a novel cognition-driven acoustic side-channel attack that in-
fers PINs on randomized soft keyboards. By modeling digit recognition latency through contrastive
and self-supervised learning, and by introducing a Logic-Guided Inference Network that leverages
LLM-based reasoning, RecSpy effectively exploits human cognitive patterns for PIN inference. Our
evaluation on both Android and iOS devices demonstrates that RecSpy can improve inference suc-
cess rates by up to 4000× compared with random guessing, which demonstrates severe security
issues to mobile authentication. Moreover, our results reveal that advances in representation learn-
ing and LLMs can be misused to compromise security and privacy.
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