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ABSTRACT

Recent advances in discriminative and generative pretraining have yielded geometry
estimation foundation models with strong generalization capabilities. While most
discriminative monocular geometry estimation methods rely on large-scale fine-
tuning data to achieve zero-shot generalization, several generative-based paradigms
show the potential of achieving impressive generalization performance on unseen
scenes by leveraging pre-trained diffusion models and fine-tuning on even a small
scale of synthetic training data. Frustratingly, these models are trained with different
recipes on different datasets, making it hard to find out the critical factors that
determine the evaluation performance. To resolve the above issue, (1) we build
fair and strong baselines in a unified codebase for evaluating and analyzing the
state-of-the-art (SOTA) geometry estimation models from pre-training style, fine-
tuning data, and model architecture perspectives; (2) we thoroughly evaluate
geometry models on challenging benchmarks with diverse scenes and high-quality
annotations. Under the fair training and evaluation configuration, our results reveal
that stochastic diffusion-based protocol is not optimal for fine-tuning generative-
based geometry estimation methods. One-step finetuning and inference protocol is
sufficient for generative-based depth and surface normal estimation. Besides, we
find that both discriminative and generative pretraining can generalize well under
small-scale fine-tuning high-quality data in scale-invariant depth estimation task.
DINOV2-pretrained discriminative models achieve slightly higher performance than
generative counterparts with the same small amount of synthetic data. Furthermore,
we have observed that metric depth estimation requires significantly more fine-
tuning data than scale-invariant depth estimation for learning the depth scale
distribution. We hope this work will inspire future geometry estimation research
in building more high-quality fine-tuning datasets and designing more powerful
geometry estimation models.

1 INTRODUCTION

Monocular depth and surface normal estimation, also referred to as “monocular geometry estimation”,
poses a fundamental yet intricate challenge of inferring distance and surface orientation from a single
image. Its significance is underscored by its broad utility across various downstream tasks, including
object detection ( s ; s ; , ), visual navigation (
, ; s ; s ; s ), novel view synthesis ( s
; s ), controllable image generation ( s ; s ;
s ), and 3D scene reconstruction ( s ; s ). The
1mportance of this task has led to a significant body of research resulting in numerous models (
, ; s ; s : , ; , ) over the past decade.

Although a large number of monocular geometry estimation models exist, they can be divided into
two paradigms, i.e., discriminative-based and generative-based. Discriminative monocular geometry
estimation models leverage the pre-train priors from fully-supervised image classification backbones,

e.g., ConvNeXt ( s ), EfficientNet ( s ) and ViT (
), or self-supervised backbones. e.g., DINOV2 ( , ), previous best dlscrlmlnatlve
depth estimation models, i.e., DepthAnything ( , ) and Metric3D ( , ),

achieve remarkable generalization performance by fine-tuning DINOv2 backbone with a large scale
of fine-tuning data. Generative geometry estimation models ( , ; , ; ,
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, ) unleash the power of pre-trained text-to-image diffusion
models e.g., Stable D1ffus1on (SD) ( , ) Several generative geometry estimation
models ( s ; s ) show strong generation
capability with even a small scale high- qualtty synthetlc ﬁne tuning data.

However, none of the previous works have systematically investigated the performance of these
geometry estimation methods with fair and faithful comparison. The reason is twofold. Firstly, the
different selections of datasets and training configurations hinder the fair evaluations of the newly
designed methodologies. (1) The performance distinction for different generative-based finetuning
paradigms is unclear. It is hard to evaluate whether the actual improvement is from the algorithmic
perspective or the data perspective since they are trained on different datasets and different training
configurations. (2) The performance distinction between discriminative and generative geometry
estimation models when trained on the same scale and quality of data also remains unclear. Secondly,
existing popular geometry estimation benchmarks may not reveal the real performance of the models.
NYUv2 ( s ) and ScanNet ( R ) are still popular in the evaluation
of indoor monocular depth estimation. However, they are collected by an older Kinect-v1 system
with noisy depth measurements and noisy imaging for RGB patterns, with only 640 x 480 resolution.
DIODE ( , ) and ETH3D ( , ) collect both outdoor and indoor
scenes with high-quality data while with low diversity scenes for evaluation. KITTI (

) collects depth maps from the LIDAR sensor and focuses on outdoor driving scenes. For surface
normal evaluation, NYUv2 ( s ), ScanNet ( R ), iBims-1 (

, ), Sintel ( , ) and Virtual KITTI ( , ) are widely used by
generating surface normal maps from the ground truth depth maps. However, the depth noises in
NYUV2 ( R ), ScanNet ( . ) and iBims-1 ( s ) yield
unsatisfactory surface normal ground truth. The limited scene diversity of synthetic datasets, i.e.,
Sintel ( s ) and Virtual KITTT ( s ), cannot evaluate the robustness of
the surface normal estimation model for in-the-wild geometry reconstruction. Overall, the existing
geometry benchmarks are hindered by two main issues: ground-truth quality and scene diversity. This
lack of fair and comprehensive benchmarks can significantly impede the development of geometry
estimation research.

To address the aforementioned problems, we perform a comprehensive geometry estimation bench-
marking study from two perspectives. (1) Training strategy. We reimplement a bunch of SOTA algo-

rithms in a unified codebase, including Marigold ( R ), Geowizard ( , ), Gen-
Percept ( , ), DepthFM ( , ), DMP ( , ), Depth-Anything (
, ), Depth Anything V2 ( , ), Metric3D v2 ( s ) and DSINE (

, ). As such, we can fairly evaluate their performance under the same training configu-
ration, and figure out whether the performance improvement is coming from the model architecture
or coming from the high-quality training data. Previous generative geometry models are all based
on Stable Diffusion 2.1 ( , ) with limited training data, we further explore the
potential of generative geometry models by conducting model size scale-up ablations in Table 6. (2)
More benchmark datasets. Apart from traditional geometry evaluation benchmarks, we build more
diverse scenes with high-quality labels for geometry evaluation. For depth estimation, we introduce
three extra benchmark datasets, InSpaceType ( R ), MatrixCity ( , ), and
Infinigen ( , ). InSpaceType is an indoor depth evaluation benchmark, which
contains 12 scenes, 1260 images, and 2208 x 1242 resolution. It is a good complement for indoor
benchmarks like NYUv?2 and ScanNet. MatrixCity is a rendered dataset with real city-scale scenes,
we select 808 street images and 403 aerial images for evaluation. It is suitable for evaluating driving
and city scenes. Infinigen is also a high-quality rendered dataset, which contains diverse nature
scenes. We use it to verify the generalization capability of depth estimation foundation models in
wild scenes. For surface normal estimation, we expand existing benchmark datasets with more high
quality and diverse datasets, e.g., indoor MuSHRoom dataset ( s ), outdoor Tank and
Temples (T&T) dataset ( , ), and wild Infinigen ( , ) dataset.

With the unified codebase, training data, and comprehensive benchmark datasets, we conduct a series
of analytical experiments. We surprisingly find that (1) The synthetic-to-real domain gap (

, ) is largely addressed through large-scale discriminative and generative pretraining.
In other words, it is now feasible to use only synthetic fine-tuning data to achieve generalizable

"The surface normal annotation of MushRoom and T&T are obtained from Gaustudio ( S )



Under review as a conference paper at ICLR 2025

performance across diverse real-world scenes. (2) It is not necessary for generative-based geometry
estimation models, e.g., Marigold ( , ), to follow the original stochastic diffusion protocol
due to its inference inefficiency. A simple deterministic one-step fine-tuning protocol is enough to
achieve comparable performance. (3) For scale-invariant depth estimation, discriminative model
with DIONV2 pretraining, and generative model with Stable Diffusion pretraining, are both capable
of achieving generalizable performance even with a small-scale fine-tuning dataset. However, the
discriminative-based model consistently outperforms the generative-based model across all evaluation
benchmarks. (4) For metric depth estimation, the benchmark result shows that even initializing the
vision encoder with DINOv?2 pre-training, it is still impractical to learn generaliable metric depth by
fine-tuning only on small-scale datasets. It is consistent with the currently best metric depth estimation
model, i.e., Metric3Dv2 ( s ), which focuses on collecting more diverse training datasets
(16M training samples) to achieve depth-scale generalization capability. (5) For surface normal
estimation, both discriminative model DSINE ( s ) and generative-based one-
step GenPercept achieve impressive results on diverse benchmarks, which suggests appropriate
image-level supervision, i.e., inductive bias ( , ) for DSINE, and angular loss for
GenPercept, is an important factor in providing strong supervision for surface normal estimation
task. We hope our benchmarking results could pave the way for designing more powerful geometry
estimation algorithms and developing high-quality geometry estimation training datasets in the future.

2 PRELIMINARIES

Task definition. Given an input image x € R *W*3 the goal of monocular geometry estimation

is to predict the depth map d € R?*W which can be affine-invariant or metric depth, and surface
orientation, which can be represented as either a unit vector n € S2, or a 3D axis-angle R € SO(3).

Discriminative geometry estimation models.

With the widespread application of deep learning ( , ), learning-based methods have
demonstrated their ab111ty to estimate geometric information from monocular images (
; , ). Early works primarily relied on
d1scr1m1nat1ve models usmg either superv1sed or unsupervised methods. Eigen et al. ( ,
) proposed the first learning-based method for monocular depth estimation, employing two
deep network stacks and using ground truth depth for supervision. Zhou et al. proposed an early
unsupervised framework, SfMLearner ( s ), in which camera pose and monocular
depth are learned together. With the availability of large amounts of data, recent methods (

; ; s ) have shown a trend toward using
large scale datasets to develop robust geometry estimation models that generalize well to diverse
environments. For instance, Ranftl et al. ( s ) introduced a method that demonstrates
strong zero-shot testing ability by utilizing mixed training datasets. Yang et al. ( , ;b)
further improved zero-shot monocular depth estimation performance by proposing Depth-Anything
and Depth-Anything v2, which leverages large-scale pseudo data to achieve strong generalization
ability. Meanwhile, ( ); ( ) proposed Metric3D series, which can output
accurate metric depth by training models on large-scale public RGB-D datasets and synthetic datasets.
Apart from depth estimation, advancements in surface normal information have also been achieved
through the use of discriminative models. Surface normal information can not only be calculated
directly from depth maps but can also be 1ndependently obtained through surface normal estimation
techniques ( s ; R ).
For example, ( ) proposed a method that demonstrates strong generalization
capabilities and produces high-quality surface normal predictions by investigating inductive biases.
Overall, the use of discriminative models for both depth and surface normal estimation has shown its
significance in improving performance, thereby broadening the applications of monocular geometry
estimation.

Generative geometry estimation Models. Given the impressive results of recent generative mod-
els ( , ) in image generation tasks, many studies have endeavored to incorporate
generative-based pipelines into geometry estimation. ( ) proposed a method to extend
the denoising diffusion process into the modern perception pipeline, which can be generalized to
most dense prediction tasks, such as depth estimation. ( ) formulated optical flow
and monocular depth estimation as image-to-image translation using generative diffusion models,
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Table 1: Quantitative comparison on 5 zero-shot affine-invariant depth benchmarks with author
released weights. We mark the best discriminative and generative results in bold and the second best

underlined. Discriminative methods are colored in blue while generative ones in green .

Method Train |y | NYU2 KITTI ETH3D ScanNet DIODE
Samples [AbsRel | 61 T AbsRel | 61 T AbsRel | 61 T AbsRel | 61 T AbsRel | 61 T
Metric3D v2 ( L2020 | 16M |arXivi24| 3.9 979 52 979 40 983 23 989 147 892
DepthAnything ( , ) ‘ 63.5M CVPR’24‘ 43 980 80 946 58 984 43 981 261 759
DepthAnything v2 ( )| 62.6M |arXiv'i24| 43 979 80 943 66 983 42 979 321 758
Marigold ( ,2024) | 74K |CVPR24| 55 964 99 916 65 960 64 951 308 773
GeoWizard ( ,2024) | 280K |arXivi24| 59 959 129 851 77 940 66 953 328 753
GenPercept ( L2024 | 74K JarXivi24| 52 966 101 90.1 66 957 57 963 311 763
DepthEM ( L2024 | 63K |arXivi24| 82 932 174 718 1001 902 9.5 903 334 729
without specialized loss functions and model architectures. ( ) proposed VPD, a
framework that exploits the semantic information of a pre-trained text-to-image diffusion model in
visual perception tasks. ( ) introduced a method for affine-invariant monocular depth

estimation, where the depth information is derived from retained rich stable diffusion priors.
( ) proposed a foundation model for jointly estimating depth and surface normal from

monocular images, which not only achieves surprisingly robust generalization on various types of
real or synthetic images but also faithfully captures intricate geometric details. In summary, recent
generative-based methods have provided new solutions and demonstrated their applications for depth
estimation.

Geometric evalutaion metrics. We use widely adopted evaluation metrics for assessing the per-
formance of depth and surface normal estimation. Specifically, for the depth estimation task, we
use mean absolute relative error (AbsRel) and accuracy under thresholds (§; < 1.25%,i = 1,2, 3)
for accuracy comparisons. These evaluation metrics for depth estimation are calculated as fol-

lows: (1) mean absolute relative error (AbsRel): % Z?:l V;if", (2) the accuracy under threshold

(0; < 1.25%,5 =1,2,3): % of 2; s.t. max(j—;, i—) < 1.25%; where z; is the ground truth depth and
z; represents the predicted depth. For surface normal estimation, we calculate the angular error for
the pixels with ground truth and report both the median and mean values (lower is better). In addition,
we measure the percentage of pixels with an error below ¢ € [5.0°,11.25°,30.0°] (higher is better).
Please refer to ( , ) for calculation details.

3 BENCHMARKING DEPTH ESTIMATION FOUNDATION MODELS

3.1 A BRIEF OVERVIEW OF SOTA METHODS

To demonstrate the performance of the SOTA methods, we consider some latest and representative
algorithms, i.e., two discriminative models, (Metric3Dv2 ( , ), Depth-Anything (

s )), and four generative models (Marigold ( s ), DepthFM ( s ),
Geowizard ( s ) and GenPercept ( R )). We fairly evaluate their performance
by using the official released model weights on 5 popular benchmarks, i.e., NYU v2 ( ,

), KITTI ( , ), ETH3D ( , ), ScanNet ( , ) and
DIODE ( , ), in Table 1. Notably, all the methods do not use these benchmarks
as training data. We can easily observe that (1) Metric3Dv2 ( , ) achieves the best
performance on all evaluation datasets, another discriminative-based method, Depth-Anything (

, ) achieves the second best performance. Both of them are trained on large-scale datasets,
with 16M and 63.5M training data separately. (2) Generative methods can achieve impressive results
on these evaluation benchmarks with even a small amount of fine-tuning data.

In addition to quantitative results, we further test their generalization capability by qualitative
visualization in several challenging scenes. Fig. 1 demonstrates the results of three algorithms on line
drawing images (left), color draft images (middle), and photo-realistic images (right). Surprisingly,
Metric3D fails on both line draw images and color draft images, while Marigold ( , )
and Depth-Anything ( , ) show some generalization capability on this kind of non-
geometrically consistent hand-drawn images. We conjecture that discriminative-based Metric3D
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Figure 1: Depth visualization on cartoon images. ‘MG’ indicates Marigold ( , ), ‘DA’
indicates Depth-Anything ( R ), ‘M3D’ indicates Metric3Dv2 ( s ).

Marigold Depth-Anything Metric3Dv2

Marigold Depth Anything Metric3Dv2

Figure 2: Depth visualization on four challenging scenes, i.e., rainy (top-left), blurry (top-right), dark
(bottom-left), and foggy (bottom-right) environments.

does not see cartoon images in the training stage, which leads to poor performance in this scenario.
Contrarily, although Marigold ( , ) also does not see cartoon images in their training set,
it leverages the priors stored in the pre-trained Stable Diffusion ( , ) model. Stable
Diffusion ( , ) model has seen millions of text-cartoon pairs when performing
text-to-image generation training. Fig. 2 shows the robustness of existing depth estimation models
on challenging scenes like rainy, blurry, dark, and foggy environments. Both Metric3D and Depth-
Anything fail on the rainy scene; both Marigold and Metric3D fail to estimate the sky in the second
blurry scene. None of the algorithms can handle all environments perfectly. Fig. 3 illustrates the depth

estimation results on the Infinigen ( , ) dataset (first two lines) and BEDLAM (
, ) dataset (last line). Infinigen ( , ) is a photo-realistic rendered dataset
with diverse nature scenes. BEDLAM ( , ) is a human-centered high-quality rendered

dataset with versatile indoor and outdoor scenes. Mainstream depth evaluation metrics overlook the
depth accuracy on the edges of the objects. We use these two datasets to demonstrate the fine-grained
depth estimation results since both datasets have high-quality annotations. For measuring the accuracy
of depth estimation on edges. We use Canny ( , ) edge detector to extract the edge mask
from the image and then calculate the traditional depth metrics. As shown in Table 2, Depth-Anything
achieves the highest performance on the Infinigen dataset; Marigold achieves the best AbsRel on the
BEDLAM ( s ) dataset.

In a nutshell, discriminative models trained on large data, i.e., Depth-Anything ( , ),
get the highest performance in most cases, while generative models finetuned on small data, e.g.,
Marigold ( , ), show competitive generalization capability on unseen scenes.
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Table 2: Benchmark depth estimation on Infinigen ( , ) and BEDLAM (
, ) dataset. ‘Standard’ indicates using standard evaluation metrics. ‘Canny’ indicates only
evaluating the performance on pixels that belong to canny edges. We mark the best results in bold.

Method Train |Infinigen-Standard Infinigen-Canny BEDLAM-Standard BEDLAM-Canny
Samples[AbsRel | 01T [AbsRel ] 01T [AbsRel] 1T [AbsRel] o017
Marigold ( , ) 74K 329 80.9 28.0 787 | 16.2 82.4 19.6 80.3
Metric3Dv2 ( R ) 16M 14.5 80.7 186 778 | 28.1 84.7 26.3 80.8
Depth-Anything ( R )| 63.5M | 12.0 88.4 143 847 | 462 69.0 46.8 67.8
RGB GT Marigold Depth-Anything Metric3Dv2

Figure 3: Fine-grained depth estimation comparison. We select two scenes (first two rows) from the
Infinigen Dataset ( , ) and one scene (last row) from the BEDLLAM dataset (

) )-

3.2 BENCHMARKING DIFFERENT GENERATIVE FINE-TUNING PARADIGMS

Several fine-tuning paradigms have been proposed for diffusion-based depth estimation. Based
on network architecture, they can be divided into two categories. The first category methods

(Marigold ( , ) and DepthFM ( , )) concatenate the image latent and depth
latent encoded by VAE ( s ) encoder as the input of the UNet latent denoiser.
As such, the input channels of the latent denoiser are doubled (8 input channels) to fit the expanded
input. The second category methods (DMP ( , ) and GenPercept ( , )

drop the depth latent, so they follow the original latent denoiser’s architecture (4 input channels).
Based on fine-tuning paradigms, they can be divided into four categories. (1) Marigold ( ,

) treats the initial depth latent as standard Gaussian noise and progressively denoise it with the
same scheduler as the original Stable Diffusion pipeline. (2) DepthFM also treats the initial depth
latent as standard Gaussian noise, however, the difference is that they finetune the denoiser with Flow
Matching ( , ) pipeline, with auxiliary surface normal loss. (3) DMP ( ,

) reformulates the task as a blending process, i.e., translating the image latent to depth latent with
the Stable Diffusion v-prediction ( , ) learning target. (4) GenPercept ( ,

) further improve the efficiency of DMP ( , ) by proposing a one-step inference
pipeline. Based on the amount of fine-tuned parameters, they can be divided into two categories. The
first category methods (Marigold, DepthFM, GenPercept) directly fine-tune the UNet parameters.
The second category method (DMP) adds LORA ( , ) layers into the UNet architecture
to achieve the goal of depth estimation.

In this section, we fairly benchmark the four fine-tuning protocols by training on the Hypersim
dataset (38,387 samples), with 480 x 640 resolution, 3 x 10~° learning rate, 96 batch sizes, and
10, 000 iterations. We choose Stable Diffusion 2.1 ( , ) as the base model. As
shown in Table 3, (1) Fine-tuning all UNet parameters outperforms using LORA layers. (compare
line 1 and line 2 on DMP) (2) Stochastic Marigold and deterministic GenPercept achieve comparable
performance, and outperforms other protocols. This implies that GenPercept’s one-step finetuning
approach is sufficient for depth estimation. Diffusion-based and flow-based finetuning protocols are
not necessary for generative-based geometry estimation models to achieve generalizable performance.
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Table 3: Benchmarking different generative finetuing paradigms on 5 zero-shot affine-invariant depth
benchmarks. We mark the best results in bold and the second best underlined.

Method Train | FT | NYUV2 KITTI ETH3D ScanNet DIODE
Samples |Strategies [/ AbsRel | 31 T AbsRel | 81 T AbsRel | 61 T AbsRel | 61 T AbsRel 01 T
DMP ( ) | 38K | LORA | 132 851 192 743 162 837 141 846 456 62.1
DMP ( ) | 38K | UNet | 101 906 154 80.0 100 91.0 109 89.0 382 687
Marigold ( 38K | UNet 69 950 138 807 7.5 937 7.1 943 287 746
GenPercept ( )| 38K | UNet 53 967 139 815 62 960 58 963 320 749
DepthFM ( 38K | UNet | 109 895 192 688 129 863 114 877 336 724

Table 4: Inference latency and speed benchmark for different components and methods. ‘Infer Steps’
indicates the minimum repeat times of the U-Net for achieving optimal results. All models are

inference with 512 x 512 resolution, except CLIP ( s ) (224 x 224).
Method \ Components \ Params/M  Macs/GFLOPs  Latency/s Memory/G  Inference Steps
Depth-Anything ( ) | ViT-L ( ) + Head 3353 586.0 0.19 2.24 1
Metric3Dv2 ( ViT-L ( ) + Head 411.9 1014.0 0.60 2.67 1
DSINE ( EfficientNet BS ( ) + Head 72.6 38.7 0.06 0.73 1
VAE-Tiny ( ) 2.4 131.9 0.03 0.61 1
- VAE 83.7 1781.2 0.11 0.65 1
Geowizard ( CLIP 304.0 71.8 0.04 1.25 1
Marigold-LCM ( ) VAE+ UNet 949.6 31384 0.29 527 4
Geowizard ( VAE+ UNet + CLIP 861.2 9846.1 0.85 5.24 10
DepthFM ( VAE+ UNet 949.6 2459.8 0.21 5.40 2
GenPercept ( ) VAE+ UNet 949.6 2120.4 0.18 5.40 1
GenPercept ( ) VAE-Tiny ( ) + UNet 868.3 471.1 0.18 5.40 1

Table 5: Benchmarking the inference efficiency of Marigold. We mark the best results in bold.

Method VAE Infer ‘ NYUv2 KITTI ETH3D ScanNet DIODE
Version SlepS‘AbsRel } 011 AbsRel | 41 T AbsRel | 01 T AbsRel | 61 T AbsRel | 41 T
Marigold ( s ) base 50 55 94 99 916 65 960 64 951 308 773
Marigold-LCM ( s ) base 4 6.1 958 101 906 63 960 69 947 309 773
Marigold-LCM ( s )|tiny ( s )| 4 69 950 138 807 75 937 7.1 943 328 738
Marigold-LCM ( ) |tiny ( s )| 1 66 954 130 836 78 932 7.0 945 333 731

Table 6: Benchmarking discriminative and generative depth model with the same training data (77K).

Network Pretrain Backbone \ NYUv2 KITTI ETH3D ScanNet DIODE
Style [AbsRel | 61 T AbsRel | 1 T AbsRel | 61 T AbsRel | 61 T AbsRel | 51 T
ViT+DPT Head Random init ViT-L 21.1 625 272 531 234 61.1 192 674 324 577
ViT+DPT Head DINOV2 ( s )| ViT-L 49 975 85 941 81 970 51 976 245 746
Marigold ( )|SD21 ( s )| UNet 69 958 122 857 92 955 7.1 954 252 730
Marigold ( N )| SDXL ( s ) UNet 68 958 11.1 892 89 967 63 962 245 736

3.3 INFERENCE EFFICIENCY OF DEPTH ESTIMATION FOUNDATION MODELS

Compared to discriminative models, the inference efficiency may become a bottleneck of the
generative-based methods. In this section, we give detailed inference efficiency evaluation in Ta-
ble 4. We can see that discriminative methods have fewer parameters than generative models. The
main inference consumption of the generative models happens on VAE ( , )
and multiple inference steps of UNet. The last line of Table 4 shows that GenPercept ( ,

) can achieve comparable inference latency with Depth-Anything (ViT-Large) and a tiny VAE
encoder ( , ). In Table 5, we found LCM ( , ) can effectively reduce
the inference steps of Marigold ( , ) while maintaining the performance. Besides, a
pre-trained tiny VAE ( , ) can substitute the standard VAE ( s )
with a minimal performance loss.

3.4 DISCRIMINATIVE AND GENERATIVE DEPTH ESTIMATORS IN THE SAME DATA REGIME

Can discriminative depth estimation models achieve competitive results with small-scale high-
quality training datasets like generative-based methods? To answer this question, we benchmark
discriminative and generative geometry model with the same amount of training data and the same
training strategy. Specifically, we use three training datasets, i.e., Hypersim (38,387) (

), Virtual Kitti (16,790) ( , ) and Tartanair (31,008) ( , ), with
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Table 7: Benchmarking depth estimation foundation models on more diverse benchmarks. We mark
the best results in bold.

Pretrain Train \ InspaceType  MatrixCity Infinigen
Network ‘ Style Backbone| gy mples [AbsRel | 81 7 AbsRel | 61T AbsRel | 51 T
Metric3D v2 ( s ) |DINOV2 ( s )| ViT-L 16M 10.1  89.7 9.5 893 145 80.7
Depth-Anything ( s )|DINOV2 ( ViT-L | 63.5M 82 929 164 89.7 120 884
ViT+DPT Head DINOV2 ( s )| ViT-L 77K 84 940 280 824 114 895
Marigold ( s ) SD21 ( UNet 77K 92 927 170 829 141 839

Table 8: Data scale ablation of metric depth estimation. Offical model is colored in blue , while
ablation models are colored in blue .

Method Train Dataset NYUv2 KITTI ETH3D ScanNet DIODE

etho Samples atase [AbsRel | 81 T AbsRel | 01 T AbsRel | 01 T AbsRel | 01 T AbsRel 01 T
Metric3D v2 ( )| 16M | mixed | 87 942 71 937 325 176 111 903 243 819
Metric3D v2 ( )| 39K hypersim 101 921 122 907 365 317 143 830 486 1838
Metric3D v2 ( )| 31K tartanair 349 284 387 240 300 313 328 568 746 693
Metric3D v2 ( )| 70K hypersim+tartanair 192 760 351 291 294 256 193 775 519 741
Metric3D v2 ( )| 350K |hypersim+tartanair+paralleldomain4d| 12.1 894 102 913 276 372 156 809 341 7938

total 77,897 samples. Both models are trained with 20,000 iterations, with a total batch size of
96 on 4 GPUs. For the discriminative depth model, we follow the network architecture of Depth-
Anything ( , ) (ViT-Large backbone pre-trained with DINOv2 and DPT (

s ) head), supervised with the affine-invariant loss ( s ). For the generative
geometry model, we choose Marigold ( , ) as our baseline. We can see from Table 6 that
(1) the discriminative model is largely inferior to generative-based Marigold on all evaluation datasets
without DINOv2 pre-train (line 1 v.s.line 3). However, the discriminative model beats Marigold by a
large margin when initialized with DINOv2 pre-train weight (line 2 v.s.line 3); (2) scale-up Marigold
from SD21 to SDXL brings consistent improvement in all benchmarks. We can see from Table 7 that
our discriminative model trained on 77K data outperforms Metric3Dv2 ( s ) in all three
datasets, and, is comparable with Depth-Anything ( , ) in two datasets (InspaceType
and Infinigen). This phenomenon suggests that high-quality fine-tuning data, rather than large-scale
training data or pre-train paradigm, is indispensable for scale-invariant depth estimation models to
achieve strong generalizable performance.

3.5 DATA-SCALE ABLATION ON METRIC DEPTH ESTIMATION TASK

Given the success of using small-scale synthetic data for scale-invariant depth estimation, we aim
to investigate if the same conclusion holds for metric depth estimation. Thus, we perform data-
scale ablation studies upon the SOTA metric depth estimation model, Metric3Dv2 ( , ).
Specifically, we adopt Metric3Dv2 model with ViT-small backbone, initialized with the Metric3Dv2
pre-train. We supervise the model with all of the loss functions mentioned in the paper (

) for 30K iterations. We use three synthetic datasets, Hypersim, Tartanair, and a large- scale
synthetic driving scene dataset, ParallelDomain4D (280K) (par, ) for data ablation. As shown
in Table 8, the performance of Metric3Dv2 model keeps improving as the data scale grows. However,
the performance of small-scale dataset finetuning is largely behind the official model trained on 16M
data samples. Hence, large-scale datasets with diverse scales and cameras is still indispensable for
metric depth estimation.

4 BENCHMARKING SURFACE NORMAL ESTIMATION FOUNDATION MODELS

4.1 A BRIEF OVERVIEW OF SOTA METHODS
DSINE ( , ) and Metric3Dv2 ( , ) are two representative discriminative
surface estimation models, which leverage the geometry priors from two distinct perspectives. DSINE
leverages two forms of inductive bias: (1) per-pixel ray direction, and (2) the relationship between
the neighboring surface normal, to learn a generalizable surface normal estimator. Metric3Dv2 (

, ) proposes to optimize the surface normal map by distilling diverse data knowledge from
the estimated metric depth. Different from discriminative models, GeoWizard ( , )isa
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Table 9: Quantitative evaluation of the generalization capabilities possessed by different methods
with official released weights. For each metric, the best results are bolded. Discriminative methods

are colored in blue while generative ones in green .

NYU v2 | ScanNet | Sintel
|mean med[5.0° 7.5° 11.25° 22.5° 30° |mean med[5.0° 7.5° 11.25° 22.5° 30° [mean med[5.0° 7.5° 11.25° 22.5° 30°

Metric3D v2 ( 13.5 6.7 40.1 53.5 659 82.6 87.7| 11.8 5.5 |46.6 60.7 71.6 85.4 89.7|22.8 14.2|18.4 28.5 41.6 66.7 75.8
DINSE ( b )| 16.4 8.4 32.8 463 59.6 77.7 83.5

Method

18.3 9.3 27.1 42.0 56.3 75.0 81.2|32.0 23.9/ 9.0 15.0 23.8 47.5 59.4
Geowizard ( s ) ‘ 19.8 11.2 18.0 32.7 50.2 73.0 79.9‘ 21.1 1].9‘15.9 29.7 47.4 170.7 77.8‘ 36.1 28.4‘ 4.1 8.6 169 398 525
Method \ MuSHRoom Subset (Indoor) | T&T Subset (Outdoor) | Infinigen Subset (Wild)

|mean med[5.0° 7.5° 11.25° 22.5° 30° |mean med[5.0° 7.5° 11.25° 22.5° 30° [mean med[5.0° 7.5° 11.25° 22.5° 30°

Metric3D v2 ( 143 7.9 31.948.1 61.8 81.7 87.2|22.3 14.1{19.2 31.4 43.0 64.8 73.5/32.6 27.3| 5.1 10.1 17.8 41.3 54.4
DINSE ( b )| 14.8 8.6 28.144.6 59.7 80.4 87.0|17.3 11.0|24.2 37.3 50.6 74.1 82.4|35.9 32.6/2.1 46 9.8 30.5 45.1

Geowizard ( 5 ) ‘ 16.5 10.7 14.7 30.5 52.5 79.6 86,2‘ 20.8 134‘10‘7 234 422 703 78,5‘ 36.2 320‘ 1.8 40 886 308 46.2

generative surface normal estimator without using any inductive bias from the geometry priors. It
purely relies on pre-trained diffusion priors to estimate the surface normal map. Table 10 summarizes
their performance on six benchmarks. The Mushroom ( R ) (indoor), T&T (

, ) (outdoor), and Infinigen ( , ) (wild) datasets are constructed by us to
add more diverse scenes with accurate surface normal labels in the evaluation benchmarks. We can
see that Metric3Dv2 ( R ) outperform DSINE ( s ) and GeoWizard (

, ) in most datasets. Note it is an unfair comparison since (1) Metric3Dv2 ( , )
is trained on 16M images, while DSINE is trained on 160K images, and GeoWizard is trained on
280K images. (2) DSINE use a much smaller backbone, EfficientNet-B5 ( R ), while
Metric3Dv2 ( , ) employs the ViT-Large ( , ) backbone.

4.2 DISCRIMINATIVE AND GENERATIVE MODELS IN THE SAME DATA REGIME

In this section, we fairly benchmark discriminative DSINE ( R ) and several
representative generative geometry models, i.e., Marigold ( , ), DMP ( , ),
GenPercept ( s ), and DepthFM ( s ), with 5 training datasets, Hyper-
sim ( , ) (38, 387), Tartanair ( , ) (31, 008), Virtual Kitti (

, ) (16, 790), BlendedM VS ( , ) (17, 819), ClearGrasp ( )
(22, 720), a total of 126, 724 samples. For generatative-based models, we represent the output surface
normals as unit vectors. We follow DSINE ( , ) to represent the outputs of

discriminative-based model as axis-angles with three degrees of freedom. All models are trained with
20, 000 iterations, 96 batch sizes, 480 x 640 resolution on 4 A800 GPUs. All generative-based models
use 3 x 107° learning rate. For discriminative model, we follow DSINE ( s ) to
use 3 x 107° learning rate for the backbone and 3 x 10~* learning rate for the decoder. We can see
from Table 9 that (1) DSINE can scale up the performance by using ViT-Large backbone with DI-
NOV2 pretrain (compared with ImageNet pretrained Efficient-B5 backbone). (2) For generative-based

fine-tuning protocols, DepthFM ( , ) outperforms other paradigms in most benchmarks.
We attribute this to the decoder supervision during the training. Paradigms that requires multi-step
denoising inference steps, e.g., Marigold ( , ) and DMP ( , ) are not suitable

to perform decoder supervision during the training. To verify the conjecture, we add decoder loss
supervision to one-step GenPercept, termed GenPercept*. The results on NYUv2, ScanNet and Sintel
datasets show that decoder surface normal loss supervision can largely improve original GenPercept
without decoder supervision. (3) Discriminative models, equipped with inductive bias, also achieve
impressive results. It is promising to inject inductive bias into the diffusion-based models, as such,
the surface normal estimator can effectively leverage the diffusion priors and inductive bias to boost
the performance. (4) DSINE (ViT-Large in Table 9) trained with 120K samples achieves comparable
performance with Metric3Dv?2 trained with 16M samples (Table 10). The results verify the point that
data-quality is more important than the data-scale in surface normal estimation task.

5 BENCHMARKING CROSS-VIEW GEOMETRIC CORRESPONDENCE

Can current monocular geometry estimation foundation models improve the 3D awareness
of the original representation models, e.g., DINOv2 and Stable Diffusion? To answer the
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Table 10: Quantitative evaluation of the generalization capabilities with the same training data
on different benchmarks. The best results are bolded. GenPercept* indicates with image-level loss

supervision after VAE decoder. ‘EBS’ indicates ImageNet ( , ) pre-trained EfficientNet-
A . .

B5( s ). “ViT-L’ indicates DINOv2 ( , ) pre-trained ViT-Large. The
best results are bolded. The best results of generativate-based models are underlined.
Method Backbone ‘ — .NY[,JVZ N g = AScanﬁNet N F =05 Sin}el 5 5200

[mean med[5.0° 7.5° 11.25° 22.5° 30° [mean med[5.0° 7.5° 11.25° 22.5° 30° [mean med[5.0° 7.5° 11.25° 22.5° 30°
DSINE ( b ) EBS ( b ) 19.2 10.027.1 40.1 53.9 73.8 80.1|17.3 11.0 24.2 37.3 50.6 74.1 82.4 359 32.6 2.1 46 9.8 30.5 45.1
DSINE ( L0009 VITL ( L0000 | 162 82328469 60.6 78.5 84.1| 16.1 7.4 34.550.6 63.8 79.4 84.3 24.6 161 11.121.1 351 63.8 74.1
GenPercept ( 9 ) |UNet ( )| 17.4 9.5|24.140.5 559 75.7 82.2|18.5 9.4 23.040.2 56.7 75.4 81.3 38.6 27.1 45 9.1 18.0 425 542
GenPercept* ( s ) |UNet ( s )| 164 8.0|33.347.8 60.9 78.3 83.7|15.2 7.4 33.9 50.7 65.0 80.9 85.7 34.6 262 52 9.8 184 438 558
Marigold ( 5 ) UNet ( o )[20.2 10.9]21.8 36.0 51.2 72.8 79.4|20.5 10.3 19.7 36.0 53.5 73.6 79.2 41.3 28.7 5.5 11.1 19.7 40.9 51.7
DMP ( s ) UNet ( )| 21.9 11.3|19.7 342 49.7 71.1 77.6{22.5 11.2 17.6 32.5 503 71.2 76.9 45.0 39.3 42 79 13.8 299 39.0
DepthFM ( L2024)  |UNet ( ) 17.8 9.3(27.741.9 565 76.7 82,5/ 18.5 8.6 28.444.7 588 75.6 81.0 34.1 25.8 7.1 13.5 22.0 44.8 55.7
Method Backbone | MuSHRoom Subset (Indoor) | T&T Subset (Outdoor) | Infinigen Subset (Wild)

[mean med[5.0° 7.5° 11.25° 22.5° 30° [mean med[5.0° 7.5° 11.25° 22.5° 30° [mean med[5.0° 7.5° 11.25° 22.5° 30°
DSINE ( b ) EBS ( 5 ) 17.9 10.1|23.9 38.9 53.8 75.8 82.5|21.7 15.4 13.4 25.7 39.0 64.4 752 36.5 32.7 2.0 44 93 29.8 448
DSINE ( 5 )| VIT-L ( . ) 12.8 6.9 |34.6 53.5 67.9 84.9 89.6| 18.8 11.2 22.5 36.3 49.9 71.1 79.5 33.6 28.7 2.7 59 13.1 383 522
GenPercept ( 9 ) |UNet ( o )| 15.0 7.9132.448.0 62.7 80.6 86.3| 27.4 14.0 17.8 30.1 43.1 63.7 71.0 38.8 33.5 2.1 49 105 312 443
GenPercept* ( N ) |UNet ( )| 13.8 8.6|33.648.9 63.5 84.7 89.8| 19.3 13.7 13.4 24.2 40.8 72.4 81.3 34.2 29.6 22 5.1 125 39.2 583
Marigold ( 5 ) UNet ( )| 17.7 9.9119.6 36.8 55.7 77.0 83.1|29.1 14.6 14.426.0 40.3 63.0 70.2 39.2 340 24 54 115 314 439
DMP ( N ) UNet ( )| 204 10.0/19.3 36.0 552 73.8 79.1{27.7 17.9 9.1 17.2 31.9 57.9 66.1 43.1 38.1 1.7 40 9.5 263 38.1
DepthFM ( 5 ) UNet ( )| 17.0 9.0 |25.9 425 589 77.4 82.4|22.1 13.9 14226.7 42.1 654 74.1 31.9 279 2.5 54 11.6 383 54.0
question, we follow Probe3D ( , ) by using geometric correspondence es-

timation, since 3D awareness implies consistency of representations across different views.
Specifically, given two views of

the same scene, geometric cor- ScanNet NAVI
respondence estimation needs to 100 @ Divovz
identify pixels across views that 70 & Stable Diffusion
depict the same point in 3D 60

W GenPercept
- Depth-Anything

80 <& Metric3D
space. We extract feature maps « - Marigold
: : <50 z T Geowizard
from either trained monocularoge- -3 § 60  Geowizardd
ometry models or representation =40 =
models, e.g., DINOv2, and di- g 30 g 0
rectly compute correspondence 20
between the dense feature maps 20
of different views. We use Paired 10 N ]
ScanNet ( s ) for 0 0
. . 015 1530 3060  60-180 0-30  30-60  60-90  90-120
scene evaluation and NAVI wild View Point Change (degrees) View Point Change (degrees)
set ( , ) for ob-
ject evaluation. Followin Figure 4. Geometry correspondences evaluation. ‘GeowizardD’,
J g
( ), we report the ‘GeowizardN’ indicate depth and normal features from Geowizard.

correspondence recall, i.e., the

percentage of correspondence that falls within some defined distance. We can see from that 4 (1)
the discriminative depth estimation model (Depth-Anything with ViT-Large backbone fine-tuned
on 77K training samples) fine-tuned from DINOv2 is comparable to the original DINOv2, while
generative-based models, i.e., Marigold, DepthFM, GenPercept, and Geowizard, get lower perfor-
mance than original Stable Diffusion model. (2) All models struggle with larger view changes, while
generative-based models see a larger drop. In general, monocular geometry estimation models are not
3D-consistent with large viewpoints and thus not yet good enough to encode the 3D structure of the
real-world scenario. In other words, it is still an unsolved but promising area to design generalizable
pre-training methods that can improve the geometry estimation model’s multi-view consistency
performance.

6 CONCLUSION AND DISCUSSION

In this work, we present the first large-scale benchmarking of discriminative and generative geometry
estimation foundation models with diverse evaluation datasets. We identify that a strong pre-train
model, either Stable Diffusion or DINOv2, combined with high-quality fine-tuning data, is the key to
achieving generalizable monocular geometry estimation. Besides, we analyze the critical components
for generative-based fine-tuning, and the impacts of datasets’ scale and quality in monocular geometry
estimation tasks. We believe this benchmarking study can provide strong baselines for unbiased
comparisons in geometry estimation studies. Limitations, extra visualizations, and future works are
discussed in the Supp. Mat.
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