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Abstract

Automated machine learning (AutoML) usually involves several crucial components, such
as Data Augmentation (DA) policy, Hyper-Parameter Optimization (HPO), and Neural
Architecture Search (NAS). Although many strategies have been developed for automating
these components in separation, joint optimization of these components remains challenging
due to the largely increased search dimension and the variant input types of each component.
In parallel to this, the common practice of searching for the optimal architecture first and
then retraining it before deployment in NAS often su�ers from low performance correlation
between the searching and retraining stages. An end-to-end solution that integrates the
AutoML components and returns a ready-to-use model at the end of the search is desirable.
In view of these, we propose DHA, which achieves joint optimization of Data augmentation
policy, Hyper-parameter and Architecture. Specifically, end-to-end NAS is achieved in a
di�erentiable manner by optimizing a compressed lower-dimensional feature space, while DA
policy and HPO are updated dynamically at the same time. Experiments show that DHA
achieves state-of-the-art (SOTA) results on various datasets and search spaces. To the best
of our knowledge, we are the first to e�ciently and jointly optimize DA policy, NAS, and
HPO in an end-to-end manner without retraining.

1 Introduction

While deep learning has achieved remarkable progress in various tasks such as computer vision and natural
language processing, the design and training of a well-performing deep neural architecture for a specific task
usually requires tremendous human involvement He et al. (2016); Sandler et al. (2018). To alleviate such
burden on human users, AutoML algorithms have been proposed in recent years to automate the pipeline of
designing and training a model, such as automated Data Augmentation (DA), Hyper-Parameter Optimization
(HPO), and Neural Architecture Search (NAS) Cubuk et al. (2018); Mittal et al. (2020); Chen et al. (2019).)
All of these AutoML components are normally processed independently and the naive solution of applying
them sequentially in separate stages, not only su�ers from low e�ciency but also leads to sub-optimal results
Dai et al. (2020); Dong et al. (2020). Indeed, how to achieve full-pipeline “from data to model” automation
e�ciently and e�ectively is still a challenging and open problem.

One of the main di�culties lies in understanding how to automatically combine the di�erent AutoML
components (e.g., NAS and HPO) appropriately without human expertise. FBNetV3 Dai et al. (2020) and
AutoHAS Dong et al. (2020) investigated the joint optimization of NAS and HPO, while Kashima et al.
(2020) focused on the joint optimization of neural architectures and data augmentation policies. The joint
optimization of NAS and quantization policy were also investigated in APQ Wang et al. (2020). Clear benefits
can be seen in the above works when optimizing two AutoML components together, which motivates the
further investigation of “from data to model" automation. However, with the increasing number of AutoML
components, the search space complexity is increased by several orders of magnitudes and it is challenging to
operate in such a large search space. In addition, how these AutoML components a�ect each other when
optimized together is still unclear. Thus, further investigation is needed to open the black box of optimizing
di�erent AutoML components jointly.
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Figure 1: Top-1 accuracy and computational time of AutoML algorithms for classification task on CIFAR10, CIFAR100,
SPORT8, MIT67, FLOWERS102 and ImageNet. DHA is conducted with Cell-Based search space. Ellipse centres and
ellipse edges represent the µ ± {0, ‡/2}, respectively (mean µ, standard deviation ‡). For ImageNet, we present test
accuracy without error bars, as the error bars are not reported in existing works.

Another main challenge of achieving the automated pipeline “from data to model" is understanding how
to perform end-to-end searching and training of models without the need of parameter retraining. Current
approaches, even those considering only one AutoML component such as NAS algorithms, usually require
two stages, one for searching and one for retraining Liu et al. (2019); Xie et al. (2019). Similarly, automatic
DA methods such as FastAA Lim et al. (2019) also need to retrain the model parameters once the DA
policies have been searched. In these cases, whether the searched architectures or DA policies would perform
well after retraining is questionable, due to the inevitable di�erence of training setup between the searching
and retraining stages Yang et al. (2019). To improve the performance correlation between searching and
retraining stages, DSNAS Hu et al. (2020) developed a di�erentiable NAS method to provide direct NAS
without parameter retraining. OnlineAugment Tang et al. (2020) and OnlineHPO Im et al. (2021) design
direct DA or HPO policy, respectively, without model retraining.

Targeting the challenging task-specific end-to-end AutoML, we propose DHA, a di�erentiable joint optimization
solution for e�cient end-to-end AutoML components, including the DA, HPO and NAS. In DHA, the
optimization strategy weight-sharing Xie et al. (2020) is delicately adopted in DA, HPO and NAS by
respectively introducing the probability matrix, the continuous hyper-parameter setting and the super-network.
Specifically, the DA and HPO are regarded as dynamic schedulers, which adapt themselves to the update of
network parameters and network architecture. At the same time, the end-to-end NAS optimization is realized
in a di�erentiable manner with the help of sparse coding method. Instead of performing our search in a
high-dimensional network architecture space, we optimize a compressed lower-dimensional feature space. With
this di�erentiable manner, DHA can e�ectively deal with the huge search space and the high optimization
complexity caused by the joint optimization problem. To summarize, our main contributions are as follows:

• We propose an AutoML method, DHA, for the concurrent optimization of DA, HPO, and NAS. To
the best of our knowledge, we are the first to e�ciently and jointly optimize DA policy, HPO, and
NAS in an end-to-end manner without retraining.

• Experiments show that DHA achieves a state-of-the-art (SOTA) accuracy on ImageNet with both
cell-based and Mobilenet-like architecture search space. DHA also provides SOTA results on various
datasets, including CIFAR10, CIFAR100, SPORT8, MIT67, FLOWERS102 and ImageNet with
relatively low computational cost, showing the e�ectiveness and e�ciency of joint optimization (see
Fig. 1).
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Figure 2: An overview of DHA. We first sample the DA operations for each sample based on the data transformation
parameters · . Then, a child network is sampled based on the architecture parameters –, which will be used to process
the transformed mini-batch. Training loss is calculated to update the data transformation parameter · , architecture
parameters –, and neural network parameter ◊. Then the training loss based on updated networks’ weights ◊t+1 is
used to update hyper-parameters ÷.

• Through extensive experiments, we demonstrate the advantages of doing joint-training over optimizing
each AutoML component in sequence. Higher model performance and a smoother loss landscape are
achieved by our proposed DHA method.

2 Related Works

Data augmentation. Learning data augmentation policies for a target dataset automatically has become a
trend, considering the di�culty to elaborately design augmentation methods for various datasets Cubuk et al.
(2018); Zhang et al. (2020); Lin et al. (2019). Specifically, AutoAugment Cubuk et al. (2018) and Adversarial
AutoAugment Zhang et al. (2020) adopt reinforcement learning to train a controller to generate policies, while
OHL-Auto-Aug Lin et al. (2019) formulates augmentation policy as a probability distribution and adopts
REINFORCE Williams (1992) to optimize the distribution parameters along with network training. PBA Ho
et al. (2019) and FAA Lim et al. (2019) use population-based training method and Bayesian optimization
respectively to reduce the computing cost of learning policies. Cubuk et al. (2020) argues that the search
space of policies used by these works can be reduced greatly and simple grid search can achieve competitive
performance. They also point out that the optimal data augmentation policy depends on the model size,
which indicates that fixing an augmentation policy when searching for neural architectures may lead to
sub-optimal solutions.

Hyper-parameter optimization. Hyper-parameters also play an important role in the training paradigm
of deep neural network models. Various black-box optimization approaches have been developed to address
hyper-parameter tuning tasks involving multiple tasks Mittal et al. (2020); Perrone et al. (2018) or mixed
variable types Ru et al. (2020a). Meanwhile, techniques like multi-fidelity evaluations Kandasamy et al.
(2017); Wu et al. (2019), parallel computation González et al. (2016); Kathuria et al. (2016); Alvi et al. (2019),
and transfer learning Swersky et al. (2013); Min et al. (2020) are also employed to further enhance the query
e�ciency of the hyper-parameter optimization. In addition, several works Bengio (2000); Lorraine et al.
(2020); MacKay et al. (2019); Shaban et al. (2019); Maclaurin et al. (2015) have proposed to use gradient-based
bi-level optimization to tune large number of hyper-parameters during model training. Although many
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HPO strategies have been adopted in NAS strategies, methods that jointly optimize both architectures and
hyper-parameters are rarely seen except the ones discussed below.

Neural architecture search. NAS has attracted growing attention over the recent years and provided
architectures with better performance over those designed by human experts Pham et al. (2018); Real et al.
(2018); Liu et al. (2019). The rich collection of NAS literature can be divided into two categories: the
query-based methods and the gradient-based ones. The former includes powerful optimization strategies
such as reinforcement learning Zoph & Le (2017); Pham et al. (2018), Bayesian optimization Kandasamy
et al. (2018); Ru et al. (2020b) and evolutionary algorithms Elsken et al. (2019); Lu et al. (2019). The
latter enables the use of gradients in updating both architecture parameters and network weights, which
significantly reducing the computation costs of NAS via weight sharing Liu et al. (2019); Chen et al. (2019);
Xie et al. (2019); Hu et al. (2020). To reduce searching cost, most NAS methods search architectures in a
low-fidelity set-up (e.g.fewer training epochs, smaller architectures) and retrain the optimal architecture using
the full set-up before deployment. This separation of search and evaluation is sub-optimal Hu et al. (2020),
which motivates the development of end-to-end NAS strategies Xie et al. (2019); Hu et al. (2020) that return
read-to-deploy networks at the end of the search. Our work also proposes an end-to-end solution.

Joint optimization of AutoML components. Conventional neural architecture search methods perform
a search over a fixed set of architecture candidates and then apply or search for a separate set of hyper-
parameters when retraining the best architecture derived from the architecture search phase. Such search
protocol may lead to sub-optimal results Zela et al. (2018); Dong et al. (2020) as it neglects the influence of
training hyper-parameters on architecture performance and ignores superior architectures under alternative
hyper-parameter values Dai et al. (2020). Given this, several works have been proposed to jointly optimize
architecture structure and training hyper-parameters Dai et al. (2020); Wang et al. (2020); Dong et al. (2020).
Zela et al. (2018) introduces the use of multi-fidelity Bayesian optimization to search over both the architecture
structure and training hyper-parameters. Dai et al. (2020) trains an accuracy predictor to estimate the network
performance based on both the architecture and training hyper-parameters and then uses an evolutionary
algorithm to perform the search. Both these methods are query-based and require a relatively large number
of architecture and hyper-parameter evaluations to fine-tune predictors or obtain good recommendations. To
improve the joint optimization e�ciency, AutoHAS Dong et al. (2020) introduces a di�erentiable approach in
conjunction with weight sharing for the joint optimization task, which empirically demonstrates that such
a di�erentiable one-shot approach achieves superior e�ciency over query-based methods. In addition to
jointly optimizing neural architectures and hyper-parameters, the other line of research focuses on the joint
optimization of neural architectures and data augmentation hyper-parameters Kashima et al. (2020). Our
proposed method di�ers from the above works in mainly two aspects: first, our method is more e�cient than
AutoHAS since our method has no need to update the whole network and only needs to update the sampled
sub-network at each optimization step. Second, the joint optimization scope is further extended from NAS
and training hyper-parameters to include DA, HPO and NAS.

3 Methodology

Consider a dataset D = {(xi, yi)}N
i=1, where N is the size of this dataset, and yi is the label of the input

sample xi. We aim to train a neural network f(·), which can achieve the best accuracy on the test dataset
Dtest. Multiple AutoML components are considered, including DA, HPO, and NAS. Let · , ÷, –, and ◊
represent the data augmentation parameters, the hyper-parameters, the architecture parameters, and the
objective neural network parameters, respectively. This problem can be formulated as

argmin· ,÷,–,◊L(· , ÷, –, ◊; D)
s.t. ci(–) Æ Ci, i = 1, ..., “,

(1)

where L(·) represents the loss function, D denotes the input data, ci(·) refers to the resource cost (e.g., storage
or computational cost) of the current architecture –, which is restricted by the i-th resource constraints Ci,
and “ denotes the total number of resource constraints. Considering the huge search space, it is challenging
to achieve the joint optimization of · , ÷, –, and ◊ within one-stage without parameter retraining. In this
work, we propose to use the di�erentiable method to provide a computationally e�cient solution. See Fig. 2
for an illustration.
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3.1 Data augmentation parameters

For every mini-batch of training data Btr = {(xk, yk)}ntr

k=1 with batch size ntr, we conduct data augmentation
to increase the diversity of the training data. We consider K data augmentation operations, and each
training sample is augmented by a transformation consisting of two successive operations Cubuk et al.
(2018); Lim et al. (2019). Each operation is associated with a magnitude that is uniformly sampled from
[0, 10]. The data augmentation parameter · represents a probability distribution over the augmentation
transformations. For t-th iteration, we sample ntr transformations according to · t with Gumbel-Softmax
reparameterization Maddison et al. (2016) and to generate the corresponding augmented samples in the batch.
Given a sampled architecture, the loss function for each augmented sample is denoted by Ltr(f(–t, ◊t; Tk(xk))),
where Tk represents the selected transformation. In order to relax · to be di�erentiable, we regard pk(· t), the
probability of sampling the transformation Tk, as an importance weight for the loss function of corresponding
sample Ltr(f(–t, ◊t; Tk(xk))). The objective of data augmentation is to minimize the following loss function:

LDA(· t) = ≠
ntrÿ

k=1
pk(· t)Ltr(f(–t, ◊t; Tk(xk))). (2)

With this loss function, DHA intends to increase the sampling probability of those transformations that
can generate samples with high training loss. By sampling such transformations, DHA can pay more
attention to more aggressive DA strategies and increase model robustness against di�cult samples Zhang
et al. (2020). However, blindly increasing the di�culty of samples may cause the augment ambiguity
phenomenon Wei et al. (2020): augmented images may be far away from the majority of clean images, which
could cause the under-fitting of model and deteriorate the learning process. Hence, besides optimizing the
probability matrix of DA strategies, we randomly sample the magnitude of each chosen strategy from an
uniform distribution, which can prevent learning heavy DA strategies: augmenting samples with large
magnitude strategies. Moreover, instead of training a controller to generate adversarial augmentation policies
via reinforcement learning Zhang et al. (2020) or training an extra teacher model to generate additional
labels for augmented samples Wei et al. (2020), we search for the probability distribution of augmentation
transformations directly via gradient-based optimization. In this way, the optimization of data augmentation
is very e�cient and hardly increases the computing cost.

3.2 Hyper-parameters

As shown in Fig. 2, given the batch of augmented training data {(Tk(xk), yk)}ntr

k=1 and the sampled child
network, we need to optimize the di�erentiable hyper-parameters ÷, such as learning rate and L2 regularization.
At the training stage, we alternatively update ◊ and ÷. In t-th iteration, we can update ◊t based on the
gradient of the unweighted training loss Ltr(f(–t, ◊t; Btr)) = 1

ntr

qntr

k=1 Ltr(f(–t, ◊t; Tk(xk))), which can be
written as:

◊t+1 = OP(◊t, ÷t, Ò◊Ltr(f(–t, ◊t; Btr))), (3)
where OP(·) is the optimizer. To update the hyper-parameters ÷, we regard ◊t+1 as a function of ÷ and
compute the training loss Ltr(f(–t, ◊t+1(÷t); Btr)) with network parameters ◊t+1(÷t) on a mini-batch of
training data Btr. Then, ÷t is updated with Ò÷Ltr(f(–t, ◊t+1(÷t); Btr)) by gradient descent:

÷t+1 = ÷t ≠ —Ò÷Ltr(f(–t, ◊t+1(÷t); Btr)), (4)
where — is a learning rate. Even ◊t can also be deployed to ◊t≠1 whose calculation also involves ÷t≠1, we
take an approximation method in Eqn. 4 and regard ◊t here as a variable independent of ÷t≠1. Instead of
splitting an extra validation set for HPO, we directly sample a subset from training set to update ÷, which
could ensure that the whole training set is used in updating · , ÷, –, and ◊. This avoids the final learned
weight decay coe�cient to be zero as non-zero weight decay coe�cient can help avoid the model to overfit to
the training data.

3.3 Architecture parameters

With the augmented data in previous section, we achieve the optimization of the architecture parameter –
through end-to-end NAS, motivated by SNAS Xie et al. (2019), DSNAS Hu et al. (2020) and ISTA-NAS
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Yang et al. (2020). Following Liu et al. (2019), we denote the each space as a single directed acyclic graph
(DAG), where the probability matrix – consists of vector –T

i,j = [–1
i,j , ..., –r

i,j , ..., –k
i,j ] and –r

i,j represents the
probability of choosing rth operation associated with the edge (i, j). Instead of directly optimizing – œ Rn,
we adopt ISTA-NAS to optimize its compressed representation b œ Rm where m << n, which can be written
as:

b = A– + ‘, (5)

where ‘ œ Rm represents the noise and A œ Rm◊n is the measurement matrix which is randomly initialized.
Eqn. 5 is solved through using LASSO loss function Tibshirani (1996) and the – is optimized by using
iterative shrinkage thresholding algorithm Daubechies et al. (2004), which can be written as:

–t+1 = ÷⁄/L(–t ≠ 1
L

AT (A– ≠ b)), t = 0, 1, ..., (6)

where L represents the LASSO formulation which can be written as min
–

1
2 ||A– ≠ b||22 + ⁄||–||1; the ⁄

represents the regularization parameters and the ÷⁄/L is the shrinkage operator as defined in Beck & Teboulle
(2009). Thus we have:

–T
j oj = (bT

j Aj ≠ [–j(bj)]T Ej)oj , (7)

where oj refers to all possible operations connected to note j and Ej = AT
j Aj ≠ I. With this relaxation,

b can be optimized through calculating the gradient concerning training loss. The main reason for using
this optimization algorithm is that it can optimize the high-dimensional architecture parameters through
optimizing low-dimensional embeddings, which can largely decrease the optimization di�culty and increase the
optimization e�ciency. Moreover, this algorithm also adopt the weights sharing in the optimization process
which can be readily combined with our proposed data augmentation and hyper-parameter optimization
method.

3.4 Joint-optimization

Based on the above analysis of each AutoML module, DHA realizes end-to-end joint optimization of automated
data augmentation parameters · , hyper-parameters ÷, and architecture parameters –. The DHA algorithm
is summarized in Algorithm 1. One-level optimization is applied to · and – as in Line 6 and Line 8, while
bi-level optimization is applied to ÷ as in Line 9.

One thing worth mentioning is that di�erent optimizers are adopted for di�erent parameters. There are two
main reasons behind this choice. Firstly, · , ÷, – and ◊ work di�erently in the optimization process, e.g.,
· controls the transformation strategy for the training set while – is related to the architecture selection.
Besides ◊, other parameters could not directly be optimized through the gradient descent on training set.
These di�erences cause the di�erent optimization methods for · , –, ÷ and ◊. Secondly, · , –, ÷ and ◊ have
di�erent dimensions and di�erent scales, which makes the joint-optimization with a uniform optimizer
extremely impracticable. This is why current works concerning DA Ho et al. (2019), NAS Yao et al. (2020);
Nekrasov et al. (2019) and HPO Falkner et al. (2018) always adopt di�erent optimizer for network’s weights
and hyper-parameters they aim to optimize. During the training process, DA and HPO adapt the online
optimization strategy. The DA strategy and HPO settings are evolving with the weights of the parameters.

Moreover, the main reason that DHA could optimize large-scale search space in an e�ectively manner, is that
DHA delicately adopt weight-sharing in the joint-optimization for di�erent parameters. Instead of only
optimizing a sub-network with a DA strategy and a hyper-parameter setting to check the performance of
certain setting, we realize the joint-optimization with the help of a super-net network, a DA probability matrix
and continuous hyper-parameter setting. In that way, DHA can make use of previous trained parameter
weights to check the performance setting, which largely decreases the computational request.
4 Experiments

In this section, we empirically compare DHA against existing AutoML algorithms on various datasets. With
extensive experiments, we demonstrate the benefits of joint-optimization over sequential-optimization in
terms of generalization performance and computational e�ciency.
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Algorithm 1 DHA
Initialization: Data Transformation Parameters · , Hyper-parameters ÷, Compressed Representation b,

Measurement Matrix A, and Network Parameters ◊
Input: Training Set Dtr, Parameters · , ÷, b, A, ◊, and the iteration number T
Return: · , ÷, –, ◊

1: while t < T do
2: Separately sample a mini-batch Btr from Dtr;
3: For each sample xk in mini-batch Btr, sample a transformation Tk(xk) according to · t;
4: Recover –t by solving Eqn. 5 with bt and A;
5: Extract a child network from the super network;
6: Compute the weighted training loss function as Eqn. 2 and update · t+1 accordingly;
7: Calculate ◊t+1 with Eqn. 3;
8: Use training loss function to update bt+1 through the gradient descent, then –t+1 is updated with

Eqn. 6;
9: Compute the training loss function with ◊t+1 on Dval and update ÷t+1 with Eqn. 4;

10: end while

Table 1: Top-1 accuracy (%) and computational time (GPU hour) of di�erent AutoML algorithms on CIFAR10,
CIFAR100, SPORT8, MIT67 and FLOWERS102 with Cell-Based Search Space. We report the sum of search time
and tune time for two-stage NAS and the whole running time for one-stage NAS. All the methods are implemented by
ourselves. Di�erent NAS algorithms for one dataset are performed under the similar parameter weights constrain to
ensure fair comparison.

Model CIFAR10 CIFAR100 SPORT8 MIT67 FLOWERS102
Acc Acc Acc Acc Acc

ENAS Pham et al. (2018) 95.85±0.17 78.02±0.55 94.54±0.35 71.05±0.29 96.56±0.20
NSGA-NET Lu et al. (2019) 96.18±0.37 77.31±0.14 92.53±0.34 70.20±0.41 95.30±0.26

DARTS Liu et al. (2019) 97.24±0.10 82.37±0.34 93.87±0.35 70.73±0.24 96.30±0.24
P-DARTS Chen et al. (2019) 97.13±0.07 82.46±0.37 92.45±0.66 70.70±0.29 95.09±0.26

MANAS Carlucci et al. (2019) 97.18±0.07 82.07±0.14 94.46±0.22 71.36±0.19 96.57±0.18
One-Stage ISTA Yang et al. (2020) 97.64±0.20 83.10±0.11 94.33±0.12 72.12±0.03 96.59±0.16

Sequential DHA 97.77±0.14 83.51±0.12 94.55±0.09 72.34±0.14 96.67±0.17
DHA 98.11±0.26 83.93±0.23 95.06±0.13 73.35±0.19 97.41±0.09

Time Time Time Time Time
ENAS Pham et al. (2018) 67.2±2.1 67.2±4.4 4.92±0.5 46.2±2.6 24.2±1.5

NSGA-NET Lu et al. (2019) 151.2±4.1 151.2±6.5 11.06±0.8 103.9±4.1 54.4±2.1
DARTS Liu et al. (2019) 151.2±2.9 151.2±3.8 11.06±1.4 103.9±3 54.4±1.6

P-DARTS Chen et al. (2019) 76.8±1 76.8±2.6 5.62±0.8 52.8±2 27.6±1.6
MANAS Carlucci et al. (2019) 122.4±1.8 122.4±2.9 8.96±0.7 84.1±1.6 44±1.5

One-Stage ISTA Yang et al. (2020) 55.2±1.5 55.2±1.2 4.1±0.3 37.9±0.4 19.8±1.3
Sequential DHA 101.9±1.6 101.9±2.3 7.3±0.5 67.9±1.6 35.4±1.9

DHA 76.6±3.2 76.6±3.1 5.6±0.5 52.5±1.4 27.4±1.2

4.1 Experiment setting

Datasets. Following Ru et al. (2020b), we conducted experiments on various datasets, including CIFAR10
and CIFAR100 for the object classification task Krizhevsky et al. (2009), SPORT8 for the action classification
task Li & Fei-Fei (2007), MIT67 for the scene classification task Quattoni & Torralba (2009), FLOWERS102
for the fine object classification task Nilsback & Zisserman (2008), and ImageNetRussakovsky et al. (2015)
for the large-scale classification task. The accuracy is calculated on the test set.

Search space. (1) Automated DA. Following Ho et al. (2019), we consider 14 di�erent operations for data
augmentation, such as AutoContrast and Equalize. The magnitude of each operation is randomly sampled
from the uniform distribution. (2) NAS. Following Liu et al. (2019) and Cai et al. (2019), we consider
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both the cell-based and the MobileNet search space, which regards the whole architecture as a stack similar
cells. (3) HPO. We consider both the L2 regularization (i.e., weight decay) and the learning rate in the
experiments. Detailed information is provided in Appendix A.

Baselines. We compare DHA with various AutoML algorithms (see Table 1 and Table 2). For datasets
including CIFAR10, CIFAR100, SPORT8, MIT67, FLOWERS102 and ImageNet, we re-implement existing
works following the papers cited in Table 1. As for ImageNet, we directly refer to the model performance
reported in papers cited in Table 2. To further demonstrate the benefits of joint optimization of multiple
AutoML components, we also include a baseline, Sequential DHA, which resembles the common practice
by human to optimize di�erent components in sequence. Specifically, Sequential DHA consists of two
stages. During the first stage, Sequential DHA performs NAS to find the optimal architecture under certain
hyper-parameter settings. In the next stage, Sequential DHA performs the online DA and HPO strategy
proposed in our paper and trains the architecture derived from the first stage from scratch. Detailed algorithm
of Sequential DHA could be found in Appendix B. These experiments are conducted on NVIDIA V100 under
PyTorch-1.3.0 and Python 3.6. Detailed settings of baselines are provided in Appendix A.

Figure 3: The validation accuracy of Sequential-DHA and DHA over the training time on ImageNet with Cell-Based
Structure.

4.2 Results

The test accuracy and computational time of various AutoML algorithms are summarized in Table 1 and
Table 2. The timing results in these two tables measure the computational time taken to obtain a ready-to-
deploy network, which corresponds to the sum of search and retrain time for two-stage NAS methods and the
search time for end-to-end methods like one-stage NAS method as well as our DHA.

Small-scale datasets. As shown in Table 1, methods optimizing all of DA, HPO and NAS automatically
(i.e, Sequential DHA and DHA) consistently outperform those NAS algorithms with manual designed DA
and HPO. Specifically, DHA achieves SOTA results on all datasets. This shows the clear performance gain of
extending the search scope from architecture to including also data augmentation and hyper-parameters,
justifying the need for multi-component optimization in AutoML. Moreover, despite optimising over a larger
search space, DHA remains cost e�ciency. For example, on CIFAR100, DHA enjoys 1.56% higher test
accuracy than DARTS but requires 42% less time. Besides, the comparison between DHA and Sequential
DHA reveals the evident advantage of doing DA, HPO and NAS jointly over doing them separately in di�erent
stages.

Large-scale dataset. Results of the large-scale dataset ImageNet with cell-based search space and MobileNet
search space are shown in Table 2. DHA consistently outperforms various NAS methods which only involves
architecture optimization, demonstrating the benefits of joint-optimization. Even when compared with
One-stage NAS methods like ISTA, DHA achieves up to 1.7% TOP-1 accuracy improvement. Moreover, in
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Table 2: Comparison with SOTA image classifiers on ImageNet in the Cell-Based (C) setting or MobileNet/Shu�eNet
(M) setting. († denotes the architecture is searched on ImageNet, otherwise it is searched on CIFAR-10 or CIFAR-100.)

Model Test Acc (%) Params Cost (GPU-day) Search Attribute Search
Top-1 Top-5 (M) Search Eval Space

DARTS (2nd) Liu et al. (2019) 73.3 91.3 4.7 4.0 3.6 ◊ 8 Arch C
SNAS (mild) Xie et al. (2019) 72.7 90.8 4.3 1.5 3.3 ◊ 8 Arch C
GDAS Dong & Yang (2019) 74.0 91.5 5.3 0.3 3.6 ◊ 8 Arch C
BayesNAS Zhou et al. (2019) 73.5 91.1 3.9 0.2 3.6 ◊ 8 Arch C
PARSEC Casale et al. (2019) 74.0 91.6 5.6 1.0 3.6 ◊ 8 Arch C

P-DARTS (CIFAR-10) Chen et al. (2019) 75.6 92.6 4.9 0.3 3.6 ◊ 8 Arch C
P-DARTS (CIFAR-100) Chen et al. (2019) 75.3 92.5 5.1 0.3 3.6 ◊ 8 Arch C
PC-DARTS (ImageNet) Xu et al. (2020)† 75.8 92.7 5.3 3.8 3.9 ◊ 8 Arch C

GAEA+PC-DARTS Li et al. (2021)† 76.0 92.7 5.6 3.8 3.9 ◊ 8 Arch C
DrNAS Chen et al. (2021)† 76.3 92.9 5.7 4.6 3.9 ◊ 8 Arch C

Two-Stage ISTA Yang et al. (2020)† 75.0 91.9 5.3 2.3 3.4 ◊ 8 Arch C
One-Stage ISTA Yang et al. (2020)† 76.0 92.9 5.7 4.2 ◊ 8 Arch C
E�cientNet-B0 Tan & Le (2019)† 77.1 93.3 5.3 - - Arch M
SinglePathNAS Guo et al. (2019)† 74.7 - 3.4 13.0 2.0 ◊ 8 Arch M

ProxylessNAS (GPU) Cai et al. (2019)† 75.1 92.5 7.1 8.3 3.6 ◊ 8 Arch M
DSNAS Hu et al. (2020)† 74.3 91.9 - 3.7 ◊ 8 Arch M

OFA (small) Cai et al. (2020)† 76.9 93.3 5.8 6.8 ◊ 8 Arch + Resolution M
APQ Wang et al. (2020)† 75.1 - - 12.5 ◊ 8 Arch + Pruning M

AutoHAS Dong et al. (2020) † 74.2 - - - - Arch + HPO M
Sequential DHA† 76.7 93.8 5.4 3.2 5.5 ◊ 8 Arch + DA + HPO C

DHA† 77.4 94.6 5.6 5.8 ◊ 8 Arch + DA + HPO C
Sequential DHA† 77.1 93.9 5.7 5.8 5.7 ◊ 8 Arch + DA + HPO M

DHA† 77.6 94.8 5.3 5.4 ◊ 8 Arch + DA + HPO M

Table 3: Top-1 accuracy (%) and computational time (GPU hour) of di�erent combination of AutoML components on
CIFAR10, CIFAR100, SPORT8, MIT67 and FLOWERS102. Listed algorithms are described in Ablation study.

Model CIFAR10 CIFAR100 SPORT8 MIT67 FLOWERS102
Acc Time Acc Time Acc Time Acc Time Acc Time

Sequential NAS+DA 97.74 57.50 83.45 57.50 94.49 4.20 72.22 39.20 96.64 20.50
Sequential NAS+HPO 97.54 63.60 83.13 63.60 94.47 4.60 72.10 43.10 96.57 22.50

Sequential DHA 97.77 101.90 83.51 101.90 94.55 7.30 72.34 67.90 96.67 35.40
Joint-optimization NAS+DA 97.78 64.00 83.55 64.00 94.53 4.70 72.38 43.80 96.72 22.90

Joint-optimization NAS+HPO 97.75 70.80 83.23 70.80 94.50 5.20 72.23 47.80 96.69 25.40
DHA 98.11 76.60 83.93 76.60 95.06 5.60 73.35 52.50 97.41 27.40

comparison with the joint-optimization algorithm APQ Wang et al. (2020) and AutoHAS Dong et al. (2020),
DHA outperforms APQ by 2.5% and outperforms AutoHAS by 4.3%. These comparisons reveal that DHA
proposes an e�cient and high-performed joint-optimization algorithm. The Top-1 accuracy and computation
time of these AutoML algorithms are also summarized in Fig. 1. As can be seen, DHA consistently gains
highest test accuracy on all five datasets while being more cost e�cient than NAS methods and Sequential
DHA.

The validation accuracy of Sequential-DHA and DHA during the training is shown in Fig. 3. We could notice
that a traditional sequential optimization algorithm would disrupt the learning process, as it has to retrain
the model after the searching phase. While benefiting from the end-to-end optimization process, DHA would
have a smoother learning curve and also achieve better performance.

4.3 Analysis of loss landscape
The strong test performance of DHA across various datasets motivates us to further check the geometry of
the minimiser achieved by our final trained model. We employ the filter-normalisation method proposed
in Li et al. (2017) to visualise the local loss landscape around the minimiser achieved by One-Stage ISTA,
Sequential DHA and DHA. We choose a center point ◊ú in the graph, and two direction vector ” and ÷.
We the plot the 2D contour with the function f(–, —) = L(f(◊ú + –” + —÷; Btest)), where Btest represents
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(a) One-Stage ISTA (b) Sequential DHA (c) DHA
Figure 4: Loss-landscape of the trained models on SPORT8. (a) One-Stage ISTA (b) Sequential DHA and (c) DHA.

the test set. The resultant contour plots are shown in Fig. 4. As can be seen, the minimum reached by
optimising over more AutoML components tend to be flatter than NAS with manual designed DA and HPO.
The loss landscape of DHA is also flatter and smoother than that of Sequential DHA accounting for the
better generalisation performance of DHA in previous experiments, explaining the superior test accuracy
achieved by DHA in Tables 1 and 2 Keskar et al. (2016); Xu & Mannor (2012).

4.4 Ablation study of AutoML components

To further verify the e�ectiveness of our proposed extended search scope and search strategy, we empirically
investigate the performance of considering all three components (i.e., DA, HPO and NAS) against combining
any two of them. We examine both the sequential-optimization and joint-optimization settings with four
designed optimization algorithms. Sequential NAS + DA first conducts NAS and during the tuning
stage, the proposed DA optimization is applied. Similar to the Sequential NAS+DA, Sequential NAS +
HPO firstly conducts NAS. Then with the fixed architecture, Sequential NAS + DA optimizes the HPO and
networks’ weights simultaneously. In contrast to them, Joint-optimization NAS + DA simultaneously
conducts DA strategy optimization, NAS and parameter weights optimization. Joint-optimization NAS +
HPO simultaneously conducts HPO, NAS and parameter weights optimization.

The comparison results are presented in Table 3. We can notice that performing joint optimization for either
NAS + DA or NAS + HPO, achieves higher test accuracy than doing them in a pipeline. This reconfirms
our previous conclusion that optimising di�erent AutoML components jointly is better than doing them in
sequence. Moreover, by comparing the results of the joint-optimization NAS+DA and the joint-optimization
NAS+HPO in Table 3 against the One-Stage ISTA in Table 1, it is clear that considering one more AutoML
component on top of NAS can lead to clear performance gain of the final model. While such gain is higher for
incorporating DA than HPO, it is maximised when all three components are considered; our DHA obtains
the best test accuracy among all joint-optimization baselines across all datasets.

5 Conclusion

In this work, we present DHA, an end-to-end joint-optimization method for three important components of
AutoML, including DA, HPO and NAS. This di�erentiable joint-optimization method can e�ciently optimize
larger search space than precious AutoML methods and achieve SOTA results on various datasets with a
relatively low computational cost. Specifically, DHA achieves 77.4% Top-1 accuracy on ImageNet with cell
based search space, which is higher that current SOTA by 0.5%. With DHA, we show the advantage of doing
joint-optimization of AutoML over doing co-optimization in sequence, and conclude that joint optimization
of multiple AutoML components is necessary.
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