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Abstract—External fingerprints (EFs) based only on epidermal
information are vulnerable to spoofing attacks and non-ideal skin
conditions. To solve such shortcomings, internal fingerprints (IFs)
collected using optical coherence tomography (OCT) have been
proposed and widely researched. However, the development of IF
is limited by the lack of in-depth researches on the IF and the EF-IF
interoperability, which is partially caused by the lack of public
OCT database. The obvious gap in the applications of EF and IF
recognition motivated us to design and publish a comprehensive
fingerprint database containing both traditional EFs and OCT IFs,
denoted as ZJUT-EIFD. To the best of our knowledge, ZJUT-EIFD
is the first public database that combines OCT and total internal
reflection (TIR) via synchronous acquisition, with 399 different
fingers from 60 subjects. In this article, the composition of the
database, the quality of EFs and IFs, and the verification perfor-
mance of different types of fingerprints were detailed. In addition,
potential application directions of ZJUT-EIFD were demonstrated.
ZJUT-EIFD can serve benchmarks and interoperability tests for
EF-IF research, which will promote the research and development
of EF and IF.

Index Terms—Biometrics, fingerprint database, total internal
reflection, optical coherence tomography, fingerprint recognition.

I INTRODUCTION

W ITH the continuous development of information tech-
nology, biometric identification has played a crucial

part in security-related applications, such as national defense,
financial security, intelligent human–computer interaction, etc
[1], [2], [3]. Within various biometrics, fingerprint has become
one of the most widely used identification features due to its
uniqueness, permanence, simplicity, reliability, and accuracy
[4], [5], [6], [7], where the former two are the basis of fingerprint

Manuscript received 2 January 2023; revised 3 October 2023; accepted
4 November 2023. Date of publication 28 November 2023; date of current
version 6 March 2024. This work was supported in part by the National Natural
Science Foundation of China under Grants 61976189, 62276236, and U1909203,
and in part by Zhejiang Provincial Leading Innovation and Entrepreneurship
Team under Grant 2021R01002. Recommended for acceptance by W. Scheirer.
(Corresponding author: Haixia Wang.)

Haohao Sun, Haixia Wang, Yilong Zhang, Ronghua Liang, and Peng Chen
are with the College of Computer Science & Technology, Zhejiang University of
Technology, Hangzhou 310023, China (e-mail: hhsun@zjut.edu.cn; hxwang@
zjut.edu.cn; zhangyilong@zjut.edu.cn; rhliang@zjut.edu.cn; chenpeng@
zjut.edu.cn).

Jianjiang Feng is with the Department of Automation, Tsinghua University,
Beijing 100084, China, and also with the Beijing National Research Center
for Information Science and Technology, Tsinghua University, Beijing 100084,
China (e-mail: jfeng@tsinghua.edu.cn).

ZJUT-EIFD is available at https://github.com/ZJUT-ERCISS-home/ZJUT-
EIFD/

Digital Object Identifier 10.1109/TPAMI.2023.3334760

Fig. 1. Examples of spoofing artifact and fingerprints obtained under poor
skin conditions.

identification [8]. For uniqueness, it has been generally believed
that no two individuals (including monozygotic twins) have
exactly the same fingerprints [9], [10]. For permanence, it has
also been claimed that even if fingerprints temporarily change
due to minor cuts and bruises on the skin, the original ridge
pattern reverts after the finger heals except for a significant injury
that creates a permanent scar [7].

However, the development of current mainstream fingerprint
technology is limited by capturing only skin surface information.
Commercial off-the-shelf automatic fingerprint identification
systems (AFIS), which are mainly based on the protrusions and
depressions of the stratum corneum (the outermost layer of the
epidermis), suffer from spoofing attacks and unstable fingerprint
quality. Taking fingerprint images by total internal reflection
(TIR) as examples, as shown in Fig. 1, the anti-spoofing and
identification performances drop rapidly under the influence of
various spoofing attacks and poor skin conditions (e.g., dirt,
dryness, sweat, scars, wounds, warts, attachments, wrinkles,
aging and creases, etc.) [11], [12], [13], [14], [15], [16].

Fortunately, with the development of optics, fiber optics,
and laser technology, optical coherence tomography (OCT)
has become an indispensable tool in biomedical and biometric
imaging [17], [18]. The application of internal fingerprint (IF)
obtained by OCT to fingerprint identification has become an
active research area to reduce the defects of external fingerprint
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(EF) [19], [20], [21], [22]. Bossen et al. conducted matching
experiments on the IFs extracted from OCT cross-sectional
images (called B-scan images, and the lines formed in the depth
direction are called A-lines) and found that the IFs can be used
for accurate and reliable fingerprint recognition [23]. Aum et al.
intuitively compared the quality between IFs and EFs. It is found
that the OCT IFs can effectively resist the poor quality of EFs
under the conditions of wetness, attachment, and damage [21].
Yu et al. obtained clear IFs and subcutaneous sweat pore images
by enface imaging and contrast-enhanced method [24]. Liu et al.
realized the successful detection of multiple types of spoofing
attacks by peak features (called depth-double-peak feature and
sub-single-peak feature) [25] and neural networks [26]. Yu
et al. used neural networks to complete the style conversion
between OCT fingerprints and TIR fingerprints, and realized the
meticulous registration of fingerprints from different collection
devices [27]. Ding et al. introduced deep learning into the OCT
fingerprint reconstruction, and demonstrated that IF has better
identification performance than EF when the hand condition is
poor [28]. These studies have proved the application prospects
of IF in recognition.

The development of IF in real-world applications is limited by
the lack of in-depth research on IF and large OCT databases. IF is
considered as a supplement to traditional EF due to the following
reasons: 1) The fingerprint equipment used to enroll a user’s
fingerprint image at one location (e.g., conventional EF reader)
may not be the same equipment used later to identify or verify the
same individual at another location (e.g., OCT IF equipment).
2) The cost of re-enrolling all users by OCT IF equipment
could be prohibitively high [15], [29], [30]. These situations
underscore the necessity of studying the EF-IF interoperability
before local deployment or trial use of OCT AFISs. However,
EF-IF interoperability remains a research area far from maturity.
Evaluating potential EF-IF interoperability exhaustively and
objectively is limited by the lack of data support, which restricts
the application of IF in real scenarios.

The obvious gap in the application of EF-IF identification
motivated us to design and publish a comprehensive fingerprint
database containing both traditional EFs and OCT IFs, denoted
as ZJUT-EIFD. It is inspired and acquired by our recent work
[31], a synchronous fingerprint acquisition system. ZJUT-EIFD
aims to provide benchmarks and interoperability tests for EF-IF
research. As far as we know, this is the first public fingerprint
database that contains both traditional EFs and OCT IFs col-
lected simultaneously. The synchronous acquisition indicates
there is only minimal distortion between the paired fingerprints.
Such an advantage gives the proposed database broad prospects
for the study of fingerprint interoperability between EFs and IFs.

More concisely, the contributions of this research are:
1) To the best of our knowledge, ZJUT-EIFD is the first public

fingerprint database that combines synchronous OCT and
TIR acquisitions.

2) ZJUT-EIFD composition is comprehensive. It contains
not only the source data of TIR and OCT, but also the
processed TIR and OCT fingerprints whose resolutions are
normalized to 500 dpi. The source data of OCT consists
of high-resolution fingertip cross-sectional images, which

can be used as raw data for OCT fingerprint reconstruction
and anti-spoofing research.

3) Fingerprints of various types in ZJUT-EIFD are evaluated
and discussed in detail. A thorough evaluation of the
recognition capabilities and the interoperability of IFs
and traditional EFs is conducted using both conventional
matcher and deep learning-based matcher. The application
potential of IF is demonstrated.

The remaining part of this article is organized as follows.
Related works of the OCT fingerprint researches and existing
fingerprint databases are presented in Section II. Then, the
design of the ZJUT-EIFD is detailed in Section III. The data
in ZJUT-EIFD are demonstrated in Section IV. The evaluation
of EFs and IFs on the ZJUT-EIFD are presented in Section V. In
Section VI, discussions concerning the future research directions
of ZJUT-EIFD are carried out. Finally, conclusions are drawn in
Section VII.

II RELATED WORKS

A. Acquisition of EF and IF

The wide application of EF is inseparable from the diversity
of EF acquisition technologies. The most widely used in the
early days was ink-pressed fingerprints [7]. As time advances,
different techniques have been developed for EF acquisition.
Tartagni et al. used silicon-based micro-capacitor plates to ac-
quire EFs [32]. The solid-state sensor requires neither optical
components nor an external image sensor. Bahuguna et al. used
a holographic prism to obtain TIR EF, which not only guaran-
teed the image quality but also reduced the volume of optical
components [33]. Parizale et al. used 5 cameras and obtained
3D EF based on stereo vision [34]. Liu et al. used 3 cameras to
achieve multi-view EF acquisition and mosaicking [35]. Kumar
et al. used a multi-light source single camera and Photometric
Stereo to achieve 3D EF acquisition and reconstruction [36].
Lu et al. used capacitive micromachined ultrasonic transducers
and obtained ultrasonic EF at 254 dpi resolution [37]. Wang
et al. introduced an EF acquisition technique using structured
light illumination to acquire high-resolution 3D EF using a
single camera [38]. Engelsma et al. combined direct imaging
and TIR technology into a device called RaspiReader, which can
simultaneously obtain these two types of EFs [39]. Grosz et al.
used mobile phones to obtain finger photos. They proposed a
contact to contactless fingerprint matching method and verified
the cross-database performance under contactless and contact
fingerprints [40]. However, all these methods for fingerprint
acquisition only acquire finger surface information. The spread
of EF applications is still limited by the uncontrollable hand
conditions and the diversity of spoofing materials [41].

Unlike EF acquisition devices, IF acquisition is realized
mainly using OCT to acquire images of the internal structure
of the skin at a depth of mm. OCT techniques can be di-
vided into B-scan-based and C-scan-based methods [18]. For
B-scan-based methods, the skin structure is composed of a
series of cross-sectional images through the lateral scanning
of the light beam. As the beam finally scans all positions,
the OCT 3D volume data of the internal finger structure is
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formed. This technology includes two different OCT types:
time-domain OCT (TD-OCT) and Fourier/frequency-domain
OCT (FD-OCT). FD-OCT can be divided into spectral domain
OCT (SD-OCT) and swept source OCT (SS-OCT). Cheng et al.
used autocorrelation analysis to verify the ability of TD-OCT
to resist artificial fingerprints [19]. Alex et al. built multiple
FD-OCT systems using light sources of different wavelengths
and classified the internal physiology of the skin in detail [42].
For the C-scan-based method, it is mainly achieved by full-field
OCT (FF-OCT). An en-face image of a certain depth can be
obtained by single acquisition of FF-OCT. The formation of
volume data requires scanning of all depths. Auksorius et al.
used FF-OCT to image the finger and compared the difference
between the IFs of FF-OCT and EFs of TIR [43].

Compared with traditional fingerprint collection devices that
can directly obtain EFs for recognition, the volume data col-
lected by OCT is difficult to use for direct matching due to
problems such as large redundant data and high speckle noise.
To be more compatible with existing fingerprint matching algo-
rithms, extraction algorithms that reconstruct OCT fingerprints
from OCT volume data are required.

B. OCT Fingerprint Reconstruction

The purpose of the OCT fingerprint reconstruction is to
quickly and accurately extract fingerprint information from the
3D structure. According to the different extraction depths in
the internal structure of the fingertip, OCT fingerprints can be
divided into EFs and IFs. The EFs are mainly formed by the
protrusions and depressions of the stratum corneum. The IFs
mainly come from the boundary between the viable epidermis
and the stratum corneum. In the application of OCT fingertip
imaging, past studies have shown that the IF pattern is consistent
with the epidermis [21]. The IFs extracted from the viable
epidermis junction are not easily damaged and forged, thereby
becoming powerful complements of EFs [28], [44], [45].

With the manifestation of the superiority of IFs, a variety of
reconstruction methods have been proposed to generate better-
quality OCT fingerprints. These methods can be roughly divided
into two categories: en-face-based methods and contour-based
methods.

In the en-face-based methods, FF-OCT can directly obtain
the IF of fixed depth. Raja et al. proposed a quality metric-based
framework to fuse different fixed-depth IFs directly obtained by
FF-OCT [46]. Whether it is TD-OCT or FD-OCT, the IF images
are mainly obtained by accumulating and averaging pixels with
a fixed depth or manually selected depth range in the B-scan.
Liu et al. [47] and Bossen et al. [23] set up different fixed depth
regions of OCT volume data for EF, IF, and sweat pore images
reconstruction, respectively. Zam et al. extracted IF and sweat
pores by manually segmenting the stratum corneum and viable
epidermis [48]. After that, the automatic depth detection was
applied to enface-based OCT fingerprint generation. Aum et al.
used the Sobel operation in the depth direction to locate the edge
of the viable epidermis and reconstructed the IF from it [21].
Liu et al. projected all the A-lines in a B-scan image to form a
single accumulated A-line profile, called RobustAline [49]. The

RobustAline is used to automatically find the projection zone,
and the depth pixels are accumulated in this zone to generate IF,
EF, and papillary fingerprint. Compared to contour-based meth-
ods, enface-based methods generally have a speed advantage
because precise contour location of different layers of the skin
is not required. However, the accumulation of pixels in depth
also means the accumulation of noise and errors, which leads
to a decreased fingerprint quality. In response to this defect, Liu
et al. proposed a fingerprint fusion method to improve the quality
of OCT fingerprints [49].

The aim of the contour-based method is to precisely locate the
different layers of the skin structure (mainly stratum corneum
and viable epidermis). The reconstructed fingerprint is generated
according to the gray information or depth information of the
corresponding position in the 3D structure of the finger. The
quality of OCT fingerprints generated by the contour-based
method depends on the accuracy of contour extraction. Previous
methods relied on some image gradient operators or maximum
search methods to locate skin layers, such as Findpeaks (Matlab
function) [50], Sobel [51], [52], Otsu [53], etc. Later, some clus-
tering methods are applied to segment different skin structures,
such as K-means [53], fuzzy C-means [54], hybrid hierarchical
clustering [55], etc. Recently, the use of neural networks for
fingertip OCT volume data segmentation and reconstruction has
been proposed. Wang et al. used 3D U-Net to process OCT
volume data and achieved accurate pixel-wise segmentation
[56]. Ding et al. proposed a network with the best segmentation
performance so far, (called BCL-U Net), which can simultane-
ously segment the stratum corneum, viable epidermis, and sweat
glands [28].

However, these researches on OCT IFs have two major limi-
tations caused by the data used: 1) The self-built OCT databases
are not public and the amount of data is limited. Data discrepan-
cies may lead to disagreement in the applicability assessment of
these methods; 2) the difference between the OCT IF and the EF
collected by traditional devices is not paid enough attention, the
interoperability may limit the promotion of OCT fingerprints.
These limitations suggest the need for a targeted EF-IF database
for objective algorithm evaluation and testing.

C. Fingerprint Database

In recent years, the widespread of fingerprints is benefited
from the good performance of recognition algorithms. One of
the key points of this success is the availability of fingerprint
benchmark databases. Conventional fingerprint databases are
well established and widely used. These databases include but
are not limited to:
� FVC databases [57], [58], [59], [60]. FVC databases

are originated from Fingerprint Verification Competition
(FVC). FVC established several common benchmarks, fa-
cilitating developers in conducting unambiguous compar-
ative assessments of their respective algorithms. The FVC
databases encompass several editions based on the held
years, namely FVC2000 [57], FVC2002 [58], FVC2004
[59], and FVC2006 [60], each of which is further subdi-
vided into four distinct subsets denoted as DB1-DB4.
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TABLE I
MAIN DIFFERENCES BETWEEN ZJUT-EIFD AND SZU OCTFD

� NIST special databases [61], [62], [63]. The National In-
stitute of Standards and Technology (NIST) offers an array
of fingerprint datasets specifically collected to support re-
search and development in the field of fingerprint analysis.
Among these, widely utilized datasets encompass NIST
SD4 [62] and NIST SD14 [63], among others.

� CASIA-FingerprintV5 [64]. CASIA-FingerprintV5 com-
prises fingerprints collected from volunteers situated
within diverse occupational environments.

� Tsinghua fingerprint database [65], [66], [67]. Tsinghua
fingerprint database mainly focuses on distorted fin-
gerprints and latent fingerprints, including: distorted
fingerprints [65], latent overlapped fingerprints [66], and
simulated overlapped fingerprints [67].

� PolyU fingerprint database [36], [68], [69], [70]. PolyU
fingerprint database mainly focuses on non-contact fin-
gerprints, including: contactless 3D fingerprints [36], [68],
contactless 2D to contact-based 2D fingerprints [69], and
low-resolution fingerprints [70].

� IAB fingerprint databases [71], [72], [73]. The Image
Analysis and Biometrics Lab provides diverse fingerprint
databases, including finger-selfie database [72], multisen-
sor optical and latent fingerprint database [73], etc.

� SOCOFing [74]. Sokoto Coventry Fingerprint database
Dataset (SOCOFing) includes gender labels, finger names,
and three different levels of alteration as obliteration, cen-
tral rotation, and z-cut.

� RidgeBase [75]. RidgeBase is a cross-sensor contactless
fingerprint database containing contactless 2D and contact-
based 2D fingerprint pairs. The fingerprint pairs were
collected using two smartphone cameras and one flatbed
contact sensor.

However, limited by the acquisition technologies, the finger-
prints in these databases only contain information on the outer
epidermis of the fingertips, which are essentially all EFs.

The development of IFs is inseparable from the establishment
and disclosure of the OCT fingerprint database. However, there
are few IF databases [28], [46], [54], where only the SZU
OCT-based fingerprint database (OCTFD) is publicly available
[76], [77]. In particular, there are currently only separate conven-
tional EF or OCT databases. The volunteer fingerprints collected

in these databases were from different person. Even from the
same person, there is a large distortion due to the lack of syn-
chronous acquisition. Unrelated OCT fingerprint and traditional
EF databases makes it difficult to perform EF and IF correlation
studies. The main differences between our established ZJUT-
EIFD and SZU OCT-based fingerprint databases are shown
in Table I. Compared to the regular OCT fingerprint dataset,
our ZJUT-EIFD is more comprehensive and can be used in
combination with traditional fingerprints. The TIR fingerprints
and OCT fingerprints provided can be directly used for EF-IF
correlation studies.

III ZJUT-EIFD CONSTRUCTION

The data collection of ZJUT-EIFD mainly relies on the TIR
and OCT synchronized acquisition system we built previously
[31]. This section briefly introduces the acquisition device of
ZJUT-EIFD, the method for fingerprint generation, and the
database construction.

A. Acquisition Device

1) Device Introduction: Our fingerprint synchronous acqui-
sition system is sketched in Fig. 2, where Fig. 2(a) illustrates the
optical schematic of the system and Fig. 2(b) shows the exper-
imental platform. Briefly, the synchronous acquisition system
uses a self-designed trapezoidal prism to accomplish the same
collection area at the same time. In TIR imaging, the collimated
and filtered LED light is totally reflected by the trapezoidal
prism. In OCT imaging, a broadband infrared superluminescent
diode (SLED) is used as the OCT light source. Light from the
SLED is divided into the reference arm and the sample arm by
a 50:50 fiber coupler. To obtain 3D tissue volume data on the
field of view matching TIR, the probe beam in the sample arm
is scanned by a pair of XY current galvanometric mirrors. In the
reference arm, another trapezoidal prism is used for dispersion
compensation. Light interfered from the sample arm and the
reference arm is captured by a spectrometer with an InGaAs line
scan camera. The main system parameters of the synchronous
acquisition device are shown in Table II [31].

2) Source Data: The source data collected by our synchro-
nization device in each measurement includes a grayscale image
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Fig. 2. Experimental setup of fingerprint synchronous acquisition system
based on TIR and OCT [31]. (a) Optical schematic; (b) experimental platform.

TABLE II
SYSTEM PARAMETERS OF SYNCHRONOUS ACQUISITION DEVICE

of TIR and a series of grayscale B-scan images of OCT. A
presentation of the source data is shown in Fig. 3. As shown in
Fig. 3(a), the size of the image captured by TIR is 1392 × 1040.
The fingerprint patterns collected by the TIR method are clearly
demonstrated. However, due to that the collimated beam is
incident obliquely at a certain angle to ensure total reflection

during TIR imaging, the resolution compression of the source
TIR image on one axis is produced.

As shown in Fig. 3(b), OCT realizes the acquisition of the
internal 3D spatial information (X-Y-Z) of the fingertip. Each
B-scan image is composed of multiple A-lines in the X direction.
A plurality of B-scan images in the Y direction complete a
3D volume (C-scan). The IF can be obtained by extracting
information of the viable epidermis from the 3D volume data
of the finger.

B. Fingerprint Generation

Considering that the size, distortion, and resolution of source
data of TIR and OCT are different, it is necessary to reconstruct
and align the fingerprint images in order to study the correlation
between IFs and EFs.

1) OCT Fingerprint Reconstruction: The quality and pattern
clarity of an OCT fingerprint is directly related to the OCT finger-
print reconstruction method used. To ensure that the reconstruc-
tion method has minimal impact on EF-IF correlation studies,
the current state-of-the-art contour based method (BCL-U net)
[28] is used in our dataset construction.

As shown in Fig. 4, contour extraction results from OCT
volume data, including cover glass, stratum corneum junction,
and viable epidermis junction, are obtained using BCL-U net.
We applied the reconstruction methods of fingerprints in [28] and
[56]. All OCT fingerprints corresponding to the source data were
generated. The stratum corneum junction is used to generate EF,
and the viable epidermis junction is used to generate IF.

For OCT fingerprints based on gray information (gray), a
line passing through fluctuations of the stratum corneum or
viable epidermis junction is used to estimate the fingerprints
with maximized intensity variation for ridges and valleys.

For OCT fingerprints based on depth information, there are
two different reference planes. The first is the cover glass layer
(depth1). The second is the polynomial curves fitted from the
contours of stratum corneum and viable epidermis junction
respectively (depth2). The relative depth between the stratum
corneum junction or viable epidermis junction and the reference
plane forms the fingerprints.

Finally, the fingerprint images are normalized to [0, 255].
2) Fingerprint Distortion Correction and Alignment: Differ-

ent imaging characteristics lead to different image distortions in
the generated TIR and OCT fingerprints. Before fingerprint data
collection, we calibrated the distortion parameters for TIR and
OCT imaging with the aid of a grid correction plate [31]. The
grid correction plate is actually an aluminized plane mirror with
a 15 mm × 20 mm grid on the surface, the line spacing is 1 mm,
and the line width is 0.01 mm.

As displayed in Fig. 5, the measured landmark point coordi-
nates (distortion coordinates) of the grid correction plate in TIR
and OCT imaging and the corresponding real coordinates were
obtained. Coordinate mapping was performed using the Thin
Plate Spline (TPS) algorithm [78]. The transformation matrix of
coordinates is saved and applied to the unaligned TIR and OCT
fingerprint images, respectively. Since the current standard fin-
gerprint resolution is 500 dpi and many evaluations are designed
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Fig. 3. TIR source image and OCT source images for one finger acquired using the synchronous acquisition system. The image in (a) was collected by TIR
acquisition. The images in (b) were collected by OCT acquisition. The skin structure of the finger can be clearly observed in the B-scan images of OCT.

Fig. 4. Overall flow chart from OCT volume data to reconstructed OCT fingerprints in ZJUT-EIFD. Reconstruction method refers to [28], [56].

Fig. 5. TIR and OCT fingerprints alignment using grid correction plate [31]. The area of landpoint that can be completely acquired on the OCT image is
15 mm × 13 mm; the TIR corrected image is intercepted to insure the image area consistency. The red rectangle in the TIR corrected image represents the final
intercepted area.
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TABLE III
COLLECTION DETAILS OF THE DATASET

based on this resolution, the fingerprints are all downscaled to
500 dpi for public access and quantitative evaluation.

C. Fingerprint Database Construction

The database is categorized according to the work environ-
ment, age, and collection interval of the volunteers. ZJUT-EIFD
were divided into three subsets, namely dataset-A, dataset-B,
and dataset-C. The differences of each subset are detailed in
Table III. In dataset-A, data were first collected for each volun-
teer four times (orders 1–4). After a two-month interval, data
were collected again four times from the same finger (orders
5–8). In dataset-B, in order to ensure that blue-collar workers
do not shake their fingers during acquisition, we reduce the
resolution of OCT sampling to improve the acquisition speed.
In both dataset-B and dataset-C, data were collected six times
continuously with position variation. For each identity in each
subset, the original source data of TIR image and OCT volume
data are kept. Their corresponding TIR and OCT fingerprints at
500 dpi are extracted and stored.

Furthermore, in order to facilitate future researchers to study
the relationship between different internal structures of fingers,
we label 864 B-scans from our dataset according to the internal
hierarchical structure. An example of one of the labels is shown
in Fig. 6. These manual labels are made public with ZJUT-EIFD.

IV FINGERPRINT REPRESENTATION

Owing to the difference in imaging methods and fingerprint
reconstruction methods, the IF and EF have their own char-
acteristics. In this section, we demonstrate the fingerprints in
ZJUT-EIFD and evaluate their qualities.

A. EF and IF Representation

As shown in Fig. 7, we present three sets of fingerprints
collected synchronously in ZJUT-EIFD for demonstration. The
following can be primarily observed. Firstly, comparing TIR
and OCT fingerprints, it can be clearly observed that OCT
fingerprints reconstructed by different generation methods all
have comparable low contrast. In the case of acceptable hand
conditions, the TIR fingerprint is still the first choice for finger-
print recognition compared to the OCT fingerprint.

Fig. 6. (a) Example of OCT finger cross-sectional images and (b) its corre-
sponding structure labels. The red area indicates the stratum corneum and glass
layers. The blue areas indicate the locations of the subcutaneous sweat glands.
The green curve represents the contoured localization of the viable epidermal
layer.

Secondly, gray_IFs have clearer ridge information compared
to the depth-based IFs. Grayscale fingerprints do not depend
strongly on the accuracy of contour extraction, but rely more
on pixel information. In contrast, depth fingerprint completely
relies on the accuracy of contour extraction, localized blurring
occurs when contours are lost. Compared with EF, IF by depth
is more affected by the contour accuracy. It is mainly due to the
extraction area of IF being deeper into the finger tissue. For OCT
imaging, deeper depth means a weaker returned signal resulting
in poorer imaging quality.

Although the TIR fingerprints get higher contrast, the quality
of TIR fingerprints suffers from the unstable condition of the
fingertips. Poor skin conditions can lead to a rapid decline in
the quality of TIR fingerprints. As shown in Fig. 8, we present
some representative fingerprint images in ZJUT-EIFD. These
conditions were defined as permanent hand conditions and tem-
porary hand conditions. Wear, tear and irrecoverable scratches
are considered permanent hand conditions. Dry and wet are
considered temporary hand conditions. When the defects are
permanent, the fingerprints collected by OCT can make up for
the defects of these TIR fingerprints to a certain extent. As shown
in Fig. 8(a), fingerprint wear is common to blue-collar workers,
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Fig. 7. Fingerprint examples of three fingers. Seven different kinds of fingerprints can be generated by processing the source data after single synchronous
acquisition.

Fig. 8. Some special examples of corresponding EFs and IFs. EF is the TIR fingerprint. IF is the OCT gray_IF obtained by the BCL-U gray method. (a) Wear and
tear on fingerprint. (b) Wrinkles and scratches on fingerprint. (c) and (d) Fingerprints captured from the same finger when the finger was wet or dry, respectively.
The effects of conditions (a) and (b) are considered permanent, while the effects of conditions (c) and (d) are considered temporary.

especially hand workers. As shown in Fig. 8(b), compared with
EF, IF can reduce or even eliminate the negative effects of
wrinkles and scratches. When the defects are temporary such
as wet and dry conditions, OCT IFs are not affected, as shown
in Fig. 8(c) and (d). Thus, IFs can be used as a supplement
to EF, thereby improving the recognition ability of distorted
fingerprints.

B. Quality Assessment of EF and IF

Publicly available NIST finger image quality evaluator
(NFIQ2.0) [79] was used here to evaluate our fingerprints. The

NFIQ2.0 score ranges from 0 to 100. A higher score means a
higher quality fingerprint. The statistical boxplot of NFIQ2.0
scores of EF and IF with different generation methods in our
database are shown in Fig. 9. The mean of NFIQ2.0 scores aims
to be high, whereas the 1.5IQR (interquartile range) aims to be
small.

As shown in Fig. 9, the phenomenon is generally con-
sistent with the above observations. The fingerprints be-
longing to TIR_EF and gray_IF have the highest over-
all scores. Depth1_EF, depth2_EF, and gray_EF are slightly
lower, Depth1_IF and depth2_IF get the lowest average scores
of NFIQ2.0. Horizontally comparing gray_IF and TIR_EF,
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Fig. 9. Boxplot of NFIQ2.0 scores of EF and IF in ZJUT-EIFD.

TIR_EF gets the highest average score but gray_IF has a nar-
rower 1.5IQR. It indicates that fingerprints in TIR_EF have
higher fingerprint quality while fingerprints in gray_IF are more
stable. There are mainly two factors that result in the distribu-
tion of all these scores. The first is the characteristics of OCT
imaging. The extracted area of IF is deeper than that of EF,
indicating that the returned light signal is weaker, resulting in
poor contrast in the IF area in the images of OCT. This poor
imaging quality may lead to a local loss of the contours in IF
extraction. The second is that depth fingerprints rely more on
accurate contour extraction. Once the predicted contour is lost,
the pattern of the IF cannot be obtained. Furthermore, we notice
that there are also many outliers in the NFIQ2.0 score of gray_IF.
This is mainly due to two reasons. On the one hand, permanent
hand condi-tions in dataset-B have actually seriously affected the
completeness of the internal structure of the fingers. On the other
hand, the fingerprint reconstruction algorithm still needs to be
improved.

It’s worth noted that, the depth-based fingerprint can be
affected less by OCT speckle noise since it only cares about
the position of the contour rather than the specific gray value
in the OCT B-scan image. A more accurate contour extraction
algorithm can result in higher contrast patterns in depth-based
fingerprints and also improve grayscale-based fingerprints. The
depth-based fingerprint also shows more anti-counterfeiting po-
tential. Therefore, we consider that depth-based OCT finger-
prints have great potential for development. How to combine
the advantages of depth fingerprints and grayscale fingerprints
to obtain better quality OCT fingerprints remains to be further
studied.

V VERIFICATION PERFORMANCE OF ZJUT-EIFD

In this section, we conduct a comprehensive evaluation of the
interoperability and verification capabilities of TIR fingerprints
and OCT fingerprints in ZJUT-EIFD. The commercial finger-
print matcher VeriFinger 11.1 SDK [80] and a state-of-the-art
deep learning-based method DeepPrint [81] were employed

for matching experiments to objectively reflect the verification
performance. The VeriFinger mainly relies on minutiae points
for verification while the DeepPrint estimates features from both
image texture and minutiae for verification. It is noteworthy that,
to ensure the robust generalization capabilities of DeepPrint,
the training data encompassed not only benchmark datasets of
FVC2004 and CASIA-Fingerprint but also synthetic fingerprints
generated via the utilization of Anguli [82], an open-source im-
plementation of the SfinGe [7]. The final training data includes
341k fingerprints from 44131 unique fingers. The proposed
database was not involved in training.

A. Verification Performance of Each Subset

To assess the matching efficacy across distinct fingerprint
categories within each subset, we conduct separate matching
experiments for different types of fingerprints in each subset.
Fingerprints of the same finger were taken as one class, and
fingerprints of different fingers were taken as different classes.

For dataset-A, we get 160 classes, thus there are 4480
(160 × 28) genuine matches and 12720 (160 × 159/2) imposter
matches in each types of fingerprints. For dataset-B, we get 59
classes, thus there are 885 (59 × 15) genuine matches and 1711
(59 × 58/2) imposter matches in each type of fingerprints. For
dataset-C, we get 180 classes, thus there are 2700 (180 × 15)
genuine matches and 16110 (180 × 179/2) imposter matches
in each type of fingerprints. Note that symmetric matches of
the same pair as well as matches between the same images
are excluded. The detection error tradeoff (DET) curves of
each subset are shown in Fig. 10, where Fig. 10(a)–(c) repre-
sent the matching results based on grayscale fingerprints, and
Fig. 10(d)–(f) represent the matching results based on depth
fingerprints. The DET curve plots the false match rate (FMR)
against false non-match rate (FNMR). The FMR is the rate
at which a matcher mismatches fingerprints from two distinct
individuals as coming from the same individual. The FNMR
is the rate at which a matcher miscategorizes two fingerprints
from the same individual as being from different individuals. For
the same FMR, the lower FNMR indicates the higher matching
performance. The equal error rates (EERs) of different subsets
are illustrated in Table IV.

Based solely on the outcomes derived from the VeriFinger
experiments, we can make the following observations. First
of all, it is obvious that the depth-based OCT fingerprints ex-
hibit comparative verification deficiency when compared with
grayscale-based OCT fingerprints and TIR fingerprints. Depth-
based OCT fingerprints only rely on different depths of the
finger structure. As a new type of fingerprint, depth-based finger-
prints are quite different from traditional fingerprints in terms
of intensity distribution, contrast and so on, which leads to a
low fitness to the minutiae-based matching algorithm and thus
makes depth-based fingerprints disadvantageous in matching
performance. Secondly, gray_IF obtained similar performance
with TIR in dataset-A and dataset-B, and surpassed TIR in
dataset-C. It shows the potential of the fingerprint collected by
OCT in application prospect. Thirdly, the performances of OCT
EF are slightly worse than TIR or OCT_IF (both gray and depth),
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Fig. 10. DET curves of each subset by VeriFinger and DeepPrint. (a)–(c) Represent the verification performances of grayscale-based fingerprints of each subset.
(d)–(f) Represent the verification performances of depth-based fingerprints of each subset.

TABLE IV
EERS OF ZJUT-EIFD WITH SEVEN FINGERPRINT TYPES (VERIFINGER/DEEPPRINT)

which is probably due to the quality degradation caused by close
contact of the finger with the acquisition window.

In contrast to the minutiae-based approach employed by Ver-
iFinger, the learning-based DeepPrint framework amalgamates
existing fingerprint minutiae features with fingerprint texture
representation, yielding different performances in our experi-
mental assessments. Firstly, as illustrated in Fig. 10(e) and (f),
the verification performance of depth-based OCT fingerprints
under the DeepPrint is overall better than that achieved by
VeriFinger. As presented in Table IV, when deploying Deep-
Print for verification experiments, the most pronounced en-
hancement in performance for depth-based OCT fingerprints is
observed within dataset-B (EER reduced by more than 50%).
This observation underscores the matching potential for fur-
ther development of depth-based OCT fingerprints in the field
of fingerprint recognition. Secondly, the verification perfor-
mance of IFs is generally weaker than that of EFs. On the
one hand, network training involving only EF will cause data
adaptability problems. On the other hand, the texture repre-
sentation of IF is relatively smooth-varying because it comes
from inside the physiological tissue. While the texture repre-
sentation of EF suffers from uncontrollable hand conditions,
which are considered disturbance in conventional matchers but

become useful information as distinctive intensity distribution in
DeepPrint.

B. Whole Database Verification Experiment

Considering that the number of fingerprints in the three
subsets is not large, we use all the fingerprints of the same
type in the three subsets for matching experiments to verify
the recognition performance of the full dataset. Thus we get
a total of 399 (160+59+180) classes. Finally, there are 8065
(4480+885+2700) genuine matches and 79401 (399 × 398/2)
imposter matches in each type of fingerprint. The DET curves of
full database are shown in Fig. 11. The EERs of the full database
verification experiment are illustrated in Table IV.

From the results of VeriFinger, it can be clear that the verifi-
cation performance of TIR and gray_IF is close and better than
other types of fingerprints. In fact, EF is prone to permanent
changes (scars, abrasions, etc.) in manual workers. Using IF
as a complement/replacement of EF to avoid the matching
performance degradation caused by permanent changes can be
a new direction. It is worth mentioning that the stability and
uniqueness of IF still need to be evaluated with a larger database.
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Fig. 11. DET curves of whole database. (a) Represents the verification performance of grayscale-based fingerprints. (b) Represents the verification performance
of depth-based fingerprints.

Fig. 12. Hard genuine match example when using VeriFinger. The VeriFinger match score of 0 means that the matching pair is completely unrecognizable.
Wear-induced degradation adversely affects the extraction of minutiae points, resulting in significantly reduced genuine VeriFinger matching scores. In this group
of fingerprints, only gray_IF can use VeriFinger to obtain minutiae. Meanwhile, the maximum match score for DeepPrint is 1. The displayed fingerprint matching
pairs here all obtained high DeepPrint scores. The DeepPrint demonstrates the capacity to obtain high genuine matching scores even in the presence of wear-related
challenges.

Therefore, expanding data and collection interval will also be our
focus in the future.

The results obtained from DeepPrint reveal a close verification
performance between depth-based fingerprints and grayscale-
based fingerprints compared to VeriFinger. In addition, Deep-
Print demonstrates a lower EER when processing depth-based
fingerprints in comparison to VeriFinger. This observation un-
derscores the substantial matching potential in depth-based OCT
fingerprints.

It is noteworthy that the DET curves generated by VeriFinger
are pronounced near-horizontal in Fig. 11, indicating the pres-
ence of low genuine matching scores. To illustrate the potential
reasons, we present a set of hard genuine match examples
for VeriFinger in Fig. 12. As evident in this example, the

performance of VeriFinger and DeepPrint is very different.
It’s obvious that the fingerprint quality degradation caused by
wear and aging makes it hard for VeriFinger to obtain minu-
tiae information leading to a notable decline in the genuine
matching scores. In this case, only gray_IF can use VeriFin-
ger to obtain minutiae for a good matching score. In contrast,
the wear-induced fingerprint degradation introduces distinctive
texture representation resulting in high genuine matching scores
using DeepPrint. Besides, the genuine matching score of EF is
generally higher than that of IF by DeepPrint, which is consistent
with DET curve observations in whole datebase (Fig. 11). It
is possible to convert permanent fingerprint degradation (wear,
wrinkles, aging) into discriminating features. Therefore, in the
results of DeepPrint, the performance of EF surpasses IF when
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Fig. 13. DET curves of different combination strategies. (a)–(c) Represent the combination performances obtained using VeriFinger. (d)–(f) Represent the
combination performances obtained using DeepPrint.

TABLE V
EERS OF DIFFERENT COMBINATION STRATEGIES (VERIFINGER/DEEPPRINT)

no minutiae is presented. Since the collection interval of the pro-
posed dataset is not long, resulting in the texture representation
of EFs being relatively close. It is difficult to tell how the texture
representation degradation over time will affect the matching
effect, where further studies are expected.

C. Verification Experiment With Combined Features

From the full database verification experiment, it can be found
that TIR_EF and gray_IF can obtain better performance than
other fingerprints when using VeriFinger. Compared with the
obvious differences in EER values when using VeriFinger, the
performance of various types of fingerprint verification using
DeepPrint are relatively close. Notably, pairs of fingerprints that
are mismatched by different types of fingerprints would not
necessarily overlap. To explore complementary information by
different types of fingerprints in ZJUT-EIFD, three combinations
of fingerprint are considered, the combination of all fingerprints,
the combination of all OCT fingerprints, and the combination
of gray_IF and TIR_EF. We use combination strategies in the

literature [83] to combine the matching score including the
minimum rule, the maximum rule, the median rule, the product
rule, and the sum rule. Consistent with the previous section,
there are 8065 (4480+885+2700) genuine matches and 79401
(399 × 398/2) imposter matches. The results are shown in
Fig. 13. All of these EER results are shown in Table V.

From the results, we can draw following observation. Firstly,
whether it is VeriFinger or DeepPrint, the verification perfor-
mance can be further improved by appropriate combination
rules. For different matcher, the best rule is different. The
maximum rule with VeriFinger achieves the best performance
in all three fingerprint combinations, and exceeds the match-
ing performance of any single fingerprint. In contrast, except
maximum rule, other combination rules with DeepPrint achieve
certain performance improvements. Thus, a score combination
approach holds considerable promise for enhancing matching
performance. The use of specific rules requires comprehensive
consideration based on fingerprinting and matching methods.
Secondly, the performance improvement is especially signifi-
cant when using VeriFinger. The best performance occurs in
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Fig. 14. DET curves of interoperability results. (a) Represents the interoperability results using VeriFinger. (b) Represents the interoperability results using
DeepPrint.

combinations of gray_IF and TIR_EF in our database when
using VeriFinger. It proves that there is complementary infor-
mation in the matching of IFs and EFs. Thirdly, as shown in
Fig. 13(b) and (e), the best performance of all OCT fingerprints
exceeds TIR_EF. The EER of OCT combined performance is
reduced by 70.2% ((1.587-0.473)/ 1.587) compared to TIR_EF
using VeriFinger. The EER of OCT combined performance
is reduced by 11.7% (3.298-2.912)/3.298) compared to TIR
using DeepPrint. These performances show the great potential of
OCT fingerprints to surpass TIR_EF performance in fingerprint
recognition.

D. Interoperability of IFs and EFs

The purpose of the interoperability experiment is to test
whether the fingerprint images of different generation methods
or from different sensors are compatible with each other. Con-
sidering that both TIR and OCT gray_IF achieved good perfor-
mance in the previous VeriFinger matching experiments, TIR
and all types of IF were used for in-teroperability experiments.
In this experiment, we evaluate the matching performance using
different combinations of TIR_EF, gray_IF and depth1_IF. In
each combination, one of them is only the enrollment images,
and the other is only the probe images. Each set of experiments
contains 158802 ((160+59+180)×(160+59+180-1)) imposter
pairs and 18844 (160 × 8 × 8+59 × 6 × 6+180 × 6 × 6)
genuine pairs. The results for these matching experiments are
shown in Fig. 14 and Table VI. In the legend, enrollment images
are on the left, and probe images are on the right.

From the matching results, we have three observations. Firstly,
whether VeriFinger or DeepPrint is configured for matching, the
best performance is obtained in TIR-TIR and gray_IF-gray_IF.
It indicates that the gray_IF acquired by OCT has a strong
verification potential. Secondly, whether using VeriFinger or
DeepPrint, the recognition performance of mix gray_IF and
TIR_EF set (TIR images are used to enroll, gray_IF images
are used to probe, and vice versa) only drops slightly compared

TABLE VI
EERS OF INTEROPERABILITY OF IFS AND EFS (VERIFINGER/DEEPPRINT)

to single dataset. Especially when using VeriFinger, interop-
erability matching performance is quite high under stringent
operating points (FMR1000<4%, EER<3%). This indicates
that the IF acquired by OCT is compatible with the traditional
fingerprint by TIR. Thirdly, it is notable that, with the exception
of depth1_IF, VeriFinger consistently yields lower EER values
compared to DeepPrint across various combinations. The reason
is that when the enrollment and probe fingerprints belong to
different categories, it is difficult to extract valuable texture infor-
mation for matching. Under such circumstances, the utilization
of traditional minutiae-based fingerprint algorithms remains a
pragmatic and effective choice.

E. Synchronization Performance Comparison

Synchronous acquisition can reduce the distortion and defor-
mation of fingerprints, making the research on the correlation
between internal and external fingerprints more convenient. To
verify the effectiveness of synchronous acquisition, we counted
the genuine matching scores of 1742 (160× 8+59× 6+18× 6)
sets synchronous acquisition and the genuine matching scores of
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Fig. 15. Boxplot of corresponding synchronous and asynchronous genuine
matching scores between TIR_EF and gray_IF.

TABLE VII
STATISTIC OF SYNCHRONOUS AND ASYNCHRONOUS GENUINE MATCHES

(VERIFINGER/DEEPPRINT)

1742 (160 × 8+59 × 6+18 × 6) sets asynchronous acquisition.
Only TIR_EF and gray_IF are used for this evaluation. Syn-
chronous and asynchronous performance experiences perform
only one genuine match of each fingerprint classes, respectively.

The statistics boxplot of corresponding synchronous and
asynchronous genuine matching scores are shown in Fig. 15.
The corresponding statistics values are shown in Table VII. The
overall scores of genuine matches with synchronous acquisitions
are higher. Compared with asynchronous acquisition, the mean
genuine matching score of synchronous acquisition by VeriFin-
ger and DeepPrint is increased by 21.7% (157/129-1) and 15.7%
(0.596/0.515-1), respectively. Other statistical values, including
maximum, median (Q2), lower quantile (Q1) and upper quantile
(Q3), were all improved. It intuitively reflects the effectiveness
of synchronous acquisition. Note that the minimum genuine
matching scores of the statistics are all near 0 by using VeriFinger
and DeepPrint. The very poor quality of certain fingerprints
(either EF or IF) will result in not being able to find enough
minutiae information, leading to matching scores of 0 using
VeriFinger. DeepPrint calculates the matching score based on
cosine similarity. The lack of minutiae and large differences

Fig. 16. OCT 3D volume data. Rendering via inviwo. (a) OCT source data.
(b) Sweat glands are clearly visible in OCT source data.

Fig. 17. Example of sweat pore reconstruction in [28], (a) the image generated
by the intensities at lines between the contours of stratum corneum and the viable
epidermis junction, (b) the predicting results with red circles indicating the sweat
pores’ locations.

in texture will cause the scores to be close to 0. In fact, no
fingerprint quality-related enrollment restriction is performed in
the proposed database. On the contrary, some highly distorted
fingerprints are purposely acquired for distortion related re-
searches. In the real life scenarios, a fingerprint quality selection
method usually adopted to reject very poor quality samples.

VI DISCUSSION

To demonstrate the application potential of ZJUT-EIFD, we
discuss some promising directions.

A. 3D OCT Volume Data Recognition

What OCT essentially acquires is the physiological struc-
ture information inside the finger. As shown in Fig. 16(a),
the subcutaneous structure of the finger contains recognication
information such as unique fingerprint patterns and sweat gland
locations. Skin differences between different individuals can
also be intuitively observed through the 3D OCT volume data.
Directly using 3D volume data for matching is promising.

B. Fused Fingerprint Recognition

The purpose of fingerprint fusion is to generate reliable
fingerprint representation with better recognition performance.
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Fig. 18. Anti-spoofing example [91]. (a) Fingerprint films; (b) fingerprints of real finger and fake fingerprint film collected by traditional TIR system; (c) B-scans
of real finger and fake fingerprint film collected by OCT system.

Depending on the data used, there can be different types of
fingerprint fusion.

For OCT data only, according to the fingerprint reconstruction
results of different depth structures, the stratum corneum, active
epidermal fingerprints, etc. can be generated. Therefore, infor-
mation from various subsurface fingerprints can be fused to form
a robust fingerprint representation with stronger recognition
performance. Some research results can be found in [49].

Benefiting from the simultaneous acquisition of TIR and
OCT, it is possible for us to fuse these two different types of
fingerprints. Valid information from TIR and OCT can be fused
to generate new fingerprint representations that not only have
the high contrast and usually good image quality of TIR, but are
resistant to non-ideal hand conditions such as wrinkles, wetness,
aging, etc.

C. High Resolution Fingerprint Recognition

The fingerprint resolutions published in ZJUT-EIFD are all
500 dpi. In fact, the resolution of OCT (dataset-A and dataset-C:
2540 dpi, dataset-B: 1270 dpi) and TIR (lateral 820 dpi, vertical
1650 dpi) source data is higher than 500 dpi. Based on the source
data, higher resolution fingerprint images can be obtained. We
note that high-resolution fingerprints can further improve the
recognition performance by utilizing the extended feature set
(especially sweat pores) [8], [84], [85]. However, there are still
less recognition attempts on high-resolution OCT fingerprints.
Using ZJUT-EIFD to generate high-resolution EF and IF and
study their recognition capabilities has a promising future.

D. Subcutaneous Sweat Glands Recognition

As shown in Fig. 16(b), the subcutaneous sweat gland is a
small gland that secretes sweat. In the inter-OCT volume data, it
is located between the stratum corneum and the viable epidermis.
The outlets of sweat glands in the epidermis are sweat pores.
Sweat pores as one of the level-3 features of fingerprints are
also claimed to be permanent, immutable and unique according
to forensic experts [86], [87], so as the sweat glands. If properly
utilized, sweat glands can provide authenticating information for
human identification. As shown in Fig. 17, it is possible to obtain
subcutaneous sweat glands using OCT and find corresponding
sweat pores based on their location. Furthermore, direct recog-
nition using the morphology and distribution of sweat glands is
also promising, whose prerequisite is precise segmentation of

the sweat gland position. Some research results can be found in
[28], [88], [89], [90].

E. Anti-Spoofing

Fingerprint anti-spoofing technology based on OCT has been
widely developed. Compared with the anti-spoofing technology
based on 2D fingerprints, the 3D representation provided by
OCT has greater advantages. As shown in Fig. 18, it is widely
considered that replicating the internal structure of a finger is
a difficult task. Mainstream OCT anti-spoofing techniques can
be roughly divided into methods based on internal depth infor-
mation [25], [92], [93] and methods based on neural networks
[26], [94], [95], [96]. However, due to the difference in internal
structure of distinct fingers and the diversity of spoofing samples,
it is still a challenging task to establish a general model to achieve
high-precision anti-spoofing.

F. Acquisition and Processing Time

Fingerprint recognition technology enjoys widespread popu-
larity within the realm of biometrics, primarily not only owing to
its uniqueness and permanence, but also coupled with its capac-
ity for rapid data acquisition and identification. Nevertheless, the
practical application of OCT encounters significant challenges
due to the considerable time investment entailed in the raw
spectrum acquisition and processing, and IF reconstruction.
This time constraint presents a hindrance to deploying OCT
in time-sensitive environments. Encouragingly, recent research
endeavors have yielded promising advancements in address-
ing these challenges. Through improvements in photosensitive
element technology and light source frequency, raw spectrum
acquisition speeds of MHz have been achieved [97]. Meanwhile,
the adoption of parallel computing GPU acceleration techniques
has enabled real-time raw spectrum processing within OCT
[98], [99]. Furthermore, lightweight neural networks have esti-
mated IF with quality comparable to that of complex networks,
demonstrating the feasibility of rapid IF reconstruction [100].
Consequently, at a resolution of 500 dpi, it is feasible to use
OCT to capture fingerprints at a speed comparable to TIR.

It needs to be emphasized that the principal advantage of
OCT resides in its capacity to attain ultra-high resolution IF.
Therefore, in scenarios where time is not sensitive and finger-
print clarity is required, a mode higher than 500 dpi should
still be used for IF acquisition. These scenarios include but not
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limited to forensic evidence collection, public security identity
record maintenance, and supplementary recording of identity
information for people with worn fingerprints.

VII CONCLUSION

In this article, we present a novel and comprehensive fin-
gerprint database, denoted as ZJUT-EIFD. It provides the rich
dataset composition of OCT and TIR data by synchronous ac-
quisition to serve data benchmarking and interoperability testing
for EF-IF research. The synchronous acquisition of EF and
IF can minimize distortions that may arise and offers distinct
advantage on researching the correlation between them. The
proposed database includes source data of raw TIR fingerprint
images and OCT volume data (partial with labeled B-scan
physiological structures), as well as corresponding TIR and
OCT fingerprint images at 500 dpi. The construction of the
ZJUT-EIFD is described in detail. The quality of fingerprints
in ZJUT-EIFD is explicitly demonstrated, which shows the
recognition potential of fingerprints in ZJUT-EIFD. Matching
experiments were carried out and the recognition characteristics
of different fingerprints in ZJUT-EIFD were discussed, which
mainly demonstrates the following two points: 1) the recognition
performance of the IF acquired by OCT can be close to or even
exceed that of traditional EF images (TIR) in specific situations;
2) the IF is compatible with EF.

Despite preliminary matching experiments carried out on EFs
and IFs, promising work can be further explored using ZJUT-
EIFD, such as the optimization of IF reconstruction methods
and the improvement of matching algorithms. Some potential
applications of ZJUT-EIFD were discussed in this article, which
may provide guidance for future researches. The expansion and
improvement of ZJUT-EIFD will become the direction of our
future development.
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