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Abstract

The emergence of synthetic biological circuits
opens up a wide range of possibilities for ma-
neuvering and controlling cellular behavior for
many applications, including therapeutics in hu-
mans. These applications require remarkable re-
producibility, and the logic circuit must demon-
strate resilience against various perturbations. In
this paper, we design the fundamental logic gates
using a biomolecular perceptron based on the
Molecular Exchange Mechanism (MEM) as its
core module and extend the design to produce
a winner-take-all (WTA) network implementa-
tion. The efficacy of the designs is evaluated
using synthetic Boolean data and pattern classi-
fication tasks, such as the MNIST handwritten
digits dataset and the CalTech-101 Silhouettes
dataset. Interestingly, the designs demonstrate
improved reproducibility in comparison to other
design choices, suggesting the MEM-perceptron
as a potential choice for biomolecular logic imple-
mentation and pattern recognition in a molecular
environment.

1. Introduction

Living cells are computational devices that sense, process,
and transmit information at different stages of tissue, or-
gan, and species development (Bray, 1995; Green et al.,
2017). For example, cells from the embryonic phase to
the later stages follow a standard template for performing
their stipulated tasks, such as growth, cell differentiation,
and apoptosis. In many systems, cells decode the informa-
tion received using a threshold-based mechanism to turn
on/off downstream gene expression (Ashe & Briscoe, 2006).
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Synthetic logic circuits have been of immense interest for
controlling cellular behavior in therapeutic applications, re-
quiring precision and reliability in its performance. So, re-
programming cellular behavior through a synthetic circuits
must demonstrate remarkable reproducibility and robust-
ness against intrinsic and extrinsic fluctuations that a circuit
experiences (Mukherji & Van Oudenaarden, 2009; Thattai
& Van Oudenaarden, 2001).

Activation and inactivation in threshold-based cell func-
tioning mimic the Boolean representation in computing de-
vices. This suggests a potential role of biocomputers in
computation and manipulation at the cellular level. The
biocomputers consist of biomolecular logic gates that can
link different regulatory factors and program cellular be-
haviors to harness therapeutic advantages (Ma et al., 2022).
Regardless of whether the cell-free or within-cell computa-
tion is performed (Miyamoto et al., 2013), the synthesizing
of biomolecular logic circuits adopts a nucleic acid-based
or a protein-based computation following enzymatic inter-
actions (Unger & Moult, 2006). In these designs, input
concentrations to any logic gates, if perturbed, would result
in an erroneous logic output. Although input and output
in genetic logic circuits are primarily molecular concentra-
tions, input fluctuation can switch threshold-based decoding
between 1 and 0 and alter output, triggering an erroneous
consequence in decision-making. Precisely, the inputs in
these programmable gene circuits may vary because of per-
turbations in pH, extracellular factors, temperature, produc-
tion rate of signaling molecules (Miyamoto et al., 2013),
etc. These affect the reproducibility and reliability of the
outputs, making the programmable circuits vulnerable.

Moreover, irreproducibility of discerning outputs due to
their variability over multiple runs under identical training
and resource specifications (D’Amour et al., 2022; Sum-
mers & Dinneen, 2021), has always been an issue in neural
networks. Partial solutions (Anil et al., 2018; Shamir &
Coviello, 2020) to reproducibility have been attempted, but
the cost, maintenance, and complexity incurred make them
untenable (Shamir et al., 2020). As studied, the role of
the standard Rectified Linear Unit (ReLU) is instrumental
in the success of the prevalence of neural networks, but
also has the downside of contributing to the problem of
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Figure 1. a) The MEM is used to design logic circuits that produce binary outputs based on the concentration of the decision-making
species [NV R. By tuning the formation and decay rates of NR, these circuits can implement threshold-based decision rules, effectively
encoding logic operations such as AND, OR, and XOR. When the concentration of N R exceeds a predefined threshold, the output
is interpreted as “1”’; otherwise, it is interpreted as “0”. b) Image inputs and their corresponding weights are fed into the generalized
Winner-Take-All (WTA) framework used to train the MEM-based Biomolecular Neural Network (BNN). The dot product of the input and
weight vectors, which give the weighted sum of inputs, is used as the formation rate of the decision-making species, denoted as k. This
rate, a parameter of MEM, governs the production of Y;, which represents both the concentration of the decision-making species N RR;
and the output of node ¢. The outputs from all nodes are then passed through a WTA mechanism, which selects the node with the highest
output as the “winner.” In this example, the digit “0” corresponds to the first class in the MNIST dataset, and a correct prediction results in

activation of the first output node.

irreproducibility (Shamir & Coviello, 2020). A biomolec-
ular neural network (BNN) with a smooth-ReLLU activa-
tion function has been shown to perform better than the
ReLU activation function (Anderson et al., 2021), making
the smooth-ReLLU activation function a choice that opti-
mizes the reproducibility-accuracy trade-off. Considering
issues that affect the reliability of these logic circuits, we
use a biomolecular perceptron model, namely the MEM-
perceptron (Rahman et al., 2024), designed from a molecu-
lar exchange mechanism capable of reducing noise (Karim
et al., 2012; Singh, 2011) to implement all fundamental
logic gates with a few sample logic circuits presented here.
We also implement a winner-take-all (WTA) type network
(Cherry & Qian, 2018) and the efficacy study demonstrates
that the WTA is capable of recognizing image classes in dif-
ferent datasets. As has been studied by Rahman et al. (2024),
the MEM-perceptron achieves smooth-ReLU behavior us-
ing a sequence of biomolecular interactions that allow the
exchange of a siganlling particle through the formation of
an intermediate complex. The designed biomolecular logic
circuits and networks implement the smooth-ReLU activa-
tion function through the MEM-perceptron and demonstrate
comparatively better reproducibility over other competing
biomolecular perceptron models across several image clas-
sification datasets.

2. Methods and Results

2.1. Molecular Exchange Mechanism

The molecular exchange mechanism (MEM) is inspired
by interactions that occur in various biophysical systems
such as the synaptic cleft of the brain and early embryonic

development (Papouin et al., 2012; Karim et al., 2012).
There are three species that work in MEM: N (signaling
agent, which could be a neurotransmitter), R (receptor)
and E (exchanger molecule). The complex NR is the
decision-making species. The complex NE, formed
through the interaction of the signaling agent N and
exchange molecule F, is used to impose negative feedback
on the formation rate of NR. In the MEM dynamics,
both NR and NE subsequently form the intermediate
complex NRE, through which exchange of R and E
occurs. Together, these interactions produce a smooth
ReLU-like behavior of the species NR in steady state,
similar to the activation function described in Anderson
etal. (2021).

2.1.1. MEM CHEMICAL REACTION NETWORK

]’%on k,on
rI: N+ R == NR, 122 N+ FE == NE

K K
B3:NR+ E &NRE r4: NE+RﬂNRE
ke ki
15: NR,NE,NRE % 0
[Rror] = [R] + [NR] + [NRE] (1)

Upon formation of N E, the species negatively regulate the
N R formation rate constant kg following a Hill equation:

]}/,on — ko0 K" )
NR NR Kn + [NE]n

where ARy, is the basal IV R production rate.
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Figure 2. a) The schematic representation of the XOR logic circuit using the AND, NAND and OR logic circuits constructed using MEM
peceptrons. b) The internal network of the MEM-XOR using MEM perceptrons. Node 1 (/N R1) is an activating perceptron while node 2
(N R2) is an inhibiting perceptron, where the former node receives the weighted sum of inputs as kyy and a constant bias while the latter
node receives the weighted sum as kxg and the activation rate takes the constant value of the bias. ¢,d) Different logic outputs obtained by
changing the weights of the perceptrons in the respective logic gate circuits. e) The logic circuit in (a) being realized by using the gates in
(d) and changing the AND gate from a 3-boundary to a 2-boundary AND gate to obtain a similar XOR output as (c).

2.2. Logic Gate Implementation

The MEM has demonstrated the ability to make both linear
and non-linear classification through the implementation
of different logic gate circuits. Initially, we design a 3-
node network (2 hidden layer nodes and 1 output layer
node) and a 4 node network (3 hidden layer nodes and
1 output layer node) to produce a logical OR and AND
output respectively (see Appendix B for tuned weights).
Following the validation of linear classification through
these logic gates, we design a 3-node network (same design
as OR gate) to demonstrate XOR logic output, realizing
non-linear classification. In all cases, the system receives
two inputs and the hidden layer produces different decision
planes which are combined by tuning the weights of the
output node to produce the desired logic circuit behavior.
Furthermore, changing the design of the output layer node
from an activating to an inhibiting one and subsequently
tuning the weights allows each logic gate to behave as its
negated versions, that is, NAND, NOR and XNOR.

To manifest the inverted logic gate implementation, the
formation rate of the decision-making species N R is kept
constant at the value of the bias to the respective node and
the weighted sum is assigned to the species N E (Moorman

et al., 2019), which is responsible for the negative feedback
in the system (Eq. 4. In the MEM ODE, gy, which is the
activation rate of IV R, takes the weighted sum of the inputs
and kR, which is the activation rate of NV E, is the bias to
the system for an activating node. Therefore, in order to
implement the inhibiting logic and following this modifica-
tion, the perceptron condition, as derived by Rahman et al.
(2024), is also inverted (Eq. 3 and Eq. 4) (see Fig. 2b).

kR = Wi X, 4+ WoXs + .. W, X, 3)
KXk = Wo (bias); kR > Qkfi; kg < QR )

Interestingly, the regions corresponding to the implemented
logical operations exhibit soft boundaries between the 0 and
1 classes, unlike the sharp divisions expected from ideal
binary logical outputs. We hypothesize that this behav-
ior arises from the smooth nature of the ReLU activation
function, which causes the network to produce gradual tran-
sitions rather than strict binary separations. While this char-
acteristic introduces a degree of noise, it may also confer
benefits (Bishop, 1995) and this remains part of our ongoing
exploration.
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2.3. Training Biomolecular Network
2.3.1. NETWORK DESIGN AND DATASETS

The activation function of the MEM-perceptron resembles a
smooth ReLU similar to the work done by Anderson et al.
(2021), which we hypothesize to be a contributing factor
to its ability to absorb noise, providing more stability in
decision-making. Therefore, for noisy inputs (such as gene
expression data), the control over noise is likely to allow
consistency while predicting molecular patterns. To verify
this hypothesis, we design a single layer network with the
MEM-perceptron as the building block. We train the single
layer network following the winner-take-all (WTA) prin-
ciple (Maass, 2000), where the output with the maximum
value ”wins”, and remains active, while all other outputs
’lose” and are turned off. We choose two datasets for our ex-
periments: The MNIST dataset (LeCun et al., 1998), which
consists of 10 classes of 28x28 grayscale images of hand-
written digits (0-9). For benchmarking, we select molecular
sequestration (Moorman et al., 2019) which has been shown
to behave as a BNN, and repeat all experiments as done with
MEM.

2.3.2. WTA IMPLEMENTATION

The winner-take-all (WTA) circuit, as implemented in this
study, is a single layer neural network with the number of
nodes representing the number of classes in the dataset. In
this WTA implementation, we demonstrate the detection of
10 number classes of the MNIST dataset with each pixel of
the image sample being fed into the nodes as the weighted
sum to each node. The learning principle allows only one
output node to remain active (high: 1) and all other nodes
remain inactive (low: 0) in response to an input. The ac-
tive node is the denoted as the ”winner” and indicates the
predicted class of the provided input. Previous work demon-
strates that training a chemical ODE-based WTA network
by comparing the weights with the inputs instead of the
predicted outputs eliminates the variability-dependence of
dynamic range of output concentration common in such
networks (Arcadia et al., 2021). Interestingly, accommo-
dating this concentration independence also reshapes the
weights towards resembling the input following the sequen-
tial updating after each iteration. To harness these prop-
erties, we develop and train a WTA network using MEM
perceptrons, which maintain noise under tight control in a
context-specific manner (Rahman et al., 2024; Khan et al.,
2024). In the proposed WTA, the weighted sum of inputs
produces the vector containing the formation rate (kyg) of
the decision-making species /N R in a biomolecular inter-
action (N + R = NR) of each MEM-perceptron node.

We optimize the weights using stochastic gradient descent
(Ruder, 2016) to minimize the error between this N R for-
mation rate vector (which is the input to the MEM system)

Algorithm 1 WTA Network Training Algorithm

1: Input: Training dataset D = {(X;,Y;)}¥,
2: Initialize:

¢ CRN parameters (reaction rates, constants)

* NN hyperparameters: learning rate 7, batch size
B, number of epochs F
¢ Number of input/output nodes
» Weights W ~ (0, 1), Bias B = 0.5
3: for epoch = 1to FE do
4 Shuffle D
5 Split D into mini-batches of size B
6:  for each mini-batch (X Y(®)) do
7: for each input z(¥), label y(*) in mini-batch do
8 for each output node j do
9 kD« W, - x®

10: Normalize ki

11: kg < B

12: if k{k < 0 then

13: kg < 107°

14: end if

15: Solve the system of ODEs

16: 0; < Final concentration of NR

17: end for

18: 9 « argmax;(o;) > WTA decision
19: end for

20: Compute loss L > Eq. 6
21: Compute gradient g—VLV > Eq. 7
22: Update weights W > Eq. 8
23: end for

24: end for

25: Qutput: Trained weight matrix Wi,

and the ground truth, given by the mean squared error(MSE)
function in Eq. 6. The formation rate of the species N E,
kN is the MEM perceptron parameter that corresponds to
the bias (W), Fig. 2b) in the perceptron. We set this bias to a
constant 0.5 because the negative feedback on N R is depen-
dent on the concentration of N E' and varying the bias does
not adapt the decision plane as per the perceptron condition
(Khan et al., 2024). In order to account for the constant bias,
we normalize the weighted sum for each iteration. This
training strategy pushes the formation rate of the node cor-
responding to the correct class toward 1 and the formation
rates of all other nodes toward 0, so that the output of the
node corresponding to the correct class becomes maximum
and it becomes the “winner”.

To train the MEM-based WTA network, first, we compute
the dot product of the weights and the inputs, which we then
provide as the formation rate of the decision-making species
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Figure 3. The box plots show the deviation in test accuracies of the MEM-WTA network, the molecular sequestration-based WTA network,
and the WTA network based on the CRN in Anderson et al. (2021). In order to demonstrate the degree of variation of the accuracies of
each model, we used the MNIST and CalTech101 dataset, with the latter dataset being split into three subclasses (easy, medium, hard)
based on the classification results of a generic multi-layer perceptron (details given in appendix C). Each model is run 10 times with
different learning rates (detailed values given in Table 1). The box plots labeled from 1 to 4 represent the MEM-WTA, 5 and 6 correspond
to the molecular sequestration-based WTA network and 7 to 9 show the WTA network of the CRN in Anderson et al. (2021).

NR of MEM (Eq. 5).

Rk = WX ®)

Then, we calculate the error between the formation rate and
the ground truth (Eq. 6).

11
_ on ~ 112
L_NZ;i”kNRi_yzH (6)
After that, we calculate the gradient of the loss with respect
to the weights (Eq. 7).

oL OL KB o -

We update the weights following Eq. 8.

oL
W:W—WW (8)

We perform these steps in batches, as we employ stochastic
gradient descent to train our WTA network. By following
this training strategy, we try to maximize the formation rate
of the decision-making species of the node corresponding
to the correct class, and make it the ”winner”. In the above
equations, kY is the formation rate of the decision-making
species N R, W is the weight matrix, X is the input data
vector, ¢ is the ground truth, and 7 is the learning rate.

In the WTA training setup, we initialize the weights ran-
domly following a normal distribution. The input data val-
ues are non-negative as they represent image pixel intensity.
We normalize the inputs to stay in the range [0 1]. As train-
ing progresses, the distribution of the weights changes to fit

the data, and some of the weight values become negative.
This might seem contradictory as the system we are using
to implement the WTA network is a model of a chemical
system, and in a chemical system, there can be no negative
values (Samaniego et al., 2021). Previous works have taken
measures to keep weight values to a fixed range for in vitro
implementation of a chemical neural network, such as clip-
ping negative values to 0 and normalizing values so that
weights remain in the range [0 1] (Arcadia et al., 2021). In
the MEM-based WTA network, the weights and the input
data do not directly map to any component of the chemical
system. However, the dot product of the weight matrix and
input data vector maps to the formation rates of the decision-
making species NR, and we ensure that all values of the
formation rate vector are always non-negative in our train-
ing algorithm. In fact, negative weights have been shown
to be useful for learning more generalizations (Wang et al.,
2023). Whether negative weights have any useful contribu-
tion in the learning process of the WTA network constructed
using MEM is subject to further investigation.

2.3.3. REPRODUCIBILITY OF PERFORMANCE

Reproducibility is a well-known challenge in training neural
networks, largely due to the inherent randomness in pro-
cesses like weight initialization and mini-batch selection
(D’ Amour et al., 2022; Summers & Dinneen, 2021). The
MEM demonstrates robustness against noise and is thus hy-
pothesized to produce more reproducible results compared
to similar biophysically inspired models. To explore this, we
build a Winner-Take-All (WTA) network using MEM-based
perceptrons and train it on both the MNIST dataset and
three subsets (easy, medium, and hard) of the CalTech-101
Silhouettes dataset (Marlin et al., 2010). The categorization
of these subsets is explained in Appendix C, Fig. 5. We run
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Figure 4. Training accuracy comparison between WTA networks constructed using a) CRN model as shown in Anderson et al. (2021), b)
MEM, c) Molecular Sequestration (Moorman et al., 2019). All models are trained over 2000 iterations using 5 different learning rate
values. MEM demonstrates learning for all values of learning rate that was tried. However, the other two models do not learn for higher
values of learning rate. This shows that MEM is more robust to learning rate perturbations, and is more consistent compared to the other

models.
Model Learning rate Mean test accuracy
MNIST Easy Medium Hard

0.01 0.784 £0.030 0.616 £0.020 0.246 £0.029 0.019 £ 0.016
MEM 0.05 0.857£0.026 0.664 =£0.008 0.323 £0.032 0.082 £ 0.014
0.1 0.866 £0.025 0.667 £0.004 0.324 £0.016 0.090 £ 0.014
0.5 0.873 £0.024 0.668 £ 0.007 0.256 £0.030 0.119 £ 0.023
(Moorman et al., 2019) 0.005 0.875£0.024 0.628 £0.027 0.132 £0.027 0.046 +£ 0.007
0.01 0.807 £0.111 0.064 £0.015 0.057 £0.028 0.039 +£ 0.008
0.005 - 0.656 £0.020 0.298 £ 0.040 0.109 +£ 0.055
(Anderson et al., 2021) 0.01 0.549 £0.157 0.663 £0.012 0.307 £0.038 0.128 £ 0.066
’ 0.05 0.556 £0.139 0.014 £0.011 0.063 £ 0.037 0.033 £ 0.000

0.1 0.562 £ 0.160 - - -

Table 1. Performance and reproducibility comparison of WTA networks constructed using MEM, Molecular Sequestration, and the CRN
as shown in Anderson et al. (2021). MEM exhibits learning in both low and high values of the learning rate. The other two models do not
learn for high values of learning rate, e.g., 0.5, and training accuracy stays around 0-1% for the MNIST dataset. Upon using the three
subclasses of the CalTech-101 Silhouettes dataset, both the molecular sequestration-based WTA and the CRN-based WTA of Anderson
et al. (2021), demonstrate learning for lower learning rates, while falling to significantly low accuracy levels when the learning rate was

increased beyond 0.01.

each experiment 10 times using a range of learning rates
(0.01, 0.05, 0.1, 0.5) and track the variation of the test accu-
racy across runs. For comparison, we repeat the same setup
with two alternative WTA networks: one using a molecular
sequestration-based perceptron with a ReLU activation func-
tion (Moorman et al., 2019), and another using a chemical
reaction network (CRN) model that implements a smooth-
ReLU function (Anderson et al., 2021). Our findings show
that the MEM-based network trains reliably across all tested
learning rates. In contrast, the other two models struggle
to converge consistently under the same conditions. More-
over, we analyze the deviation in test accuracy of the three
WTA networks trained with different learning rates, and we

find that the MEM-based network performs more consis-
tently with having similar accuracy results as that of the
generic multilayer perceptron used to create the subclass of
the CalTech-101 Silhouettes dataset.

3. Discussion

The envisaged applications of synthetic biological circuits in
regulating and controlling cellular behavior leave no room
for faltering under perturbations. So, it is imperative to
design a synthetic circuit that harnesses and mitigates bio-
logical noise to maintain the decision concentration within
a certain tolerance. In designing biological circuits, we
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apply molecular exchange mechanisms and negative feed-
back, exhibiting kinetic-dependent noise mitigation abilities.
We devised the underlying perceptron circuits and the rele-
vant weight parameters for most logic gates. We extended
further to realize synthetic logic circuits using molecular
exchange-based perceptron that resonates to a smoothed
ReLU as the fundamental building block. An artificially
smoothed ReLU exploits the reproducibility-accuracy trade-
off and ameliorates the irreproducibility problem of the ac-
curacy of neural network models. This work also provides a
WTA-type network consisting of a MEM-perceptron. We
applied the WTA for pattern recognition of image classes in
three image datasets, and the WTA of the MEM-perceptron
demonstrated better reproducibility. The proposed work
provides an avenue for exploration that ensures robust and
reproducible biomolecular logic and circuit design require-
ments. Though all the implementations here rely on weight
search, weight tuning, and updates through image training,
but learning through backpropagation remains unexplored,
training a full-fledged multi-layer feedforward network ca-
pable of learning through backpropagation is a part of our
ongoing work.

References

Anderson, D. F,, Joshi, B., and Deshpande, A. On reaction
network implementations of neural networks. Journal of
the Royal Society Interface, 18(177):20210031, 2021.

Anil, R., Pereyra, G., Passos, A., Ormandi, R., Dahl, G. E.,
and Hinton, G. E. Large scale distributed neural net-
work training through online distillation. arXiv preprint
arXiv:1804.03235, 2018.

Arcadia, C. E., Dombroski, A., Oakley, K., Chen, S. L.,
Tann, H., Rose, C., Kim, E., Reda, S., Rubenstein, B. M.,
and Rosenstein, J. K. Leveraging autocatalytic reactions

for chemical domain image classification. Chemical Sci-
ence, 12(15):5464-5472, 2021.

Ashe, H. L. and Briscoe, J. The interpretation of morphogen
gradients. 2006.

Bishop, C. M. Training with noise is equivalent to tikhonov
regularization. Neural computation, 7(1):108-116, 1995.

Bray, D. Protein molecules as computational elements in
living cells. Nature, 376(6538):307-312, 1995.

Cherry, K. M. and Qian, L. Scaling up molecular pattern
recognition with dna-based winner-take-all neural net-
works. Nature, 559(7714):370-376, 2018.

D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Ali-
panahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein,
J., Hoffman, M. D., et al. Underspecification presents
challenges for credibility in modern machine learning.

Journal of Machine Learning Research, 23(226):1-61,
2022.

Green, A. A., Kim, J., Ma, D., Silver, P. A., Collins, J. J.,
and Yin, P. Complex cellular logic computation using ri-
bocomputing devices. Nature, 548(7665):117-121, 2017.

Karim, M. S., Buzzard, G. T., and Umulis, D. M. Secreted,
receptor-associated bone morphogenetic protein regula-
tors reduce stochastic noise intrinsic to many extracellular
morphogen distributions. Journal of The Royal Society
Interface, 9(70):1073-1083, 2012.

Khan, M. 1., Rahman, M., and Karim, M. S. Development
of a molecular exchange mechanism-based biomolecular
neural network. In ICLR 2024 Workshop on Generative
and Experimental Perspectives for Biomolecular Design,
2024. URL https://openreview.net/forum?
id=dm5E5eKCDKk.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998.

Ma, Q., Zhang, M., Zhang, C., Teng, X., Yang, L., Tian, Y.,
Wang, J., Han, D., and Tan, W. An automated dna com-
puting platform for rapid etiological diagnostics. Science
Advances, 8(47):eade0453, 2022.

Maass, W. On the computational power of winner-take-all.
Neural computation, 12(11):2519-2535, 2000.

Marlin, B., Swersky, K., Chen, B., and Freitas, N. Induc-
tive principles for restricted boltzmann machine learn-
ing. In Teh, Y. W. and Titterington, M. (eds.), Pro-
ceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, volume 9 of
Proceedings of Machine Learning Research, pp. 509—
516, Chia Laguna Resort, Sardinia, Italy, 13—15 May
2010. PMLR. URL https://proceedings.mlr.
press/v9/marlinlOa.html.

Miyamoto, T., Razavi, S., DeRose, R., and Inoue, T. Syn-
thesizing biomolecule-based boolean logic gates. ACS
synthetic biology, 2(2):72-82, 2013.

Moorman, A., Samaniego, C. C., Maley, C., and Weiss,
R. A dynamical biomolecular neural network. In 2079
IEEE 58th conference on decision and control (CDC), pp.
1797-1802. IEEE, 2019.

Mukherji, S. and Van Oudenaarden, A. Synthetic biology:
understanding biological design from synthetic circuits.
Nature Reviews Genetics, 10(12):859-871, 2009.

Papouin, T., Ladépéche, L., Ruel, J., Sacchi, S., Labasque,
M., Hanini, M., Groc, L., Pollegioni, L., Mothet, J.-P., and
Oliet, S. H. Synaptic and extrasynaptic nmda receptors


https://openreview.net/forum?id=dm5E5eKCDk
https://openreview.net/forum?id=dm5E5eKCDk
https://proceedings.mlr.press/v9/marlin10a.html
https://proceedings.mlr.press/v9/marlin10a.html

CRN Implementation of Logic Gates and Neural Networks Using MEM

are gated by different endogenous coagonists. Cell, 150
(3):633-646, 2012.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825-2830, 2011.

Rahman, M., Khan, M. L, and Karim, M. S. Design
of a molecular exchange-based robust perceptron for
biomolecular neural network. In The Second Tiny Pa-
pers Track at ICLR 2024, 2024.

Ruder, S. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747, 2016.

Samaniego, C. C., Moorman, A., Giordano, G., and Franco,
E. Signaling-based neural networks for cellular computa-
tion. In 2021 American Control Conference (ACC), pp.
1883-1890. IEEE, 2021.

Shamir, G. I. and Coviello, L. Anti-distillation: Improv-
ing reproducibility of deep networks. arXiv preprint
arXiv:2010.09923, 2020.

Shamir, G. L., Lin, D., and Coviello, L. Smooth activations
and reproducibility in deep networks. arXiv preprint
arXiv:2010.09931, 2020.

Singh, A. Negative feedback through mrna provides the
best control of gene-expression noise. /[EEE transactions
on nanobioscience, 10(3):194-200, 2011.

Summers, C. and Dinneen, M. J. Nondeterminism and
instability in neural network optimization. In Interna-
tional Conference on Machine Learning, pp. 9913-9922.
PMLR, 2021.

Thattai, M. and Van Oudenaarden, A. Intrinsic noise in
gene regulatory networks. Proceedings of the National
Academy of Sciences, 98(15):8614-8619, 2001.

Unger, R. and Moult, J. Towards computing with proteins.
Proteins: Structure, Function, and Bioinformatics, 63(1):
53-64, 2006. doi: 10.1002/prot.20725.

Wang, Q., Powell, M. A., Geisa, A., Bridgeford, E., Priebe,
C. E., and Vogelstein, J. T. Why do networks have in-
hibitory/negative connections? In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp- 22551-22559, 2023.



CRN Implementation of Logic Gates and Neural Networks Using MEM

A. ODE model for the MEM logic gates

The logic circuits are constructed using the following set of ODEs which are interconnected to develop the circuit formation.

[NR]; = i, [N][R]; + ke, [NRE]; — K [NR]; — Kige, INRL[E]; - S[NR];
[NEJ; = ki, [N)[Ei + ki, [NRE]; — K, [NE]; — ke [NEL[R]: — [N E); )

[NRE]z = ke, [N R]i[E]; + kg, [N E]i[R]; — (kNRE I(zlf]gR +0)[NRE];

where ¢ denotes the node number and the total quantity of the nodes to implement a specific logic circuit is dictated by the
number of decision boundaries that are required to show the classification output of the logic gate.

A.1. ODEs of the MEM-XOR

Considering the 2-input, 3-node XOR logic implementation, nodes 1 and 2 receive the system input and generate two
decision boundaries separately. The concentration output from each of these nodes is then used to calculate the weighted
sum that is given as input to the node 3 in the network as the formation rate of N R. Finally, node 3 produces the final output
that corresponds to the XOR logic. Therefore, the connectivity between nodes within any logic circuit is established through
the formation rate of the decision-making species (NR). The ODEs for each node and the generalized basal formation rate
equation is given as

Node 1
[NR]; = k&, [N][R]1 + ks, INRE]: — k3%, [NR)1 — kg, INR)1[E], — 0[NR)];
[NE]y = k%, [N][E]1 + kg, [INRE]y — k35, [NE]1 — kg, INENL[R]1 — 0[N E); (10)
[NRE1 = kg, [INRI1[E]1 + kg, INE]1 (Rl — (k¥ke, + kg, + 0)[NRE];

Node 2
[NR]y = k@, [N][R]2 + ks, [NRE]; — kik, [NR]2 — kg, [INR)2[E]z — 6N R]
[NE]s = k%, [N][E]> + kg, INRE]s — k{E [NE]s — k¥, [NE2[R]2 — S[NE], (I
[NRE]2 = k\Re, [V R]2[E2 + kg, [N E]2[R]2 (kNREz + kNERg +6)[NRE]>

Node 3

[NRl3 = ik, [N][R]s + ke, [INRE]s — kg, [NR]s — ke, [N R]a[E]s — 6N R]3
[NEls = ki, IN][E]s + kg, [NRE]s — kg, [NEls — kg, [N E]s[R]s — [N E]s (12)
[NRE]s = ke, [N RIs[Els + ke, [N Els[R]s — (kke, + kEr, + 0)[NRE]s

K = WiX) + WaXo + .. W, X, (13)

where, n represents the number of inputs to the particular node being considered. With respect to the XOR logic implemen-
tation, nodes 1 and 2 receive two inputs X; and X5 and the output node, receives X; = NR; and X5 = N R».
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B. Weights for the MEM logic gates

Gate Node 1 Node 2 Node 3 Node 4
NAND 04,1,1 0.05,0.08,0.2 0.05,2,0.05 0.75,10,3,3
AND 04,1,1 0.05,0.08,0.2 0.05,2,0.05 0.9,10,3,3
OR 0.5,05,1 05,1,05 0.05, 10,10  0,0,0,0
NOR 0.5,05,1 05,1,05 0.05,10,10  0,0,0,0
XOR 05,1,1 02,1,1 0.02, 10, 1 0,0,0,0
XNOR 05,1,1 02,1,1 0.05, 10, 1 0,0,0,0

Table 2. Tuned weights for biomolecular logic gate implementation using MEM.

C. CalTech-101 Dataset Categorization

Easy Classes Medium Classes Hard Classes
ID Name | ID  Name | ID  Name
20  ceiling fan | 97 wild cat 90  sunflower
16  butterfly 18 cannon 68  okapi
53  joshuatree | 88 stop sign 60 lotus
66  nautilus 7 ant 91  tick
5 accordion 65 minaret 11 binocular
22 chair 100  yin yang 25  cougar face
33 dolphin 64 metronome | 19  car side
30  cup 80 scissors 63  menorah
62  mayfly 32 dollar bill 29  crocodile head
49  hedgehog 83 snoopy 8 barrel

Table 3. Caltech-101 Silhouettes Dataset: Easy, Medium, and Hard Classes.

We evaluate MEM and other BNN models using the MNIST handwritten digits dataset and three customized subsets of
the Caltech-101 Silhouettes dataset. To construct these subsets, we first train a multilayer perceptron (MLP) implemented
via the scikit-learn library (Pedregosa et al., 2011) on the entire Caltech-101 Silhouettes dataset. Using the trained MLP,
we compute the recall for each class and rank the classes accordingly. The 10 classes with the highest recall values are
designated as the “easy” subset, while the 10 classes with the lowest recall values form the “hard” subset. The “medium”
subset consists of 10 classes selected from the middle of the ranked list (positions 46 to 55). This categorization is illustrated
in Fig. 5, with the specific classes listed in Table 3.

N i

class

Figure 5. Categorization of the CalTech-101 Silhouettes dataset into easy, medium, and hard subsets based on the per-class recall value
achieved by training an MLP on the dataset.
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