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ABSTRACT

Recent advances in discriminative and generative pretraining have yielded geometry
estimation foundation models with strong generalization capabilities. While most
discriminative monocular geometry estimation methods rely on large-scale fine-
tuning data to achieve zero-shot generalization, several generative-based paradigms
show the potential of achieving impressive generalization performance on unseen
scenes by leveraging pre-trained diffusion models and fine-tuning on even a small
scale of synthetic training data. Frustratingly, these models are trained with different
recipes on different datasets, making it hard to find out the critical factors that
determine the evaluation performance. To resolve the above issue, (1) we build
fair and strong baselines in a unified codebase for evaluating and analyzing the
state-of-the-art (SOTA) geometry estimation models from pre-training style, fine-
tuning data, and model architecture perspectives; (2) we thoroughly evaluate
geometry models on challenging benchmarks with diverse scenes and high-quality
annotations. Under the fair training and evaluation configuration, our results reveal
that stochastic diffusion-based protocol is not optimal for fine-tuning generative-
based geometry estimation methods. One-step finetuning and inference protocol is
sufficient for generative-based depth and surface normal estimation. Besides, we
find that both discriminative and generative pretraining can generalize well under
small-scale fine-tuning high-quality data in scale-invariant depth estimation task.
DINOv2-pretrained discriminative models achieve slightly higher performance than
generative counterparts with the same small amount of synthetic data. Furthermore,
we have observed that metric depth estimation requires significantly more fine-
tuning data than scale-invariant depth estimation for learning the depth scale
distribution. We hope this work will inspire future geometry estimation research
in building more high-quality fine-tuning datasets and designing more powerful
geometry estimation models.

1 INTRODUCTION

Monocular depth and surface normal estimation, also referred to as “monocular geometry estimation”,
poses a fundamental yet intricate challenge of inferring distance and surface orientation from a single
image. Its significance is underscored by its broad utility across various downstream tasks, including
object detection (Huang et al., 2022; Wang et al., 2020b; Ding et al., 2020), visual navigation (Tateno
et al., 2017; Yang et al., 2020; Sun et al., 2022; Yang et al., 2018), novel view synthesis (Deng et al.,
2022; Roessle et al., 2022), controllable image generation (Zhang et al., 2023; Esser et al., 2023;
Zhao et al., 2024), and 3D scene reconstruction (Sun et al., 2021; Denninger & Triebel, 2020). The
importance of this task has led to a significant body of research, resulting in numerous models (Birkl
et al., 2023; Yang et al., 2024a; Yin et al., 2023; Hu et al., 2024; Ke et al., 2024) over the past decade.

Although a large number of monocular geometry estimation models exist, they can be divided into
two paradigms, i.e., discriminative-based and generative-based. Discriminative monocular geometry
estimation models leverage the pre-train priors from fully-supervised image classification backbones,
e.g., ConvNeXt (Woo et al., 2023), EfficientNet (Tan & Le, 2019) and ViT (Dosovitskiy et al.,
2020), or self-supervised backbones. e.g., DINOv2 (Oquab et al., 2024), previous best discriminative
depth estimation models, i.e., DepthAnything (Yang et al., 2024a) and Metric3D (Hu et al., 2024),
achieve remarkable generalization performance by fine-tuning DINOv2 backbone with a large scale
of fine-tuning data. Generative geometry estimation models (Ke et al., 2024; Fu et al., 2024; Xu et al.,
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2024; Gui et al., 2024; Lee et al., 2024) unleash the power of pre-trained text-to-image diffusion
models, e.g., Stable Diffusion (SD) (Rombach et al., 2022). Several generative geometry estimation
models (Ke et al., 2024; Fu et al., 2024; Xu et al., 2024; Gui et al., 2024) show strong generation
capability with even a small-scale high-quality synthetic fine-tuning data.

However, none of the previous works have systematically investigated the performance of these
geometry estimation methods with fair and faithful comparison. The reason is twofold. Firstly, the
different selections of datasets and training configurations hinder the fair evaluations of the newly
designed methodologies. (1) The performance distinction for different generative-based finetuning
paradigms is unclear. It is hard to evaluate whether the actual improvement is from the algorithmic
perspective or the data perspective since they are trained on different datasets and different training
configurations. (2) The performance distinction between discriminative and generative geometry
estimation models when trained on the same scale and quality of data also remains unclear. Secondly,
existing popular geometry estimation benchmarks may not reveal the real performance of the models.
NYUv2 (Silberman et al., 2012) and ScanNet (Dai et al., 2017) are still popular in the evaluation
of indoor monocular depth estimation. However, they are collected by an older Kinect-v1 system
with noisy depth measurements and noisy imaging for RGB patterns, with only 640× 480 resolution.
DIODE (Vasiljevic et al., 2019) and ETH3D (Schops et al., 2017) collect both outdoor and indoor
scenes with high-quality data while with low diversity scenes for evaluation. KITTI (Geiger et al.,
2012) collects depth maps from the LIDAR sensor and focuses on outdoor driving scenes. For surface
normal evaluation, NYUv2 (Silberman et al., 2012), ScanNet (Dai et al., 2017), iBims-1 (Koch
et al., 2018), Sintel (Butler et al., 2012) and Virtual KITTI (Gaidon et al., 2016) are widely used by
generating surface normal maps from the ground truth depth maps. However, the depth noises in
NYUv2 (Silberman et al., 2012), ScanNet (Dai et al., 2017) and iBims-1 (Koch et al., 2018) yield
unsatisfactory surface normal ground truth. The limited scene diversity of synthetic datasets, i.e.,
Sintel (Butler et al., 2012) and Virtual KITTI (Gaidon et al., 2016), cannot evaluate the robustness of
the surface normal estimation model for in-the-wild geometry reconstruction. Overall, the existing
geometry benchmarks are hindered by two main issues: ground-truth quality and scene diversity. This
lack of fair and comprehensive benchmarks can significantly impede the development of geometry
estimation research.

To address the aforementioned problems, we perform a comprehensive geometry estimation bench-
marking study from two perspectives. (1) Training strategy. We reimplement a bunch of SOTA algo-
rithms in a unified codebase, including Marigold (Ke et al., 2024), Geowizard (Fu et al., 2024), Gen-
Percept (Xu et al., 2024), DepthFM (Gui et al., 2024), DMP (Lee et al., 2024), Depth-Anything (Yang
et al., 2024a), Depth Anything V2 (Yang et al., 2024b), Metric3D v2 (Hu et al., 2024) and DSINE (Bae
& Davison, 2024). As such, we can fairly evaluate their performance under the same training configu-
ration, and figure out whether the performance improvement is coming from the model architecture
or coming from the high-quality training data. Previous generative geometry models are all based
on Stable Diffusion 2.1 (Rombach et al., 2022) with limited training data, we further explore the
potential of generative geometry models by conducting model size scale-up ablations in Table 6. (2)
More benchmark datasets. Apart from traditional geometry evaluation benchmarks, we build more
diverse scenes with high-quality labels for geometry evaluation. For depth estimation, we introduce
three extra benchmark datasets, InSpaceType (Wu et al., 2023), MatrixCity (Li et al., 2023), and
Infinigen (Raistrick et al., 2023). InSpaceType is an indoor depth evaluation benchmark, which
contains 12 scenes, 1260 images, and 2208× 1242 resolution. It is a good complement for indoor
benchmarks like NYUv2 and ScanNet. MatrixCity is a rendered dataset with real city-scale scenes,
we select 808 street images and 403 aerial images for evaluation. It is suitable for evaluating driving
and city scenes. Infinigen is also a high-quality rendered dataset, which contains diverse nature
scenes. We use it to verify the generalization capability of depth estimation foundation models in
wild scenes. For surface normal estimation, we expand existing benchmark datasets with more high
quality and diverse datasets, e.g., indoor MuSHRoom dataset (Ren et al., 2024), outdoor Tank and
Temples (T&T) dataset (Knapitsch et al., 2017)1, and wild Infinigen (Raistrick et al., 2023) dataset.

With the unified codebase, training data, and comprehensive benchmark datasets, we conduct a series
of analytical experiments. We surprisingly find that (1) The synthetic-to-real domain gap (Maximov
et al., 2020) is largely addressed through large-scale discriminative and generative pretraining.
In other words, it is now feasible to use only synthetic fine-tuning data to achieve generalizable

1The surface normal annotation of MushRoom and T&T are obtained from Gaustudio (Ye et al., 2024)
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performance across diverse real-world scenes. (2) It is not necessary for generative-based geometry
estimation models, e.g., Marigold (Ke et al., 2024), to follow the original stochastic diffusion protocol
due to its inference inefficiency. A simple deterministic one-step fine-tuning protocol is enough to
achieve comparable performance. (3) For scale-invariant depth estimation, discriminative model
with DIONv2 pretraining, and generative model with Stable Diffusion pretraining, are both capable
of achieving generalizable performance even with a small-scale fine-tuning dataset. However, the
discriminative-based model consistently outperforms the generative-based model across all evaluation
benchmarks. (4) For metric depth estimation, the benchmark result shows that even initializing the
vision encoder with DINOv2 pre-training, it is still impractical to learn generaliable metric depth by
fine-tuning only on small-scale datasets. It is consistent with the currently best metric depth estimation
model, i.e., Metric3Dv2 (Hu et al., 2024), which focuses on collecting more diverse training datasets
(16M training samples) to achieve depth-scale generalization capability. (5) For surface normal
estimation, both discriminative model DSINE (Bae & Davison, 2024) and generative-based one-
step GenPercept achieve impressive results on diverse benchmarks, which suggests appropriate
image-level supervision, i.e., inductive bias (Bae & Davison, 2024) for DSINE, and angular loss for
GenPercept, is an important factor in providing strong supervision for surface normal estimation
task. We hope our benchmarking results could pave the way for designing more powerful geometry
estimation algorithms and developing high-quality geometry estimation training datasets in the future.

2 PRELIMINARIES

Task definition. Given an input image x ∈ RH×W×3, the goal of monocular geometry estimation
is to predict the depth map d ∈ RH×W , which can be affine-invariant or metric depth, and surface
orientation, which can be represented as either a unit vector n ∈ S2, or a 3D axis-angle R ∈ SO(3).

Discriminative geometry estimation models.

With the widespread application of deep learning (LeCun et al., 2015), learning-based methods have
demonstrated their ability to estimate geometric information from monocular images (Eigen et al.,
2014; Godard et al., 2019; Ranftl et al., 2022; Yang et al., 2024a). Early works primarily relied on
discriminative models using either supervised or unsupervised methods. Eigen et al. (Eigen et al.,
2014) proposed the first learning-based method for monocular depth estimation, employing two
deep network stacks and using ground truth depth for supervision. Zhou et al. proposed an early
unsupervised framework, SfMLearner (Zhou et al., 2017), in which camera pose and monocular
depth are learned together. With the availability of large amounts of data, recent methods (Ranftl
et al., 2022; Yang et al., 2024a; Yin et al., 2023; Hu et al., 2024) have shown a trend toward using
large-scale datasets to develop robust geometry estimation models that generalize well to diverse
environments. For instance, Ranftl et al. (Ranftl et al., 2022) introduced a method that demonstrates
strong zero-shot testing ability by utilizing mixed training datasets. Yang et al. (Yang et al., 2024a;b)
further improved zero-shot monocular depth estimation performance by proposing Depth-Anything
and Depth-Anything v2, which leverages large-scale pseudo data to achieve strong generalization
ability. Meanwhile, Yin et al. (2023); Hu et al. (2024) proposed Metric3D series, which can output
accurate metric depth by training models on large-scale public RGB-D datasets and synthetic datasets.
Apart from depth estimation, advancements in surface normal information have also been achieved
through the use of discriminative models. Surface normal information can not only be calculated
directly from depth maps but can also be independently obtained through surface normal estimation
techniques (Wang et al., 2015; Ladickỳ et al., 2014; Lenssen et al., 2020; Bae & Davison, 2024).
For example, Bae & Davison (2024) proposed a method that demonstrates strong generalization
capabilities and produces high-quality surface normal predictions by investigating inductive biases.
Overall, the use of discriminative models for both depth and surface normal estimation has shown its
significance in improving performance, thereby broadening the applications of monocular geometry
estimation.

Generative geometry estimation Models. Given the impressive results of recent generative mod-
els (Rombach et al., 2022) in image generation tasks, many studies have endeavored to incorporate
generative-based pipelines into geometry estimation. Ji et al. (2023) proposed a method to extend
the denoising diffusion process into the modern perception pipeline, which can be generalized to
most dense prediction tasks, such as depth estimation. Saxena et al. (2024) formulated optical flow
and monocular depth estimation as image-to-image translation using generative diffusion models,
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Table 1: Quantitative comparison on 5 zero-shot affine-invariant depth benchmarks with author
released weights. We mark the best discriminative and generative results in bold and the second best
underlined. Discriminative methods are colored in blue while generative ones in green .

Method Train
Samples Year NYUv2 KITTI ETH3D ScanNet DIODE

AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑
Metric3D v2 (Hu et al., 2024) 16M arXiv’24 3.9 97.9 5.2 97.9 4.0 98.3 2.3 98.9 14.7 89.2

DepthAnything (Yang et al., 2024a) 63.5M CVPR’24 4.3 98.0 8.0 94.6 5.8 98.4 4.3 98.1 26.1 75.9
DepthAnything v2 (Yang et al., 2024b) 62.6M arXiv’24 4.3 97.9 8.0 94.3 6.6 98.3 4.2 97.9 32.1 75.8

Marigold (Ke et al., 2024) 74K CVPR’24 5.5 96.4 9.9 91.6 6.5 96.0 6.4 95.1 30.8 77.3

GeoWizard (Fu et al., 2024) 280K arXiv’24 5.9 95.9 12.9 85.1 7.7 94.0 6.6 95.3 32.8 75.3

GenPercept (Xu et al., 2024) 74K arXiv’24 5.2 96.6 10.1 90.1 6.6 95.7 5.7 96.3 31.1 76.3

DepthFM (Gui et al., 2024) 63K arXiv’24 8.2 93.2 17.4 71.8 10.1 90.2 9.5 90.3 33.4 72.9

without specialized loss functions and model architectures. Zhao et al. (2023) proposed VPD, a
framework that exploits the semantic information of a pre-trained text-to-image diffusion model in
visual perception tasks. Ke et al. (2024) introduced a method for affine-invariant monocular depth
estimation, where the depth information is derived from retained rich stable diffusion priors. Fu
et al. (2024) proposed a foundation model for jointly estimating depth and surface normal from
monocular images, which not only achieves surprisingly robust generalization on various types of
real or synthetic images but also faithfully captures intricate geometric details. In summary, recent
generative-based methods have provided new solutions and demonstrated their applications for depth
estimation.

Geometric evalutaion metrics. We use widely adopted evaluation metrics for assessing the per-
formance of depth and surface normal estimation. Specifically, for the depth estimation task, we
use mean absolute relative error (AbsRel) and accuracy under thresholds (δi < 1.25i, i = 1, 2, 3)
for accuracy comparisons. These evaluation metrics for depth estimation are calculated as fol-
lows: (1) mean absolute relative error (AbsRel): 1

n

∑n
i=1

|zi−z∗
i |

z∗
i

; (2) the accuracy under threshold

(δi < 1.25i, i = 1, 2, 3): % of zi s.t. max
(

zi
z∗
i
,
z∗
i

zi

)
< 1.25i; where zi is the ground truth depth and

z∗i represents the predicted depth. For surface normal estimation, we calculate the angular error for
the pixels with ground truth and report both the median and mean values (lower is better). In addition,
we measure the percentage of pixels with an error below t ∈ [5.0◦, 11.25◦, 30.0◦] (higher is better).
Please refer to (Bae & Davison, 2024) for calculation details.

3 BENCHMARKING DEPTH ESTIMATION FOUNDATION MODELS

3.1 A BRIEF OVERVIEW OF SOTA METHODS

To demonstrate the performance of the SOTA methods, we consider some latest and representative
algorithms, i.e., two discriminative models, (Metric3Dv2 (Hu et al., 2024), Depth-Anything (Yang
et al., 2024a)), and four generative models (Marigold (Ke et al., 2024), DepthFM (Gui et al., 2024),
Geowizard (Fu et al., 2024) and GenPercept (Xu et al., 2024)). We fairly evaluate their performance
by using the official released model weights on 5 popular benchmarks, i.e., NYU v2 (Silberman et al.,
2012), KITTI (Geiger et al., 2012), ETH3D (Schops et al., 2017), ScanNet (Dai et al., 2017) and
DIODE (Vasiljevic et al., 2019), in Table 1. Notably, all the methods do not use these benchmarks
as training data. We can easily observe that (1) Metric3Dv2 (Hu et al., 2024) achieves the best
performance on all evaluation datasets, another discriminative-based method, Depth-Anything (Yang
et al., 2024a) achieves the second best performance. Both of them are trained on large-scale datasets,
with 16M and 63.5M training data separately. (2) Generative methods can achieve impressive results
on these evaluation benchmarks with even a small amount of fine-tuning data.

In addition to quantitative results, we further test their generalization capability by qualitative
visualization in several challenging scenes. Fig. 1 demonstrates the results of three algorithms on line
drawing images (left), color draft images (middle), and photo-realistic images (right). Surprisingly,
Metric3D fails on both line draw images and color draft images, while Marigold (Ke et al., 2024)
and Depth-Anything (Yang et al., 2024a) show some generalization capability on this kind of non-
geometrically consistent hand-drawn images. We conjecture that discriminative-based Metric3D
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M3DDAMGM3DDAMGM3DDAMG

Figure 1: Depth visualization on cartoon images. ‘MG’ indicates Marigold (Ke et al., 2024), ‘DA’
indicates Depth-Anything (Yang et al., 2024a), ‘M3D’ indicates Metric3Dv2 (Hu et al., 2024).

Metric3Dv2Depth-AnythingMarigoldMetric3Dv2Depth-AnythingMarigold

Figure 2: Depth visualization on four challenging scenes, i.e., rainy (top-left), blurry (top-right), dark
(bottom-left), and foggy (bottom-right) environments.

does not see cartoon images in the training stage, which leads to poor performance in this scenario.
Contrarily, although Marigold (Ke et al., 2024) also does not see cartoon images in their training set,
it leverages the priors stored in the pre-trained Stable Diffusion (Rombach et al., 2022) model. Stable
Diffusion (Rombach et al., 2022) model has seen millions of text-cartoon pairs when performing
text-to-image generation training. Fig. 2 shows the robustness of existing depth estimation models
on challenging scenes like rainy, blurry, dark, and foggy environments. Both Metric3D and Depth-
Anything fail on the rainy scene; both Marigold and Metric3D fail to estimate the sky in the second
blurry scene. None of the algorithms can handle all environments perfectly. Fig. 3 illustrates the depth
estimation results on the Infinigen (Raistrick et al., 2023) dataset (first two lines) and BEDLAM (Black
et al., 2023) dataset (last line). Infinigen (Raistrick et al., 2023) is a photo-realistic rendered dataset
with diverse nature scenes. BEDLAM (Black et al., 2023) is a human-centered high-quality rendered
dataset with versatile indoor and outdoor scenes. Mainstream depth evaluation metrics overlook the
depth accuracy on the edges of the objects. We use these two datasets to demonstrate the fine-grained
depth estimation results since both datasets have high-quality annotations. For measuring the accuracy
of depth estimation on edges. We use Canny (Canny, 1986) edge detector to extract the edge mask
from the image and then calculate the traditional depth metrics. As shown in Table 2, Depth-Anything
achieves the highest performance on the Infinigen dataset; Marigold achieves the best AbsRel on the
BEDLAM (Black et al., 2023) dataset.

In a nutshell, discriminative models trained on large data, i.e., Depth-Anything (Yang et al., 2024a),
get the highest performance in most cases, while generative models finetuned on small data, e.g.,
Marigold (Ke et al., 2024), show competitive generalization capability on unseen scenes.
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Table 2: Benchmark depth estimation on Infinigen (Raistrick et al., 2023) and BEDLAM (Black
et al., 2023) dataset. ‘Standard’ indicates using standard evaluation metrics. ‘Canny’ indicates only
evaluating the performance on pixels that belong to canny edges. We mark the best results in bold.

Method Train
Samples

Infinigen-Standard Infinigen-Canny BEDLAM-Standard BEDLAM-Canny
AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑

Marigold (Ke et al., 2024) 74K 32.9 80.9 28.0 78.7 16.2 82.4 19.6 80.3
Metric3Dv2 (Hu et al., 2024) 16M 14.5 80.7 18.6 77.8 28.1 84.7 26.3 80.8

Depth-Anything (Yang et al., 2024a) 63.5M 12.0 88.4 14.3 84.7 46.2 69.0 46.8 67.8

Metric3Dv2Depth-AnythingMarigoldGTRGB

Figure 3: Fine-grained depth estimation comparison. We select two scenes (first two rows) from the
Infinigen Dataset (Raistrick et al., 2023) and one scene (last row) from the BEDLAM dataset (Black
et al., 2023).

3.2 BENCHMARKING DIFFERENT GENERATIVE FINE-TUNING PARADIGMS

Several fine-tuning paradigms have been proposed for diffusion-based depth estimation. Based
on network architecture, they can be divided into two categories. The first category methods
(Marigold (Ke et al., 2024) and DepthFM (Gui et al., 2024)) concatenate the image latent and depth
latent encoded by VAE (Kingma & Welling, 2014) encoder as the input of the UNet latent denoiser.
As such, the input channels of the latent denoiser are doubled (8 input channels) to fit the expanded
input. The second category methods (DMP (Lee et al., 2024) and GenPercept (Xu et al., 2024))
drop the depth latent, so they follow the original latent denoiser’s architecture (4 input channels).
Based on fine-tuning paradigms, they can be divided into four categories. (1) Marigold (Ke et al.,
2024) treats the initial depth latent as standard Gaussian noise and progressively denoise it with the
same scheduler as the original Stable Diffusion pipeline. (2) DepthFM also treats the initial depth
latent as standard Gaussian noise, however, the difference is that they finetune the denoiser with Flow
Matching (Lipman et al., 2022) pipeline, with auxiliary surface normal loss. (3) DMP (Lee et al.,
2024) reformulates the task as a blending process, i.e., translating the image latent to depth latent with
the Stable Diffusion v-prediction (Rombach et al., 2022) learning target. (4) GenPercept (Xu et al.,
2024) further improve the efficiency of DMP (Lee et al., 2024) by proposing a one-step inference
pipeline. Based on the amount of fine-tuned parameters, they can be divided into two categories. The
first category methods (Marigold, DepthFM, GenPercept) directly fine-tune the UNet parameters.
The second category method (DMP) adds LORA (Hu et al., 2021) layers into the UNet architecture
to achieve the goal of depth estimation.

In this section, we fairly benchmark the four fine-tuning protocols by training on the Hypersim
dataset (38,387 samples), with 480 × 640 resolution, 3 × 10−5 learning rate, 96 batch sizes, and
10, 000 iterations. We choose Stable Diffusion 2.1 (Rombach et al., 2022) as the base model. As
shown in Table 3, (1) Fine-tuning all UNet parameters outperforms using LORA layers. (compare
line 1 and line 2 on DMP) (2) Stochastic Marigold and deterministic GenPercept achieve comparable
performance, and outperforms other protocols. This implies that GenPercept’s one-step finetuning
approach is sufficient for depth estimation. Diffusion-based and flow-based finetuning protocols are
not necessary for generative-based geometry estimation models to achieve generalizable performance.
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Table 3: Benchmarking different generative finetuing paradigms on 5 zero-shot affine-invariant depth
benchmarks. We mark the best results in bold and the second best underlined.

Method Train
Samples

FT
Strategies

NYUv2 KITTI ETH3D ScanNet DIODE
AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑

DMP (Lee et al., 2024) 38K LORA 13.2 85.1 19.2 74.3 16.2 83.7 14.1 84.6 45.6 62.1
DMP (Lee et al., 2024) 38K UNet 10.1 90.6 15.4 80.0 10.0 91.0 10.9 89.0 38.2 68.7

Marigold (Ke et al., 2024) 38K UNet 6.9 95.0 13.8 80.7 7.5 93.7 7.1 94.3 28.7 74.6
GenPercept (Ke et al., 2024) 38K UNet 5.3 96.7 13.9 81.5 6.2 96.0 5.8 96.3 32.0 74.9
DepthFM (Ke et al., 2024) 38K UNet 10.9 89.5 19.2 68.8 12.9 86.3 11.4 87.7 33.6 72.4

Table 4: Inference latency and speed benchmark for different components and methods. ‘Infer Steps’
indicates the minimum repeat times of the U-Net for achieving optimal results. All models are
inference with 512× 512 resolution, except CLIP (Radford et al., 2021) (224× 224).

Method Components Params/M Macs/GFLOPs Latency/s Memory/G Inference Steps

Depth-Anything (Yang et al., 2024a) ViT-L (Dosovitskiy et al., 2020) + Head 335.3 586.0 0.19 2.24 1
Metric3Dv2 (Hu et al., 2024) ViT-L (Dosovitskiy et al., 2020) + Head 411.9 1014.0 0.60 2.67 1
DSINE (Bae & Davison, 2024) EfficientNet B5 (Tan & Le, 2019) + Head 72.6 38.7 0.06 0.73 1

- VAE-Tiny (madebyollin., 2023) 2.4 131.9 0.03 0.61 1
- VAE 83.7 1781.2 0.11 0.65 1
Geowizard (Fu et al., 2024) CLIP 304.0 77.8 0.04 1.25 1
Marigold-LCM (Ke et al., 2024) VAE+ UNet 949.6 3138.4 0.29 5.27 4
Geowizard (Fu et al., 2024) VAE+ UNet + CLIP 861.2 9846.1 0.85 5.24 10
DepthFM (Gui et al., 2024) VAE+ UNet 949.6 2459.8 0.21 5.40 2
GenPercept (Xu et al., 2024) VAE+ UNet 949.6 2120.4 0.18 5.40 1
GenPercept (Xu et al., 2024) VAE-Tiny (madebyollin., 2023) + UNet 868.3 471.1 0.18 5.40 1

Table 5: Benchmarking the inference efficiency of Marigold. We mark the best results in bold.

Method VAE
Version

Infer
Steps

NYUv2 KITTI ETH3D ScanNet DIODE
AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑

Marigold (Ke et al., 2024) base 50 5.5 96.4 9.9 91.6 6.5 96.0 6.4 95.1 30.8 77.3
Marigold-LCM (Ke et al., 2024) base 4 6.1 95.8 10.1 90.6 6.3 96.0 6.9 94.7 30.9 77.3
Marigold-LCM (Ke et al., 2024) tiny (madebyollin., 2023) 4 6.9 95.0 13.8 80.7 7.5 93.7 7.1 94.3 32.8 73.8
Marigold-LCM (Ke et al., 2024) tiny (madebyollin., 2023) 1 6.6 95.4 13.0 83.6 7.8 93.2 7.0 94.5 33.3 73.1

Table 6: Benchmarking discriminative and generative depth model with the same training data (77K).

Network Pretrain
Style Backbone NYUv2 KITTI ETH3D ScanNet DIODE

AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑
ViT+DPT Head Random init ViT-L 21.1 62.5 27.2 53.1 23.4 61.1 19.2 67.4 32.4 57.7
ViT+DPT Head DINOv2 (Oquab et al., 2024) ViT-L 4.9 97.5 8.5 94.1 8.1 97.0 5.1 97.6 24.5 74.6

Marigold (Ke et al., 2024) SD21 (Rombach et al., 2022) UNet 6.9 95.8 12.2 85.7 9.2 95.5 7.1 95.4 25.2 73.0
Marigold (Ke et al., 2024) SDXL (Podell et al., 2023) UNet 6.8 95.8 11.1 89.2 8.9 96.7 6.3 96.2 24.5 73.6

3.3 INFERENCE EFFICIENCY OF DEPTH ESTIMATION FOUNDATION MODELS

Compared to discriminative models, the inference efficiency may become a bottleneck of the
generative-based methods. In this section, we give detailed inference efficiency evaluation in Ta-
ble 4. We can see that discriminative methods have fewer parameters than generative models. The
main inference consumption of the generative models happens on VAE (Kingma & Welling, 2014)
and multiple inference steps of UNet. The last line of Table 4 shows that GenPercept (Xu et al.,
2024) can achieve comparable inference latency with Depth-Anything (ViT-Large) and a tiny VAE
encoder (madebyollin., 2023). In Table 5, we found LCM (Luo et al., 2023) can effectively reduce
the inference steps of Marigold (Ke et al., 2024) while maintaining the performance. Besides, a
pre-trained tiny VAE (madebyollin., 2023) can substitute the standard VAE (Rombach et al., 2022)
with a minimal performance loss.

3.4 DISCRIMINATIVE AND GENERATIVE DEPTH ESTIMATORS IN THE SAME DATA REGIME

Can discriminative depth estimation models achieve competitive results with small-scale high-
quality training datasets like generative-based methods? To answer this question, we benchmark
discriminative and generative geometry model with the same amount of training data and the same
training strategy. Specifically, we use three training datasets, i.e., Hypersim (38,387) (Roberts et al.,
2021), Virtual Kitti (16,790) (Gaidon et al., 2016) and Tartanair (31,008) (Wang et al., 2020a), with
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Table 7: Benchmarking depth estimation foundation models on more diverse benchmarks. We mark
the best results in bold.

Network Pretrain
Style Backbone Train

Samples
InspaceType MatrixCity Infinigen

AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑
Metric3D v2 (Hu et al., 2024) DINOv2 (Oquab et al., 2024) ViT-L 16M 10.1 89.7 9.5 89.3 14.5 80.7

Depth-Anything (Yang et al., 2024a) DINOv2 (Oquab et al., 2024) ViT-L 63.5M 8.2 92.9 16.4 89.7 12.0 88.4

ViT+DPT Head DINOv2 (Oquab et al., 2024) ViT-L 77K 8.4 94.0 28.0 82.4 11.4 89.5
Marigold (Ke et al., 2024) SD21 (Rombach et al., 2022) UNet 77K 9.2 92.7 17.0 82.9 14.1 83.9

Table 8: Data scale ablation of metric depth estimation. Offical model is colored in blue , while
ablation models are colored in blue .

Method Train
Samples Dataset NYUv2 KITTI ETH3D ScanNet DIODE

AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑
Metric3D v2 (Hu et al., 2024) 16M mixed 8.7 94.2 7.1 93.7 32.5 17.6 11.1 90.3 24.3 81.9

Metric3D v2 (Hu et al., 2024) 39K hypersim 10.1 92.1 12.2 90.7 36.5 31.7 14.3 83.0 48.6 18.8
Metric3D v2 (Hu et al., 2024) 31K tartanair 34.9 28.4 38.7 24.0 30.0 31.3 32.8 56.8 74.6 69.3
Metric3D v2 (Hu et al., 2024) 70K hypersim+tartanair 19.2 76.0 35.1 29.1 29.4 25.6 19.3 77.5 51.9 74.1
Metric3D v2 (Hu et al., 2024) 350K hypersim+tartanair+paralleldomain4d 12.1 89.4 10.2 91.3 27.6 37.2 15.6 80.9 34.1 79.8

total 77,897 samples. Both models are trained with 20,000 iterations, with a total batch size of
96 on 4 GPUs. For the discriminative depth model, we follow the network architecture of Depth-
Anything (Yang et al., 2024a) (ViT-Large backbone pre-trained with DINOv2 and DPT (Ranftl
et al., 2021) head), supervised with the affine-invariant loss (Yang et al., 2024a). For the generative
geometry model, we choose Marigold (Ke et al., 2024) as our baseline. We can see from Table 6 that
(1) the discriminative model is largely inferior to generative-based Marigold on all evaluation datasets
without DINOv2 pre-train (line 1 v.s.line 3). However, the discriminative model beats Marigold by a
large margin when initialized with DINOv2 pre-train weight (line 2 v.s.line 3); (2) scale-up Marigold
from SD21 to SDXL brings consistent improvement in all benchmarks. We can see from Table 7 that
our discriminative model trained on 77K data outperforms Metric3Dv2 (Hu et al., 2024) in all three
datasets, and, is comparable with Depth-Anything (Yang et al., 2024a) in two datasets (InspaceType
and Infinigen). This phenomenon suggests that high-quality fine-tuning data, rather than large-scale
training data or pre-train paradigm, is indispensable for scale-invariant depth estimation models to
achieve strong generalizable performance.

3.5 DATA-SCALE ABLATION ON METRIC DEPTH ESTIMATION TASK

Given the success of using small-scale synthetic data for scale-invariant depth estimation, we aim
to investigate if the same conclusion holds for metric depth estimation. Thus, we perform data-
scale ablation studies upon the SOTA metric depth estimation model, Metric3Dv2 (Hu et al., 2024).
Specifically, we adopt Metric3Dv2 model with ViT-small backbone, initialized with the Metric3Dv2
pre-train. We supervise the model with all of the loss functions mentioned in the paper (Hu et al.,
2024) for 30K iterations. We use three synthetic datasets, Hypersim, Tartanair, and a large-scale
synthetic driving scene dataset, ParallelDomain4D (280K) (par, 2024) for data ablation. As shown
in Table 8, the performance of Metric3Dv2 model keeps improving as the data scale grows. However,
the performance of small-scale dataset finetuning is largely behind the official model trained on 16M
data samples. Hence, large-scale datasets with diverse scales and cameras is still indispensable for
metric depth estimation.

4 BENCHMARKING SURFACE NORMAL ESTIMATION FOUNDATION MODELS

4.1 A BRIEF OVERVIEW OF SOTA METHODS

DSINE (Bae & Davison, 2024) and Metric3Dv2 (Hu et al., 2024) are two representative discriminative
surface estimation models, which leverage the geometry priors from two distinct perspectives. DSINE
leverages two forms of inductive bias: (1) per-pixel ray direction, and (2) the relationship between
the neighboring surface normal, to learn a generalizable surface normal estimator. Metric3Dv2 (Hu
et al., 2024) proposes to optimize the surface normal map by distilling diverse data knowledge from
the estimated metric depth. Different from discriminative models, GeoWizard (Fu et al., 2024) is a
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Table 9: Quantitative evaluation of the generalization capabilities possessed by different methods
with official released weights. For each metric, the best results are bolded. Discriminative methods
are colored in blue while generative ones in green .

Method NYU v2 ScanNet Sintel
mean med 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦ mean med 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦ mean med 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦

Metric3D v2 (Hu et al., 2024) 13.5 6.7 40.1 53.5 65.9 82.6 87.7 11.8 5.5 46.6 60.7 71.6 85.4 89.7 22.8 14.2 18.4 28.5 41.6 66.7 75.8
DINSE (Bae & Davison, 2024) 16.4 8.4 32.8 46.3 59.6 77.7 83.5 18.3 9.3 27.1 42.0 56.3 75.0 81.2 32.0 23.9 9.0 15.0 23.8 47.5 59.4

Geowizard (Fu et al., 2024) 19.8 11.2 18.0 32.7 50.2 73.0 79.9 21.1 11.9 15.9 29.7 47.4 70.7 77.8 36.1 28.4 4.1 8.6 16.9 39.8 52.5

Method MuSHRoom Subset (Indoor) T&T Subset (Outdoor) Infinigen Subset (Wild)
mean med 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦ mean med 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦ mean med 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦

Metric3D v2 (Hu et al., 2024) 14.3 7.9 31.9 48.1 61.8 81.7 87.2 22.3 14.1 19.2 31.4 43.0 64.8 73.5 32.6 27.3 5.1 10.1 17.8 41.3 54.4
DINSE (Bae & Davison, 2024) 14.8 8.6 28.1 44.6 59.7 80.4 87.0 17.3 11.0 24.2 37.3 50.6 74.1 82.4 35.9 32.6 2.1 4.6 9.8 30.5 45.1

Geowizard (Fu et al., 2024) 16.5 10.7 14.7 30.5 52.5 79.6 86.2 20.8 13.4 10.7 23.4 42.2 70.3 78.5 36.2 32.0 1.8 4.0 8.86 30.8 46.2

generative surface normal estimator without using any inductive bias from the geometry priors. It
purely relies on pre-trained diffusion priors to estimate the surface normal map. Table 10 summarizes
their performance on six benchmarks. The Mushroom (Ren et al., 2024) (indoor), T&T (Knapitsch
et al., 2017) (outdoor), and Infinigen (Raistrick et al., 2023) (wild) datasets are constructed by us to
add more diverse scenes with accurate surface normal labels in the evaluation benchmarks. We can
see that Metric3Dv2 (Hu et al., 2024) outperform DSINE (Bae & Davison, 2024) and GeoWizard (Fu
et al., 2024) in most datasets. Note it is an unfair comparison since (1) Metric3Dv2 (Hu et al., 2024)
is trained on 16M images, while DSINE is trained on 160K images, and GeoWizard is trained on
280K images. (2) DSINE use a much smaller backbone, EfficientNet-B5 (Tan & Le, 2019), while
Metric3Dv2 (Hu et al., 2024) employs the ViT-Large (Dosovitskiy et al., 2020) backbone.

4.2 DISCRIMINATIVE AND GENERATIVE MODELS IN THE SAME DATA REGIME

In this section, we fairly benchmark discriminative DSINE (Bae & Davison, 2024) and several
representative generative geometry models, i.e., Marigold (Ke et al., 2024), DMP (Lee et al., 2024),
GenPercept (Xu et al., 2024), and DepthFM (Gui et al., 2024), with 5 training datasets, Hyper-
sim (Roberts et al., 2021) (38, 387), Tartanair (Wang et al., 2020a) (31, 008), Virtual Kitti (Gaidon
et al., 2016) (16, 790), BlendedMVS (Yao et al., 2020) (17, 819), ClearGrasp (Sajjan et al., 2020)
(22, 720), a total of 126, 724 samples. For generatative-based models, we represent the output surface
normals as unit vectors. We follow DSINE (Bae & Davison, 2024) to represent the outputs of
discriminative-based model as axis-angles with three degrees of freedom. All models are trained with
20, 000 iterations, 96 batch sizes, 480×640 resolution on 4 A800 GPUs. All generative-based models
use 3× 10−5 learning rate. For discriminative model, we follow DSINE (Bae & Davison, 2024) to
use 3× 10−5 learning rate for the backbone and 3× 10−4 learning rate for the decoder. We can see
from Table 9 that (1) DSINE can scale up the performance by using ViT-Large backbone with DI-
NOv2 pretrain (compared with ImageNet pretrained Efficient-B5 backbone). (2) For generative-based
fine-tuning protocols, DepthFM (Gui et al., 2024) outperforms other paradigms in most benchmarks.
We attribute this to the decoder supervision during the training. Paradigms that requires multi-step
denoising inference steps, e.g., Marigold (Ke et al., 2024) and DMP (Lee et al., 2024) are not suitable
to perform decoder supervision during the training. To verify the conjecture, we add decoder loss
supervision to one-step GenPercept, termed GenPercept*. The results on NYUv2, ScanNet and Sintel
datasets show that decoder surface normal loss supervision can largely improve original GenPercept
without decoder supervision. (3) Discriminative models, equipped with inductive bias, also achieve
impressive results. It is promising to inject inductive bias into the diffusion-based models, as such,
the surface normal estimator can effectively leverage the diffusion priors and inductive bias to boost
the performance. (4) DSINE (ViT-Large in Table 9) trained with 120K samples achieves comparable
performance with Metric3Dv2 trained with 16M samples (Table 10). The results verify the point that
data-quality is more important than the data-scale in surface normal estimation task.

5 BENCHMARKING CROSS-VIEW GEOMETRIC CORRESPONDENCE

Can current monocular geometry estimation foundation models improve the 3D awareness
of the original representation models, e.g., DINOv2 and Stable Diffusion? To answer the
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Table 10: Quantitative evaluation of the generalization capabilities with the same training data
on different benchmarks. The best results are bolded. GenPercept* indicates with image-level loss
supervision after VAE decoder. ‘EB5’ indicates ImageNet (Deng et al., 2009) pre-trained EfficientNet-
B5 (Tan & Le, 2019). ‘ViT-L’ indicates DINOv2 (Oquab et al., 2024) pre-trained ViT-Large. The
best results are bolded. The best results of generativate-based models are underlined.

Method Backbone NYUv2 ScanNet Sintel
mean med 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦ mean med 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦ mean med 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦

DSINE (Bae & Davison, 2024) EB5 (Tan & Le, 2019) 19.2 10.0 27.1 40.1 53.9 73.8 80.1 17.3 11.0 24.2 37.3 50.6 74.1 82.4 35.9 32.6 2.1 4.6 9.8 30.5 45.1
DSINE (Bae & Davison, 2024) ViT-L (Oquab et al., 2024) 16.2 8.2 32.8 46.9 60.6 78.5 84.1 16.1 7.4 34.5 50.6 63.8 79.4 84.3 24.6 16.1 11.1 21.1 35.1 63.8 74.1
GenPercept (Xu et al., 2024) UNet (Ronneberger et al., 2015) 17.4 9.5 24.1 40.5 55.9 75.7 82.2 18.5 9.4 23.0 40.2 56.7 75.4 81.3 38.6 27.1 4.5 9.1 18.0 42.5 54.2
GenPercept* (Xu et al., 2024) UNet (Ronneberger et al., 2015) 16.4 8.0 33.3 47.8 60.9 78.3 83.7 15.2 7.4 33.9 50.7 65.0 80.9 85.7 34.6 26.2 5.2 9.8 18.4 43.8 55.8
Marigold (Ke et al., 2024) UNet (Ronneberger et al., 2015) 20.2 10.9 21.8 36.0 51.2 72.8 79.4 20.5 10.3 19.7 36.0 53.5 73.6 79.2 41.3 28.7 5.5 11.1 19.7 40.9 51.7
DMP (Lee et al., 2024) UNet (Ronneberger et al., 2015) 21.9 11.3 19.7 34.2 49.7 71.1 77.6 22.5 11.2 17.6 32.5 50.3 71.2 76.9 45.0 39.3 4.2 7.9 13.8 29.9 39.0
DepthFM (Gui et al., 2024) UNet (Ronneberger et al., 2015) 17.8 9.3 27.7 41.9 56.5 76.7 82.5 18.5 8.6 28.4 44.7 58.8 75.6 81.0 34.1 25.8 7.1 13.5 22.0 44.8 55.7

Method Backbone MuSHRoom Subset (Indoor) T&T Subset (Outdoor) Infinigen Subset (Wild)
mean med 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦ mean med 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦ mean med 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦

DSINE (Bae & Davison, 2024) EB5 (Tan & Le, 2019) 17.9 10.1 23.9 38.9 53.8 75.8 82.5 21.7 15.4 13.4 25.7 39.0 64.4 75.2 36.5 32.7 2.0 4.4 9.3 29.8 44.8
DSINE (Bae & Davison, 2024) ViT-L (Oquab et al., 2024) 12.8 6.9 34.6 53.5 67.9 84.9 89.6 18.8 11.2 22.5 36.3 49.9 71.1 79.5 33.6 28.7 2.7 5.9 13.1 38.3 52.2
GenPercept (Xu et al., 2024) UNet (Ronneberger et al., 2015) 15.0 7.9 32.4 48.0 62.7 80.6 86.3 27.4 14.0 17.8 30.1 43.1 63.7 71.0 38.8 33.5 2.1 4.9 10.5 31.2 44.3
GenPercept* (Xu et al., 2024) UNet (Ronneberger et al., 2015) 13.8 8.6 33.6 48.9 63.5 84.7 89.8 19.3 13.7 13.4 24.2 40.8 72.4 81.3 34.2 29.6 2.2 5.1 12.5 39.2 58.3
Marigold (Ke et al., 2024) UNet (Ronneberger et al., 2015) 17.7 9.9 19.6 36.8 55.7 77.0 83.1 29.1 14.6 14.4 26.0 40.3 63.0 70.2 39.2 34.0 2.4 5.4 11.5 31.4 43.9
DMP (Lee et al., 2024) UNet (Ronneberger et al., 2015) 20.4 10.0 19.3 36.0 55.2 73.8 79.1 27.7 17.9 9.1 17.2 31.9 57.9 66.1 43.1 38.1 1.7 4.0 9.5 26.3 38.1
DepthFM (Gui et al., 2024) UNet (Ronneberger et al., 2015) 17.0 9.0 25.9 42.5 58.9 77.4 82.4 22.1 13.9 14.2 26.7 42.1 65.4 74.1 31.9 27.9 2.5 5.4 11.6 38.3 54.0

question, we follow Probe3D (Banani et al., 2024) by using geometric correspondence es-
timation, since 3D awareness implies consistency of representations across different views.
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Figure 4: Geometry correspondences evaluation. ‘GeowizardD’,
‘GeowizardN’ indicate depth and normal features from Geowizard.

Specifically, given two views of
the same scene, geometric cor-
respondence estimation needs to
identify pixels across views that
depict the same point in 3D
space. We extract feature maps
from either trained monocular ge-
ometry models or representation
models, e.g., DINOv2, and di-
rectly compute correspondence
between the dense feature maps
of different views. We use Paired
ScanNet (Dai et al., 2017) for
scene evaluation and NAVI wild
set (Jampani et al., 2024) for ob-
ject evaluation. Following Ba-
nani et al. (2024), we report the
correspondence recall, i.e., the
percentage of correspondence that falls within some defined distance. We can see from that 4 (1)
the discriminative depth estimation model (Depth-Anything with ViT-Large backbone fine-tuned
on 77K training samples) fine-tuned from DINOv2 is comparable to the original DINOv2, while
generative-based models, i.e., Marigold, DepthFM, GenPercept, and Geowizard, get lower perfor-
mance than original Stable Diffusion model. (2) All models struggle with larger view changes, while
generative-based models see a larger drop. In general, monocular geometry estimation models are not
3D-consistent with large viewpoints and thus not yet good enough to encode the 3D structure of the
real-world scenario. In other words, it is still an unsolved but promising area to design generalizable
pre-training methods that can improve the geometry estimation model’s multi-view consistency
performance.

6 CONCLUSION AND DISCUSSION

In this work, we present the first large-scale benchmarking of discriminative and generative geometry
estimation foundation models with diverse evaluation datasets. We identify that a strong pre-train
model, either Stable Diffusion or DINOv2, combined with high-quality fine-tuning data, is the key to
achieving generalizable monocular geometry estimation. Besides, we analyze the critical components
for generative-based fine-tuning, and the impacts of datasets’ scale and quality in monocular geometry
estimation tasks. We believe this benchmarking study can provide strong baselines for unbiased
comparisons in geometry estimation studies. Limitations, extra visualizations, and future works are
discussed in the Supp. Mat.
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