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Abstract

Recent studies have determined that the learned001
token embeddings of large-scale neural lan-002
guage models are degenerated to be anisotropic003
with a narrow-cone shape. This phenomenon,004
called the representation degeneration problem,005
facilitates an increase in the overall similarity006
between token embeddings that negatively af-007
fect the performance of the models. Although008
the existing methods that address the degenera-009
tion problem based on observations of the phe-010
nomenon triggered by the problem improves011
the performance of the text generation, the train-012
ing dynamics of token embeddings behind the013
degeneration problem are still not explored. In014
this study, we analyze the training dynamics015
of the token embeddings focusing on rare to-016
ken embedding. We demonstrate that the spe-017
cific part of the gradient for rare token embed-018
dings is the key cause of the degeneration prob-019
lem for all tokens during training stage. Based020
on the analysis, we propose a novel method021
called, adaptive gradient gating(AGG). AGG022
addresses the degeneration problem by gating023
the specific part of the gradient for rare to-024
ken embeddings. Experimental results from lan-025
guage modeling, word similarity, and machine026
translation tasks quantitatively and qualitatively027
verify the effectiveness of AGG.028

1 Introduction029

Neural language models have been developed with030

various architectures during recent years (Graves,031

2013; Bahdanau et al., 2015; Gehring et al., 2017;032

Vaswani et al., 2017). Despite the improvement in033

model architectures, the token embedding training034

procedures usually share the same process. They035

process token embeddings as inputs to compute036

contextualized features and subsequently project037

the features into a categorical distribution of to-038

kens at the output softmax layer (Merity et al.,039

2017; Yang et al., 2018; Press and Wolf, 2017).040

Recent studies have determined that the learned041

embedding distribution is biased in a common di- 042

rection, thereby resulting in a narrow cone-shaped 043

anisotropy (Mu et al., 2018; Ethayarajh, 2019; Gao 044

et al., 2019; Biś et al., 2021). This phenomenon, 045

named the representation degeneration problem by 046

Gao et al. (2019)., increases the overall cosine simi- 047

larity between embeddings, and leads to a problem 048

in which the expressiveness of the token embed- 049

dings decreases. Therefore, it is difficult for the 050

model to learn the semantic relationship between 051

the tokens and to generate diverse texts with high 052

quality. Existing studies addressing this problem 053

suggest methods that apply post-processing or regu- 054

larization techniques to all token embeddings based 055

on the observed phenomena owing to the degener- 056

ation problem (Mu et al., 2018; Gao et al., 2019; 057

Wang et al., 2019; Wang et al., 2020; Biś et al., 058

2021). Although these works improves the quality 059

of token embeddings and generated texts, it is still 060

not clear how token embeddings become degener- 061

ate during training procedure. 062

In this study, we conduct empirical studies about 063

training dynamics of token embeddings, focusing 064

on rare token embeddings. By observing the initial 065

training dynamics of token embeddings grouped 066

based on appearance frequency, we hypothesize 067

that the degeneration of the rare token embeddings 068

triggers the degeneration of the embeddings of the 069

remaining tokens. We show that the entire degen- 070

eration problem is mitigated by only freezing rare 071

tokens during training, and we demonstrate that 072

the main cause of the entire degeneration problem 073

is the specific part of the gradient for rare token 074

embeddings. This gradient part roles to push away 075

rare token embeddings from the feature vector of 076

the non-rare targets in the current training sample. 077

Based on the analysis, we propose an our method, 078

adaptive gradient gating(AGG). With a dynamic 079

grouping of rare tokens at each training step, AGG 080

solves the entire degeneration problem by gating 081

a specific part of the gradient that is soley about 082
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Figure 1: Visualization of token embeddings of language model trained on WikiText-103. Red, green, and blue
points represent rare, medium, and frequent groups respecively. (a), (b), (c), (d) present a visualization of each
training step.

rare tokens. The proposed method is evaluated in083

three tasks: language modeling, word similarity,084

and machine translation. The AGG outperforms the085

baseline and other existing methods in all tasks. In086

additoin, it shows compatibility with other methods087

that address the neural text degeneration problem.088

Via qualitative studies, we identify a correlation089

between our method and the frequency bias prob-090

lem of learned embeddings (Gong et al., 2018; Ott091

et al., 2018).092

2 Background093

2.1 Text Generation of Neural Language094

Models095

Neural language generative models process text096

generation tasks as conditional language modeling,097

in which the model is typically trained by minimiz-098

ing the negative log likelihood of the training data.099

With a vocabulary of tokens V = {v1, ..., vN} and100

embedding vectors {w1, ...,wN}, where wi cor-101

responds to token vi, at every training step, the102

model obtains a mini-batch input and target text103

corpus pair (x, y), where xi, yi ∈ V , and y ∈ V T .104

The conditional probability for the target token yt,105

Pθ(yt|ht), where ht is a context feature vector of106

the t-th position of the generated text conditioned107

by (x, y<t), and θ denotes model parameters, which108

is defined as follows.109

Pθ(yt|ht) =
exp (htwT

I(yt)
)∑N

l=1 exphtwT
l

, (1)110

where w is the output token embedding which roles111

the weight of the output softmax layer, and I(yt)112

represents the index of token yt. The negative log113

likelihood loss for an input and target pair (x, y),114

LNLL is expressed as follows.115

LNLL = −
T∑
t=1

logPθ(yt|ht). (2)116

2.2 Embedding Problems in Neural Language 117

Models 118

Recent studies on the geometric properties of con- 119

textual embedding space have observed that the dis- 120

tribution of embedding vectors is far from isotropic 121

and occupies a relatively narrow cone space(Mu 122

et al., 2018; Liu et al., 2019; Zhou et al., 2019; Etha- 123

yarajh, 2019; Biś et al., 2021). Gao et al. (2019) 124

named this phenomenon the representation degen- 125

eration problem. This degeneration problem results 126

in an increase in the overall cosine similarity be- 127

tween token embeddings, making it difficult for 128

the model to learn semantic relationships between 129

tokens. Demeter et al. (2020) demonstrated that 130

the norm information of the token embeddings is 131

so dominant that angle information about the fea- 132

ture vector is ignored when calculating the logits in 133

the output layer. Owing to this structural weakness 134

of the embedding space, embeddings with small 135

norms are always assigned with a low probability, 136

which reduces the diversity of the text generated by 137

the model. Although the problem has been theoret- 138

ically analyzed in several studies, existing methods 139

are based on the observed phenomena as a result of 140

the problem. To mitigate the phenomena observed 141

from the problem, the post-processing of the em- 142

bedding vectors(Mu et al., 2018; Biś et al., 2021) 143

or regularization terms about the phenomena(Gao 144

et al., 2019; Wang et al., 2019; Wang et al., 2020; 145

Zhang et al., 2020) were introduced. Methodolo- 146

gies based on the training dynamics of the token 147

embeddings concerning the degeneration problem 148

remain subject to study. 149

Frequency bias in embedding space is another 150

problem. Ott et al. (2018) conducted a comprehen- 151

sive study on the under-estimation of rare tokens 152

in neural machine translation. Gong et al. (2018) 153

observed that embeddings in the language model 154

were biased towards frequency and proposed an ad- 155
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Methods PPL I(W)
Freq Med Rare Total Freq Med Rare Total

MLE 16.58 224.24 813.76 20.77 0.426 0.286 0.198 0.293
Freeze 16.48 233.92 3017.53 20.78 0.840 0.651 0.831 0.739

Table 1: Perplexity and I(W) for each token groups. Lower is better for PPL and higher is better for I(W).

(a) freeze until step 7k (b) freeze until step 18k (c) freeze until step 29k

Figure 2: Tlot of I(W) for rare and frequent groups and average cosine similarity between rare and frequent
embeddings when freezing the training of rare tokens until specific training steps.

versarial training scheme to address this problem.156

3 Empirical Study: Token Embedding157

Training Dynamics led by Rare Tokens158

3.1 Initial Training Dynamics of Embeddings159

To analyze the training procedure of token em-160

beddings, we train a Transformer language model161

at the WikiText-103 dataset from scratch. Whole162

vocabulary tokens are divided into three groups:163

frequent, medium, and rare groups. Based on the164

appearance frequency in the training corpus, the165

30%, 50%, and 20% tokens are assigned to the fre-166

quent, medium, and rare group. We visualize the167

initial training dynamics of these groups via the168

projection of the embeddings into 2D, using sin-169

gular value decomposition (SVD) projection. As170

illustrated in Figure 1, rare groups degenerate first,171

as they emerge from the emtire embedding distribu-172

tion. Subsequently, other groups also start to degen-173

erate, following the degeneration of the rare group.174

Based on this observation, we hypothesize that the175

degeneration of rare token embeddings induces the176

degeneration of non-rare token embeddings.177

3.2 Rare Tokens Degenerate Non-Rare Tokens178

Because Transformer(Vaswani et al., 2017) is repre-179

sentative of the current language models, we adopt180

the 6-layer Transformer decoder model architec-181

ture for an empirical study on the training dynam-182

ics of embedding vectors. The model is trained183

in language modeling task using WikiText-103184

dataset(Merity et al., 2018). Experimental details 185

regarding the model and training hyperparameter 186

configurations can be found in the Appendix B. To 187

verify the hypothesis of the previous subsection, we 188

train a model while freezing the rare group token 189

embeddings in their initial states during training, 190

and compare it to the baseline model, where all em- 191

beddings are trained with negative log-likelihood 192

loss. In addition, we train the models of various set- 193

tings relative to freezing steps and examine whether 194

the degeneration of rare token embeddings depends 195

on when training of rare embeddings begins. 196

The Performance of the models is evaluated 197

in two ways; the likelihood and isotropy of to- 198

ken embeddings. Perplexity(Bengio et al., 2003) is 199

adopted to evaluate the performance of the likeli- 200

hood of the model. To measure the isotropy of the 201

token embedding distribution, we adopt the parti- 202

tion function Z(a) =
∑N

i=1 exp (wiaT ) defined in 203

Arora et al. (2016), where wi denotes the embed- 204

ding vector of token i, and a represents a unit vector. 205

Lemma 2.1. in Arora et al. (2016) demonstrate that 206

if the embedding vectors are isotropic, Z(a) is ap- 207

proximately constant. Based on this property, we 208

measure the isotropy of an embedding matrix W 209

using I(W), which is defined as follows. 210

I(W) =
mina∈X Z(a)
maxa∈X Z(a)

, (3) 211

where I(W) ∈ [0, 1] and X represents the set of 212

eigenvectors of WTW (Mu et al., 2018; Wang et al., 213

2020; Biś et al., 2021). Furthermore, we measure 214

3



Methods PPL I(W)
Freq Med Rare Total Freq Med Rare Total

MLE 16.58 224.24 813.76 20.77 0.426 0.286 0.198 0.293
Freeze (b) & (c) 17.41 247.89 66.41 21.79 0.323 0.693 0.551 0.536
Freeze (b) 16.99 240.72 65.76 21.26 0.495 0.561 0.678 0.748
Freeze (c) 16.61 220.07 645.24 20.76 0.443 0.276 0.15 0.317

Table 2: Perplexity and I(W) for each token group at gradient partial freezing experiment.

the relatedness between the rare and frequent group215

token embeddings to verify that the degeneration216

of the frequent group follows the degeneration of217

the rare group. We calculate the average cosine218

similarity between the rare and frequent group em-219

beddings to measure the relatedness.220

Table 1 shows the comparison of the baseline221

model and the model with frozen rare tokens. We222

denote the baseline as "MLE" and the freezing223

method as "Freeze". Surprisingly, the PPL of fre-224

quent group tokens and overall I(W) improved by225

simply not training the rare token embeddings. Fig-226

ure 2 illustrates the change in I(W) for the frequent227

and rare token embeddings, including the similar-228

ity between frequent and rare token embeddings at229

various freezing step settings. Whenever the rare230

token embeddings start to be trained, their I(W)231

decreases steeply, followed by decreasing I(W) of232

frequent embeddings and increasing similarities233

between the frequent and rare embeddings. From234

the analysis in this subsection, we demonstrate that235

the entire degeneration problem can be solved by236

solely handling just rare embeddings during the237

entire training procedure.238

3.3 Finding the Primary Cause of the239

Degeneration Problem: From the240

Gradient241

With T context feature vectors from the training242

sample, hi (i ∈ [1, T ]), the negative log-likelihood243

loss gradient for the rare token embedding wr is244

calculated as follows.245

∇wrLNLL =
∑
yi=vr

(pr|i − 1)hi︸ ︷︷ ︸
(a)

+
∑
yj /∈Vr

pr|jhj︸ ︷︷ ︸
(b)

+
∑
yk∈Vr

pr|khk︸ ︷︷ ︸
(c)

,
(4)246

where yi denotes the target token for hi, Vr is the247

rare token vocabulary group, and pr|i represents248

the conditional probability of token vr given hi, 249

which is calculated as [softmax(hiWT )]r. We di- 250

vide the gradient for wr to 3 parts: (a), (b), and 251

(c) in Eq. 4. Part (a) pulls wr close to the feature 252

vectors whose target tokens are vr. Part (b) pushes 253

away wr from the feature vectors whose target to- 254

kens are not rare. Part (c) pushes away wr from the 255

feature vectors whose target tokens are rare. As an 256

extension of the analysis in the previous subsection, 257

we freeze these parts of the gradient with various 258

settings during training to identify the key cause 259

of the degeneration problem. All model and train- 260

ing configurations are the same as in the previous 261

sections, except those to be frozen. 262

Table 2 presents the results of the experiments in 263

this subsection. We freeze the parts of the gradient 264

for the rare tokens with three settings. Because part 265

(a) is a key component required to train the token 266

embedding to be aligned to the target, all settings 267

activate part (a). We notice that when part (b) is 268

activated(solely freezing part (c)), in general, I(W) 269

decreases and PPL for rare tokens increases almost 270

10 times compared to when part (b) is frozen. Be- 271

cause PPL and I(W) are improved when activating 272

part (c), part (c) is not negative for the degeneration 273

problem. Consequently, part (b) is the part to be 274

handled as the key component for the degeneration 275

problem. From the analysis in this subsection, we 276

demonstrate that the part of the gradient for rare em- 277

beddings that pushes away rare embeddings from 278

non-rare feature vectors is the key cause of the 279

entire degeneration problem of embeddings. 280

4 Method 281

4.1 Dynamic Rare Token Grouping 282

To handle the specific part of the gradient for the 283

rare token embeddings studied in the previous sec- 284

tion, we need to properly group the rare tokens. A 285

naive approach can be used to group rare tokens 286

based on the appearance frequency of the training 287

corpus, as described in the previous section. How- 288
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ever, this static grouping method is suboptimal be-289

cause the model is typically trained via mini-batch290

training. The group of rare tokens that appeared291

less frequently in recent batch samples is variable292

in the mini-batch training. Therefore, it is necessary293

to dynamically group rare tokens based on token294

appearances in recent batch samples.295

To consider the token appearances in recent296

batch samples, we introduce the token counter297

memory that remembers the number of the appear-298

ances of each token during the previous K training299

steps. For K memories, [m1, ...,mK], mt ∈ RN300

represents the number of appearances of each token301

of N -size vocabulary at the t-th previous training302

step. Memories are set as zero vectors at the initial303

stage. At each training step, the token appearance,304

a ∈ RN , is calculated as the sum of all K mem-305

ories: a =
∑K

t=1 mt. Based on a, we determine306

whether token i is in the rare token group Vr as307

follows.308
ai
K

< α ⇒ vi ∈ Vr

ai
K

≥ α ⇒ vi /∈ Vr,
(5)309

where ai is the i-th component of a, and α is a310

hyper-parameter in our method that controls the311

proportion of rare tokens in the entire vocabulary.312

In this study, we set K to the number of iteration313

steps during one epoch of training stage.314

4.2 Adaptive Gradient Gating for Rare315

Tokens316

After dynamically grouping the rare tokens at each317

training step, we need to handle a specific part of318

the gradient for the rare token embeddings, part319

(b) of Eq. 4, to solve the degeneration problem of320

all embeddings. To solely control the gradient for321

rare token embeddings, we introduce a gradient322

gating method for a parameter x. We define x̃ as a323

tensor whose value is the same as x, but detached324

from the current training graph. This implies that325

x̃ is considered a constant, hence, gradient about326

x̃ is not existent. In practice, x̃ can be easily ob-327

tained from x using the detach() function of328

Pytorch (Paszke et al., 2019). With x̃, we can329

gate the gradient for x as follows.330

xgated = g ⊙ x + (1− g)⊙ x̃

∇xf(xgated) = g ⊙∇xf(x),
(6)331

where xgated is a new parameter whose value is the332

same as x, and g ∈ [0, 1] is a gate tensor. When333

the xgated is fed to the function f(·) as input, the 334

gradient for x is gated by g. 335

For a context feature vector of the i-th position, 336

hi, we introduce a gate vector g1 ∈ RN as follows. 337

338

g1k =

{
ak/K if vk ∈ Vr, vk ̸= yi

1 else ,
(7) 339

where g1k denotes a k-th component of g1. g1 con- 340

trols the degree to which rare token embeddings 341

move away from non-rare feature vectors whose 342

targets differ from each rare token embedding. For 343

very rare token embeddings, there is an additional 344

issue. Rare tokens, which are not very rare, are rel- 345

atively frequent in very rare tokens. Therefore, the 346

embeddings of the very rare tokens can degenerate 347

because of the gradient part that pushes them away 348

from the features whose targets are rare, but not 349

very rare token embeddings. To address this issue, 350

we introduce additional gate vector g2 ∈ RN as 351

follows. 352

g2k =

{
min(akār , 1) if vk ∈ Vr, vk ̸= yi

1 else,
(8) 353

where g2k is the k-th component of g2 and ār is the 354

mean of ar where r ∈ Vr. g2 controls the degree 355

to which very rare token embeddings move away 356

from rare or very rare feature vectors whose targets 357

differ from each very rare token embedding. To 358

calculate the loss of hi, we calculate three logits, 359

z0i , z1i , and z2i , as follows. 360

z0i = hiW̃
T

zli = gl ⊙ h̃iWT + (1− gl)⊙ h̃iW̃
T
,

(9) 361

where W denotes an embedding matrix, and l = 362

1, 2. Because our method solely handles the gradi- 363

ent for embeddings, we calculate z0i for a gradient 364

about hi, which does not need to be gated. Finally, 365

the negative log-likelihood loss for i-th position Li 366

is computed as follows. 367

Li = − log p0I(yi)|i

− 1(yi /∈ Vr) log p
1
I(yi)|i

− 1(yi ∈ Vr) log p
2
I(yi)|i,

(10) 368

where pmI(yi)|i = [softmax(zmi )]I(yi) with m=0, 1, 2 369

and 1(·) denotes the Indicator function. Gradient 370

for rare token embeddings is computed to: 371

∇wrLi =


(pr|i − 1)hi if yi = vr

g1rpr|ihi if yi /∈ Vr

g2rpr|ihi else,

(11) 372
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Methods PPL Uniq
I(W)

Freq Med Rare Total Freq Med Rare Total
MLE 13.30 146.47 438.67 15.51 9107 3945 91 13143 0.377
AGG 13.35 146.44 75.39 15.51 9105 4287 345 13737 0.813
Human − − − − 10844 7146 300 18920 −

Table 3: Experimental results for each token group in WikiText-103 language modeling task comparing MLE
baseline and AGG.

Methods PPL Uniq
I(W)

Freq Med Rare Total Freq Med Rare Total
UL 14.05 125.17 385.6 16.17 9527 4402 97 14026 0.396
UL + AGG 14.17 125.93 71.48 16.25 9625 4884 453 14962 0.654
Human − − − − 10844 7146 300 18920 −

Table 4: Experimental results for each token group in WikiText-103 language modeling task comparing UL and
UL+AGG.

where pr|i = [softmax(zmi )]r whose value is irre-373

spective of m. Eq. 12 demonstrates that Li passes374

gradients gated by g1, g2 to rare token embeddings,375

which is consistent with our intent. Derivation of376

Eq. 12 is provided in Appendix A.377

5 Experiments378

We evaluate our method on various tasks including379

language modeling, word similarity, and machine380

translation. In the language modeling task, we fo-381

cus on verifying the diversity of the generated texts.382

We test the learning of the semantic relationships383

between tokens on the word similarity task. Finally,384

we evaluate the quality of generated texts on the385

machine translation task. For all the experimental386

results below, we adopt the state-of-the-art model387

architecture as a baseline to properly demonstrate388

the effectiveness of our method. Every detail on the389

experiment, such as model hyper-parameters and390

training configurations, regard the reproducibility391

are provided in Appendix B.392

5.1 Language Modeling393

Setting We conduct experiments using WikiText-394

103 dataset, which is a significantly large dataset395

for language modeling task with approximately396

103M words and 260K vocabulary size (Merity397

et al., 2018). Texts in the dataset are preprocessed398

based on the byte-pair encoding(Sennrich et al.,399

2016). We adopt the GPT-2 medium architec-400

ture(Radford et al., 2019), which comprises 24401

Transformer decoder layers as a baseline model.402

Because our method is about learning token em-403

beddings, we train the models from scratch for 404

a maximum of 50k iterations and evaluate them 405

based on the perplexity of the validation set. 406

For hyper-parameter searching, we select α ∈ 407

{0.01, 0.02, 0.03, 0.04, 0.05} for AGG method on 408

the language modeling task. The hyper-parameter 409

sensitivity for the AGG are given in Appendix D. 410

We use three quantitative metrics to evaluate our 411

method: Perplexity, Uniq, and I(W). Related to 412

the likelihood of generated texts, Perplexity quan- 413

tifies the prediction difficulty over the next token. 414

Uniq (Welleck et al., 2020) quantify the number of 415

unique next-token predictions, measuring the token 416

diversity. As described in section 3, I(W) measures 417

the isotropy of the token embedding space. 418

Results We present our results for the testset in 419

Table 3. We denote the baseline method as ’MLE’ 420

and our method as ’AGG’. We measure Perplexity 421

and Uniq for each token group defined in Section 3. 422

As presented in Table 3, AGG improves the over- 423

all metrics for the medium and rare groups while 424

maintaining performance for the frequent token 425

group. In particular, for the rare group, the Perplex- 426

ity score decrease significantly and the number of 427

unique predictions surpasses the human distribu- 428

tion. The I(W) for all token embeddings increased 429

over 2 times the baseline. Qualitative studies on 430

semantic alignment between tokens are provided in 431

Appendix E. We also show examples of generated 432

texts in Table 5 and more in Appendix F. 433

Compatibility Neural text degeneration problem 434

is another problem in neural text generative mod- 435

els, where the model generates texts that are less 436
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Method Texts Uniq
Prefix No. 20 Squadron is a Royal Australian Air Force ( RAAF ) support squadron . Coming under

the control of No. 96 Wing , it is responsible for the management of the airfield at RAAF Base
Woomera , South Australia . The squadron

MLE is responsible for air defence , air defence , and air defence , as well as air defence , aerial
reconnaissance , and air defence . It is also responsible for air defence , air defence , and air
defence , as well as air defence , aerial reconnaissance , and air defence .

15

AGG was established in October 1943 at Townsville , Queensland , under the command of Group
Captain Paddy Heffernan . It was initially based at Townsville , Queensland , under the control
of No. 9 Operational Group , which controlled all air bases in New South Wales . It was renamed
No. 1 Mobile Fighter Sector in April 1944 .

48

Table 5: Generated texts on the Wikitext-103 test set and uniq tokens for each texts. 50 bpe tokens are given as
prefix and the models are to generate the continuation of 100 next bpe tokens.

likely to match human word distributions. Existing437

methods fr this problem focus on the diversity of438

the generated texts by adding an auxiliary loss to439

the original negative log-likelihood loss (Welleck440

et al., 2020). Although Welleck et al. (2020) and441

AGG attempts to address the same problem about442

diversity, AGG can be compatible with the existing443

method in the text degeneration problem because444

AGG does not alter the form of the loss function445

in MLE training. Table 4 presents the results of446

the experiments about fusion of unlikelihood train-447

ing(Welleck et al., 2020) and AGG. We denote the448

unlikelihood training as UL. From table 4, we no-449

tice that when UL and AGG are fused, it produces450

a synergistic effect that exceeds the gain of each for451

the baseline. This indicates that AGG is compatible452

with methods that address other problems in text453

generation.454

5.2 Word Similarity455

Setting We evaluate the semantic relationship be-456

tween tokens for AGG and the baseline with four457

word similarity datasets: MEN, WS353, RG65, and458

RW(Bruni et al., 2014; Agirre et al., 2009; Ruben-459

stein and Goodenough, 1965; Luong et al., 2013).460

Methods are tested whether the similarity between461

the given two words in the embedding space is462

consistent with the ground truth, in terms of Spear-463

man’s rank correlation. We adopt cosine distance464

to compute the similarity between embeddings. We465

use the same models trained on language modeling466

tasks with the WikiText-103 dataset for the word467

similarity task.468

Results Table 6 presents the result obtained from469

the evaluation of the word similarity task. From470

this table,it can be observed that our method out-471

performs the baseline on overall datasets. Although472

AGG handles only training of rare tokens, the se-473

mantic relationships between all tokens are also474

Datasets MLE AGG
MEN 33.57 55.13
WS353 47.51 56.54
RG65 35.48 65.45
RW 32.13 36.36

Table 6: Performance(Spearman’s γ × 100) of the mod-
els on the four word similarity datasets.

Methods BLEU
Base Big

Transformer (Vaswani et al., 2017) 27.30 28.40
CosReg (Gao et al., 2019) 28.38 28.94
Adv MLE (Wang et al., 2019) 28.43 29.52
SC (Wang et al., 2020) 28.45 29.32
AGG 28.70 29.81

Table 7: Comparison of different methods in terms of
BLEU scores on the task of WMT14 En→De machine
translation.

well learned. 475

5.3 Machine Translation 476

Setting We utilize a dataset from standard WMT 477

2014 containing 4.5M English-German sentence 478

pairs. The source and target sentences are encoded 479

by 37K shared tokens based on byte-pair encod- 480

ing(Sennrich et al., 2016). We adopt the two ver- 481

sion of Transformer(Vaswani et al., 2017) as the 482

baseline model for applying our method: base and 483

big. The model configuration is the same as that 484

proposed in Vaswani et al. (2017). To evaluate the 485

quality of the generated texts, we measure BLEU 486

score (Papineni et al., 2002), which is standard 487

metric for machine translation task. 488

Results Table 7 presents a comparison of our 489

method and other methods in terms of the BLEU 490

score. Our method achieves 1.4 and 1.41 BLEU 491

7



(a) MLE (b) AGG (c) Singular value decay

Figure 3: (a), (b) Token embedding visualization for the baseline model and AGG on the language modeling task
with WikiText-103; (c) Normalized singular value for MLE and AGG.

score improvements on the machine translation task492

for the base and big baseline models. In addi-493

tion, our method is better than all other previous494

works in handling the representation degeneration495

problem that reported BLEU scores in the same496

tasks. These results demonstrate the effectiveness497

of AGG in the quality of the generated texts. Quali-498

tative study about cross-lingual semantic alignment499

between tokens of the source and target languages500

is provided in Appendix E.501

6 Analysis of AGG502

6.1 Visualization503

Figure 3 (a) and (b) present the visualizations of the504

embedding space of baseline MLE and our method.505

In the figure, applying the AGG method restores the506

isotropy of the token embedding space. In addition,507

we observe that the regions occupied by each token508

group are not disjoint when applying AGG. For509

baseline, the regions occupied by rare group and510

the frequent group are disjoint, which is refered as511

the frequency bias problem of embeddings (Gong512

et al., 2018). From the analysis of the visualization513

of the embedding space, we notice that the manipu-514

lating the training of the rare token embeddings can515

alleviate the frequency bias problem. Figure 3 (c)516

presents the plot of the normalized singular value517

of embedding matrix for MLE and AGG. Slowly518

decaying singular values of AGG demonstrate an519

isotropic distribution of the embedding space.520

6.2 Ablation Study521

In our method, AGG, we introduce two gate vec-522

tors, g1, andg2, to handle the gradient for rare and523

very rare token embeddings. We conduct experi-524

ments on these gate vectors. Table 8 presents the525

results of the ablation studies compared with the526

MLE and AGG. When g1 is excluded from AGG527

Method PPL Uniq I(W)

MLE 15.51 13143 0.377
AGG 15.51 13737 0.813
no g1 15.48 13018 0.367
no g2 15.51 13682 0.701

Table 8: Ablation study on gating vector of AGG.

(denoted as ’no g1’), Uniq and I(W) decreased sig- 528

nificantly, because g1 is the key component for the 529

gradient gating. When g2 is excluded from AGG 530

(denoted as ’no g2’), Uniq and I(W) slightly de- 531

crease. Accordingly, we notice that g2 is important 532

for the gating of gradients fort the very rare token 533

embeddings. The analysis of rare token grouping 534

is also important for our study, and it can be found 535

in Appendix C. 536

7 Conclusion 537

In this study, we analyzed the training dynamics of 538

the token embeddings concerning the representa- 539

tion degeneration problem of the learned embed- 540

dings, focusing on the rare tokens. Based on the 541

analysis, we propose an adaptive gradient gating 542

method that solves the problem by solely handling 543

the training for rare token embeddings. Experi- 544

ments and qualitative studies in various tasks of 545

text generation demonstrate the effectiveness of 546

our method. AGG is orthogonal to the existing 547

method in the neural text degeneration problem, 548

which means it can be compatible to fuse AGG and 549

the existing methods in other problems. Thus for 550

future work, we would like to extend our method 551

to other regions using token embeddings, such as 552

text summarization, and classification. 553
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Daniel Biś, Maksim Podkorytov, and Xiuwen Liu. 2021.576
Too much in common: Shifting of embeddings in577
transformer language models and its implications.578
In North American Chapter of the Association for579
Computational Linguistics (NAACL).580

Elia Bruni, Nam Khanh Tran, and Marco Baroni. 2014.581
Multimodal distributional semantics. Journal of Arti-582
ficial Intelligence Research.583

David Demeter, Gregory Kimmel, and Doug Downey.584
2020. Stolen probability: A structural weakness of585
neural language models. Proceedings of the 58th586
Annual Meeting of the Association for Computational587
Linguistics.588

Kawin Ethayarajh. 2019. How contextual are contex-589
tualized word representations? comparing the geom-590
etry of BERT, ELMo, and GPT-2 embeddings. In591
Proceedings of the 2019 Conference on Empirical592
Methods in Natural Language Processing and the593
9th International Joint Conference on Natural Lan-594
guage Processing (EMNLP-IJCNLP), pages 55–65,595
Hong Kong, China. Association for Computational596
Linguistics.597

Jun Gao, Di He, X. Tan, Tao Qin, L. Wang, and T. Liu.598
2019. Representation degeneration problem in train-599
ing natural language generation models. ArXiv,600
abs/1907.12009.601

Jonas Gehring, Michael Auli, David Grangier, Denis602
Yarats, and Yann Dauphin. 2017. Convolutional se-603
quence to sequence learning. In ICML.604

Chengyue Gong, Di He, X. Tan, Tao Qin, L. Wang,605
and T. Liu. 2018. Frage: Frequency-agnostic word606
representation. ArXiv, abs/1809.06858.607

A. Graves. 2013. Generating sequences with recurrent 608
neural networks. ArXiv, abs/1308.0850. 609

Tianlin Liu, L. Ungar, and João Sedoc. 2019. Unsuper- 610
vised post-processing of word vectors via conceptor 611
negation. In AAAI. 612

Minh-Thang Luong, Richard Socher, and Christopher D. 613
Manning. 2013. Better word representations with re- 614
cursive neural networks for morphology. In CoNLL, 615
Sofia, Bulgaria. 616

Stephen Merity, N. Keskar, and R. Socher. 2018. Regu- 617
larizing and optimizing lstm language models. ArXiv, 618
abs/1708.02182. 619

Stephen Merity, Caiming Xiong, James Bradbury, and 620
R. Socher. 2017. Pointer sentinel mixture models. 621
ArXiv, abs/1609.07843. 622

Jiaqi Mu, S. Bhat, and P. Viswanath. 2018. All-but-the- 623
top: Simple and effective postprocessing for word 624
representations. ArXiv, abs/1702.01417. 625

Myle Ott, Michael Auli, David Grangier, and 626
Marc’Aurelio Ranzato. 2018. Analyzing un- 627
certainty in neural machine translation. ArXiv, 628
abs/1803.00047. 629

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 630
Jing Zhu. 2002. Bleu: a method for automatic evalu- 631
ation of machine translation. In Proceedings of the 632
40th Annual Meeting of the Association for Com- 633
putational Linguistics, pages 311–318, Philadelphia, 634
Pennsylvania, USA. Association for Computational 635
Linguistics. 636

Adam Paszke, Sam Gross, Francisco Massa, Adam 637
Lerer, James Bradbury, Gregory Chanan, Trevor 638
Killeen, Zeming Lin, Natalia Gimelshein, Luca 639
Antiga, Alban Desmaison, Andreas Köpf, Edward 640
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, 641
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie 642
Bai, and Soumith Chintala. 2019. Pytorch: An imper- 643
ative style, high-performance deep learning library. 644
ArXiv, abs/1912.01703. 645

Ofir Press and Lior Wolf. 2017. Using the output em- 646
bedding to improve language models. In EACL. 647

Alec Radford, Jeff Wu, Rewon Child, David Luan, 648
Dario Amodei, and Ilya Sutskever. 2019. Language 649
models are unsupervised multitask learners. 650

Herbert Rubenstein and John Goodenough. 1965. Con- 651
textual correlates of synonymy. Commun. ACM, 652
8:627–633. 653

Rico Sennrich, B. Haddow, and Alexandra Birch. 2016. 654
Neural machine translation of rare words with sub- 655
word units. ArXiv, abs/1508.07909. 656

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob 657
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 658
Kaiser, and Illia Polosukhin. 2017. Attention is all 659
you need. ArXiv, abs/1706.03762. 660

9

https://aclanthology.org/N09-1003
https://aclanthology.org/N09-1003
https://aclanthology.org/N09-1003
https://aclanthology.org/N09-1003
https://aclanthology.org/N09-1003
https://doi.org/10.1162/tacl_a_00106
https://doi.org/10.1162/tacl_a_00106
https://doi.org/10.1162/tacl_a_00106
https://doi.org/10.1613/jair.4135
https://doi.org/10.18653/v1/2020.acl-main.198
https://doi.org/10.18653/v1/2020.acl-main.198
https://doi.org/10.18653/v1/2020.acl-main.198
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/365628.365657
https://doi.org/10.1145/365628.365657
https://doi.org/10.1145/365628.365657


Dilin Wang, Chengyue Gong, and Qiang Liu. 2019. Im-661
proving neural language modeling via adversarial662
training. In Proceedings of the 36th International663
Conference on Machine Learning, volume 97 of Pro-664
ceedings of Machine Learning Research, pages 6555–665
6565. PMLR.666

L. Wang, Jing Huang, Kevin Huang, Ziniu Hu, Guang-667
tao Wang, and Quanquan Gu. 2020. Improving neu-668
ral language generation with spectrum control. In669
ICLR.670

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-671
nan, Kyunghyun Cho, and Jason Weston. 2020. Neu-672
ral text generation with unlikelihood training. ArXiv,673
abs/1908.04319.674

Z. Yang, Zihang Dai, R. Salakhutdinov, and William W.675
Cohen. 2018. Breaking the softmax bottle-676
neck: A high-rank rnn language model. ArXiv,677
abs/1711.03953.678

Z. Zhang, Chongming Gao, Cong Xu, Rui Miao, Qinli679
Yang, and Junming Shao. 2020. Revisiting represen-680
tation degeneration problem in language modeling.681
In EMNLP.682

Tianyuan Zhou, João Sedoc, and Jordan Rodu. 2019.683
Getting in shape: Word embedding subspaces. In684
Proceedings of the Twenty-Eighth International685
Joint Conference on Artificial Intelligence, IJCAI-19,686
pages 5478–5484. International Joint Conferences on687
Artificial Intelligence Organization.688

10

http://proceedings.mlr.press/v97/wang19f.html
http://proceedings.mlr.press/v97/wang19f.html
http://proceedings.mlr.press/v97/wang19f.html
http://proceedings.mlr.press/v97/wang19f.html
http://proceedings.mlr.press/v97/wang19f.html
https://doi.org/10.24963/ijcai.2019/761


A Derivation of the gradient of AGG loss689

w.r.t. rare token embedding690

We follow the same notation as in the main paper.691

Before we write the derivation of the gradient about692

rare token embedding wr, we write the gradient693

of f(w̃j) and (zli)j about wr, where f(w̃j) is the694

function of w̃j with j = 1, ..., N and (zli)j is a j-th695

component of zli with l = 0, 1, 2 as follows.696

∇wrf(w̃j) = ∇w̃j
f(w̃j)⊙∇wr w̃j

= ∇w̃j
f(w̃j)⊙ 0

= 0 for all j

(∵ w̃j is treated as a constant.)

(12)697

698

∇wr(z
l
i)j = ∇wr [glj · h̃iwT

j + (1− glj · h̃iw̃T
j )]

= glj∇wr h̃iwT
j + 0

=

{
glj h̃i if j = r

0 else

=

{
gljhi if j = r

0 else

(∵ hi = h̃i in terms of value.)
(13)699

Considering the case of yi /∈ Vr, AGG negative700

log-likelihood loss for the i-th position of token701

generation, LAGG
i is written as follows.702

LAGG
i = − log p0I(yi)|i − log p1I(yi)|i (14)703

Then gradient of LAGG
i about wr is written as704

follows.705

∇wrL
AGG
i

= −∇wr log p
0
I(yi)|i −∇wr log p

1
I(yi)|i

= −∇wr log p
1
I(yi)|i − 0

(∵ log p0I(yi)|i is a function of w̃r.)

= − 1

p1I(yi)|i
∇wrp

1
I(yi)|i

= − 1

p1I(yi)|i

N∑
j=1

∇(z1i )j
p1I(yi)|i · ∇wr(z

1
i )j

(∵ p1I(yi)|i is a function of (z1i )j , j = 1, ..., N .)

= − 1

p1I(yi)|i
∇(z1i )r

p1I(yi)|i · ∇wr(z
1
i )r

(By Eq. 13.)
(15)706

As p1I(yi)|i = [softmax(z1i )]I(yi)|i, 707

∇(z1i )r
p1I(yi)|i = −p1I(yi)|ip

1
r|i. (16) 708

Thus, ∇wrL
AGG
i is computed as follows. 709

∇wrL
AGG
i

= − 1

p1I(yi)|i
∇(z1i )r

p1I(yi)|i · ∇wr(z
1
i )r

(By Eq. 15.)

= p1r|i · ∇wr(z
1
i )r

= g1rp
1
r|ihi

(By Eq. 13.)

(17) 710

Considering the case of yi ∈ Vr but yi ̸= vr, 711

LAGG
i is written as follows. 712

LAGG
i = − log p0I(yi)|i − log p2I(yi)|i (18) 713

Then ∇wrL
AGG
i is written as follows. 714

∇wrL
AGG
i

= −∇wr log p
0
I(yi)|i −∇wr log p

2
I(yi)|i

= −∇wr log p
2
I(yi)|i − 0

(∵ log p0I(yi)|i is a function of w̃r.)

= − 1

p2I(yi)|i
∇wrp

2
I(yi)|i

= − 1

p2I(yi)|i

N∑
j=1

∇(z2i )j
p2I(yi)|i · ∇wr(z

2
i )j

(∵ p2I(yi)|i is a function of (z2i )j , j = 1, ..., N .)

= − 1

p2I(yi)|i
∇(z2i )r

p2I(yi)|i · ∇wr(z
2
i )r

(∵ Eq. 13.)
(19) 715

As p2I(yi)|i = [softmax(z2i )]I(yi)|i, 716

∇(z2i )r
p2I(yi)|i = −p2I(yi)|ip

2
r|i. (20) 717

Thus, ∇wrL
AGG
i is computed as follows. 718

∇wrL
AGG
i

= − 1

p2I(yi)|i
∇(z2i )r

p2I(yi)|i · ∇wr(z
2
i )r

(By Eq. 19.)

= p2r|i · ∇wr(z
2
i )r

= g2rp
2
r|ihi

(By Eq. 13.)

(21) 719
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Considering the remained case of yi = vr, since720

yi ∈ Vr, LAGG
i is same as the second case, and721

derivation process of ∇wrL
AGG
i shares the same722

process with Eq. 19. As I(yi) = r,723

∇(z2i )r
p2I(yi)|i = p2I(yi)|i(1− p2I(yi)|i) (22)724

Thus, ∇wrL
AGG
i is computed as follows.725

∇wrL
AGG
i

= − 1

p2I(yi)|i
∇(z2i )r

p2I(yi)|i · ∇wr(z
2
i )r

(By Eq. 22.)

= −(1− p2I(yi)|i) · ∇wr(z
2
i )r

= −g2r(1− p2I(yi)|i)hi

(By Eq. 13.)

= (p2r|i − 1)hi

(∵ I(yi) = r and g2r = 1 if I(yi) = r.)

(23)726

As pr|i = pmr|i with m = 0, 1, 2 in terms of value,727

we finally write ∇wrL
AGG
i as follows.728

∇wrLi =


(pr|i − 1)hi if yi = vr

g1rpr|ihi if yi /∈ Vr

g2rpr|ihi else,

(24)729

B Experimental Details730

In this section, we present the details of the experi-731

ments in main page. All the experiments were con-732

ducted with a single GPU on our machine (GPU:733

NVIDIA A40). For each task in the experiments,734

we use the same model architecture and train it735

with different objectives(i.e., MLE, AGG, UL). The736

hyper-parameters used for different training meth-737

ods in the same task are exactly same. The detailed738

hyper-parameters are described in Table 10.739

C Ablation Study about Rare Token740

Grouping741

In this sections, we present the analysis about742

rare token grouping method of AGG. Figure 4743

presents the size of the rare token group during744

initial 1k training steps when the model is trained745

with WikiText-103 dataset. As presented in the fig-746

ure, rare group size fluctuate wildly at the initial747

training stage. We expect for this grouping method748

to determine an optimal rare token group for the749

current training step. Table 9 presents the results of750

ablation study about dynamic grouping. To except751

Figure 4: Size of the rare token group during initial 1k
steps of training with WikiText-103 dataset.

Method PPL Uniq I(W)

MLE 15.51 13143 0.377
AGG 15.51 13737 0.813
static AGG 15.55 13614 0.752

Table 9: Ablation study about dynamic grouping of
AGG.

dynamic grouping from AGG, we fixed the rare 752

token group after 1 epoch. For this static group- 753

ing AGG method, Next-token diversity(Uniq) and 754

the isotropy of the token embedding space(I(W) 755

perform worse than dynamic grouping AGG. 756

D Hyperparameter Sensitivity 757

In this sections we show how the metrics used on 758

language modeling task change with the hyper- 759

parameter α in Figure 5. As presented in this figure, 760

Perplexity and Uniq score typically increase with 761

bigger α. Isotropy of the embedding space is the 762

best when α = 0.03, which is the main reason to 763

be selected. Destruction of isotropy when the rare 764

token group becomes big is another study point 765

about the AGG method. 766

E Qualitative Study about Semantic 767

Alignments between Tokens 768

In this section, we present qualitative studies about 769

semantic alignments between tokens for language 770

modeling and machine translation tasks. We select 771

three rare token from each datasets: "homepage", 772

"Werewolf", and "policymakers" for WikiText-103 773

dataset, and "optimum", "criminal", and "happi- 774

ness" for WMT14 En→De dataset. For each rare 775

token, we extract the top-5 nearest neighbor token 776

predicted by the cosine distance between token em- 777
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Hyperparameter Empirical Study Language Modeling Machine Translation
Base Big

# of layers 6 24 6-6 6-6
Hidden dimension 512 1024 512 1024
Projection dimension 2048 4096 2048 4096
# of heads 8 16 8 16
Dropout 0.1 0.1 0.1 0.3
Vocabulary size 44256 44256 40624 40624
# of parameters 42M 358M 65M 218M
Learning rate 7 · 10−4 7 · 10−4 1 · 10−3 1 · 10−3

Max tokens per batch 32k 32k 64k 64k
Maximum training steps 40k 50k 190k 190k
Warmup steps 4k 4k 4k 4k
Optimizer Adam Adam Adam Adam
Weight decay 0.01 0.01 0.01 0.01
α for AGG − 0.03 0.08 0.08
α for UL − 1.0 − −

Table 10: Model configurations and training hyper-parameters for all experiments conducted in the main page. For
word similarity task, the model trained on language modeling task are evaluated for word similarity datasets.

(a) Perplexity (b) Uniq (c) I(W)

Figure 5: Hyper-parameter(α) sensitivity of AGG in the language modeling task on Wikitext-103 dataset.

beddings. Compared with baseline MLE method,778

AGG shows significant improvement to train se-779

mantic alignments for rare tokens. From Table 11,780

we notice that the rare tokens trained with AGG781

are semantically well aligned and not biased about782

token frequency. Table 12 demonstrates that to-783

ken embeddings trained with AGG also learn the784

cross-lingual semantic alignments between target785

language tokens.786

F Examples787

We present additional generated text samples from788

the model trained on language modeling task in789

Table 13. From the table, we notice that the model790

trained with AGG generates more diverse and high791

quality text than the baseline.792
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homepage Werewolf policymakers
MLE AGG MLE AGG MLE AGG
BOX website ASUS Creature Steam politicians
inbox webpage riet Nightmare death environmentalists

livestream blog 480 Bride Venezuel activists
namespace Tumblr nuclear Sneak includ planners

hashes websites ATCH Sniper reason economists

Table 11: Top-5 nearest neighbors of each rare tokens in WikiText-103 dataset. Performance of AGG method is
compared with the baseline MLE method. Red color denotes the rare tokens among neighbors.

optimum criminal happiness
MLE AGG MLE AGG MLE AGG
therto optimal Criminal criminals juries happy
ratory optimale∗ criminals Criminal enness joy

consultan@@ optimalen∗ perpetr@@ krimi@@∗ ocopying happ@@
sofar maximum secution kriminellen∗ ratory Glück∗

protection@@ Optim@@ xious crime sacri@@ pleasure

Table 12: Top-5 nearest neighbors of each rare source tokens in WMT14 En→De dataset. Performance of AGG
method is compared with the baseline MLE method. The symbol @@ stands for sub-word tokenization of the
dataset. The symbol * denotes the synonym token of the target language.
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Method Texts Uniq
Prefix A Company , 2nd Engineer Combat Battalion , moved to the south side of the Yongsan - Naktong

River road ; D Company of the 2nd Engineer Battalion was on the north side of the road .
Approximately 2 miles ( 3

MLE . 2 km ) north of the river , the 2nd Engineer Combat Battalion was on the south side of the road .
The 2nd Engineer Combat Battalion was on the south side of the road .

22

AGG . 2 km ) north of the river , the 2nd Engineer Combat Battalion was attacked by a small force
of North Korean People ’s Volunteer Army ( NK ) troops . The North Koreans were able to
penetrate the UN lines and capture the town .

43

Method Texts Uniq
Prefix The twelve 45 - calibre 35 . 6 cm ( 14 . 0 in ) Type 41 guns of the Ise class were mounted in three

pairs of twin - gun , superfiring turrets . Numbered one through
MLE two , the turrets were placed in superfiring pairs , one ahead of the other . The turrets were placed

in superfiring pairs , with the turrets superfiring over the wing turrets . The turrets were placed in
superfiring pairs , with the turrets superfiring over the wing turrets . The turrets were placed in
superfiring pairs , with the turrets superfiring over the wing turrets . The turrets were placed in
superfiring pairs , with the turrets superfiring over the wing turrets . The turrets were placed in
superfiring

19

AGG five from front to rear , the guns had a firing arc of 260 ° . They fired a 45 . 3 kg ( 99 lb ) projectile
at a muzzle velocity of 835 m / s ( 2 , 740 ft / s ) to a range of 16 , 000 m ( 52 , 000 yd ) . They
had a maximum elevation of 30 degrees and fired a 36 . 3 kg ( 77 lb ) projectile at a muzzle
velocity of 835

55

Method Texts Uniq
Prefix Despite the expensive reconstructions , both vessels were considered obsolete by the eve of the

Pacific War , and neither saw significant action in the early years of the war . Following the loss
of most of the IJN ’s large aircraft carriers during the Battle

MLE of Midway , the IJN was forced to rely on the United States Navy for aircraft carriers and
aircraft carriers to support operations in the Pacific . The IJN ’s aircraft carriers were the first
to be equipped with the new Mark 4 torpedo and the IJN ’s aircraft carriers were the first to be
equipped with the Mark 4 torpedo . The IJN ’s aircraft carriers were the first to be equipped with
the Mark 4 torpedo , and the IJN ’s aircraft carriers

37

AGG of Midway , the IJN decided to modernize its fleet and modernize its fleet . The IJN ’s new ships
were designed to be capable of operating at speeds of up to 30 knots ( 56 km / h ; 35 mph ) , and
were fitted with a new bow section . The ships were designed to carry 1 , 000 t ( 980 long tons ; 1
, 100 short tons ) of fuel oil , and were fitted with a pair of aircraft catap

63

Method Texts Uniq
Prefix Amos was born in Macclesfield , Cheshire and was a member of the Crewe Alexandra academy

until he was released at the age of 10 . While at Crewe , he also played for another local team ,
Bollington United , as a centre

MLE - back . He was a member of the team that won the FA Youth Cup in 1989 , and was a member
of the team that won the FA Youth Cup in 1990 . He was a member of the team that won the FA
Youth Cup in 1990 , and was a member of the team that won the FA Youth Cup in 1992 .

24

AGG - back . He was signed by Crewe Alexandra in July 2006 , and made his debut for the club in a 2
- 1 win over Rotherham United in the League Cup on 18 August 2006 . He was loaned out to
Rotherham for the rest of the 2006 - 07 season , before being released at the end of the season .

52

Table 13: Generated texts on the Wikitext-103 test set and uniq tokens for each texts. 50 bpe tokens are given as
prefix and the models are to generate the continuation of 100 next bpe tokens.
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