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ABSTRACT
Miscalibrated models tend to be unreliable and insecure for down-
stream applications. In this work, we attempt to highlight and
remedy miscalibration in current scene graph generation (SGG)
models, which has been overlooked by previous works. We discover
that obtaining well-calibrated models for SGG is more challenging
than conventional calibration settings, as long-tailed SGG training
data exacerbates miscalibration with overconfidence in head classes
and underconfidence in tail classes. We further analyze which com-
ponents are explicitly impacted by the long-tailed data during op-
timization, thereby exacerbating miscalibration and unbalanced
learning, including: biased parameters, deviated boundaries,
and distorted target distribution. To address the above issues,
we propose the Compositional Optimization Calibration (COC)
method, comprising three modules: i. A parameter calibration mod-
ule that utilizes a hyperspherical classifier to eliminate the bias
introduced by biased parameters. ii. A boundary calibration module
that disperses features of majority classes to consolidate the deci-
sion boundaries of minority classes and mitigate deviated bound-
aries. iii. A target distribution calibration module that addresses
distorted target distribution, leverages within-triplet prior to guide
confidence-aware and label-aware target calibration, and applies
curriculum regulation to constrain learning focus from easy to hard
classes. Extensive evaluation on popular benchmarks demonstrates
the effectiveness of our proposed method in improving model cal-
ibration and resolving unbalanced learning for long-tailed SGG.
Finally, our proposed method performs best on model calibration
compared to different types of calibration methods and achieves
state-of-the-art trade-off performance on balanced learning for SGG.
The source codes and models will be available upon acceptance.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.

KEYWORDS
Calibration, Long-tailed Scene Graph Generation, Parameter Cali-
bration, Boundary Calibration, Target Distribution Calibration.

1 INTRODUCTION
Deep neural networks have been extensively applied across a di-
verse range of domains. However, despite their prominent success,
recent studies have found that they are not well-calibrated [15]. In
other words, they cannot ensure that prediction confidences reflect
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(i) (ii)

Figure 1: Reliability diagrams [6] of Motifs model [62] on (i)
original unbalanced and (ii) resampled more balanced [31]
training data. Smaller gaps denote better calibration (i.e., less
SGECE), so calibration is worse on unbalanced training data.

the actual class probabilities. This gives rise to higher uncertainty
and diminishing reliability in the decision-making process, posing
safety risks when applied to safety-critical applications such as
autonomous driving [14] and medical diagnosis [11].

Model calibration has been studied in the domains of classi-
fication [15, 26, 37, 65], detection [23, 27, 44], and segmentation
[22, 52]. However, calibration for SGG remains under-explored.
The primary objective of SGG is to convert a visual scene into a
visually-grounded graphical representation [21], which has gained
widespread utilization in safety-critical areas, e.g., autonomous
driving [54, 61], medical diagnosis [17, 45], and robotics [1, 47],
where reliability is crucial in real-life deployment. For instance, if
SGG networks applied to autonomous driving cannot confidently
predict the state of “human standing on the road”, it will lead to
unpredictable actions with worrisome consequences. Hence, it is
essential for SGG networks not only to accurately represent struc-
tured scenes but also to be well-calibrated with high reliability.

Similar to conclusions drawn in other domains, current SGG
models also exhibit poor calibration (c.f. Fig 1-left). However, we
observe that calibration for SGG faces a unique challenge, where the
unbalanced SGG training data leads to more miscalibrated models
thanmore balanced data (c.f. Fig.1), characterized by overconfidence
in head classes and underconfidence in tail classes (c.f. green lines in
Fig.2-left). Additionally, such imbalanced data distribution causes a
significant recall gap between the head and tail groups (c.f. hR@100
and tR@100 in Fig. 2-left). Although various works have proposed
solutions to resolve the unbalanced learning in SGG [30, 36, 48, 63],
they fail to reveal the miscalibration issue and evaluate their model
calibration, limiting the reliability of their methods. Therefore, it
is imperative to develop SGG models that insinuate both balanced
learning and great calibration. To our knowledge, we are the first to
explore calibration for long-tailed SGG, where we design a metric
to measure calibration and propose a novel optimization calibration
method to improve calibration and address unbalanced learning.

Current calibration methods can be categorized into two sets:
post-hoc [15, 26, 37, 51] and train-time calibration methods [33, 65].
However, post-hoc methods primarily manipulate the posterior

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Distribution of predicted confidences. The left verti-
cal axis (in green) and the right vertical axis (in purple) denote
the confidence level and the size proportion of each class.
Light green and light red spans indicate the head and tail
groups. Hmedian and Tmedian denote the median confidences
of head and tail classes. hR and tR are the mean recall of
head and tail classes. Baseline exhibits severe overconfidence
in head classes and underconfidence in tail classes, and a
significant recall gap between head and tail classes. Our COC
alleviates biased confidence and reduces the recall gap.

probability distribution without handling biased predictions. In-
stead, we focus on train-time methods to alleviate miscalibration
and unbalanced learning. We identify three components that di-
rectly or indirectly influence confidence levels during optimization:
parameters in the linear classifier, decision boundaries, and training
target distribution. We present potential issues within these com-
ponents that exacerbate miscalibration and unbalanced learning:

1) Biased parameters. As shown in Fig. 3 (a), the norm of both
the weight and bias parameter in the linear classifier exhibits a
biased distribution. The biased parameters amplify the discrepancy
in confidence levels between the head and tail classes. 2) Deviated
boundaries. Since majority classes are dense and minority classes
are sparse, the feature extractor tends to map feature representa-
tions of the majority classes into dense clusters, whereas assign-
ing minority classes to relatively sparse clusters [28, 69, 70]. This
propensity easily leads to high feature deviation in minority classes
and brings them to low-confidence regions [58]. Therefore, the fea-
ture points of the minority class are more likely to approach or even
wrongly cross the decision boundaries with the majority class clus-
ter (c.f. Fig. 3 (b)). 3) Distorted target distribution. SGG encodes
the joint distribution 𝑃 (𝑆, 𝑅,𝑂)=𝑃 (𝑆)𝑃 (𝑂)𝑃 (𝑅 |𝑆,𝑂)≈𝑃 (𝑅 |𝑆,𝑂) (we
omit (𝑆,𝑂) as they can be obtained from the pre-trained detectors
[48, 49, 62]). Nonetheless, previous works [48, 49, 62] only capture
the distribution of 𝑃 (𝑅) while neglecting the within-triplet distribu-
tion 𝑃 (𝑅 |𝑆,𝑂). However, the relation set 𝑅 is long-tail distributed
in SGGs [2, 48], leading models trained with such targets to be bi-
ased towards head classes, despite some tail classes having a higher
probability of appearing in certain triplets (c.f. Fig. 3 (d)).

Subsequently, we propose a compositional calibration method
to tackle the above three issues during optimization, which con-
tain: 1) Parameter Calibration (PC) utilizes a hypersphere-based
classifier that is invariant to the weight magnitude and removes
the bias, eliminating the effects of biased parameters. 2) Boundary
Calibration (BC) employs a dispersion loss to separate majority
class features that consolidate the decision boundaries for minority
classes to decrease their feature deviation (c.f. Fig. 3 (c)). 3) Target

giraffe - ? - leaf

𝑃(𝑅|𝑆 = 𝑔𝑖𝑟𝑎𝑓𝑓𝑒, 𝑂 = 𝑙𝑒𝑎𝑓)

(a) Biased Parameters

(b) Deviated Boundaries

(d) Distorted Target Distribution
Minority Class j Minority Class k

Majority Class i

Decision
Boundary

Boundary
Points

Majority Class i

Minority Class kMinority Class j

Head Tail Head Tail

Wrongly
Classified

(c) Boundary Calibration

Push

𝑃(𝑅)

𝑃!(𝑅)

Figure 3: Three causes for miscalibration and unbalanced
learning. (a) Biased parameters. Head classes have consis-
tently larger | |𝑤 | | and 𝑏 than tail classes. (b) Deviated bound-
aries. Minority classes exhibit high feature deviation, so they
are prone to becoming close and even wrongly crossing the
decision boundaries. (c) Boundary Calibration. Our method
increases the separation between majority samples, thereby
compressing minority samples into tighter clusters and con-
solidating the decision boundaries to reduce the feature de-
viation of minority classes. (d) Distorted target distribution.
Given a triplet (giraffe,‘relation’, leaf), the head class ‘has’
dominates the relation distribution (top row), while the tail
class ‘eating’ dominates the within-triplet prior (middle row).
Baseline model [62] that learns through relation distribution
𝑷 (𝑹) wrongly predicts the relation as ‘has’ (bottom row) with
higher confidence, so the distorted target distribution needs
calibration based on within-triplet distribution 𝑷 (𝑹 |𝑺,𝑶).

Distribution Calibration (TDC) leverages within-triplet prior to
guide calibrating distorted target distribution in a confidence- and
label-aware manner, and it incorporates a curriculum-based target
regulation strategy to avoid excessive calibration. As seen in Fig. 2-
right, our method is extremely effective in improving calibration
(i.e., less SGECE) and balancing the miscalibrated confidence.

Our contributions include: 1) the first systematic study on cal-
ibration for long-tailed SGG with novel metrics and benchmarks
(including qualitative and quantitative comparisons). 2) Identifica-
tion of three issues exacerbating miscalibration and unbalanced
learning, and introduction of a plug-and-play compositional calibra-
tion method to address them. 3) Extensive empirical results on SGG
benchmarks using multiple baselines demonstrate the effectiveness
of our method for calibration and achieving balanced learning.
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2 RELATEDWORKS
2.1 Long-tailed Scene Graph Generation
Many studies have attempted to address the long-tailed SGG prob-
lem. These works can be divided into three groups: 1) Re-sampling
training data [7, 16, 31] or assigning different loss weights [32,
36, 59, 66, 67] to encourage balanced learning. 2) Generating addi-
tional labels [30, 60, 63] or features [29] to add training samples
for tail classes. 3) De-biasing the biased probability distribution
[2, 3, 39, 48]. However, these works overlook the miscalibration
issue and its reasons, while we thoroughly analyze the core causes
of miscalibration and present calibration methods to solve them.

2.2 Network Calibration
Well-calibrated models indicate an alignment between the predicted
probabilities and true likelihood of correctness [13, 15, 43]. Model
calibration has been explored in different tasks, including image
classification [15, 26, 37, 65], semantic segmentation [8, 12, 22, 52],
object detection [23, 27, 42, 44], medical imaging [38, 40], and so
on. There are two main strategies to calibrate models: the first
method re-scales posterior probabilities by applying parameters
derived from the withheld portion of the training set during infer-
ence [20, 26, 37, 51]; the second strategy applies various techniques
during training: Zhong et al. [65] utilize label smoothing to reduce
the overconfidence; Mukhot et al. [41] argue that focal loss [33]
calibrates models more effectively than cross-entropy loss; Shrivas-
tava et al. [44] focus on detection and jointly calibrate multi-class
confidence and box localization by leveraging their predicted un-
certainties. However, the calibration of SGG models, which closely
relates to real-world applications [1, 17, 45, 47, 54, 61], is rather over-
looked. Current calibration methods neglect specific long-tailed
challenges of SGG, so their applicability is limited in SGG.

3 METHOD
3.1 Preliminary
Long-tailed SGG. Given an image 𝑰 , the objective of SGG is to
generate a set of triplets 𝑇𝑟𝑖 = {(𝒔𝑖 , 𝒐𝑖 , 𝒓𝑖 )}𝑖∈𝑰 [21, 35, 68], where
𝒓𝑖 ∈ R is the relationship, 𝒔𝑖 ∈ O is a subject, and 𝒐𝑖 ∈ O is an
object. Each 𝒔𝑖 or 𝒐𝑖 consists of the bounding box 𝒃𝒃𝑖 ∈ R4 and
object label 𝒄𝑖 obtained through a pre-trained detector [62] (e.g.,
Faster-RCNN [46]). As discussed in Sec. 1, training data of SGG
is inherently long-tailed [48], where head classes (denoted by H)
occur significantly more frequently than tail classes (denoted by
T), which exacerbates miscalibration and unbalanced learning.
Calibration for Long-tailed SGG. For classification models, given
the training data input 𝒙 ∈ X and the corresponding label 𝒚 ∈ Y,
the predicted outputs are class labels �̂� with confidence scores �̂�. A
perfectly calibrated classification model [15] satisfies this equation:

P(�̂� = 𝒚 |�̂� = 𝒑)︸             ︷︷             ︸
accuracy given 𝒚,𝒑

= 𝒑︸︷︷︸
confidence

∀𝒑 ∈ [0, 1], (1)

where 𝒑 is the expected confidence, and P(�̂� = 𝒚 |�̂� = 𝒑) is the
predicted accuracy. A perfectly calibrated model should maintain
close consistency between its accuracy and confidence scores [15,
52]. Expanding on this concept, we discuss model calibration for
SGG. In SGG tasks (including PredCls, SGCls, and SGDet; more

details are in Sec.4.1), the final predicted relation mainly depends
on the relation posterior probability distribution [29, 30, 48, 49, 63],
so we focus solely on the relation classification calibration and no
longer consider the calibration of the object classification to ensure
a fair comparison. For PredCls and SGCls tasks, the object pair
(𝒔, 𝒐) can be known. Therefore, we select predictions with label
𝒓 whose object pair matches a unique ground truth object pair. A
well-calibrated SGG model under these two settings should satisfy
Eq. 1. Subsequently, we use the widely adopted metric Expected
Calibration Error (ECE) [15, 27, 44] to measure model calibration:

ECE = E�̂� [|P(𝒓 = 𝒓 |�̂� = 𝒑) − 𝒑 |] . (2)

Equal binning on the confidence intervals is usually employed
to estimate Eq. 2 [15] and can be formalized as follows:

ECED𝑏
=

𝐵∑︁
𝑏=1

|D𝑏 |
|N |

����acc(D𝑏 ) − conf(D𝑏 )
���� × 100%, (3)

where 𝐵 is the number of confidence bins with equal intervals, D𝑏

is the sample set in bin 𝑏,N is the set of all samples, conf is the pre-
dicted confidence, and acc is the accuracy of all samples. However,
in long-tailed SGG, head classes extremely outweigh the occurrence
of tail classes, so the ECE metric may understate the calibration
performance of tail classes. Specifically, for a typical tail class where
both the accuracy and confidence levels are low, its contribution
to the final overall becomes negligible despite poor performance.
Hence, we devise a novel metric, MECE (Mean-accuracy ECE),
to better accommodate the tail classes and gain a comprehensive
understanding of the calibration of each class, given as:

MECED𝑏
=

𝐵∑︁
𝑏=1

|D𝑏 |
|N |

����macc(D𝑏 ) − conf(D𝑏 )
���� × 100%, (4)

wheremacc denotes averaging accuracy across each class.
In the SGDet task, the boxes of object pair (𝒔, 𝒐) cannot be known

by default, so we only select object pairs that match the ground
truth pairs. Specifically, the IOU (Intersection of Union) of selected
object pairs should satisfy (IoU(𝒃𝒃𝑠 , 𝒃𝒃𝑠 ) > 0.5)&(IoU(𝒃𝒃𝑜 , 𝒃𝒃𝑜 ) >
0.5), and the predicted classes should satisfy (𝒄𝑠 = 𝒄𝑠 )&(𝒄𝑜 = 𝒄𝑜 ).
However, unlike in PredCls and SGCls tasks, for a selected triplet,
there may not exist only a one-to-one correspondence to a single
ground truth triplet, but rather a set of ground truth triplets with
relation set {𝒓1, 𝒓2, ...}. Therefore, in the SGDet task, we construct
the new ground truth relation set R𝑡𝑟𝑖 =

⋃N
𝒏=1{𝒓1, 𝒓2, ...}𝒏 , and

well-calibrated SGG models should adhere to this equation:

ECE = E�̂� [|P(𝒓 = 𝒓𝑡𝑟𝑖 |�̂� = 𝒑) − 𝒑 |] ∀𝒓𝑡𝑟𝑖 ∈ R𝑡𝑟𝑖 . (5)

Finally, we apply Eq. 4 to estimate the metric in Eq. 5 under the
SGDet task. To simplify the description, we will refer to these two
types of ECE for SGG as SGECE (Scene Graph ECE) in this paper.

3.2 Model Optimization for SGG
Current SGG models rely on a linear classifier to learn the relation
classes, where the predicted logit of relation class 𝑖 is given by:

𝒛𝑖 =𝑾𝑇
𝑖 𝒇 + 𝒃𝑖 = | |𝑾𝑖 | | · | |𝒇 | | cos𝜃𝑖 + 𝒃𝑖 , (6)

where 𝒛 denotes the output class logit, 𝑾 denotes the weight of
the classifier, 𝒃 represents the learned bias, and 𝒇 is the extracted
relation feature by relation context models [49, 62]. 𝜃𝑖 is the angle
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Figure 4: (a) The pipeline of the compositional optimization calibration method. It consists of (i) parameter calibration, (ii)
boundary calibration, and (iii) target distribution calibration to separately address biased parameters, deviated boundaries, and
distorted target distribution issues. (b) The pipeline of the target distribution calibration method that calibrates the distorted
relation target distribution. First, we use within-triplet prior and the predicted confidence to conclude the transferring factor 𝝐 .
Then, we utilize a label-aware factor to assign greater importance to the harder-to-learn tail classes. Finally, the curriculum
target regulation module is applied to balance learning between easy and hard classes by regulating the size of 𝝐 .

between the class weight𝑾𝑖 and feature𝒇 . Given the training target
distribution 𝒒, the empirical loss function for SGG is as follows:

E𝒒 [L(𝒛,𝒚)] =
∫
𝒒
𝒒(𝒙)L(𝒛,𝒚)𝑑𝑥 . (7)

The predicted confidence scores �̂� and classes 𝒓 are:

�̂� = max 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝒛) 𝒓 = arg max
{1,2,· · · ,R}

�̂�. (8)

Based on Eq. 6-8, we argue that for a given relation feature, its
predicted confidence and class mainly depend on: 1) magnitude
of weight vector 𝑾 and bias 𝒃 in Eq. 6; 2) learned decision an-
gle 𝜃 in Eq. 6; 3) the target distribution 𝒒 in Eq. 7. Motivated by
these insights, to study miscalibration and unbalanced learning
for long-tailed SGG, we explore underlying issues associated with
these three elements (c.f. Sec. 1) and find: biased parameters, de-
viated boundaries, and distorted target distribution. Subsequently,
we propose a compositional optimization calibration method (c.f.
Fig. 4) including three specialized calibration methods to address
the above issues: parameter calibration (Sec. 3.3.1), boundary cali-
bration (Sec. 3.3.2), and target distribution calibration (Sec. 3.3.3).

3.3 Compositional Optimization Calibration
3.3.1 Parameter Calibration. As discussed in Sec. 1, the magni-
tudes of weight and bias in the current classifier are biased, leading
to unbalanced learning and exacerbated miscalibration. Specifically,
as shown in Fig. 5 (a), decision boundaries tend to be closer to the
minority class weight that has a smaller magnitude, which causes
minority samples to be more easily far away from their own class
centroids and obtain low confidences [24]. Based on these observa-
tions, we utilize a magnitude-invariant classifier defined on the unit
hypersphere [10, 18, 53] to tackle the biased parameter problem.
Triplet Feature. To capture robust contextual information for the
triplet feature 𝒇 prior to the classification stage, we fuse object,
union, and spatial features in the following fashion:

𝒇 = MLP((𝒇𝒔 ∗ 𝒇𝒐 ∗ 𝒇𝒖 ) ⊕ 𝒇𝑠𝑝𝑎), (9)

where 𝒇𝒔 and 𝒇𝒐 are feature vectors of the subject and object, re-
spectively, captured by the object refined model [34, 49, 62]. 𝒇𝑢 is
the feature for the union region occupied by the object pair. 𝒇𝑠𝑝𝑎 is
the bounding-box spatial feature for the object pair [34]. ⊕ denotes
the feature concatenation. An MLP (Multi Layer Perceptron) is used
to fuse these features to get the final refined triplet feature 𝒇 [64].
Learning on Hypersphere. For the classifier in SGG models, we
optimize it on hypersphere; its predicted logit for the 𝑖𝑡ℎ class is:

𝒛𝑖 = | |𝑾𝑖 | | · | |𝒇 | | cos𝜃𝑖 + 𝒃𝑖 = 𝜏𝑐𝑜𝑠𝜃𝑖

𝑠 .𝑡 .| |𝑾𝑖 | | = 1, | |𝒇 | | = 𝜏, 𝒃𝑖 = 0.
(10)

Specifically, we fix | |𝑾𝑖 | | = 1 by L2 normalization and set 𝒃𝑖 = 0.
Moreover, we fix the feature 𝒇 by L2 normalization and re-scale it
to 𝜏 as [53]. By doing so, classifier optimization is performed on the
unit hypersphere, unaffected by the magnitudes of weight and bias.
Discriminative Regularization. We then incorporate a discrimi-
native regularization on the weight vectors across all classes, aiming
to scatter weights across the hypersphere and promote more dis-
criminative boundaries between various classes [34, 64], given as:

L𝑟𝑒𝑔 =
1

|R |2
| R |∑︁
𝑖=0

√√√√ | R |∑︁
𝑗=0

(𝑾𝑇
𝑖 𝑾 𝑗 )2, (11)

where 𝑣 = 𝑣/∥𝑣 ∥2 denotes the L2-normalized vector. As shown in
Fig. 5 (b), this regularization can enlarge the inter-class angular
distances of class weights, improving the inter-class separability.

3.3.2 Boundary Calibration. Though parameter calibration can
eliminate the impact of biased parameters, the sparse data of minor-
ity classes leads to high feature deviation [56, 58], while majority
classes benefit frommore compact feature vectors and exhibit lower
feature deviation, so the actual decision boundaries may remain
deviated rather than as ideal as depicted in Fig. 5 (b). As shown in
Fig. 5 (c), given a minority sample of class 𝑖 , the deviated boundary
results in a larger angular distance between the sample and its
own class weight than the weight of another majority class 𝑗 (i.e.,
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Figure 5: (a)-(b) Illustration of the learning space of minority
class 𝑖 and majority class 𝑗 . The biased decision boundary is
induced by imbalanced weight magnitudes. Transferring the
weight optimization to the hypersphere alleviates the biased
boundary. Discriminative regularization can widen the dis-
tance between inter-class centroids. (c)-(d). By calibrating the
boundary of minority class 𝑖 with a high deviation to a lower
deviation, the misclassified sample is correctly classified.

𝑐𝑜𝑠𝜃𝑖<𝑐𝑜𝑠𝜃 𝑗 ). This phenomenon causes the minority sample to be
inclined toward low-confidence regions [58] and easily ill-classified.

We address the problem by dispersing the features of majority
classes to consolidate the decision boundaries of minority classes.
By scattering the features of the majority classes far from each
other, it encourages the features of minority classes to become
more compact, thereby decreasing their feature deviation. This
approach enables tail samples to obtain higher decision confidences
(i.e., 𝑐𝑜𝑠𝜃𝑖>𝑐𝑜𝑠𝜃 𝑗 in Fig.5 (d)) to alleviate miscalibration, which can
also increase the likelihood of correct classification for them. Based
on these insights, we present the dispersion loss in this section.
Pairwise Dispersion. To scatter the samples of majority classes
from each other in the feature space, we start by quantifying the
distance between them. A natural choice is the L2 distance, where
𝛿 (𝑚,𝑛) = ∥𝑚 − 𝑛∥2. Given that negative samples appear much
more frequently than head or tail samples, we choose to disperse
their features. Moreover, the head classes already tend to exhibit
overconfidence; their boundaries are less deviated compared to the
tail classes, so we only calibrate the boundaries of the tail classes.
However, we find it quickly becomes computationally unscalable if
we attempt to push every negative sample away from each other. To
address this, we relax the condition and only maximize the distance
between features of negative triplets that share the same subject 𝒔
and object 𝒐. Specifically, given triplet features 𝒇 𝒔,𝒓𝑖 ,𝒐

𝑖
and 𝒇 𝒔,𝒓 𝑗 ,𝒐

𝑗
,

where 𝒓𝑖 = 𝒓 𝑗 = 𝒄𝑛 and 𝒄𝑛 is the negative class index, we apply the
L2-normalized triplet features 𝒇 as used in Eq. 10 and define the
pairwise dispersion between selected samples as follows:

𝒅𝑖, 𝑗 =
𝛿 (𝒇 𝒔,𝒓𝑖 ,𝒐𝑖 ,𝒇

𝒔,𝒓 𝑗 ,𝒐
𝑗 )

max(𝛿 (𝒇 𝒔,𝒓𝑖 ,𝒐𝑖 ,𝒇
𝒔,𝒓 𝑗 ,𝒐
𝑗 ))

. (12)

Dispersion Loss. Following the above definition, we optimize the
model by maximizing the dispersion between features of these sets
of negative samples through the proposed dispersion loss:

L𝑛𝑒𝑔 (𝒙) =
1

|N𝒔,𝒐 |
∑︁

𝒙𝑖,𝑗 ∈N𝒔,𝒐

𝑒−𝒅𝑖,𝑗 , (13)

where N𝒔,𝒐 denotes all sets of negative samples that share the
same subject and object. This loss is influenced by distance 𝛿𝑖, 𝑗 ;
the smaller the distance, the greater the contribution to the loss.
Therefore, it can disperse the negative features within the same
object pair and further reduce the feature deviation of tail classes.

3.3.3 Target Distribution Calibration. Current SGG models do
not take into account the within-triplet distribution given by the
conditional distribution 𝑃 (𝑅 |𝑆,𝑂) as discussed in Sec. 1. Instead,
simply fitting the distribution 𝑃 (𝑅) makes the predicted probabili-
ties biased towards head classes. This causes some tail class samples,
which may be dominant in certain object pairs, to be underfit and
have low predicted confidences. Our target distribution calibra-
tion method attempts to resolve distorted target distribution by
calibrating the training target based on within-triplet distribution.

However, we observe that the triplet class amount is extremely
large (e.g., about 26,300 in the VG dataset [25]), making it challeng-
ing to directly fit within-triplet distribution data. Therefore, we opt
to transfer the target from the within-triplet distribution 𝒒𝑡 to the
relation distribution 𝒒𝑟 and construct the empirical loss as:

E𝒒𝑡
[L(𝒛, 𝒓)] =

∫
𝒒𝑡

𝒒𝑡 (𝒙)L(𝒛, 𝒓)𝑑𝑥

=

∫
𝒒𝑡

𝒒𝑡 (𝒙)
𝒒𝑟 (𝒙)

𝒒𝑟 (𝒙)L(𝒛, 𝒓)𝑑𝑥

=

∫
𝒒𝑟

𝒒𝑡 (𝒙)
𝒒𝑟 (𝒙)

L(𝒛, 𝒓)𝑑𝑥

= E𝒒𝑟
[𝝐 (𝒙)L(𝒛, 𝒓)]

=
1
|N |

∑︁
𝒙∈N

𝝐 (𝒙)L(𝒛, 𝒓),

(14)

where 𝝐 is the transferring factor to transfer target distribution.
Confidence-aware TDC (CTDC). In SGG models, we further find
the predicted relation distribution generated by the current model
better reflects the extent of overconfidence or underconfidence com-
pared to the statistical relation distribution derived from training
data (c.f. an example in Fig. 3 (d)), so we apply the predicted relation
distribution as 𝒒𝑟 in Eq. 14. Additionally, we define the empirical
within-triplet prior 𝒒𝒔,𝒐 for each set of 𝒔 and 𝒐 to constitute 𝒒𝑡 as:

𝒒𝒔,𝒐 = 𝑷 (𝑹 |𝑺 = 𝒔,𝑶 = 𝒐) =
𝑪𝒔,𝒓,𝒐∑
𝒓 ′ 𝑪𝒔,𝒓 ′ ,𝒐

, (15)

where 𝑪𝒔,𝒓,𝒐 is the count of (𝒔, 𝒓, 𝒐) triplet, which is obtained from
training data [2].We then define the transferring factor 𝝐 as:

𝝐 (𝒙) = 𝒒𝑡 (𝒙)
𝒒𝑟 (𝒙)

=
𝒒𝒔,𝒐 (𝒙)
𝒒𝑟 (𝒙)

=

{
𝒒𝒔,𝒐 (𝒙 )
𝒒𝑟 (𝒙 ) , 𝒓 ∈ T
𝒒𝒔,𝒐 (𝒙), 𝒓 ∈ H ,

(16)

where 𝝐 can dynamically transfer the predicted relation distribution
to align the current target with the within-triplet distribution. For
head classes, 𝒒𝑟 (𝒙) is set as 1, as they are overconfident and do not
need further transferring targets. To ensure 𝝐 of tail classes exceeds
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that of head classes, the lower bound of 𝝐 in tail classes is set to 1.
Then, we use the following loss to optimize the calibrated targets:

L𝑡𝑑𝑐 (𝒙) =
1
|N |

∑︁
𝒙∈N

−𝝐 (𝒙) log �̂�. (17)

Label-aware TDC (LTDC).Nevertheless, we find there is variation
in distribution within tail classes, where some tail classes appear
much more frequently than others, so it becomes increasingly diffi-
cult to learn transferred targets with a smaller number of available
samples. Finally, the CTDC module may not always achieve the
desired calibration effect. Therefore, we further propose a label-
aware TDC on top of CTDC to deal with inter-tail-class distribution
differences. Specifically, we take into account the sample size of tail
classes [5, 65], and design a label-aware factor that increases with
smaller class sizes, which can assist harder-to-learn tail classes to
effectively arrive at the optimal objective, formulated as follows:

𝝐 (𝒙) =
{

𝒒𝒔,𝒐 (𝒙 )
𝒒𝑟 (𝒙 ) ∗ (1−𝛽𝒏(𝒙 ) )

(1−𝛽𝒏𝑚𝑎𝑥 ) , 𝒓 ∈ T
𝒒𝒔,𝒐 (𝒙), 𝒓 ∈ H ,

(18)

where 𝛽 is a hyperparameter between 0 and 1, 𝒏 is the sample size
of tail classes, and 𝒏𝑚𝑎𝑥 is the maximum sample size in tail classes.
To ensure the effectiveness of CTDC, the label-aware factor should
not fall below 1, so we set 1−𝛽𝒏𝑚𝑎𝑥 as the denominator. In this
manner, the label-aware factor assigned to the largest sample size
remains 1, while progressively increasing with smaller sample sizes.
CurriculumTarget Regulation (CTR).Awell-designed balanced
learning method should achieve an optimal trade-off across all
classes [4, 29]. However, we find that the unrestrained target cal-
ibration mechanisms may excessively reduce the confidence of
traditionally easy-to-learn head classes and impair their perfor-
mance. We refer to this problem as overcalibration. Inspired by
curriculum learning [55], we try different scheduling functions
to regulate the learning focus from easy-to-learn head classes to
hard-to-learn tail classes. Specifically, we consider modulating the
transferring factor 𝝐 (𝒙) byH(𝝐 (𝒙), 𝒕), a curriculum function that
is related to the current training iteration 𝒕 . As shown in Fig. 4 (b),
we first try three conventional single curriculum functions in TDC:

1) Linear form: H(𝝐 (𝒙), 𝒕) = 𝒕
𝑻 ∗ 𝝐 (𝒙);

2) Convex form:H(𝝐 (𝒙), 𝒕) = 𝑠𝑖𝑛( 𝒕𝜋2𝑻 ) ∗ 𝝐 (𝒙);
3) Concave form:H(𝝐 (𝒙), 𝒕) = ( 𝒕𝑻 )

2 ∗ 𝝐 (𝒙) .
Here, 𝑻 is the total number of iterations. In addition to the single

curriculum functions, we introduce a piecewise curriculum function
shown in Eq. 19. In the first stage, an upper limit M is used to
actively restrict the excessive calibration of 𝝐 on tail classes to
ensure the effective learning of easy-to-learn head classes. In the
second stage, there are no longer constraints on the factor 𝝐 , shifting
more learning focus toward the hard-to-learn tail classes.

H(𝝐 (𝒙), 𝒕) =
{
𝑚𝑖𝑛(𝝐 (𝒙),M), 𝒕 ≤ 𝜶𝑻 ,𝜶 ∈ (0, 1)
𝝐 (𝒙), 𝜶𝑻 < 𝒕 ≤ 𝑻 .

(19)

3.4 Training Objective
The overall training objective consists of the discriminative regular-
ization loss (Eq. 11), dispersion loss (Eq. 13), and target distribution
calibration loss (Eq. 17). The final loss function is:

L = L𝑟𝑒𝑔 + L𝑛𝑒𝑔 + L𝑡𝑑𝑐 . (20)

4 EXPERIMENT
4.1 Datasets and Metrics
Datasets. We conduct experiments on two large-scale, long-tailed
SGG datasets: the Visual Genome (VG) [25] and GQA-200 [19].
Tasks. We evaluate our proposed methods on three SGG tasks: 1)
Predicate Classification (PredCls): The prediction of relation cate-
gories given object pairs’ bounding boxes and their corresponding
labels. 2) Scene Graph Classification (SGCls): The prediction of
both object and relation categories given bounding boxes. 3) Scene
Graph Generation (SGDet): The detection of bounding boxes and
classification of both object pairs and their relationships.
Metrics. We evaluate our method from two aspects: effectiveness
on calibration and balanced learning for SGG. In the former, we
report the proposed metric SGECE to measure calibration. In the
latter, we use three commonly-used metrics: Recall@K (R@K)
[57, 62], mean Recall@K (mR@K) [31, 48], and the mean of the
above two metrics, MR@K. R@K tends to be more biased towards
head classes, while mR leans towards tail classes. MR@K provides a
more comprehensive and balanced evaluation of all relation classes
[30, 64]. More implementation details can be found in the appendix.

4.2 Effectiveness on Model Calibration
We first demonstrate the effectiveness of our method in addressing
miscalibration, showcasing calibration performance both quanti-
tatively and qualitatively. Specifically, we compare three types of
methods: 1) specialized train-time calibration methods, e.g., FL
(Focal Loss) [41] and LAS (Label-Aware Smoothing) [65]; 2) prob-
ability post-processing method for long-tailed classification: LA
(Logit Adjustment) [39, 50]; 3) SOTA balanced-learning methods
for SGG, e.g., FGPL [36], IETrans [63] and NICE [30].
Quantitative Analysis. In Tab. 1, we have five observations: 1) The
baseline model exhibits poor performance on SGECE, mR@K, and
MR@K, indicating miscalibration and unbalanced learning. On the
other hand, COC demonstrates superior performance on SGECE,
mR@K, and MR@K, suggesting that COC effectively calibrates
overconfidence in head classes and underconfidence in tail classes,
resulting in substantial calibration improvement and more balanced
recall performance. 2) COC achieves the best SGECE and MR@K,
demonstrating its superior ability to mitigate miscalibration while
achieving an optimal trade-off performance across all classes. 3)
Specialized classification calibration methods (FL and LAS) obtain
similar SGECE to other specialized balanced-learning methods in
SGG, but their worse mR@K and MR@K performances indicate
that they perform suboptimally on balanced learning for long-tailed
SGG. This highlights the need for specialized calibration solutions
tailored to long-tailed SGG. 4) LA is a subpar calibration method,
as it performs worse than COC on nearly all metrics. 5) IETrans
outperforms COC on mR@K, but its inferior SGECE reflects poorer
calibration capability. The lower R@K demonstrates IETrans sacri-
fices much more majority class performance for the improvement
of minority classes, so it is not an optimal calibration method.
Qualitative Analysis. As shown in Fig. 6, compared to other meth-
ods, COC can more effectively reduce the gaps between confidence
and accuracy in reliability diagrams and achieve lower SGECE
across all three SGG tasks, which proves the superior effectiveness
of COC on model calibration for long-tailed SGG.
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Figure 6: Reliability diagrams with 15 bins of different models trained on the VG dataset. The baseline is Motifs [62].
Baseline +PC (w/o Discriminative Regular) +PC +PC+BC +TDC (LTDC)+TDC (CTDC+CTR)+TDC (CTDC) +TDC (LTDC+CTR)

Figure 7: Reliability diagrams with 15 bins of each component in COC on the VG dataset (PredCls task).

Models PredCls SGCls SGDet
R/mR/MR@100 SGECE R/mR/MR@100 SGECE R/mR/MR@100 SGECE

Baseline [62] 68.0 / 15.8 / 41.9 75.2 40.1 / 8.5 / 24.3 76.4 37.3 / 7.1 / 22.2 76.2
+FL [41] 66.7 / 18.6 / 42.7 43.5 40.6 / 10.4 / 25.5 42.9 33.7 / 8.2 / 21.0 45.5
+LAS [65] 65.7 / 19.2 / 42.5 34.2 40.1 / 10.6 / 25.4 36.6 35.6 / 8.5 / 22.1 37.3
+LA [39] 56.6 / 34.9 / 45.8 41.8 33.5 / 19.1 / 26.3 43.6 33.5 / 13.7 / 23.6 54.8
+FGPL [36] 55.3 / 36.8 / 46.1 33.0 28.1 / 21.6 / 24.9 31.4 27.9 / 17.4 / 22.7 33.7
+IETrans [63] 50.5 / 39.0 / 44.8 35.5 30.3 / 22.4 / 26.4 34.7 27.3 / 17.7 / 22.5 37.0
+NICE [30] 57.2 / 32.3 / 44.8 33.1 33.8 / 17.4 / 25.6 32.5 30.8 / 14.3 / 22.6 34.3
+COC 62.0 / 38.3 / 50.2 26.6 37.8 / 20.5 / 29.2 25.2 32.0 / 17.4 / 24.7 32.4

Table 1: Calibration performance of different models on the
VG. We re-implement other works using their open-source
projects on our platform to obtain the new SGECE results.

4.3 Effectiveness on Balanced Learning
Our method not only demonstrates strong effectiveness in model
calibration but also in balanced learning for SGG. We compare it
with SOTAs on long-tailed VG benchmarks. These methods can be
divided into two groups.: 1) model-specific models, e.g., BGNN [31],
RU-NET [34], and PeNet [64], 2) model-agnostic methods, e.g.,
FGPL [36], IEtrans [63], NICE [30], Inf [2], DKBL [4] and CFA
[29]. Our method belongs to the latter and exhibits good flexibility.
We evaluate various baseline models to show the robustness and
proficiency of our method, e.g.,Motifs [62] and VCTree [49].
VG.We make four observations from Tab. 2: 1) Compared to the
baselines, our method exhibits significant performance gains in
mR@K and MR@K across three tasks. For example, it improves
114% ∼ 135% on mR@100 and 6% ∼ 20% on MR@100 across three
tasks on the Motifs baseline. 2) Other methods that outperform ours
in mR@K experience a more significant drop in R@K, indicating
the excessive sacrifice of head-class performance for tail-class im-
provement. Conversely, COC enhances mR@K without substantial
degradation in R@K and achieves superior MR@K, which shows
that COC more effectively addresses underconfidence in tail classes

while maintaining balanced performance between various classes.
3) After applying RelNms to eliminate redundant predictions [34],
our method surpasses other model-specific and model-agnostic ap-
proaches in mR@K and MR@K on Predcls and SGCls. 4) Although
the mR@K performance of COC may not be optimal in the SGDet
task, the lower drop in R@K and superior MR@K also indicate
excellent balanced learning capabilities of COC in the SGDet task.
GQA-200. We evaluate COC on GQA-200 (c.f. Tab. 3) and find it
outperforms other SOTAs on MR@K across three tasks. We also
confirm COC can improve model calibration on GQA-200 (c.f. ap-
pendix). These verify the scalability and generalizability of COC.

4.4 Ablation Study
Effectiveness of Each Component. In Fig. 7, we make three
observations: 1) PC, BC, and the final TDC all decrease SGECE
from the baseline, demonstrating their effectiveness in improving
calibration. 2) The SGECE performance of CTDC is inferior to
that of LTDC, demonstrating the necessity of focusing more on
the harder-to-learn tail classes. 3) Without the CTR module, the
SGECE of CTDC and LTDC slightly degrades. Inclusion of the
CTR decreases SGECE, indicating its ability to enhance calibration.
Furthermore, in Tab. 4, we observe that each module contributes
to the improvement of mR@K and MR@K, indicating the validity
of each module in addressing the unbalanced learning. Further
analysis of each component in COC can be found in the appendix.
Influence of Components in TDC. We conduct ablation studies
on the components of TDC in Tab. 5. We obtain three observations:
1) The first row shows the effectiveness of CTDC in improving
calibration and balanced learning, evident in the performance gains
in SGECE, mR@K, and MR@K. 2) Comparing the first row with the
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Models PredCls SGCls SGDet

R@50 / 100 mR@50 / 100 MR@50 / 100 R@50 / 100 mR@50 / 100 MR@50 / 100 R@50 / 100 mR@50 / 100 MR@50 / 100

BGNN [31] CVPR ’21 59.2 / 61.3 30.4 / 32.9 44.8 / 47.1 37.4 / 38.5 14.3 / 16.5 25.9 / 27.5 31.0 / 35.8 10.7 / 12.6 20.9 / 24.2
RU-Net ∗ [34] CVPR ’22 67.7 / 69.6 - / 24.2 - / 46.9 42.4 / 43.3 - / 14.6 - / 29.0 32.9 / 37.5 - / 10.8 - / 24.2
PeNet-Rwt ∗ [64] CVPR ’23 59.0 / 61.4 38.8 / 40.7 48.9 / 51.1 36.1 / 37.3 22.2 / 23.5 29.2 / 30.4 26.5 / 30.9 16.7 / 18.8 21.6 / 24.9

Motifs [48, 62] CVPR ’18 65.3 / 67.2 14.9 / 16.3 40.1 / 41.8 38.9 / 39.8 8.3 / 8.8 23.6 / 24.3 32.1 / 36.8 6.6 / 7.9 19.4 / 22.4
+ FGPL [36] CVPR ’22 51.5 / 55.4 33.0 / 37.5 42.3 / 46.5 23.4 / 24.0 21.3 / 22.5 22.4 / 23.3 20.8 / 23.6 15.4 / 18.2 18.1 / 20.9
+ IETrans [63] ECCV ’22 48.6 / 50.5 35.8 / 39.0 42.2 / 44.8 29.4 / 30.2 21.5 / 22.8 25.5 / 26.5 23.5 / 27.2 15.5 / 18.0 19.5 / 22.6
+ NICE [30] CVPR ’22 55.1 / 57.2 29.9 / 32.3 42.5 / 44.8 33.1 / 34.0 16.6 / 17.9 24.9 / 26.0 27.8 / 31.8 12.2 / 14.4 20.0 / 23.1
+ Inf [2] CVPR ’23 51.5 / 55.1 24.7 / 30.7 38.1 / 42.9 32.2 / 33.8 14.5 / 17.4 23.4 / 25.6 23.9 / 27.1 9.4 / 11.7 16.7 / 19.4
+ DKBL [4] ACMMM ’23 54.2 / 55.6 35.4 / 37.6 44.8 / 46.6 31.3 / 31.9 20.4 / 21.4 25.9 / 26.7 25.8 / 29.3 14.1 / 16.7 20.0 / 23.0
+ CFA [29] ICCV ’23 54.1 / 56.6 35.7 / 38.2 44.9 / 47.4 34.9 / 36.1 17.0 / 18.4 26.0 / 27.3 27.4 / 31.8 13.2 / 15.5 20.3 / 23.7
+ COC 59.7 / 62.0 35.3 / 38.3 47.5 / 50.2 36.8 / 37.8 19.6 / 20.5 28.2 / 29.2 27.6 / 32.0 15.1 / 17.4 21.4 / 24.7
+ COC ∗ 61.4 / 63.8 37.5 / 41.1 49.5 / 52.5 38.6 / 39.7 22.0 / 23.6 30.3 / 31.7 - - -

VCTree [48, 49] CVPR ’19 65.4 / 67.2 16.7 / 18.2 41.1 / 42.7 46.7 / 47.6 11.8 / 12.5 29.3 / 30.1 31.9 / 36.2 7.4 / 8.7 19.7 / 22.5
+ FGPL [36] CVPR ’22 42.4 / 43.7 37.5 / 40.2 40.0 / 42.0 27.2 / 28.0 26.2 / 27.6 26.7 / 27.8 20.3 / 22.9 16.2 / 19.1 18.3 / 21.0
+ IETrans [63] ECCV ’22 48.0 / 49.9 37.0 / 39.7 42.5 / 44.8 30.0 / 30.9 19.9 / 21.8 25.0 / 26.4 23.6 / 27.8 12.0 / 14.9 17.8 / 21.4
+ NICE [30] CVPR ’22 55.0 / 56.9 30.7 / 33.0 42.9 / 45.0 37.8 / 39.0 19.9 / 21.3 28.9 / 30.2 27.0 / 30.8 11.9 / 14.1 19.5 / 22.5
+ Inf [2] CVPR ’23 59.5 / 61.0 28.1 / 30.7 40.1 / 41.8 40.7 / 41.6 17.3 / 19.4 29.0 / 30.5 27.7 / 30.1 10.4 / 11.9 19.1 / 21.0
+ DKBL [4] ACMMM ’23 53.8 / 55.2 35.6 / 37.6 44.7 / 46.4 31.8 / 32.5 19.8 / 21.4 25.8 / 27.0 25.7 / 29.3 13.2 / 15.7 19.5 / 22.5
+ CFA [29] ICCV ’23 54.7 / 57.5 34.5 / 37.2 44.6 / 47.4 42.4 / 43.5 19.1 / 20.8 30.8 / 32.2 27.1 / 31.2 13.1 / 15.5 20.1 / 23.4
+ COC 60.3 / 62.6 34.7 / 37.6 47.5 / 50.1 42.0 / 43.3 23.3 / 24.6 32.7 / 34.0 27.5 / 31.7 12.8 / 15.0 20.2 / 23.4
+ COC ∗ 62.0 / 64.5 37.0 / 40.5 49.5 / 52.5 43.4 / 44.9 25.3 / 27.6 34.4 / 36.3 - - -

Table 2: Performance of SOTA SGG models on VG. Models using the RelNms trick proposed in [34] are marked by ∗.
Models PredCls SGCls SGDet

R@50 / 100 mR@50 / 100 MR@50 / 100 R@50 / 100 mR@50 / 100 MR@50 / 100 R@50 / 100 mR@50 / 100 MR@50 / 100

Motifs [9, 62] CVPR ’18 65.3 / 66.8 16.4 / 17.1 40.9 / 42.0 34.2 / 34.9 8.2 / 8.6 21.2 / 21.8 28.9 / 33.1 6.4 / 7.7 17.7 / 20.4
+ GCL [9] CVPR ’22 44.5 / 46.2 36.7 / 38.1 40.6 / 42.2 23.2 / 24.0 17.3 / 18.1 20.3 / 21.1 18.5 / 21.8 16.8 / 18.8 17.7 / 20.3
+ CFA [29] CVPR ’23 - / - 31.7 / 33.8 - / - - / - 14.2 / 15.2 - / - - / - 11.6 / 13.2 - / -
+ COC 56.1 / 57.9 36.7 / 38.7 46.4 / 48.3 28.4 / 29.1 18.2 / 19.0 23.3 / 24.1 23.9 / 27.5 15.4 / 17.8 19.7 / 22.7

VCTree [9, 49] CVPR ’19 63.8 / 65.7 16.6 / 17.4 40.2 / 41.6 34.1 / 34.8 7.9 / 8.3 21.0 / 21.6 28.3 / 31.9 6.5 / 7.4 17.4 / 19.7
+ GCL [9] CVPR ’22 44.8 / 46.6 35.4 / 36.7 40.1 / 41.7 23.7 / 24.5 17.3 / 18.0 20.5 / 21.3 17.6 / 20.7 15.6 / 17.8 16.6 / 19.3
+ CFA [29] CVPR ’23 - / - 33.4 / 35.1 - / - - / - 14.1 / 15.0 - / - - / - 10.8 / 12.6 - / -
+ COC 55.8 / 57.7 37.3 / 39.4 46.6 / 48.6 27.2 / 27.8 17.9 / 18.8 22.6 / 23.3 22.3 / 25.6 13.3 / 15.3 17.8 / 20.5

Table 3: Performance of SOTA SGG models on GQA-200.

M Components PredCls
PC BC TDC R@50/100 mR@50/100 MR@50/100 SGECE

0 % % % 65.2 / 67.2 14.9 / 16.3 40.1 / 41.8 75.2
1 ! % % 65.4 / 67.3 20.4 / 22.0 42.9 / 44.7 49.5
2 ! ! % 64.1 / 66.1 24.7 / 26.0 44.4 / 46.1 41.7
3 ! % ! 60.6 / 62.5 33.0 / 35.1 46.8 / 48.8 28.4
4 ! ! ! 59.7 / 62.0 35.3 / 38.3 47.5 / 50.2 26.6

Table 4: The ablation study of each component in COC.

M Components PredCls
CTDC LTDC CTR R@50/100 mR@50/100 MR@50/100 SGECE

0 % % % 64.1 / 66.1 24.7 / 26.0 44.4 / 46.1 40.5
1 ! % % 63.2 / 65.6 25.5 / 28.2 44.4 / 46.9 45.9
2 % ! % 57.8 / 60.2 31.1 / 34.5 44.5 / 47.4 31.8
3 ! % ! 63.3 / 65.5 27.9 / 30.4 45.6 / 48.0 43.4
4 % ! ! 59.7 / 62.0 35.3 / 38.3 47.5 / 50.2 26.6

Table 5: The ablation study of each component in TDC.

Curriculum PredCls
R@50/100 mR@50/100 MR@50/100 SGECE

TDC (w/o CTR) 57.8 / 60.2 31.1 / 34.5 44.5 / 47.4 31.8
w/ CTR-Concave 59.6 / 61.5 33.9 / 36.8 46.8 / 49.2 26.9
w/ CTR-Linear 58.5 / 61.1 31.5 / 34.9 45.0 / 48.0 30.6
w/ CTR-Convex 58.1 / 60.3 31.5 / 35.3 44.8 / 47.8 30.9
w/ CTR-Piecewise 59.7 / 62.0 35.3 / 38.3 47.5 / 50.3 26.6

Table 6: The ablation study of different curriculum functions.
second row reveals the efficacy of the label-aware strategy in boost-
ing harder-to-learn tail classes, resulting in notable improvements
in both mR@K, MR@K, and SGECE. 3) A comparison between
the second and fourth rows reveals the effectiveness of CTR for
addressing the overcalibration issue, thereby mitigating the drop in
R@K and achieving better MR@K as well as improved calibration.

Influence of Curriculum Function in TDC. In Tab. 6, we exper-
iment with different curriculums in TDC. We find: 1) Incorporating
the target regulation improves both MR@K and SGECE. This indi-
cates that CTR can adjust the learning process in a more balanced
fashion and achieve better calibration performance. 2) Through
empirical validation, the piecewise curriculum function performs
the best, which demonstrates the validity of its design insights.

5 CONCLUSION
Calibration is essential yet neglected for SGG. We are the first
to conduct a comprehensive study on calibration for long-tailed
SGG. We analyze three factors that aggravate miscalibration and
unbalanced learning. To solve them, we propose a compositional op-
timization calibration method. Specifically, our method comprises
a parameter calibration module to eliminate biased parameters, a
boundary calibration module to reduce deviated boundaries, and a
target distribution calibration module to calibrate distorted target
distribution. We also design a curriculum-based learning method
to alleviate the overcalibration. Extensive experiments on SGG
benchmarks validate the effectiveness of our method in improving
calibration, with optimal trade-off performance across various met-
rics. Furthermore, our work may set the stage for future research
on the SGG task to not only focus on evaluating long-tailed bench-
marks but also on our established calibration benchmarks to ensure
the reliability and secure application of their designed models.
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