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Abstract

In recent years, despite significant advancements in adversarial attack research, the
security challenges in cross-modal scenarios, such as the transferability of adver-
sarial attacks between infrared, thermal, and RGB images, have been overlooked.
These heterogeneous image modalities collected by different hardware devices are
widely prevalent in practical applications, and the substantial differences between
modalities pose significant challenges to attack transferability. In this work, we
explore a novel cross-modal adversarial attack strategy, termed multiform attack.
We propose a dual-layer optimization framework based on gradient-evolution,
facilitating efficient perturbation transfer between modalities. In the first layer
of optimization, the framework utilizes image gradients to learn universal pertur-
bations within each modality and employs evolutionary algorithms to search for
shared perturbations with transferability across different modalities through sec-
ondary optimization. Through extensive testing on multiple heterogeneous datasets,
we demonstrate the superiority and robustness of Multiform Attack compared to
existing techniques. This work not only enhances the transferability of cross-modal
adversarial attacks but also provides a new perspective for understanding security
vulnerabilities in cross-modal systems. The code will be available.

1 Introduction

In recent years, research on adversarial attacks [10] has made significant progress, but the security
challenges in cross-modal scenarios have not been sufficiently addressed. In these scenarios, adver-
sarial attacks must transfer between different types of images (such as infrared, thermal, and RGB),
posing unique challenges due to the substantial differences between these modalities.

This paper investigates adversarial attacks in cross-modal scenarios, focusing on person re-
identification (ReID)[32, 27, 34, 9, 23]. ReID is a key task in computer vision that aims to identify
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individuals across different locations and times by analyzing surveillance camera images[40]. Due to
varying environments, ReID systems use cameras with different modalities to collect data, raising
security concerns, especially in complex multi-modal scenarios[7, 23, 36, 35]. Attackers might inject
adversarial perturbations into stickers or clothing to disrupt images captured by surveillance cameras,
affecting intelligent systems’ recognition accuracy [13]. However, the transferability of adversarial
perturbations across various image modalities has not been thoroughly studied. Additionally, with
stricter global privacy laws, technologies involving personal data processing face strict requirements.
To protect privacy, some ReID systems use special image transformations or images from different
modalities [14, 21], which also poses a challenge to existing attack methods.

Based on the modality of ReID, attack methods can be divided into two categories: single-modality
attacks [39, 8] and cross-modality attacks [7]. The first category, single-modality attacks, focuses
on attacks within the same modality (such as RGB-RGB). These methods typically optimize based
on the characteristics of a specific modality but are limited in their ability to adapt to cross-modal
scenarios. The second category, cross-modality attacks, aims to transfer attacks between different
modalities. The main challenge here lies in the significant differences between modalities, which
make it difficult to ensure the effectiveness and transferability of the attacks.

Although many ReID attack methods have been proposed [39, 33, 8, 1, 2, 25], they mostly concentrate
on single-modality attacks. As shown in Fig. 5 in the supplemental materials, our work focuses on
cross-modality attacks. The challenges of cross-modality attacks are twofold: (1) the heterogeneity
between different modalities makes cross-modality attacks more difficult to implement than domain
adaptation within the same modality; (2) existing gradient-based optimization attack methods face
significant limitations in cross-modal scenarios due to the difficulty in effectively transferring gradient
information.

"Have the courage to follow your heart and intuition. They somehow already know what you truly
want to become." — Steve Jobs, 2005

As stated, inner intuition guides us to what we truly desire. Inspired by this, we adopt evolutionary
computation [24, 29, 26, 37], a form of ’intuition’ rooted in biological processes. This operates under
natural selection and genetic dynamics, guiding random variations to solve optimization problems.
In cross-modal scenarios, evolutionary methods surpass gradient-based methods due to their global
search capability and adaptability to complex constraints, enabling them to find optimal solutions in a
complex, multi-modal search space.

Given the considerable computational intensity involved in fully employing evolutionary computation
to search for adversarial perturbations [28, 29, 4, 24], we have adopted Multiform Optimization [6,
31] to ensure the feasibility of our approach. Multiform Optimization is an advanced paradigm,
particularly suited for addressing complex problems with diverse representations or requirements.
This approach leverages auxiliary tasks to facilitate the resolution of the original problem [6]. By
exploring multiple problem formulations, Multiform Optimization captures the search landscape
from different perspectives, extracting valuable knowledge and features. This comprehensive strategy
enhances the diversity and robustness of solutions, making it more effective in solving complex
problems. Our goal is to use evolutionary computation to optimize universal perturbations [18, 33]
by exploring shared knowledge across different heterogeneous modalities, thereby enhancing their
transferability. Fig.4 and Algorithm1 in the supplemental materials illustrate the overall pipeline of
the proposed method.

We assume the existence of a universal perturbation that captures general features across different
modalities, capable of transferring to most modalities. However, like models overfitting to training
data, adversarial perturbations can also become overly specialized to the biases in the training
data, leading to poor performance on unseen modalities. To address this issue, one approach
is to independently train multiple models across different modalities and use their gradients to
learn a universal perturbation. However, the inconsistency in gradient information due to different
model architectures and heterogeneous training data makes it difficult to effectively utilize gradients.
Moreover, performance differences between models in different modalities can lead to unbalanced
learning of perturbations, affecting their universality and generalization ability.

To address the challenge of ensuring effective and transferable adversarial attacks across heteroge-
neous modalities, we propose using evolutionary computation to search for sparse perturbations that
work across different modalities and use them to fine-tune the universal perturbation, enhancing
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its transferability. We introduce a Gradient-Evolutionary Multiform Optimization framework to
transfer universal adversarial perturbations (UAP) across modalities. The first optimization layer uses
a gradient-based method to optimize perturbations for attacking models within specific modalities,
maximizing their impact. The second optimization layer uses an evolutionary search to find pertur-
bations that transfer effectively between models trained on different modalities, aiming for broadly
applicable solutions. This design optimizes for single and multi-modal security challenges.

Our work makes the following main contributions:

•We propose a dual-layer optimization strategy that combines gradient-based and evolutionary search
techniques for cross-modal adversarial attacks. By introducing the concept of multiform optimization
into the field of adversarial attacks and integrating gradient learning with evolutionary algorithms
for complementary optimization, we achieve explicit knowledge transfer between different tasks,
significantly enhancing the effectiveness and transferability of the attack strategy.

•We are the first to combine evolutionary algorithm theory with gradient-based methods for adversar-
ial attacks. Through mathematical analysis, we demonstrate the effectiveness of evolutionary search
in improving the transferability of cross-modal adversarial attacks and its advantages in handling
complex cross-modal constraints. Theoretical support and mathematical analysis provide a solid
foundation for the effectiveness and feasibility of this method in multi-modal scenarios.

• Through extensive experiments, we validate the significant advantages of our method, showing clear
improvements over existing methods in terms of the transferability and robustness of cross-modal
adversarial attacks. Our research provides new theoretical and practical foundations for the study of
security in multi-modal systems.

2 Related Work

2.1 Adversarial Attack

The concept of adversarial attacks was first introduced by Szegedy et al. [10], whose research
revealed that even small perturbations to input images could mislead deep neural networks, resulting
in incorrect image recognition. This finding not only highlights the vulnerability of deep learning
models but also has important theoretical and practical implications for enhancing the security of
artificial intelligence systems. Subsequently, a plethora of adversarial attacks have been proposed [3,
19, 15]. The work by Moosavi-Dezfooli et al. introduced universal adversarial perturbations [18],
further advancing research in this field. They demonstrated the ability to generate nearly ’universal’
perturbation vectors that, when added to any data sample, cause the same deep learning model to
produce incorrect outputs. One Pixel Attack [24], as a significant milestone in sparse perturbation
attacks, demonstrates the possibility of misleading models by modifying a single pixel in an image.
However, the modification of individual pixels may not always successfully attack all types of images
or models in real applications. Therefore, sparse adversarial attacks [24, 29, 4, 28] often involve
modifications of multiple pixels, albeit still limited in number, providing higher flexibility and a
wider success rate. Although universal perturbations can broadly affect multiple samples, they are
relatively easier to be detected by designed targeted detection mechanisms due to their ubiquitous and
consistent perturbation patterns. In contrast, sparse adversarial attacks, by applying extremely limited
perturbations to input data, demonstrate higher stealthiness. This attack method is more challenging
to be identified by standard defense measures in experiments and practical applications due to its
high target accuracy and fewer intervention points.

2.2 Attack Person Re-ID System

Several ReID attack methods have been proposed, with current research predominantly focusing on
RGB-RGB matching. These methods include: Metric-FGSM [1] extends techniques inspired by
classification attacks into the category of metric attacks. These include Fast Gradient Sign Method
(FGSM)[10], Iterative FGSM (IFGSM), and Momentum IFGSM (MIFGSM)[5]. The Furthest-
Negative Attack (FNA)[2] integrates hard sample mining[11] and triplet loss to guide image features
towards the least similar cluster while moving away from similar features. Deep Mis-Ranking
(DMR) [25] utilizes a multi-stage network architecture to extract features at different levels, aiming
to derive general and transferable features for adversarial perturbations. Gong et al.[8] proposed a
method specifically for attacking color features without requiring additional reference images and
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discussed effective defense strategies against current ReID attacks. The Opposite-Direction Feature
Attack (ODFA)[39] exploits feature-level adversarial gradients to generate examples that guide
features in the opposite direction using an artificial guide. Yang et al.[33] introduced a combined
attack named Col.+Del. (Color Attack and Delta Attack), which integrates UAP-Retrieval [17] with
color space perturbations [16]. The inclusion of color space perturbations enhances the attack’s
universality and transferability across RGB-RGB datasets. CMPS [7] represents the first exploration
into the security of cross-modal ReID. It leverages gradients from different modalities to optimize
universal perturbations, effectively enhancing the universality and adaptability of attacks within a
given modality. Similar to other gradient-based methods, it has certain limitations in terms of the
transferability of attacks.

Existing methods primarily focus on gradient-based attacks for single-modal systems, lacking
mechanisms to capture shared knowledge across different modalities. Additionally, the heterogeneity
between different modalities makes it difficult for these gradient-based methods to achieve effective
adaptation across more than two modalities. Our approach aims to enhance the effectiveness and
transferability of cross-modal adversarial attacks by combining gradient-based techniques with
evolutionary search.

3 Methodology

We aim to find a universal adversarial perturbation ϵ with cross-modal transferability that can mislead
the ranking results of a given modality G and an unseen target modality χ for a re-identification
(re-ID) model. The attack involves modifying a query image I by adding a perturbation ϵ. This
perturbed image I ′ is then used to fool the victim re-identification modelM when querying a gallery.

3.1 Framework Overview

Our proposed methodology employs a dual-layer optimization framework, integrating gradient-based
learning and evolutionary algorithms to enhance the effectiveness and transferability of adversarial
perturbations across different image modalities. This framework is designed to address the unique
challenges posed by the heterogeneity of cross-modal data, ensuring that the learned perturbations
are both effective and broadly applicable. In the first layer of optimization, a gradient-based learning
method focuses on optimizing adversarial perturbations to attack machine learning models within
specific modalities. This process involves computing the loss based on the task-specific metric, such
as the triplet loss with Mahalanobis distance, and using momentum gradient descent to iteratively
adjust the perturbations. The second layer of optimization employs an evolutionary search strategy
to explore perturbations that can be effectively transferred between models trained on different
modalities. This strategy involves generating a population of perturbations, evaluating their per-
formance across multiple models, and iteratively refining the perturbations through crossover and
mutation operations. The goal is to discover perturbations that are broadly applicable and maintain
their effectiveness across various modalities. By leveraging evolutionary computation, this layer
addresses the challenge of transferring adversarial attacks between heterogeneous data, enhancing
the robustness and generalization of the perturbations.

The combination of these two layers—gradient-based learning for modality-specific optimization and
evolutionary search for cross-modal transferability—constitutes the Gradient-Evolutionary Multiform
Optimization framework. This dual-layer approach not only optimizes perturbations for a single
modality but also adapts them to the security challenges present in multi-modal environments. The
overall framework is detailed in Algorithm 1 in the supplementary materials. This algorithm delin-
eates the step-by-step process for implementing the Gradient-Evolutionary Multiform Optimization,
ensuring continuous refinement and adaptation of perturbations to maintain high effectiveness across
different image modalities. Regarding the proposed method, we conducted a theoretical analysis
focusing on two aspects: the feasibility of evolutionary search and its effectiveness in enhancing
the transferability of universal perturbations. For details, please refer to Supplementary Materials 9
and 10.
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3.2 Gradient-Based Learning

In the first layer, our primary objective is to optimize adversarial perturbations for specific modalities
using gradient-based learning. We define the optimization problem as:

Lmeta =
1

n

n∑
i=1

Ltri(δ, xi), (1)

where Ltri is the loss function tailored to optimize adversarial perturbations within a specific modality.

Existing research [7, 39, 33, 8, 1, 2, 25] on ReID adversarial attacks typically employs Euclidean
distance to design loss functions. However, under the assumption that adversarial samples reside
in a manifold space, traditional Euclidean distance may not be sufficiently flexible, as data points
in manifold spaces often exhibit nonlinear distributions. To address this issue, we employ the
Mahalanobis distance, which is more suitable for manifold problems. This distance measure considers
the covariance structure of the data, allowing it to more accurately capture the nonlinear relationships
and adapt to scale variations in different directions, thereby providing a more flexible and precise
distance metric. Hence, in crafting the triplet loss function, we opt to utilize Mahalanobis distance as
our metric of choice, aiming to better guide the optimization process for adversarial perturbations:

Ltri(δ, xi) =
[
DM (Cm1

n , fadv)−DM (Cm1
p , fadv) + ρ

]
+

+
[
DM (Cm2

n , fadv)−DM (Cm2
p , fadv) + ρ

]
+
.

(2)

We follow the approach of [17] to optimize the perturbation using cluster centroids. Here, Cm1
p , Cm2

p ,
Cm1

n , and Cm2
n respectively represent the nearest and farthest cluster centroids of original image

features in the training data for modalities m1 and m2. fadv denote the perturbed features (We set
the margin ρ = 0.5 in triplet loss). The distance between vectors x and y, using the Mahalanobis
distance DM (x, y), is defined as follows. For computational convenience and optimization stability,
the squared Mahalanobis distance is commonly employed as the loss function:

DM (x, y) = (x− y)TS−1(x− y), (3)

Here, S is the covariance matrix of the dataset. We utilize exponential weighted moving average [12]
for momentum gradient descent. This approach facilitates smoother parameter updates, accelerating
convergence and enhancing generalization performance. The process is formulated as follows:

vt+1 = βvt + (1− β) · ∇δLmeta

∥∇δLmeta∥1
. (4)

Here, vt represents the exponential moving average of the gradient at time step t (initial value v0 =
0.), β is the decay coefficient (set as β = 0.9), and ∇δLmeta

∥∇δLmeta∥1
is the normalized gradient. Then, use

the updated momentum variable vt+1 to update the perturbation δ:

δt+1 = clip(δt + α · sign(vt+1),−ε, ε). (5)

Here, δt+1 is the updated perturbation at time step t + 1, δt is the perturbation at time step t, α is
the learning rate (set as α = ϵ

10 ), ε is the clipping threshold (ϵ = 8, unless otherwise specified), and
sign(·) function returns the sign of the input.

In this layer of optimization, we focus on minimizing the task-specific loss, which aims to mislead
the ReID model by altering the query image such that it fails to match the correct individual in the
database.

3.3 Evolutionary Search

In the second layer of optimization, we employ evolutionary search to optimize the transferability
of perturbations across different modalities. Following the methodology outlined in [29], our
approach adapts the evolutionary algorithm to simultaneously search for sparse perturbations with
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transferability across multiple modalities, which will be used to fine-tune universal adversarial
perturbations obtained from the first layer of optimization. With respect to our objectives, we define
the optimization problem as follows:

min
η

Φ(F(x+ δ + η)),

subject to: ∥η∥0 ≤ k, ∥δ + η∥∞ ≤ ε.
(6)

k represents the number of perturbed pixels. The ∥δ + η∥∞ constrains that the maximum value of
each element in the perturbation vector does not exceed ϵ, which can be achieved through clipping.

At this stage, the optimized adversarial sample xadv can be obtained from x + δ + η. The fea-
tures of the adversarial sample, denoted as fadv, are extracted using F(xadv). Where Φ(fadv) =

(D̃(fadv), S̃(fadv), ∥η∥2, ∥η∥0)T is the objective vector. Due to the limitations of using {-1, 1} as
the perturbation set, we adopted the method defined by Williams et al. [29], which redefines the
perturbation set to {-1, 0, 1}. This expansion allows the inclusion of zero values within the perturba-
tion vector, inherently optimizing the l0 norm by increasing the proportion of zeros. Consequently,
optimizing the l2 norm also indirectly reduces the l0 norm, as a lower l2 norm can be achieved partly
by increasing the number of zeros in the vector. Therefore, the objective vector Φ(fadv) is now
defined as (D̃(fadv), S̃(fadv), ∥η∥2)T , where η ∈ {−1, 1, 0}. D̃(fadv) and S̃(fadv) represent the
total metric loss and total attack success rate across all models, respectively. They can be described
by the following formula:

Di(fadv) = (fadv − C)TS−1(fadv − C), (7)

Di(fadv) denote the loss incurred by the perturbed input on modelMi. The loss from the adversarial
sample xadv to the cluster centroid C is measured using the squared Mahalanobis distance. Therefore,
the total loss across all models can be represented as:

D(fadv) =
n∑

i=1

Di(fadv). (8)

To transform into a minimization problem, we ultimately use the following formula for optimization:

D̃(fadv) = exp (−D(fadv)) . (9)

For modelMi, success rates Si can be defined as follows:

Si(fadv) =
{
1, if argmax(ŷj) ̸= yj
0, otherwise,

(10)

ŷj is the predicted label by the model, and yj is the true label corresponding to the sample. The
overall success rate can be calculated using the following formula:

S(fadv) =
1

n

n∑
i=1

Si(fadv). (11)

To transform into a minimization problem, we ultimately use the following formula for optimization:

S̃(fadv) = 1− 1

n

n∑
i=1

Si(fadv). (12)

We follow the approach proposed by Williams et al. [29] for crossover, mutation, and evaluation
of the population. For further details, please refer to the supplementary material 8. During the
selection phase, we define the following non-dominated sorting relationship to achieve the objective
of simultaneously searching for transferable perturbations across multiple modalities.

Domination Deffnition. In the process of conducting multimodal adversarial attacks, we assess
and compare two perturbation sets within the perturbation solution set P , denoted as Pi and Pj ,
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respectively. These two solutions yield perturbations represented by ηi and ηj . We evaluate the
resulting adversarial effectiveness using function F(•) which yields the objective vectors Fi and Fj .
A solution Pi is considered to dominate another solution Pj if any of the following conditions are
met:

1. If ηi has higher transferability than ηj .
2. ηi and ηj have the same transferability, and ∥ηi∥2 ≤ ∥ηj∥2.

3. Both ηi and ηj do not exhibit transferability, and ηi has a smaller total loss. D̃(fadv).

Please note, a perturbation η is considered to have transferability if it satisfies the attack success rate
is greater than 0. The higher the attack success rate S(fadv), the greater the considered transferability.

This dual-layer optimization framework significantly enhances the robustness of adversarial per-
turbations. The first layer of optimization utilizes gradient descent to learn universal perturbations.
The second layer employs evolutionary strategies to capture transferable features across modalities,
fine-tuning the learned universal perturbations. This approach not only improves the applicability
of perturbations in multi-modal environments but also increases the flexibility of the overall attack
strategy.

4 Empirical Study

4.1 Dataset

We evaluate our method using two commonly utilized cross-modality ReID datasets: SYSU [30],
RegDB [20] and Sketch [22]. SYSU is a large-scale dataset featuring 395 training identities captured
by six cameras (four RGB and two near-infrared) on the SYSU campus. It contains 22,258 visible
and 11,909 near-infrared images. The test set includes 95 identities evaluated under two settings, with
query sets comprising 3,803 images from two IR cameras. RegDB [20], a smaller dataset, consists
of 412 identities each with ten visible and ten thermal images. We randomly selected 206 identities
(2,060 images) for training and used the remaining 206 identities (2,060 images) for testing. The
Sketch ReID dataset comprises 200 individuals, each represented by one sketch and two photographs.
The photographs of each individual were captured during daylight using two cross-view cameras.
Raw images (or video frames) were manually cropped to ensure that each photograph includes only
the specific individual. Additionally, to simulate special image transformations aimed at visually
protecting personal privacy, we employed random channel mixing (for specific algorithms, refer
to the supplementary materials 4) on images from the Market1501 [38] dataset to create a new
dataset, which we refer to as CnMix in the following sections. Market1501 includes 1,501 pedestrians
captured by six cameras (five HD cameras and one low-definition camera).

4.2 Evaluation Metric

In line with [38], we utilize Rank-k precision, Cumulative Matching Characteristics (CMC), and
mean Average Precision (mAP) as our evaluation metrics. Specifically, Rank-1 precision measures
the average accuracy of the top result for each query image across different modalities. The mAP
score quantifies the mean accuracy by ordering the query results according to their similarity; a result
that appears closer to the top of this list indicates higher precision. It is important to note in the
context of adversarial attacks that lower accuracy scores signify more effective attacks.

4.3 Comparison

Following [7], we employed two cross-modality baseline models, AGW [36] and DDAG [35], to
conduct tests on the RegDB [20] and SYSU [30] cross-modality ReID datasets. The experiments
comprised two scenarios: 1) Perturbing visible images (query) to disrupt the retrieval of infrared
or thermal images (gallery), labeled as ’Visible to Infrared’ in Table 1 and ’Visible to Thermal’ in
Table 2. 2) Perturbing infrared or thermal images (query) to interfere with the retrieval of visible
images (gallery), labeled as ’Infrared to Visible’ in Table 1 and ’Thermal to Visible’ in Table 2.

In this experiment, "Our attack*" uses gradient-based single-layer optimization without evolutionary
search, while "Our attack" employs our dual-layer optimization. Both optimizations leverage the
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Table 1: Results for attacking cross-modality ReID systems on the SYSU dataset. It reports on visible
images querying infrared images and vice versa. Rank at r accuracy (%) and mAP (%) are reported.

Settings Visible to Infrared Infrared to Visible

Method Venue r = 1 r = 10 r = 20 mAP r = 1 r = 10 r = 20 mAP

AGW baseline [36] TPAMI 2022 47.50 84.39 92.14 47.65 54.17 91.14 95.98 62.97
M-FGSM attack [1] TPAMI 2020 25.79 49.04 57.96 19.24 20.56 38.91 46.35 15.89
LTA attack [8] CVPR 2022 8.42 21.25 27.98 9.16 20.92 32.18 36.80 15.24
ODFA attack [39] IJCV 2023 25.43 47.49 56.38 19.00 14.62 29.92 36.42 11.35
Col.+Del. attack [33] TPAMI 2023 3.23 14.48 20.15 3.27 4.12 16.85 21.27 3.89
CMPS attack [7] Arxiv 2024 1.11 8.67 16.14 1.41 1.31 7.47 10.36 1.23
Our attack* 1.10 7.42 14.46 1.27 1.25 6.34 9.39 1.12
Our attack 1.02 7.24 14.28 1.13 1.18 6.02 9.17 1.11

DDAG baseline [35] ECCV 2020 54.75 90.39 95.81 53.02 61.02 94.06 98.41 67.98
M-FGSM attack [1] TPAMI 2020 28.36 52.47 60.76 23.11 24.85 40.74 49.23 18.40
LTA attack [8] CVPR 2022 10.54 23.08 30.47 12.28 18.93 34.12 41.52 15.24
ODFA attack [39] IJCV 2023 27.75 50.26 59.14 22.30 17.62 32.64 40.03 14.83
Col.+Del. attack [33] TPAMI 2023 4.28 16.12 21.36 3.97 6.28 19.53 25.61 5.21
CMPS attack [7] Arxiv 2024 1.62 7.59 14.46 1.84 1.45 7.71 10.72 1.25
Our attack* 1.54 6.72 12.66 1.61 1.40 7.68 10.43 1.18
Our attack 1.23 6.38 12.06 1.22 1.31 7.44 10.15 1.06

Figure 1: Comparative Analysis with State-of-the-Art Method on Transferability Across Heteroge-
neous Cross-Modal Datasets.

given model and dataset samples. As Table 1 shows, our method outperforms the CMPS and
Col.+Del. attacks in attack effectiveness. These results demonstrate: 1) The Mahalanobis distance in
our method effectively captures the adversarial sample space structure; 2) Incorporating evolutionary
search broadens the solution exploration, avoids local minima, and enhances attack effectiveness.
We conducted identical experiments on the RegDB dataset (see supplementary materials 2). The
supplementary material 6 presents a comparative analysis using attention heatmaps.

Experiments Comparing Attack Transferability. We compare with the state-of-the-art retrieval
attack method in terms of perturbation transferability, across different cross-modal datasets and
different baselines. We verify the perturbation transferability using four heterogeneous cross-modal
datasets: SYSU, RegDB, Sketch, and CnMix. In our transfer attack experiments, we need to use
all four datasets simultaneously. Different datasets are trained using different models, with each
model representing a specific type of modality. For example, in Fig. 1, RegDB->SYSU indicates that
we optimize the universal perturbation using the RegDB dataset (with SYSU and Sketch datasets
for auxiliary optimization) and then transfer it to the SYSU dataset for testing. Specifically, for the
CMPS attack, due to the lack of an intrinsic mechanism to correlate more modalities, it first learns
the universal perturbation on the RegDB dataset, and then sequentially adjusts the perturbation using
the SYSU and Sketch datasets. In contrast, our method learns the universal perturbation using the
RegDB dataset while simultaneously fine-tuning this perturbation on the SYSU and Sketch datasets
using evolutionary search to achieve better transferability. In the supplementary material Fig. 6, we
compare the proposed method with the Col.+Del.and CMPS attacks using attention heatmaps.

From Fig. 1, it is evident that our proposed method outperforms CMPS attack [33] across various
metrics. This indicates: 1) For perturbations trained solely on gradients, the inconsistency in gradient
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Figure 3: The ablation study in the proposed method examines the relationships between the number
of perturbed pixels, the number of models, the attack success rate, and time consumption.

information due to diverse model architectures and heterogeneous training data makes effective
gradient utilization challenging. Additionally, performance disparities between models trained on
different modalities may lead to imbalanced perturbation learning, affecting its universality and
generalization ability. 2) Adversarial attacks similarly face the dilemma between stability and
adaptability in real-world scenarios. In deep learning, addressing complex tasks often entails a
dilemma between stability and plasticity. This means that maintaining the stability of old knowledge
while acquiring new knowledge poses a challenge. If the model exhibits excessive flexibility to new
data (high plasticity), it may suffer from ’catastrophic forgetting,’ leading to the loss of previously
acquired knowledge. Conversely, if the model lacks sufficient adaptability to new knowledge (high
stability), it may struggle to assimilate new information, thereby impacting learning efficiency and
the model’s generalization capability. The method proposed in this paper offers a potential solution
to the dilemma between stability and adaptability. Furthermore, as shown in Fig. 2, experiments were
conducted across different baselines, which also demonstrate the superiority of our proposed method.

4.4 Ablation Study

Fig. 3 shows: the left image depicts the relationship between the number of perturbed pixels, models
(modalities) in evolutionary search, and time consumption. The right image shows the relationship
between the number of perturbed pixels, models (modalities), time consumption, and attack success
rate. Key observations include: (1) attack success rate increases with more perturbed pixels; (2)
time consumption rises with more perturbed pixels; (3) time consumption increases proportionally
with the number of models; (4) attack success rate decreases with more models. For the impact of
different crossover and mutation rates on attack success rate using evolutionary search alone, see
supplementary material ??.
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5 Conclusion

This paper introduces a novel cross-modal adversarial attack strategy, named Multiform Attack, which
leverages a Gradient-Evolutionary Multiform Optimization framework to address the critical challenge
of transferability between heterogeneous image modalities. By integrating gradient-based learning
with evolutionary search, our approach significantly enhances the transferability and robustness of
adversarial perturbations across different modalities, including infrared, thermal, and RGB images.
Our dual-layer optimization strategy effectively combines the strengths of gradient-based methods
and evolutionary algorithms, facilitating efficient perturbation transfer and adeptly handling complex
cross-modal constraints. Extensive experiments on multiple heterogeneous datasets validate that
our method significantly outperforms existing techniques. It enhances the performance of universal
adversarial perturbations within a given modality and greatly increases their applicability across
diverse modalities. This advancement offers a new perspective for understanding and addressing
security vulnerabilities in multi-modal systems. Our research not only highlights the potential for
improved adversarial attack strategies but also provides a robust foundation for future studies aimed
at developing more secure and resilient cross-modal systems.
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6 Multiform Attack Framework

Figure 4: The figure shows different shapes representing samples from various cross-modal datasets
(solid shapes represent normal visible RGB samples, while hollow shapes represent corresponding
samples from other modalities). During the iterations, our method first learns a universal perturbation
δ on a given cross-modal dataset (circles) and then searches for a perturbation η using samples from
two other different cross-modal datasets, which can be superimposed on δ to enhance transferability.

Algorithm 1 Multiform Attack Optimization Framework

1: Input: Dtrain: Training dataset for gradient optimization, Devo: Training dataset for evolutionary
search,Mgrad: Model for gradient optimization,Mevo: List of models for evolutionary search,
ϵ: Perturbation limit, α: Learning rate, β: Momentum decay coefficient, max_iter: Maximum
number of iterations, k: Maximum number of perturbed pixels per iteration, P : Initial population
size, G: Number of generations in evolutionary search

2: Output: δ: Optimized perturbation after all iterations
3: Initialization: δ ← Rand(0, 1), v ← 0 ▷ Exponential moving average of the gradient
4: for t = 0 to max_iter− 1 do
5: Fetch batch x from Dtrain
6: Compute the loss Lmeta(δ, x) usingMgrad

7: vt+1 ← βvt + (1− β) ∇δLmeta
∥∇δLmeta∥1

8: δt+1 ← clip(δt + α · sign(vt+1),−ϵ, ϵ)
9: if t mod iter == 0 then ▷ Execute evolutionary search every iter iterations

10: Fetch batch xevo from Devo
11: Initialize population P
12: Generate new individuals through crossover and mutation
13: for each individual η ∈ P do
14: Evaluate η using all models inMevo on xevo
15: end for
16: Perform non-dominated sorting to select the best η
17: δt ← δt + η ▷ Update δt with the best η found
18: end if
19: end for
20: Output the optimized perturbation δ

In Fig. ??, we show the relationship between the Generation Number, population size, and attack
success rate during the evolutionary process.Since the primary goal of the evolutionary search is to
optimize the universal perturbation, we do not use the configuration with the highest attack success
rate in practice to save time. Instead, we set the Generation Number to 150 and the population size to
2.
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7 Experiments

Figure 5: Comparison with the state-of-the-art attack method CMPS attack retrieval results. Before
and after our attack on RegDB, the top five predictions of DDAG (a state-of-the-art cross-modality
ReID baseline). Green boxes indicate correctly matched images, while red boxes indicate mismatched
images. The left image corresponds to visible modality retrieving non-visible modality, and the right
image vice versa.

Table 2: Results for attacking cross-modality ReID systems on the RegDB dataset. It reports on
visible images querying thermal images and vice versa. Rank at r accuracy (%) and mAP (%) are
reported.

Settings Visible to Thermal Thermal to Visible

Method Venue r = 1 r = 10 r = 20 mAP r = 1 r = 10 r = 20 mAP

AGW baseline [36] TPAMI 2022 70.05 86.21 91.55 66.37 70.49 87.21 91.84 65.90
M-FGSM attack [1] TPAMI 2020 29.34 52.90 61.44 23.35 23.64 40.36 48.61 18.57
LTA attack [8] CVPR 2022 12.65 25.24 34.02 12.80 10.51 22.93 31.79 9.74
ODFA attack [39] IJCV 2023 28.57 51.42 60.58 21.84 17.26 33.27 42.92 15.27
Col.+Del. attack [33] TPAMI 2023 5.12 16.83 22.10 4.94 4.92 14.47 23.04 4.86
CMPS attack [7] Arxiv 2024 2.29 9.06 18.35 3.92 1.93 11.44 19.30 3.46
Our attack* 1.64 8.86 17.52 2.71 1.66 10.38 17.54 2.85
Our attack 1.36 8.54 16.17 2.26 1.07 9.87 16.62 2.11

DDAG baseline [35] ECCV 2020 69.34 86.19 91.49 63.46 68.06 85.15 90.31 61.80
M-FGSM attac [1] TPAMI 2020 30.86 54.16 61.98 24.01 25.83 42.12 49.76 19.33
LTA attack [8] CVPR 2022 11.65 23.20 32.73 11.41 9.76 21.53 29.96 9.23
ODFA attack [39] IJCV 2023 29.64 52.74 60.74 23.88 24.06 39.75 46.25 18.64
Col.+Del. attack [33] TPAMI 2023 4.68 13.55 18.57 4.39 4.23 12.75 20.82 4.05
CMPS attack [7] Arxiv 2024 1.33 10.28 19.06 3.79 1.35 9.52 17.52 3.19
Our attack* 1.15 9.83 17.26 2.97 1.27 9.36 16.91 3.06
Our attack 0.96 9.37 16.37 2.04 1.11 9.19 16.38 2.83

Our device uses three GPUs of RTX2080ti with 11GB memory.
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Figure 6: Comparison with state-of-the-art adversarial attack methods on attention heatmaps.

0.1 0.2 0.3 0.4 0.5
pm

0.1

0.2

0.3

0.4

0.5

p c

30

35

40

45

50

55

60

65

70

Av
er

ag
e 

At
ta

ck
 S

uc
ce

ss
 R

at
e

Figure 7: Correlation plots showing the average success rate of different pm and pc configurations on
SYSU images.
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8 Details of the Evolutionary Algorithm

8.1 Initialization

The attack method initializes by setting the number of perturbed pixels to k and constructing a
set P of s solutions. Each solution is created by uniformly sampling pixel locations from the set
{1, · · · , h ·w}. The initial perturbation values for each color channel are randomly sampled from the
set {−1, 0, 1}:

P = {P1,P2, . . . ,Ps}, Pi ∈ {−1, 0, 1} (13)

where:

• P: The set of initial solutions.

• s: The total number of solutions.

When invoking the evolutionary process, we set a fixed number of iterations to 200.

8.2 Crossover

The crossover operation aims to generate new solutions by combining traits from two parent solutions.
This process helps in exploring the solution space and inheriting beneficial traits from the parents.

Crossover combines traits from two parent solutions Pa and Pb to generate new solutions:

M ′ = (Ma ∪Mb) \ (Ma ∩Mb) (14)

∆′ = ∆a ∪∆b (15)

where:

• Ma, Mb: Sets of pixel locations from the parent solutions Pa and Pb, respectively.

• M ′: The set of pixel locations for the new solution.

• ∆a, ∆b: Sets of perturbation values corresponding to Ma and Mb.

• ∆′: The set of perturbation values for the new solution.

8.3 Mutation

The mutation operation introduces variations by modifying a subset of pixel locations. This process
helps in exploring new regions of the solution space and maintaining diversity among solutions.

Mutation introduces variations to solutions by modifying a subset of pixel locations:

M ′′ = (M ′ \A) ∪B, ∆′′ = (∆′ \∆A) ∪∆B (16)

where:

• M ′: The set of pixel locations before mutation.

• A: A randomly selected subset of pixel locations to be replaced.

• B: A new subset of pixel locations to be introduced (obtained through random selection).

• M ′′: The set of pixel locations after mutation.

• ∆′: The set of perturbation values before mutation.

• ∆A: The perturbation values corresponding to A.

• ∆B : The perturbation values corresponding to B.

• ∆′′: The set of perturbation values after mutation.
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8.4 Evaluation

The evaluation process calculates the objective vector Φ(fadv) = (D̃(fadv), S̃(fadv), ∥η∥2, ∥η∥0)T
for each solution to measure its quality. This step is crucial for selecting the best solutions.

8.5 Selection

Algorithm 2 Non-Dominating Sorting for Multiform Attack

1: Input: Combined population P , objective vectors Φ
2: Output: Set of fronts Sf
3: Sf ← {} // Initialize the set of fronts
4: for p ∈ P do
5: Sp ← {} // Set of p dominated solutions
6: np ← 0 // Domination counter of p
7: for q ∈ P do
8: if DOMINATES(p, q,Φ) then //if p dominates q
9: Sp ← Sp ∪ {q}

10: else if DOMINATES(q, p,Φ) then
11: np ← np + 1
12: end if
13: end for
14: if np == 0 then
15: prank ← 1 // p belongs to the first front
16: Sf1 ← Sf1 ∪ {p}
17: end if
18: end for
19: i← 1 // Initialize front counter
20: while Sfi ̸= ∅ do
21: Q← {} // Store solutions of the next front
22: for p ∈ Sfi do
23: for q ∈ Sp do
24: nq ← nq − 1
25: if nq == 0 then
26: qrank ← i+ 1
27: Q← Q ∪ {q}
28: end if
29: end for
30: end for
31: i← i+ 1
32: Sf(i+1) ← Q
33: end while
34: return Sf

Algorithm 3 Function to Determine if One Solution Dominates Another

1: function DOMINATES(x, y,Φ)
2: isBetter ← False
3: for i← 1 to length(Φ) do
4: if Φi(x) > Φi(y) then
5: isBetter ← True
6: else if Φi(x) < Φi(y) then
7: return False
8: end if
9: end for

10: return isBetter
11: end function
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The selection process evaluates solutions and chooses the best individuals to pass their genetic
material to the next generation. Initially, non-dominated sorting is used to select the best solutions
from the combined parent and offspring populations.

Selection uses non-dominated sorting to choose the best solutions for the next generation:

P ′ = NonDominatedSort(P ∪O) (17)

where:

• P and O are the parent and offspring populations, respectively.

• P ′: The new population of solutions after selection.

• NonDominatedSort: A sorting method that selects non-dominated solutions based on their
objective vectors.

The selection process can be represented as:

Selected Solutionsη = arg min
s∈P ′

Φ(F(x+ δ + ηs)) (18)

where:

• P ′ is the set of non-dominated solutions selected by non-dominated sorting.

In this way, we first use non-dominated sorting to select a set of non-dominated solutions and then
choose the solutions with the smallest objective function values from these non-dominated solutions.

9 Feasibility Analysis of Evolutionary Search

Here, we simplify the problem and appropriately reformulate it to facilitate analysis.

9.1 Objective of Sparse Perturbations

The goal of introducing sparse perturbations is to minimize the number of changes made to the input
while maximizing the error induced across various models. The fitness function, which evaluates the
effectiveness of a perturbation across multiple models, is central to this process.

9.2 Fitness Function

Let Φ represent a collection of models {M1,M2, . . . ,Mk}, where each model Mi has an associated
misclassification rate ri(x) for an input x. The fitness function f(x) for a perturbation vector x is
defined as:

f(x) =

k∑
i=1

wi · ri(x)− λ · ∥x∥0 (19)

Here, ∥x∥0 denotes the sparsity of the perturbation vector (the number of non-zero elements), wi

is the weight associated with model Mi, reflecting its importance in the overall fitness, and λ is a
regularization parameter that controls the significance of sparsity.

9.3 Generation of Sparse Perturbations

Evolutionary algorithms utilize selection, crossover, and mutation operations to generate new pertur-
bations. The mutation operation, designed to maintain sparsity while enhancing fitness, is defined
as:

x′ = x+ δ (20)

where δ is a small change vector, typically non-zero in only a few components of x. δ is chosen to
maximize f(x+ δ).
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9.4 Convergence Analysis

By appropriately choosing the parameters λ and wi, evolutionary search can converge to high-
quality sparse perturbations. Theoretically, consider the change in the fitness function over iterations.
assuming:

lim
t→∞

f(x(t)) = f∗ (21)

where x(t) is the perturbation vector after the t-th iteration, and f∗ represents the optimal achievable
fitness.

To ensure that each iteration does not decrease the fitness, we need:

f(x(t+1)) ≥ f(x(t)) (22)

This indicates that the fitness is non-decreasing over iterations, suggesting that the algorithm is at
least locally optimal. By designing δ to ensure that f(x+ δ) > f(x), this can be achieved. This can
be specifically implemented through techniques such as non-dominated sorting to select the most
effective perturbations. Please note that our goal is to fine-tune the universal perturbation using the
search process; in fact, we do not need to find the perturbation with the optimal fitness value.

Through the analysis provided, we theoretically demonstrate that evolutionary search can generate
effective sparse perturbations that are effective across multiple models.

10 Feasibility Analysis of Enhancing Attack Transferability

Here, we simplify the problem and appropriately reformulate it to facilitate analysis.

10.1 Objective Definition

The goal is to find a fine-tuned perturbation δf that significantly increases the misclassification rate
across multiple models while maintaining the sparsity of the perturbation. For this purpose, we
introduce a fitness function:

f(δf ) =

k∑
i=1

wi · ri(δu + δf )− λ · ∥δf∥0 (23)

where ∥x∥0 denotes the sparsity of the perturbation vector (the number of non-zero elements), wi

is the weight associated with model Mi, reflecting its importance in the overall fitness, and λ is a
regularization parameter that controls the significance of sparsity.

10.2 Complementarity Measure αi

To quantify the complementarity effect of the fine-tuned perturbation δf on the universal perturbation
δu, we define the complementarity measure αi as:

αi =
ri(δu + δf )− ri(δu)

ri(δu)
(24)

Here, αi represents the increase in the misclassification rate of model Mi when the fine-tuned
perturbation δf is added to the universal perturbation δu. Ideally, αi should be significantly greater
than 0, indicating a strong complementarity effect.

10.3 Optimization of the Fitness Function

The goal of the evolutionary search is to maximize the fitness function f(δf ). By selecting appropriate
mutation vectors δ and performing crossover operations, we ensure that each iteration finds a better
fine-tuned perturbation δf . Specifically, we aim to find δf such that:
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k∑
i=1

wi · ri(δu + δf )− λ · ∥δf∥0 (25)

is maximized.

10.4 Theoretical Guarantee

Through selection, crossover, and mutation operations, evolutionary search can effectively optimize
the perturbation vector δf to exhibit a high complementarity measure αi across multiple models.

Specifically, for each iteration, we have:

α
(t+1)
i =

ri(δu + δ
(t+1)
f )− ri(δu)

ri(δu)
≥ α

(t)
i =

ri(δu + δ
(t)
f )− ri(δu)

ri(δu)
(26)

This indicates that the complementarity measure of δf increases with each iteration, thereby signifi-
cantly improving the misclassification rate across multiple models.

By appropriately choosing the parameters λ and wi, evolutionary search can converge to high-quality
sparse perturbations. Theoretically, considering the change in the fitness function over iterations, we
assume:

lim
t→∞

f(x(t)) = f∗ (27)

where x(t) is the perturbation vector after the t-th iteration, and f∗ represents the optimal achievable
fitness.

To ensure that each iteration does not decrease the fitness, we need:

f(x(t+1)) ≥ f(x(t)) (28)

This indicates that the fitness is non-decreasing over iterations, suggesting that the algorithm is at
least locally optimal. By designing δ to ensure f(x+ δ) > f(x), this can be achieved. Specifically,
this can be implemented through non-dominated sorting to select the most effective perturbations.

By selecting appropriate mutation vectors δ and performing crossover operations, evolutionary search
can effectively optimize the perturbation vector δf to exhibit a high complementarity measure αi

across multiple models, i.e.:

αi =
ri(δu + δf )− ri(δu)

ri(δu)
≫ 0 (29)

This indicates that the fine-tuned perturbation significantly increases the misclassification rate for
each model, thereby improving the overall attack effectiveness.

Through the above mathematical analysis and theoretical derivation, we demonstrate that evolutionary
search can find fine-tuned perturbations δf with a high complementarity measure αi, effectively
refining the universal perturbation δu, thus achieving better transferability and attack effectiveness
across multiple models. This method leverages the global search capability of evolutionary algorithms
and the complementarity between different models, ensuring that the perturbations are effective across
various models.
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11 CnMix Processing Algorithm

Figure 8: Examples of the four different modalities corresponding to the four datasets used in this
paper.

Algorithm 4 Random Channel Mixing of Grayscale and Sketch Images

1: Input: img (Input RGB image), G (Probability of converting to grayscale), Grgb (Probability of
mixing grayscale and RGB), Srgb (Probability of mixing sketch and RGB)

2: Output: output_img (Transformed image)
3: function TOSKETCH(img)
4: img_np← Convert img to numpy array
5: img_inv ← 255− img_np ▷ Invert image colors
6: img_blur ← Gaussian blur of img_inv
7: img_blend← img_np

255−img_blur × 256 ▷ Blend original and blurred images
8: return Convert img_blend to image
9: end function

10: function RANDOM_CHOOSE(r, g, b, gray_or_sketch)
11: p← [r, g, b, gray_or_sketch, gray_or_sketch]
12: idx← [0, 1, 2, 3, 4]
13: Shuffle idx
14: return Merge channels p[idx[0]], p[idx[1]], p[idx[2]] into RGB image
15: end function
16: function FUSE_RGB_GRAY_SKETCH(img,G,Grgb, Srgb)
17: r, g, b← Split img into RGB channels
18: gray ← Convert img to grayscale
19: p← Random value between 0 and 1
20: if p < G then
21: return Merge gray, gray, gray into RGB image
22: else if p < G+Grgb then
23: output_img ← RANDOM_CHOOSE(r, g, b, gray)
24: return output_img
25: else if p < G+Grgb + Srgb then
26: sketch← TOSKETCH(gray)
27: output_img ← RANDOM_CHOOSE(r, g, b, sketch)
28: return output_img
29: else
30: return img
31: end if
32: end function
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12 Discussion

12.1 Ethical Considerations

In this study, we introduce a novel cross-modal adversarial attack method that enhances the transfer-
ability and concealment of adversarial attacks through a gradient-evolutionary multiform optimization
framework. This research offers a new perspective on understanding and enhancing the security of
cross-modal systems, but it also raises a series of ethical and safety concerns about the potential
negative impacts of adversarial attack techniques. Adversarial attack technology can be maliciously
exploited, posing a serious threat to public safety.

However, we recognize the positive value of adversarial attack research. It reveals vulnerabilities in
existing systems, prompting academia and industry to make in-depth improvements to the robustness
of machine learning models. The positive impact of this study lies in its potential to combine
adversarial training with the attack methods presented to enhance system security and bring positive
social impacts. Therefore, we emphasize the importance of conducting adversarial attack research
within an ethical framework and encourage further development of defensive technologies to build a
safer and more reliable technological environment.

12.2 Limitations and Future Work

Here, we need to acknowledge the limitations of the proposed method and identify potential areas
for future research. Firstly, current attack techniques mainly focus on enhancing the stealthiness
of perturbations for RGB images. In other types of images, such as infrared or thermal images in
monochromatic modes, the invisibility of perturbations remains a challenge. This is because these
modalities typically lack rich color information, making even subtle perturbations noticeable. Future
research needs to explore how to effectively hide adversarial perturbations in these different image
modalities to improve the applicability and stealthiness of attacks.

Secondly, as the number of modalities processed increases, the computational demand rises sharply,
which can lead to significant resource consumption in practical applications. The high demand for
computational resources in current methods limits their feasibility in resource-constrained environ-
ments. Therefore, future work could explore more efficient algorithms by incorporating state-of-the-
art evolutionary computation methods to reduce the computational burden when handling large-scale
or multi-modal data.
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