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ABSTRACT

Data-Free Robustness Distillation (DFRD) aims to transfer the robustness from
the teacher to the student without accessing the training data. While existing
methods focus on overall robustness, they overlook the robust fairness issues,
leading to severe disparity of robustness across different categories. In this pa-
per, we find two key problems: (1) student model distilled with equal class pro-
portion data behaves significantly differently across distinct categories; and (2)
the robustness of student model is not stable across different attacks targets. To
bridge these gaps, we present the first Fairness-Enhanced data-free adversarial
Robustness Distillation (FERD) framework to adjust the proportion and distri-
bution of adversarial examples. For the proportion, FERD adopts a robustness-
guided class reweighting strategy to synthesize more samples for the less robust
categories, thereby improving robustness of them. For the distribution, FERD
generates complementary data samples for advanced robustness distillation. It
generates Fairness-Aware Examples (FAEs) by enforcing a uniformity constraint
on feature-level predictions, which suppress the dominance of class-specific non-
robust features, providing a more balanced representation across all categories.
Then, FERD constructs Uniform-Target Adversarial Examples (UTAEs) from
FAEs by applying a uniform target class constraint to avoid biased attack direc-
tions, which distributes the attack targets across all categories and prevents over-
fitting to specific vulnerable categories. Extensive experiments on three public
datasets demonstrate that FERD achieves state-of-the-art worst-class robustness
and NSD under all adversarial attacks. For instance, FERD improves worst-
class robustness by up to 19.6% and reduces NSD by 0.092 compared to the
optimal baseline on CIFAR-10 with MobileNet-V2. Our code is available at:
https://anonymous.4open.science/r/FERD-2A48/.

1 INTRODUCTION

With the widespread use of Deep Neural Networks (DNNs) (Goswami et al., 2018; Gongye et al.,
2024; Lim et al., 2024), the deployment of lightweight models on edge devices has become increas-
ingly important (Mittal, 2024; Min et al., 2024; Liu et al., 2024). However, a large number of studies
have shown that these lightweight models are weakly robust in the face of adversarial attacks (Ma
et al., 2021; Li et al., 2022; Croce & Hein, 2020; Bai et al., 2023). While traditional adversarial train-
ing methods (Jia et al., 2022; Hsiung et al., 2023; Jia et al., 2024b;a), though showing significant
advantages on large models, are difficult to achieve desirable results in lightweight models (Wang
et al., 2024b; Ye et al., 2019; Huang et al., 2021). To enhance the defense capability of lightweight
models, researchers have proposed the concept of adversarial robustness distillation (Zhang et al.,
2019; Goldblum et al., 2020; Zi et al., 2021; Zhu et al., 2021; Huang et al., 2023; Yue et al., 2024;
Zhu et al., 2023), which aims to migrate the defense capability of the robust teacher to the student,
thereby enhancing the latter’s performance in an adversarial setting.

However, in practice, raw training data for the teacher model are often unavailable, making it diffi-
cult to apply traditional distillation methods directly. To break through this limitation, researchers
propose the Data-Free Knowledge Distillation (DFKD) method (Micaelli & Storkey, 2019; Fang
et al., 2021; Yin et al., 2020; Fang et al., 2022), which synthesizes alternative samples through a
training generator to simulate the original data distribution and achieve knowledge transfer. Based
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on this, the Data-Free Robustness Distillation (DFRD) method (Yuan et al., 2024; Wang et al.,
2024a; Zhou et al., 2024) is further developed to combine the generation and distillation mecha-
nisms to effectively deliver robustness without the need for real data, providing a novel solution for
resource-constrained and data-unavailable environments for model defense.

Despite their effectiveness, existing DFRD methods mainly aim to enhance the overall robustness
of the student, while overlooking a critical issue: robust fairness (Sun et al., 2023; Yue et al., 2023;
Zhao et al., 2024). The robust model may exhibit strong resistance to adversarial attacks on specific
categories and remain vulnerable in others, leading to inconsistent robustness performance across
different categories. It impacts the reliability and fairness of the model in practical applications.

In this paper, we make the first attempt at investigating the robust fairness problem in the context
of DFRD. We find that although the student tends to inherit the teacher’s class-wise robustness
pattern, the inter-class robustness gap is significantly amplified in the distillation process. We find
two phenomena affecting robust fairness: (1) students distilled with equally distributed synthetic
data still show class-wise robustness discrepancies; and (2) the success rate of adversarial attacks
on students varies significantly depending on the target class. Based on these findings, we propose
a Fairness-Enhanced data-free adversarial Robustness Distillation (FERD) framework by adjusting
the proportion and distribution of the synthetic samples to mitigate these problems.

Specifically, for the proportion, we introduce a robustness-guided class reweighting strategy that en-
courages the generator to synthesize more samples from weakly robust categories, thereby compen-
sating for their vulnerability and promoting fairness in robustness. For the distribution, we propose
to generate complementary data samples for advanced robustness and fairness distillation. Firstly,
we generate Fairness-Aware Examples (FAEs) by enforcing a uniformity constraint on feature-level
predictions that are closely associated with non-robust representations. This helps suppress the
dominance of class-specific non-robust features, ensuring that the benign samples provide a more
balanced representation across all classes. To avoid biased attack directions, we further construct
Uniform-Target Adversarial Examples (UTAEs) from FAEs by applying a uniform target class con-
straint during adversarial generation. It distributes the attack targets evenly across all categories and
prevent overfitting to specific vulnerable categories. We conjecture robust distillation on adversarial
examples with uniformly distributed targets can defend against attacks from different targets.

Experiments on the three datasets (CIFAR-10, CIFAR-100, and Tiny-ImageNet) show that compared
with baseline method, FERD improves +19.6%, +8.9%, +10.3% and +6.6% on the worst-class ro-
bustness against FGSM (Goodfellow et al., 2014), PGD-20 (Madry et al., 2017), CW∞ (Carlini &
Wagner, 2017), and AutoAttack (AA) (Croce & Hein, 2020), respectively, alleviating the robustness
bias problem in the DFRD to a certain extent.

Our contributions can be summarized as follows: (I) We make the first attempt at investigating
the problem of robust fairness in DFRD, revealing that uniform distribution among original data
categories and attack target bias are the two key factors affecting fairness. (II) We propose the FERD
framework, which enhances robust fairness at both the proportional and distributional levels through
robustness-guided category reweighting and distribution-aware sample generation mechanisms. (III)
Experiments have demonstrated that FERD significantly enhances the robustness and fairness of the
student model, and the robust accuracy in the weakest class has been improved by +19.6% compared
with the existing optimal methods, effectively alleviating the robust bias phenomenon in DFRD.

2 RELATED WORK

2.1 DATA-FREE ROBUSTNESS DISTILLATION

DFRD aims to transfer the robustness from teacher to student using synthetic samples instead of
teacher’s original training data. DFARD (Wang et al., 2024a) first defines the concept of DFRD and
proves that the difficulty lies in the lower upper bound of knowledge transfer information. They
propose an interactive temperature adjustment strategy and an adaptive generator to solve the prob-
lem. DERD (Zhou et al., 2024) takes a homogenized expert guidance strategy. Both clean and
robust knowledge are distilled from clean and robust teachers respectively, using the same synthetic
data. To coordinate the gradients of the clean and robust distillation tasks, DERD also introduces
a stochastic gradient aggregation module, thereby optimizing the trade-off between robustness and
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Figure 1: Comparison of the accuracy of the teacher and the students distilled from different DFRD
methods under benign and adversarial examples. The blue line represents the teacher and the other
lines correspond to the students. The horizontal axis indicates the category, and the vertical axis
indicates the accuracy.

accuracy. DFHL (Yuan et al., 2024) proposes the concept of High-Entropy Examples (HEEs), which
can characterize a more complete shape of the classification boundary. Distillation on HEEs achieves
the best balance between clean accuracy and robustness. It is worth mentioning that although DFKD
does not involve robustness, we can transform it into DFRD by adding adversarial noise to synthetic
samples during its distillation stage. For example, Fast (Fang et al., 2022) proposes a fast DFKD,
which reuses the common features in the training data to synthesize different data instances. By
generating adversarial examples on synthetic samples, a distilled robust student can be obtained. In
this paper, we make the first attempt at solving the problem of robust fairness transfer in DFRD.

2.2 FAIRNESS IN ROBUSTNESS

While enhancing overall model robustness is a common goal, it inevitably leads to significant class-
wise performance discrepancies: models become highly robust for some categories while others
remain vulnerable to adversarial attacks. FRL (Xu et al., 2021) is a pioneer work in highlighting this
issue and introduces the concept of “robust fairness” to assess such class-wise robustness disparities.
To address this issue, FRL proposes fairness constraints, adjusting decision margins and sample
weights when these constraints are violated. BAT (Sun et al., 2023) identify distinct “source-class”
and “target-class” unfairness within adversarial training, tackling these by adjusting per-class attack
intensities and applying a uniform distribution constraint. Further methods include those by Fair-
ARD (Yue et al., 2023), who improves student model robust fairness by increasing the weights of
difficult classes, and ABSLD (Zhao et al., 2024), who focuses on adaptively reducing inter-class
error risk gaps by modulating the class-wise smoothness of samples’ soft labels during training. In
this paper, we introduce FERD to simultaneously enhance model robustness and alleviate robust
unfairness problems.

3 OBSERVATION OF FAIRNESS IN DFRD

In this section, we investigate whether robust fairness of the teacher is transferred to the student
distilled from DFRD methods. We research the robust fairness performance of the models and
defense effects against adversarial attacks from different target categories.

3.1 ROBUST FAIRNESS OF THE STUDENT

To evaluate the robust fairness of the student, we compare the classification performance of the
teacher and the students distilled by five methods (ZSKT (Micaelli & Storkey, 2019), CMI (Fang
et al., 2021), DeepInv (Yin et al., 2020), Fast (Fang et al., 2022), and DFHL (Yuan et al., 2024)) on
different classes. We measure the accuracy of each category under benign samples and four adver-
sarial attacks (FGSM, PGD-20, CW∞, and AA). The results in Fig.1 show that the performance of
the student on different categories follows a consistent trend with that of the teacher. Note that the
sample labels all adopt a uniform sampling strategy in the aforementioned DFRD methods, in which
case the student conducts robust distillation on equally distributed synthetic data. However, the ro-
bustness among different categories varies significantly. Therefore, we argue that sample number
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Figure 2: Confusion matrices under different adversarial attacks. The horizontal axis denotes pre-
dicted labels, and the vertical axis denotes true labels. Darker colors indicate a higher number of
samples predicted as the correct class.

imbalance is the key to achieving class balance, because categories behave differently in robust dis-
tillation. Some categories are more difficult to achieve robustness, while others quickly reach a high
level of robustness. We conjecture that by adjusting the weight of class sampling and increasing the
number of samples from weakly robust classes, the problem of robust unfairness can be effectively
alleviated. The proof of this conjecture is shown in Appendix A.1.

3.2 TARGET FAIRNESS OF ADVERSARIAL EXAMPLES

We make confusion matrices to visualize the classification results, as shown in Fig.2. We observe
that the students’ robustness against adversarial attacks on different targets varies. For samples with
the original label of class 0, when the attack target is class 9, the student is more prone to misclas-
sification, showing poor robustness; while for adversarial attacks on other classes, its robustness is
relatively strong. This indicates that the student exhibits significant differences in defending against
adversarial attacks on different targets and are more vulnerable to specific class adversarial attacks.
We conjecture that robust distillation on adversarial examples with uniformly distributed targets can
defend against attacks from different targets. The proof of this conjecture is shown in Appendix A.2.

4 METHODOLOGY

4.1 OVERALL FRAMEWORK

In the above section, we find two factors affecting robust fairness: (1) the student distilled on data
with equal class proportions shows class-wise robustness discrepancies; and (2) the success rate of
adversarial attacks on the student varies significantly depending on the target class.

In this section, we introduce our FERD framework and the overall framework is in Fig.3. The algo-
rithm is shown in the Appendix A.3. For the the first proportion problem, we introduce a robustness-
guided class reweighting strategy that encourages the generator to synthesize more samples from
weakly robust classes. For the second distribution problem, we impose uniform constraints on the
feature space of synthetic samples and the generation direction of adversarial examples, respectively,
making the targets of adversarial examples more uniformly distributed. Specifically, we firstly gener-
ate Fairness-Aware Examples(FAEs) by enforcing constraint on predictions from non-robust feature,
which are highly related to adversarial targets. Then, to avoid biased attack directions, we further
construct Uniform-Target Adversarial Examples (UTAEs) from FAEs by applying constraint during
adversarial generation, preventing attacks focus on “vulnerable category”.

4.2 CLASS-AWARE SAMPLE REWEIGHTING FOR FAIR DISTILLATION

In traditional DFRD, the labels yi of synthetic samples xi are sampled from a uniform distribution,
as yi ∼ U(0, C − 1), where U means uniform distribution and C means class number. However,
robust distillation on equally distributed data infers a significant robustness unfairness problem.

To mitigate this problem, we introduce the robustness-guided class reweighting strategy based on
adversarial margin, aiming to guide the generator to synthesize more samples of categories with
poorer robustness. Specifically , we first generate adversarial examples xadv

i from the synthetic

4
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Figure 3: Framework of our FERD. In the generation stage, we use a robustness-guided class
reweighting strategy to synthesize more weak-class samples and apply a uniformity constraint to
non-robust feature predictions to generate FAEs. During robust distillation, we construct UTAEs
from FAEs, using them respectively as benign samples and adversarial examples.

samples xi using PGD-20 attack. Then, we calculate the adversarial margin mi of each adversarial
sample xadv

i under the teacher model fT :

mi =
(
fT (xadv

i )
)
yi
−max

j ̸=yi

(
fT (xadv

i )
)
j
. (1)

The adversarial margin measures the gap between the model’s confidence in the correct category
and the strongest confusable category. The smaller the value, the more probably xadv

i is to be
misclassified. A negative margin indicates that the attack has been successful.

Therefore, we calculate the average negative adversarial margin for each category:

Dc = 1

Nc

∑
i:yi=c

(−mi), (2)

where Nc means the number of samples in category c. This value is used to measure the robustness
vulnerability of the category. A higher value indicates that the category c is more likely to be
misclassified when facing adversarial attack.

Finally, we apply softmax function to transform Dc into sampling probability distribution pc, which
is used as the sampling weight for categories in the subsequent sample generation stage, enabling to
adaptively generate more samples of less robust categories. Furthermore, we compare several other
reweighting strategies. The experimental results are shown in Appendix A.6.

4.3 NON-ROBUST FEATURE SUPPRESSION FOR BALANCED REPRESENTATIONS

To achieve the fair tendency to each target when generating adversarial examples, we design a FAEs
generation method and use them as benign samples, which ensures that FAEs’ non-robust feature
predictions are not concentrated in a few categories; otherwise, adversarial perturbations would be
more likely to attack such categories.

We adopt a modified information bottleneck approach to achieve this. The standard information
bottleneck seeks to get a compressed representation Z of the input X that is maximally informative
about the target label Y . The objective function can be written as follows:

LIB = I(Z;Y )− βI(Z;X), (3)

5
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where I denotes the mutual information and β balances the trade-off between prediction accuracy
and compression. We attempt to distill non-robust features Znr from the intermediate feature repre-
sentation Z = fT

l (x), where fT
l (·) describes l-th layer outputs of the teacher.

When the synthetic samples xi is input into fT , we inject a learnable noise scale λr into Z and
define informative features ZI as follows:

ZI = fT
l (xi) + softplus(λr) · ϵ, ϵ ∼ N (0, I). (4)

After obtaining ZI added by λr, we propagate ZI to the subsequent output layer fT
l+ and evaluate the

influence of each unit’s feature to the teacher prediction. When distilling Znr from ZI , we must en-
sure ZI remains predictive while encouraging robustness to noise. Since directly optimizing mutual
information is intractable, we use a variational approximation (Kim et al., 2021). The optimization
objective is formulated as:

minL(λr) = CE(fT
l+(ZI), yi) + β ·

Channel∑
c=1

(
vc
λ2
c

+ log

(
λ2
c

vc

)
− 1

)
, (5)

where vc and λc denote the c-th channel of ZI and λr respectively. The first term ensures that ZI

correctly predicts the target label yi, while the second term acts as a regularizer to control the amount
of information passing through the bottleneck.

After optimizing λr, we identify non-robust channels index inrk by comparing λ2
r with the maxi-

mum variance across all channels:

inrk = 1

[
λ2
k < max

c′∈{1,...,C}

{
Var

(
Zc′

I

)}]
. (6)

The right-hand side represents the upper limit of perturbation. Correspondingly, non-robust features
Znr are obtained via channel-wise masking: Znr = inr · Z. The prediction results of Znr are
vulnerable to perturbations, so that they are highly correlated with adversarial predictions. To enable
the generator to synthesize FAEs, we minimize the KL divergence between the predictions of non-
robust features and the uniform distribution:

Luni = KL(U , fT
l+(Znr)). (7)

To further enhance the quality and diversity of the FAEs, we introduce additional loss functions
during the training process of the generator:

Ladv = KL
(
fT (xi), f

S(xi)
)

Lbn =
∑

l

(
∥µl(xi)− µl∥2 +

∥∥σ2
l (xi)− σ2

l

∥∥
2

)
,

Loh = CE
(
fT (xi), yi

) (8)

where Ladv encourages divergence between the student and teacher, promoting the diversity of
FAEs; Lbn improves the visualization of the FAEs by matching the statistical information (mean µl

and variance σ2
l ) stored in BatchNorm layers of the teacher and the student; Loh ensures that the

FAEs are correctly predicted by the teacher.

Therefore, the overall loss function for the generator in the generation stage are summarized as:

Lgen = λadv · Ladv + λbn · Lbn + λoh · Loh + λuni · Luni, (9)

where these hyperparameters λadv , λbn, λoh and λuni are adjusted empirically to balance the trade-
offs between robustness, fairness, and accuracy. The hyper-parameter selection experiments are
shown in Appendix A.7. By training with the above loss function, the generator synthesizes FAEs
xF , which not only convey effective knowledge, but also be fairer in terms of the tendency towards
different categories when generating adversarial examples.

4.4 LABEL-SPACE ATTACK DIVERSIFICATION FOR FAIRNESS OPTIMIZATION

To address the problem that the student shows significant differences in defending against adversarial
attacks with different targets and is more vulnerable to them from specific categories, we propose a
novel adversarial examples generation method, named UTAEs generation.

6
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Table 1: Result in average robustness(%) (Avg. ↑), worst robustness(%) (Worst ↑), and normalized
standard deviation (NSD ↓) on CIFAR-10. RN-18 and MN-V2 are abbreviations of ResNet-18 and
MobileNet-V2 respectively. The best results are bolded, and the second best results are underlined.

Student Method Clean FGSM PGD CW∞ AA

Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD

RN-18

ZSKT 65.48 32.20 0.266 29.80 5.00 0.563 29.35 4.50 0.591 15.84 1.80 0.714 17.16 2.20 0.740
CMI 68.29 51.20 0.161 33.34 19.50 0.337 28.97 16.00 0.392 21.74 11.00 0.453 26.85 14.60 0.419
DeepInv 71.22 58.90 0.124 38.60 22.50 0.303 27.83 14.30 0.381 27.92 13.80 0.406 25.19 11.60 0.422
Fast 72.20 57.80 0.132 43.96 26.90 0.295 39.60 22.40 0.328 28.03 14.00 0.434 33.24 17.70 0.401
DFHL 74.42 58.60 0.129 41.67 24.30 0.298 36.91 19.30 0.344 29.45 13.40 0.408 36.39 18.50 0.351
FERD(Ours) 79.26 65.90 0.105 51.09 31.30 0.237 42.68 23.50 0.298 36.17 19.00 0.338 40.12 20.80 0.325

MN-V2

ZSKT 54.69 16.10 0.394 23.62 3.90 0.663 22.76 3.80 0.678 12.78 1.00 0.733 14.85 1.60 0.749
CMI 60.70 38.60 0.205 27.90 12.50 0.393 19.61 8.50 0.480 20.10 7.90 0.448 18.09 7.60 0.506
DeepInv 62.77 46.00 0.170 31.66 14.50 0.306 19.08 7.20 0.404 23.60 9.10 0.372 15.39 5.40 0.471
Fast 58.60 43.40 0.198 29.91 15.70 0.374 24.26 11.60 0.441 18.20 6.00 0.556 18.35 6.80 0.563
DFHL 70.83 50.60 0.153 37.22 16.70 0.320 33.22 14.20 0.358 25.28 10.40 0.407 32.58 13.70 0.368
FERD(Ours) 78.34 64.10 0.108 52.19 36.30 0.214 40.87 23.10 0.301 37.13 20.70 0.321 38.06 20.30 0.349

We aim to construct a more evenly distributed type of adversarial perturbation, so that the adversarial
targets are not limited to certain “easily misclassified” classes, but uniformly cover the entire class
space. To achieve this, we apply a uniform target class constraint during adversarial generation,
avoiding to attacks from a single direction. The generation formula is as follows:

xt+1
U = ΠxU+S

(
xt
U + α · sign

(
∇xt

U

[
KL

(
fT (xi), f

T (xt
U )

)
− γ ·KL

(
U , fT (xt

U )
) ]))

, (10)

where ∇xt
U

denotes the gradient of the entropy loss function w.r.t. the UTAE in step t and α is the
step size. By introducing the KL divergence between fT (xU ) and U in the adversarial example
generation, we make the target distribution of adversarial examples more extensive.

After synthesizing FAEs xF and UTAEs xU , we employ them as benign samples and adversarial
examples respectively for robust distillation. Here, the robust distillation framework is as follows:

Lstu = λ1KL
(
fT (xF ), f

S(xF )
)
+ λ2KL

(
fT (xF ), f

S(xU )
)
. (11)

Through robust distillation of diversified adversarial targets, we force the student to inherit robust-
ness across a far broader range of categories, thereby enhancing overall defensive capability against
attacks from all directions.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets & Models. We conduct our experiments on three datasets: CIFAR-10 (Krizhevsky et al.,
2009), CIFAR-100, and Tiny-ImageNet (Le & Yang, 2015). For the teacher model, we select
WideResNet-34-10 (Zagoruyko & Komodakis, 2016) for both CIFAR-10 and CIFAR-100, while
PreActResNet-34 is used for Tiny-ImageNet. For the student model, we select ResNet-18 (He et al.,
2016a) and MoileNet-v2 (Sandler et al., 2018) for CIFAR-10 and CIFAR-100. For Tiny-ImageNet,
we use PreActResNet-18. The performance of the teacher and the experiments on Tiny-ImageNet
are shown in Appendix A.4 and A.5.

Baselines. We compare our method with five different DFRD methods, including ZSKT (Micaelli
& Storkey, 2019), CMI (Fang et al., 2021), DeepInv (Yin et al., 2020), Fast (Fang et al., 2022),
and DFHL (Yuan et al., 2024). Note that the first four methods belong to DFKD initially and do
not involve robustness. We use PGD to generate adversarial examples and then apply the same
distillation training loss as RSLAD (Zi et al., 2021) to transform them into DFRD.

Implementation Details. Our proposed method and all baselines are implemented on NVIDIA
A800 GPU. The generator is trained via Adam optimizer with a learning rate of 2e-3, β1 of 0.5,
β2 of 0.999. The student is trained via SGD optimizer with an initial value of 0.1, momentum of
0.9, and weight decay of 5e-4. The distillation epochs is set to 220 and the training iterations of
generator and student are 200 and 400 respectively. The batch size is set to 256 for CIFAR-10 and
512 for both CIFAR-100 and Tiny-ImageNet. In Eq.4, we extract the intermediate features from the

7
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Table 2: Result in average robustness(%) (Avg. ↑), worst-10% robustness(%) (Worst ↑), and normal-
ized standard deviation (NSD ↓) on CIFAR-100. RN-18 and MN-V2 are abbreviations of ResNet-18
and MobileNet-V2. The best results are bolded, and the second best results are underlined.

Student Method Clean FGSM PGD CW∞ AA

Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD

RN-18

ZSKT 36.44 6.40 0.522 12.69 0.10 0.985 12.90 0.00 0.960 6.91 0.00 1.307 6.01 0.00 1.361
CMI 51.60 27.20 0.295 25.40 5.60 0.624 22.62 3.70 0.685 15.66 1.10 0.877 17.72 1.30 0.824
DeepInv 53.44 27.20 0.298 26.14 5.60 0.630 23.10 3.50 0.699 15.99 1.40 0.899 17.49 1.60 0.857
Fast 50.69 23.50 0.323 26.45 5.50 0.634 24.12 4.00 0.701 15.85 1.30 0.907 18.24 1.70 0.859
DFHL 46.27 18.70 0.370 18.73 2.60 0.799 15.71 1.30 0.929 13.00 0.80 1.008 15.23 1.10 0.954
FERD(Ours) 55.91 29.00 0.289 29.23 5.70 0.622 25.90 4.10 0.696 19.10 1.50 0.861 21.79 1.70 0.805

MN-V2

ZSKT 30.79 2.70 0.650 13.66 0.00 0.975 13.55 0.00 0.971 8.61 0.00 1.209 8.62 0.00 1.208
CMI 35.80 6.00 0.425 13.82 0.60 0.828 9.89 0.50 0.964 9.59 0.30 0.953 8.04 0.00 1.042
DeepInv 38.10 8.00 0.447 13.97 1.00 0.920 10.03 0.10 1.122 8.73 0.00 1.205 6.67 0.00 1.416
Fast 39.00 6.00 0.441 16.42 1.40 0.821 14.07 0.80 0.912 10.26 0.00 1.082 9.53 0.00 1.139
DFHL 42.08 11.30 0.436 16.25 0.90 0.914 13.48 0.60 1.020 10.67 0.20 1.148 12.99 0.40 1.051
FERD(Ours) 56.14 29.20 0.285 29.63 6.10 0.611 24.39 3.30 0.718 19.77 2.00 0.821 21.20 2.30 0.793

(a) (b)

Figure 4: (a): The robustness of the student for
each category under equal weight. (b): The ro-
bustness of the student for each category under
reweighting situation.

(a) (b)

Figure 5: Ablation study. (a): The average ro-
bustness and accuracy of the student under dif-
ferent γ. (b):The worst-class robustness and ac-
curacy of the student under different γ.

last convolutional layer l. In Eq.9, Eq.10, and Eq.11, we set the hyperparameter λadv=1, λbn=5,
λoh=1, λuni=5, γ=0.5, λ1=5/6, and λ2=1/6.

Evaluation Metrics. We evaluate the robustness of the student against four adversarial attacks:
FGSM, PGD, CW∞, and AA. Following (Yue et al., 2023; Zhao et al., 2024), we employ the worst-
class robustness and Normalized Standard Deviation (NSD) to quantify the robust fairness across
categories. NSD is a normalized metric of the adversarial robustness with respect to the standard
deviation across different classes. The smaller the value of NSD, the better. Notably, for CIFAR-100
and Tiny-ImageNet, we adopt worst-10% robustness in place of worst-class robustness, due to the
limited size of test set per category and poor performance in the worst class robustness.

5.2 EXPERIMENTAL RESULTS

Overall performance. Tab. 1 and Tab. 2 show the performance of ResNet-18 and MobileNet-V2
distilled on CIFAR-10 and CIFAR-100 by our method and baselines. The results demonstrate that
the student distilled from FERD has a improvement in the robustness and fairness. Our method
achieves state-of-the-art worst-class robustness under all attacks. When distilled on CIFAR-10 with
MobileNet-V2, FERD improves the worst class robustness by 19.6%, 8.9%, 10.3%, and 6.6% com-
pared with the best baseline against four adversarial attack respectively. In addition, there is an
improvement in the average accuracy and NSD in most situation. Specifically, as shown in Tab. 1,
FERD achieves the highest average accuracy under all attacks with an improvement of up to 14.97%,
which is attributed to our high-quality synthetic samples.

Effectiveness of reweighting. Fig. 4 illustrates the impact of reweighting sampling strategy on the
robustness of the student model. The robustness-guided reweighting strategy we proposed effec-
tively identifies the categories with poor robustness and increases their sampling weights. Specifi-
cally, the weight of the fourth class which has the lowest robustness reaches 0.314, exceeding other
classes substantially. Correspondingly, the student’s robustness in these categories are improved,
thereby enhancing robust fairness.
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(a) ZSKT (b) CMI (c) DeepInv

(d) Fast (e) DFHL (f) FERD

Figure 6: 32×32 images generated by invert-
ing a WideResNet-34-10 trained on CIFAR-10
with different methods. Clockwise: airplane,
car, bird, ship.

Table 3: Ablation study of different components
in the framework.

Method
Clean PGD

Avg. Worst Avg. Worst

FERD 79.86 65.90 42.68 23.50
w/o reweighting 80.13 63.20 42.08 19.30
w/o FAEs 79.02 65.30 42.21 21.90
w/o UTAEs 78.17 65.10 41.96 22.60
w/o FAEs UTAEs 78.08 62.50 41.24 21.00

Synthetic data visualization. In Fig. 7, we visualize the synthetic data generated by FERD and
baselines. The results indicate that our generator is able to synthesize more visible data. In such
scenarios, CMI and Fast even suffer from model collapse problem, where the visual quality of the
synthetic samples is extremely low. This further demonstrates the superiority of our method, which
recover high-quality samples from the robust teacher.

5.3 ABLATION STUDY

In this section, we provide ablation studies on FERD. We keep the same settings with experiments
and use WideResNet-34-10 as the teacher, ResNet18 as the student and CIFAR-10 as dataset.

Effectiveness of all components. To verify the effectiveness of our FERD, we conduct ablation
studies for each component, and the experimental results are shown in Tab. 3. We first examine the
impact of the reweighting strategy. Compared with the absence of it, the student’s accuracy on worst-
class significantly improves when reweighting strategy is applied. However, it slightly compromises
the overall accuracy, which is consistent with the findings of previous researches (Yue et al., 2023;
Zhao et al., 2024). Further, we analyze the contributions of FAEs and UTAEs. Removing either
component individually results in a consistent performance decline across all metrics. When both
FAEs and UTAEs are removed simultaneously, the performance further deteriorates. This confirms
that FAEs and UTAEs are complementary and their joint effect is crucial for achieving the best
robust fairness performance.

Hyperparameter γ. In Fig.5 (a) and (b), we illustrate the average and worst-class performance of
the student distilled with with varying γ during UTAEs generation. γ controls the strength of the
uniform target class constraint during adversarial examples generation. Note that when γ=0, the
adversarial examples are the same as the standard PGD method. For average robustness and average
accuracy, we observe that a low to medium γ (e.g., 0.1 to 0.5) positively enhances the robustness and
fairness of the student. This indicates the uniform constraint enhances the robustness of the model
without significantly affecting the intensity of adversarial perturbations. However, A high γ (e.g., 0.7
or 0.9) enforces strong uniform constraint, which overly suppress the optimization of the adversarial
loss, leading to weaker perturbations that reduce attack strength of the adversarial examples. This
negatively affects the robust distillation and leads to a reduction in overall robustness.

6 CONCLUSION

In this paper, we made the first attempt to investigate the robust fairness in DFRD. We summarized
two key factors affecting robust fairness and propose a FERD framework to mitigate these problems
by adjusting the proportion and distribution of adversarial examples. For the proportion, we intro-
duced a robustness-guided class reweighting strategy to encourage the generator to synthesize more
samples from weakly robust classes. For the distribution, we designed FAEs and UTAEs, taking
them as benign samples and adversarial examples respectively for robust distillation. Extensive ex-
periments show that FERD significantly improves the robust and fairness performance of the student
model. Our work is more applicable and can be effectively applied in practical scenarios.

9
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7 ETHICS STATEMENT

This paper aims to address the issue of robust fairness in data-free robustness distillation. The FERD
framework we propose is designed to enhance the fairness of the model’s robust performance across
different categories, thereby improving its reliability and security in real-world applications. All the
experiments are conducted on publicly available and standard datasets, which are widely used in
the machine learning. These datasets do not involve any sensitive or private personal information,
avoiding the risks of data privacy and abuse.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have provided comprehensive details of our exper-
iments. The experimental setting of FERD is detailed in Section 5.1, including the models, base-
lines, evaluation metrics, and implementation details. All datasets (CIFAR-10, CIFAR-100, and
Tiny-ImageNet) are publicly available. Final hyperparameter values for all experiments are explic-
itly listed, with further analysis on their selection provided in Appendices A.7. To facilitate direct
replication of our results, we make our source code publicly available upon publication.
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A APPENDIX

A.1 THE PROOF OF CONJECTURE 1

Conjecture 1 is: by adjusting the weight of class sampling, the problem of robust unfairness is
effectively alleviated.

Assumption 1. The robust risk function Rc(θ) for each class c is differentiable and L-smooth
(Bottou et al., 2018). That is, for any θ1, θ2, there exists a constant L > 0 such that:

Rc(θ2) ≤ Rc(θ1) + ⟨∇Rc(θ1), θ2 − θ1⟩+
L

2
∥θ2 − θ1∥2. (12)

Theorem 1. If the sampling weight pk for the weak-robust class k satisfies pk > 1
C at step t, then the

expected risk reduction for the weak-robust class k is strictly greater under reweighting sampling
than under uniform sampling, provided that the gradient alignment condition holds:

E[Rk(θ
rew
t+1 )] < E[Rk(θ

uni
t+1)]. (13)

Proof. Consider the SGD update rule at step t. For uniform sampling, the expected update direction
is E[∆θuni] = −η 1

C

∑
c∇Rc(θt). For reweighting sampling, the expected update direction is

E[∆θrew] = −η
∑

c pc∇Rc(θt).

Using the L-smoothness on the weak-robust class k:

Rk(θt+1) ≤ Rk(θt) + ⟨∇Rk(θt),∆θ⟩+ L

2
∥∆θ∥2. (14)

We compare the linear decrement term D = ⟨∇Rk(θt),∆θ⟩ for both strategies, neglecting the
second-order term for sufficiently small η.

For uniform sampling:

Duni = −η⟨∇Rk,
1

C

C∑
c=1

∇Rc⟩ = −η

 1

C
∥∇Rk∥2 +

1

C

∑
c ̸=k

⟨∇Rk,∇Rc⟩

 . (15)

For reweighting sampling:

Drew = −η⟨∇Rk,

C∑
c=1

pc∇Rc⟩ = −η

pk∥∇Rk∥2 +
∑
c̸=k

pc⟨∇Rk,∇Rc⟩

 . (16)

We aim to prove Drew < Duni. Let ϕk,c = ⟨∇Rk,∇Rc⟩ and we analyze the difference:

∆diff = Duni −Drew = η

(pk −
1

C
)∥∇Rk∥2 +

∑
c̸=k

(pc −
1

C
)ϕk,c

 . (17)

Reweighting strategy assigns pk ≫ 1
C for the weak-robust class k, and pc < 1

C for robust
classes. Since ∥∇Rk∥2 > 0 is the dominant gradient term for the weak-robust class, the term
(pk − 1

C )∥∇Rk∥2 is positive and large.

While gradient conflicts may exist (ϕk,c < 0), the gradients of vulnerable classes typically exhibit
larger magnitudes compared to robust classes due to their higher loss values in adversarial train-
ing(Madry et al., 2017). Specifically, the term (pk − 1

C )∥∇Rk∥2 outweighs the residual terms.
Thus, ∆diff > 0, implying Dfer < Duni.

Consequently, the upper bound of the worst-class risk decreases more significantly under reweight-
ing sampling:

Rk(θ
rew
t+1 ) ≤ Rk(θt) +Drew +O(η2) < Rk(θt) +Duni +O(η2). (18)

Then the Theorem 1 is proved.
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A.2 THE PROOF OF CONJECTURE 2

Conjecture 2 is: robust distillation on adversarial examples with uniformly distributed targets defend
against attacks from different targets.

Definition 1. The standard adversarial risk makes the worst perturbation within a ball Bϵ(x) = {x′ :
∥x′ − x∥p ≤ ϵ}:

Rstd(θ) = E(x,y)∼D

[
max

δ∈Bϵ(0)
L(fθ(x+ δ), y)

]
. (19)

Adversarial attacks implicitly targets the decision boundary of the nearest incorrect class.

Definition 2. Adversarial examples with uniformly distributed targets enforce attacks towards a
target class t sampled uniformly from Y \ {y}. The risk objective is:

Runi(θ) = E(x,y)∼D

[
Et∼U(Y\{y})

[
max

δ∈Bϵ(0)
Ltarget(fθ(x+ δ), t)

]]
, (20)

where Ltarget encourages the model to classify x+ δ as t.

Assumption 2. The event of a successful untargeted adversarial attack is the union of successful
targeted attacks towards all other classes k ̸= y. Specifically, let E be the error region E = {x′ ∈
Bϵ(x) : argmax fθ(x

′) ̸= y}. We assume E =
⋃

k ̸=y Ek, where Ek is the region where the input
is misclassified specifically as class k (Carlini & Wagner, 2017).

Theorem 2. Minimizing the Uniform-Target Risk Runi(θ) minimizes an upper bound of the Stan-
dard Adversarial RiskRstd(θ).

Proof. The standard adversarial loss seeks the perturbation that maximizes the loss, corresponding
to the model predicting an incorrect class k:

max
δ
L(fθ(x+ δ), y) ≈ max

k ̸=y

(
max

δ
Ltarget(fθ(x+ δ), k)

)
. (21)

Let ℓk(θ, x) = maxδ∈Bϵ
Ltarget(fθ(x + δ), k) be the worst loss towards specific target k. The

standard robust risk is determined by the maximum component:

Lstd(θ, x) = max
k ̸=y

ℓk(θ, x). (22)

The training on adversarial examples with uniformly distributed targets minimizes the expectation
as follows:

Luni(θ, x) =
1

C − 1

∑
k ̸=y

ℓk(θ, x). (23)

Therefore, we have the following inequality:

max
k ̸=y

ℓk(θ, x) ≤
∑
k ̸=y

ℓk(θ, x) = (C − 1) · Luni(θ, x). (24)

Taking the expectation over the data distribution D:

Rstd(θ) ≤ (C − 1) · Runi(θ). (25)

This inequality proves that training on adversarial examples with uniformly distributed targets min-
imizes a upper bound of the standard adversarial risk. Then the Theorem 2 is proved.

A.3 THE WHOLE FRAMEWORK OF FERD

This section provides the whole framework of our Fairness-Enhanced data-free adversarial Robust
Distillation (FERD). The FERD framework is composed of three key components: a robustness-
guided class reweighting strategy, the generation of Fairness-Aware Examples (FAEs), and the con-
struction of Uniform-Target Adversarial Examples (UTAEs). The detailed algorithm description is
outlined in Algorithm 1.
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Algorithm 1: The Whole Framework of FERD

Input: A pre-trained robust teacher fT , a student fS with parameter θs, a generator g with
parameter θg , distillation epochs T , the iterations of generator g in each epoch Tg , the
iterations of student fS in each epoch Ts, class sampling probability distribution p,
learning rate for generator ηg and student ηs.

1 Randomly initialize parameters θg and θs ;
2 Uniformly initialize p ;
3 Initialize an empty dataset D = {} ;
4 for number of iterations T do
5 //∗ Generation stage ∗//
6 z ∼ N (0, 1), y ∼ p ;
7 for number of iterations Tg do
8 xF ← g(z, y) ; // Synthesize FAEs
9 θg ← θg − ηg · ∇θgLgen(f

T , fS , xF , y) ;
10 x∗

F ← select(xF ) ;
11 D ← D ∪ {x∗

F } ;
12 p← reweight(Lclass) ; // Reweighting
13 //∗ Robustness distillation stage ∗//
14 for number of iterations Ts do
15 xF ← sample(D) ;
16 xU ← UTAEs(xF ) ; // Create UTAEs
17 θs ← θs − ηs · ∇θsLstu(f

T , fS , xF , xU ) ;
Output: A student fS with fair robustness

A.4 THE PERFORMANCE OF THE TEACHER

In this section, we show the performance of the teacher models under various attacks. We select
WideResNet-34-10 (Zagoruyko & Komodakis, 2016) trained by (Chen & Lee, 2024) on CIFAR-10
and CIFAR-100 (Krizhevsky et al., 2009), respectively. Meanwhile, we select PreActResNet-34 (He
et al., 2016b) trained by TRADES (Zhang et al., 2019) on Tiny-ImageNet (Le & Yang, 2015). The
performance is shown in Tab. 4.

Table 4: Robustness (%) of the teacher models.

Dataset Model Clean FGSM PGD CW∞ AA

CIFAR-10 WRN-34-10 86.55 64.96 62.97 59.72 57.29
CIFAR-100 WRN-34-10 64.32 39.51 37.89 35.17 31.16
Tiny-ImageNet PARN-34 48.96 25.69 24.37 21.12 18.56

A.5 THE RESULTS ON TINY-IMAGENET

Table 5: Result in average robustness(%) (Avg. ↑), worst-10(%) (Worst ↑), and normalized standard
deviation (NSD ↓) on Tiny-ImageNet. The best results are bolded and the second best results are
underlined respectively.

Method Clean FGSM PGD CW∞ AA

Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. NSD Avg. NSD

CMI 38.56 11.90 0.445 16.46 1.10 0.785 15.07 0.90 0.827 7.90 1.223 9.23 1.152
DeepInv 36.25 9.70 0.465 13.46 0.50 0.861 12.91 0.70 0.874 6.33 1.287 6.58 1.288
Fast 33.76 7.80 0.473 12.94 0.40 0.804 12.38 0.30 0.812 5.86 1.193 7.11 1.138
DFHL 23.13 1.10 0.719 6.87 0.00 1.368 5.78 0.00 1.535 4.04 1.778 4.95 1.654
FERD(Ours) 39.64 12.30 0.439 18.00 2.10 0.722 17.13 1.40 0.743 9.39 1.046 11.24 1.0071
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Table 6: The performance of different reweighting strategies. The best results are bolded.

Method Clean FGSM PGD

Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD

power 80.54 65.20 0.111 52.04 28.70 0.280 43.23 21.00 0.333
sig 80.16 64.10 0.111 51.29 27.70 0.290 43.02 21.20 0.350

linear 79.89 63.70 0.113 52.06 29.10 0.275 42.67 20.20 0.344
tanh 80.40 64.60 0.115 51.47 28.90 0.284 42.74 21.30 0.345

FERD 79.26 65.90 0.105 51.09 31.30 0.237 42.68 23.50 0.298

We conduct experiments on Tiny-ImageNet. We select PreActResNet-34 as the teacher and
PreActResNet-18 as the student. For the settings, we keep consistent with the experiments on
CIFAR-100. The results are shown in Tab. 5. The results prove the effectiveness of FERD, achiev-
ing state-of-the-art accuracy and worst-10% robustness on Tiny-ImageNet. Note that ZSKT is not
applicable for large datasets and the distilled student performs extremely poorly on Tiny-ImageNet,
so we do not compare with it on this dataset. The worst-10% robustness under both CW∞ and AA
attacks is all 0, so we also do not compare on it.

From the results, it is observed that our proposed FERD achieves optimal performance under most
adversarial attacks. Specifically, FERD achieves state-of-the-art average and worst-10% robustness
under all attacks. For the average robustness, FERD is 1.54%, 2.06%, 1.49%, and 2.01% higher than
the suboptimal method under the four adversarial attacks. For the worst-10% robustness, FERD
also comprehensively improves 1.00% and 0.50% respectively. Meanwhile, FERD achieves the
minimum on NSD under all attacks.

A.6 COMPARISON OF REWEIGHTING STRATEGIES

To further demonstrate the superiority of our reweighting strategy, we conduct experimental com-
parisons with different reweighting functions (Yue et al., 2023). We use WideResNet-34-10 as the
teacher, ResNet18 as the student and CIFAR-10 as dataset, while other settings keep consistent with
main paper.

The reweighting strategies we compare are all based on a important metric: the least PGD steps
(LPS), which represents the steps needed for perturbations of a benign example to become a adver-
sarial example. The average LPS within a class κc serve as a metric of class-wise robustness , which
is calculated as follows:

κc =
1

Nc

Nc∑
j=1

arg min
t∈[0,K]

(
fT

(
x
(t)
adv

)
̸= y

)
, (26)

where K is the PGD steps. The higher the value, the more robust the model is to this class, in which
case they reduce the weight during training.

Based on the metric, we compare four reweighting strategies. The first is power-type function:

ωc =
1

κβ
c

, (27)

where β controls the smoothness of the reweighting function. The second strategy is linear-type
function:

ωc = 1− κc

K + 1
. (28)

The third strategy is sigmoid-type function:

ωc = sigmoid
(
λ+ 5×

(
1− 2× κc

K

))
. (29)

The last strategy is tanh-type function:

ωc =
1 + tanh

(
λ+ 5×

(
1− 2× κc

K

))
2

, (30)
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where λ is the parameter. For the above parameters, we set K = 20, β = 2 and λ = 0 respectively
following (Yue et al., 2023). The experimental results are shown in Tab. 6.

We observe that the our reweighting strategy achieves the best results in the aspect of worst-class
robustness, which demonstrates that it identifies the categories with poor robustness more effectively.

A.7 HYPER-PARAMETER SELECTION

In this section, we show the effect of parameters on the distillation results and illustrate how we
determine the choice of parameters. We select WideResNet-34-10 as the teacher and ResNet-18 as
the student to experiment on CIFAR-10.

λadv , λbn, λoh and λuni represent the weights of different loss terms in the loss function Lgen,
respectively. In order to explore the influence of different weights on the experimental results,
we change the weights, respectively, for the experiments. The results are shown in Tab. 7. The
corresponding synthetic samples are shown in Fig. 7.

(a) 𝜆𝑎𝑑𝑣=5, 𝜆𝑏𝑛=1, 𝜆𝑜ℎ=1, 𝜆𝑢𝑛𝑖=1 (b) 𝜆𝑎𝑑𝑣=1, 𝜆𝑏𝑛=5, 𝜆𝑜ℎ=1, 𝜆𝑢𝑛𝑖=1 

(c) 𝜆𝑎𝑑𝑣=1, 𝜆𝑏𝑛=1, 𝜆𝑜ℎ=5, 𝜆𝑢𝑛𝑖=1 (d) 𝜆𝑎𝑑𝑣=1, 𝜆𝑏𝑛=1, 𝜆𝑜ℎ=1, 𝜆𝑢𝑛𝑖=5 

Figure 7: Synthetic samples under different paramters.

From the results, we find that Ladv significantly improves the average robustness under all adversar-
ial attacks, especially against FGSM and PGD. From the synthetic samples, we find that Lbn helps
to improve the sample quality, as shown in Fig. 7 (b), making the student more applicable to the
actual scenario. We also observe that appropriate Loh supervision is necessary, but too high will
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Table 7: Result in average robustness(%) (Avg. ↑), worst-class(%) (Worst ↑), and normalized stan-
dard deviation (NSD ↓) on different λadv , λbn, λoh and λuni. The best results are bolded, and the
second best results are underlined.

Parameters Clean FGSM PGD CW∞ AA

λadv λbn λoh λuni Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD

1 1 1 1 81.23 67.60 0.100 50.59 31.40 0.258 41.99 20.00 0.326 39.98 18.60 0.336 39.73 16.90 0.350
5 1 1 1 81.32 70.00 0.089 53.26 34.40 0.229 44.67 23.90 0.283 42.30 19.90 0.300 39.64 18.20 0.328
1 5 1 1 80.10 66.40 0.089 50.75 31.20 0.204 41.60 21.60 0.282 40.30 20.20 0.290 39.06 19.30 0.296
1 1 5 1 72.97 52.20 0.153 40.65 18.30 0.318 35.51 14.40 0.352 34.42 12.30 0.362 33.67 11.80 0.383
1 1 1 5 80.55 66.70 0.107 52.55 30.10 0.265 43.91 21.60 0.333 41.10 20.80 0.334 40.74 18.50 0.364

1 3 1 3 80.51 65.20 0.110 50.97 30.00 0.235 42.28 22.60 0.305 40.14 17.10 0.348 39.97 19.20 0.359
1 5 1 5 79.26 65.90 0.105 51.09 31.30 0.237 42.68 23.50 0.298 36.17 19.00 0.338 40.12 20.80 0.325
1 7 1 7 79.16 64.30 0.124 50.45 31.90 0.246 42.21 24.55 0.313 41.07 18.20 0.347 39.73 20.30 0.353
1 9 1 9 78.81 65.40 0.125 50.12 30.20 0.246 41.56 21.90 0.314 39.25 18.10 0.341 38.9 18.90 0.344

Table 8: Robustness of DFKD and corresponding DFRD methods. RN-18 and MN-V2 are abbrevi-
ations of ResNet-18 and MobileNet-V2 respectively. The value in parentheses is the change value
after transforming into DFRD.

Student Method Clean FGSM PGD-20 CW∞ AA

RN-18

ZSKT 66.45 29.60 29.50 14.82 16.43
ZSKT+RSLAD 65.48 (–0.97) 29.80 (+0.02) 29.35 (–0.15) 15.84 (+1.02) 17.16 (+0.73)
CMI 76.20 32.34 28.30 20.35 26.53
CMI+RSLAD 68.29 (–7.91) 33.34 (+1.00) 28.97 (+0.67) 21.74 (+1.39) 26.85 (+0.34)
DeepInv 74.20 34.98 27.38 21.08 22.84
DeepInv+RSLAD 71.22 (–2.98) 38.60 (+3.62) 27.83 (+0.45) 27.92 (+6.84) 25.19 (+2.35)
Fast 78.51 41.04 37.19 24.38 27.95
Fast+RSLAD 72.20 (–6.31) 43.96 (+1.98) 39.60 (+2.41) 28.03 (+3.65) 33.24 (+5.29)

MN-V2

ZSKT 52.64 22.35 22.69 12.70 14.41
ZSKT+RSLAD 54.69 (+2.05) 23.62 (+1.27) 22.76 (+0.7) 12.78 (+0.08) 14.85 (+0.44)
CMI 67.95 35.43 17.46 23.22 6.87
CMI+RSLAD 60.70 (–7.25) 27.90 (–7.53) 19.61 (+2.15) 20.10 (–3.12) 18.09 (+11.22)
DeepInv 66.94 34.98 15.93 23.20 6.19
DeepInv+RSLAD 62.77 (–4.15) 31.66 (–3.32) 19.80 (+3.87) 23.60 (+0.4) 15.39 (+9.2)
Fast 69.81 30.17 23.01 15.43 14.59
Fast+RSLAD 58.60 (–11.21) 29.91 (–0.26) 23.26 (+0.25) 18.20 (+2.77) 18.35 (+3.76)

suppress sample diversity and lead to performance degradation. For Luni, it helps to improve the
robustness performance under the strongest attack (such as AA) and alleviate the robust unfairness
problem. Here, considering the practicality and robust fairness of the model, we focus on λbn and
λuni as parameters tuning. From the bottom four rows of the Tab. 7, we find that it has the best
performance in most cases when λbn and λuni are both equal to 5, so we set the hyperparameter
λadv=1, λbn=5, λoh=1, λuni=5 finally.

A.8 TRANSFORMING DFKD INTO DFRD

For most Data-Free Knowledge Distillation (DFKD), they do not involve robustness, in which case
we transform them into Data-Free Robust Distillation (DFRD) by adding adversarial noise to syn-
thetic samples and then take synthetic samples and adversarial examples for robust distillation. Here,
we use PGD to generate adversarial examples and then apply the same distillation training loss as
RSLAD (Zi et al., 2021) to transform them into DFRD. Here, we set step size to 2/255 and attack
iteration to 10. The results are shown in Tab. 8.

We observe that incorporating RSLAD into the distillation leads to a slight decrease in clean ac-
curacy, but it achieves a notable improvement in robustness, particularly under the stronger attacks.
This trade-off is consistent with findings in prior adversarial training (Zhang et al., 2019). Therefore,
we think that this transformation approach is reasonable and effective.
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A.9 ADDITIONAL ABLATION STUDY

A.9.1 INTERMEDIATE LAYER l

Table 9: Ablation study of different Intermediate Layer l.

Layer Clean FGSM PGD-20

Avg. Worst Avg. Worst Avg. Worst

block1 78.50 64.80 48.83 30.50 40.48 23.10
block2 78.91 64.30 49.37 29.50 41.16 21.90
block3 79.26 65.90 51.09 31.30 42.68 23.50

In FAEs generation process, we distill non-robust features from the output in the intermediate layer
l of the teacher and impose uniform constraints, ensuring that the synthetic samples have an equal
tendency to different targets when generating adversarial samples. In this section, we research the
sensitivity of FERD’s robustness performance to different layers. We distill non-robust features
from the outputs of the penultimate, second and third residual modules, respectively. The results are
shown in Tab. 9.

We observe that the penultimate residual module performs best in all aspects. Both the robustness
and the fairness have achieved the best results. This further demonstrates that the higher layer
contains high-level feature information, which is effective for distilling non-robust feature.

A.9.2 DISTILLATION EPOCH e

Figure 8: Metric values under different epochs. The horizontal axis is epoch and the vertical axis is
metric value.

To explore the impact of the epoch on the student performance, we evaluate the distilled student
under different epoch settings. The results are shown in Fig. 8.

With the increase of the epoch, both the average accuracy and the worst-class robustness of the
student exhibit a generally increasing trend, reaching a peak at round 220 and then floating slightly,
indicating that the robustness is optimal at this time. At the same time, the NSD remains almost
constant after 170 epochs. Therefore, it is reasonable to select 220 as the final distillation epochs.

A.10 FAIRNESS OF FAES AND UTAES

To further validate the rationality and effectiveness of our proposed FAEs and UTAEs, we conduct a
comparative analysis by visualizing the confusion matrix corresponding to different types of adver-
sarial examples. Specifically, we investigate the impact of UTAEs generated by FAEs, adversarial
samples generated by FAEs, and adversarial samples generated by the original dataset, respectively.
The results are shown in Fig. 9.

By comparing Fig. 9 (a) and (b), we find that the adversarial targets of our designed FAEs is more
uniform than the original data when constructing adversarial examples. This suggests that FAEs
contribute to a more balanced adversarial target distribution when crafting perturbations. Such uni-
formity is particularly beneficial in the context of adversarial training and knowledge distillation,
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Figure 9: Confusion matrix of different samples and corresponding adversarial examples. The hori-
zontal axis denotes predicted labels, and the vertical axis denotes true labels. Darker colors indicate
a higher number of samples predicted as the corresponding class. (a): Adversarial examples gener-
ated by PGD using data from CIFAR-10. (b): Adversarial examples generated by PGD using FAEs.
(c): UTAEs generated by FAEs.

as it facilitates the exposure of the student to a broader class-wise perturbations. By comparing
Fig. 9 (b) and (c), we observe that the accuracy of the model is weaker on UTAEs. The increased
misclassification rate suggests that UTAEs are capable of identifying and exploiting a wider range
of class-specific vulnerabilities, including those of weakly robust classes that may not be adequately
targeted by conventional adversarial examples. Therefore, incorporating UTAEs into the distillation
leads to a more comprehensive robustness enhancement, as the model is encouraged to improve its
resilience across all classes rather than overfitting to a subset of dominant or easily perturbed classes.

A.11 SYNTHETIC SAMPLES FROM DIFFERENT DFRD

(a) ZSKT (c) DeepInv(b) CMI

(d) Fast (e) DFHL (f) FERD(Ours)

Figure 10: Inverted samples from different DFRD.

This section shows samples synthesized by different DFRD methods. From the visual results, it is
evident that our FERD generates samples that are both more realistic and more diverse. This means
that the method is suitable for practical scenarios.
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A.12 LIMITATIONS

Although FERD mitigates the robust fairness by introducing a robust-guided class reweighting strat-
egy, the class imbalance may still affect the final results in some extreme cases. For example, if some
classes are very rare in the original data, the problem of unfairness of robustness may not be com-
pletely solved by just adjusting the sample proportion. Moreover, the generator needs to optimize to
multiple loss functions to synthesize high-quality samples, while the student also needs to perform
robust distillation. These processes involve complex optimizations and a large number of iterations,
which lead to high computational cost.

A.13 THE USE OF LARGE LANGUAGE MODELS

In the writing process for this paper, we employed a large language model for text refinement and
grammatical corrections to enhance overall readability and precision. We clarify that the model’s
role was strictly advisory and confined to language aspects. The background of the study, the design
of the experiments, and the analysis of all results represent the independent work of the authors.
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