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Abstract

We introduce BSDETECTOR, a method for de-001
tecting bad and speculative answers from a pre-002
trained Large Language Model by estimating003
a numeric confidence score for any output it004
generated. Our uncertainty quantification tech-005
nique works for any LLM accessible only via006
a black-box API, whose training data remains007
unknown. By expending a bit of extra compu-008
tation, users of any LLM API can now get the009
same response as they would ordinarily, as well010
as a confidence estimate that cautions when011
not to trust this response. Experiments on both012
closed and open-form Question-Answer bench-013
marks reveal that BSDETECTOR more accu-014
rately identifies incorrect LLM responses than015
alternative uncertainty estimation procedures016
(for both GPT-3 and ChatGPT). By sampling017
multiple responses from the LLM and consid-018
ering the one with the highest confidence score,019
we can additionally obtain more accurate re-020
sponses from the same LLM, without any extra021
training steps. In applications involving auto-022
mated evaluation with LLMs, accounting for023
our confidence scores leads to more reliable024
evaluation in both human-in-the-loop and fully-025
automated settings (across both GPT 3.5 and026
4).027

1 Introduction028

While the promise of Large Language Models029

(LLMs) and Agents (powered by LLMs) has be-030

come evident, their usage in high-value applica-031

tions remains limited by their unreliability. Ac-032

cessed via black-box APIs (via providers like Ope-033

nAI/Anthropic), today’s best LLMs have been034

trained to produce convincing-looking responses035

and thus often appear overconfident (Ji et al., 2023).036

For many input prompts encountered in the wild,037

the model cannot be certain about the desired re-038

sponse (perhaps because the prompt is vague or039

is related to a specific fact/event absent from the040

training dataset), yet these models output plausible- 041

sounding yet wildly incorrect answers in such 042

scenarios. This hallucination problem has also 043

plagued traditional supervised learning systems, 044

where it is traditionally addressed via uncertainty 045

estimation to know when one can trust a model’s 046

prediction (Gal and Ghahramani, 2016a; Lakshmi- 047

narayanan et al., 2017; Guo et al., 2017; Liang et al., 048

2017; Fortunato et al., 2017; Gal and Ghahramani, 049

2016b; Kuleshov et al., 2018). 050

In traditional supervised learning, one has ac- 051

cess to the training data of the model and its proba- 052

bilistic estimates, as well as being able to modify 053

the training procedure to improve model calibra- 054

tion (Gal and Ghahramani, 2016a; Fortunato et al., 055

2017). Other traditional uncertainty estimation pro- 056

cedures require the existence of a validation set 057

that can be used for calibration (Angelopoulos and 058

Bates, 2021). None of this is available for today’s 059

best LLMs, which may be given any imaginable 060

prompt rather than (input, output) pairs stemming 061

from a limited distribution. Thus approaches to 062

uncertainty estimation for black-box LLMs must 063

wrap the inference procedure. 064

Our proposed LLM uncertainty quantification 065

technique, BSDETECTOR, calls the LLM API mul- 066

tiple times with varying prompts and sampling tem- 067

perature values (see Figure 1). We expend extra 068

computation in order to quantify how trustworthy 069

the original LLM response is, a worthwhile trade- 070

off for high-stakes applications. Our method is 071

conceptually straightforward, generally applicable 072

across LLM providers (as well as Agent frame- 073

works (Chase, 2022) or any stochastic text → text 074

mapping), and produces confidence scores whose 075

values are reliably lower for responses from the 076

LLM that are more likely bad. 077

BSDETECTOR confidence scores allow LLMs 078

to be more safely used in high-stakes applications, 079

since we can know which LLM outputs are not to 080

be trusted. Depending on the application, we can 081
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(a) Pipeline of BSDETECTOR, which can be applied to any LLM API. (T = 1.0 means temperature
sampling with parameter 1.0, Sim (·,·) means the semantic similarities between two sentences.)

Question:  Which part of 
the human body 
produces insulin?
Answer from ChatGPT: 
pancreas.

BSDetector
ChatGPT Answer is 

Correct

ChatGPT answer: pancreas
Confidence: 0.839

Question:  What color are 
the two stars on the 
national flag of Syria?
Answer from ChatGPT: 

red.

BSDetector
ChatGPT Answer is 

Wrong !

ChatGPT answer: red
Confidence: 0.209

(b) Two prompts from a Trivia Q&A dataset (Joshi et al., 2017) and the responses from ChatGPT, along
with the associated confidence scores from BSDETECTOR.

Figure 1: Overview of our LLM uncertainty quantification technique.

adaptively ask a human for an alternative response082

when the confidence score is low, automatically083

route the prompt to an alternative LLM provider,084

or simply respond “I don’t know” when a confident085

response cannot be generated. Our experiments086

reveal that for Question-Answering applications,087

we can automatically generate more accurate an-088

swers by sampling multiple responses from the089

same LLM and selecting the response whose BS-090

DETECTOR confidence estimate is the highest.091

This paper primarily focuses on Question-092

Answering applications, but our same uncertainty093

estimates can also be applied to estimate how con-094

fident the LLM is in its response to a more general095

prompt. Intuitively, we’d like to see a low confi-096

dence score when the LLM outputs: a factually097

incorrect response to a question, a inaccurate sum-098

mary requested for a document, or a generated099

article/message that semantically differs from the100

intention of the original request. Ensuring this is101

challenging without control over LLM training, but102

we can hope that in each of these three scenar-103

ios where the model generated a bad response, a104

well-trained LLM was also likely to output alter- 105

native responses (which more closely reflect the 106

desired response). BSDETECTOR is baseed on this 107

intuition, and is observed to produce effective un- 108

certainty estimates with today’s top LLMs from 109

OpenAI across prompts from closed and open do- 110

main benchmark datasets. 111

2 Related Work 112

For estimating the confidence levels tied to re- 113

sponses output by large language models, (Kuhn 114

et al., 2023) introduce semantic entropy, incorporat- 115

ing linguistic invariances created by shared mean- 116

ings. However their approach requires access to 117

token-level probabilities from the LLM, which is 118

often not accessible with today’s black-box APIs. 119

(Kadavath et al., 2022) prompt the models to self- 120

evaluate their answers and directly ask the LLM to 121

produce the likelihood P (Answer is True) – also 122

fine-tuning the model to output better values for 123

its stated likelihood. Relatedly, (Lin et al., 2022) 124

prompt LLMs to generate both an answer and a 125

level of confidence. (Manakul et al., 2023) propose 126

2



a sampling-based approach to detect hallucinated127

facts. All of these aforementioned approaches train128

additional models via supervised learning, unlike129

BSDETECTOR which does not employ any addi-130

tional training. More recently, (Tian et al., 2023)131

conduct evaluations of computationally feasible132

methods to extract confidence scores from the prob-133

abilities output by LLMs trained via Reinforce-134

ment Learning with Human Feedback. (Lin et al.,135

2023) differentiate between uncertainty and confi-136

dence estimation for LLMs (under their terms, our137

work is focused on the latter, but without requir-138

ing access to the auto-regressive token probability139

estimates their method is based on). The works140

of (Tian et al., 2023) and (Lin et al., 2023) only141

study limited tasks, and it remains unclear whether142

their conclusions still hold in the context of reason-143

ing or arithmetic. Here we demonstrate that our144

method produces effective uncertainty estimates145

across multiple domains involving reasoning, arith-146

metic, and knowledge of facts.147

3 BSDETECTOR uncertainty estimation148

When posing a question to LLMs, we aim to to149

estimate how confident we should be that a par-150

ticular LLM answer is correct (or simply “good”151

for more general LLM responses). Specifically,152

for input question x, we want to not only obtain153

an answer y from the LLM, but also an associ-154

ated confidence score for this answer C(x, y). Our155

confidence assessment derives from two factors:156

Observed Consistency and Self-reflection Cer-157

tainty, which respectively are extrinsic and intrin-158

sic evaluations of LLM confidence. Since a well-159

trained LLM should consider multiple different160

answers when asked an under-specified question161

or about something not contained in its training162

data, Observed Consistency extrinsically measures163

whether the LLM finds multiple contradictory an-164

swers likely to be good responses. Since effec-165

tive LLMs can reasonably evaluate text from ar-166

bitrary agents, Self-Reflection Certainty directly167

asks the LLM to intrinsically reflect on whether168

its own previously-generated answer seems correct169

and how confident it is about this.170

3.1 Observed Consistency171

The first critical measure of model uncertainty172

is contradiction score amongst possible answers173

LLMs gives to a particular input questions. Ob-174

served Consistency is an extrinsic confidence as-175

sessment performed by a user who engages in re- 176

peated interactions with LLMs. If a model ex- 177

hibits strong observed consistency, it’s less likely 178

to present alternative responses that are substan- 179

tially different from its initial answer. The idea was 180

initially inspired by Self-Consistency (Wang et al., 181

2022). While Self-Consistency enhances LLM ac- 182

curacy in closed-form tasks like arithmetic or com- 183

monsense reasoning, it falls short when applied to 184

open-form tasks. Within the Self-consistency ap- 185

proach, an indicator function is used to measure the 186

similarity amongst various likely responses. Here 187

we extend the indicator function to a particular 188

form of semantic similarity based on contradiction 189

ratings, enabling our approach to be used in both 190

open and closed form tasks. 191

Producing Diverse Output. Our first action runs 192

the LLM multiple times to produce multiple var- 193

ied responses. Besides increasing the temperature 194

values (which can only be done so much without 195

getting nonsensical outputs), we can alternatively 196

modify the prompt itself when sampling each re- 197

sponse to get a more diverse set of responses for 198

computing the observed consistency. Here we add a 199

Chain-of-Thoughts (CoT, (Wei et al., 2022)) mod- 200

ification, along with other guidelines for output 201

formatting, to the prompt used to sample these out- 202

puts. The specific prompt template is illustrated in 203

Figure 6a, the outputs produced by this prompt are 204

denoted as {y1,y2, ...,yk}, where k is the num- 205

ber of sampled outputs. Higher values of k lead 206

to better uncertainty estimates, but require more 207

computation (we found k = 5 works well enough 208

in practice). 209

Note here we only modify the prompt used to 210

sample varied responses for computing the ob- 211

served consistency, not the prompt originally given 212

to produce the original reference response. We 213

tried alternative prompt modification techniques to 214

encourage greater output diversity (such as adding 215

additional made-up context in the prompt, or en- 216

couraging the LLM to answer as a specific persona), 217

but found the CoT modification to work best (Table 218

3b). 219

Measuring Similarity between Sampled and 220

Original Answer. After receiving multiple out- 221

puts, the following step is to measure the similari- 222

ties between each element in {y1,y2, ...,yk} and 223

original answer y. Instead of using the indicator 224

function to precisely match two numeric responses 225

(e.g., 1.0 v.s. 2.0) or two choices (e.g. A v.s. B), 226
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we consider semantic similarities. Not just overall227

similarities (e.g. via LLM embeddings) which are228

sensitive to variation that does not necessarily in-229

dicate the LLM is uncertain, but rather measuring230

whether the semantics of the two outputs contra-231

dict one another or not. A common strategy to232

estimate this is to use a natural language inference233

classification system (NLI) (Kuhn et al., 2023),234

which classifies a pair of two text statements yi235

and y as one of: entailment, neutral, or contradic-236

tion. Specifically, the input of NLI is formed by237

concatenating yi and y, and then NLI returns the238

probabilities p for each of these 3 classes. For each239

element in {y1,y2, ...,yk}, we can get the simi-240

larity scores with respect to the original reference241

answer y, denoted as {s1, s2, ..., sk}.242

Note that today’s best NLI models (He et al.,243

2020) are significantly smaller than LLMs, and244

thus the NLI computation to obtain si is negligi-245

ble compared to sampling each LLM answer yi.246

However, even the best NLI models were trained247

on a limited dataset and thus do not always gener-248

alize reliably to arbitrary pairs of statements. In249

particular, we note the contradiction probabilities250

can be unreliable for single-word statements as251

encountered in certain closed-form tasks whose252

answers are likely not well-represented in the orig-253

inal NLI training dataset. To account for this, we254

additionally incorporate the indicator function in255

our similarity measure to enhance its stability for256

closed-form tasks. The indicator function is de-257

noted as ri = 1[y = yi] for i = 1, 2, ..., k.258

For each element yi in {y1,y2, ...,yk}, we de-259

rive the similarity score as: oi = αsi + (1− α)ri,260

here 0 ≤ α ≤ 1 is a trade-off parameter. It261

should have larger value the more we trust our262

NLI model to properly generalize its contradiction263

estimates. Finally, we average over k samples to264

obtain the Observed Consistency score for answer265

y is O = ōi.266

3.2 Self-reflection Certainty267

Our Self-reflection certainty is an confidence esti-268

mate output by LLM itself when asked follow-up269

questions encouraging it to directly estimate the270

correctness of its original answer. Unlike sampling271

multiple outputs from the model (as in Observed272

Consistency) or computing likelihoods/entropies273

based on its token-probabilities which are extrin-274

sic operations, self-reflection certainty is an intrin-275

sic confidence assessment performed within the276

LLM. Because today’s best LLMs are capable of277

accounting for rich evidence and evaluation of text 278

(Kadavath et al., 2022; Lin et al., 2022), such in- 279

trinsic assessment via self-reflection can reveal ad- 280

ditional shortcomings of LLM answers beyond ex- 281

trinsic consistency assessment. For instance, the 282

LLM might consistently produce the same non- 283

sensical answer to a particular question it is not 284

well equipped to handle, such that the observed 285

consistency score fails to flag this answer as suspi- 286

cious. Like CoT prompting, self-reflection allows 287

the LLM to employ additional computation to rea- 288

son more deeply about the correctness of its answer 289

and consider additional evidence it finds relevant. 290

Through these additional steps, the LLM can iden- 291

tify flaws in its original answer, even when it was a 292

high-likelihood (and consistently produced) output 293

for the original prompt. 294

To specifically calculate self-reflection certainty, 295

we prompt the LLM to state how confident it is that 296

its original answer was correct. Like Peng et al. 297

(2023), we found asking LLMs to rate their confi- 298

dence numerically on a continuous scale (0-100) 299

tended to always yield overly high scores (> 90). 300

Instead we ask the LLM to rate its confidence in its 301

original answer via multiple follow-up questions 302

each on a multiple-choice (e.g. 3-way) scale. For 303

instance, we instruct the LLM to determine the 304

correctness of the answer by choosing from the 305

options: A) Correct, B) Incorrect, C) I am not sure. 306

Our detailed self-reflection prompt template can 307

be viewed in Figure 6b. We assign a numerical 308

score for each choice: A = 1.0, B = 0.0 and C 309

= 0.5, and finally, our self-reported certainty S is 310

the average of these scores over all rounds of such 311

follow-up questions. 312

3.3 Overall Confidence Estimate 313

Considering the distinct characteristics of the Ob- 314

served Consistency and Self-reflection Certainty, 315

we anticipate they might complement each other. 316

BSDETECTOR aggregates the Observed Consis- 317

tency and Self-reflection Certainty values into an 318

overall confidence score for the LLM response: 319

C = βO + (1− β)S, (1) 320

here 0 ≤ β ≤ 1 is a trade-off parameter. It should 321

have larger value the more we trust the LLM’s 322

ability to do calibrated self-reflection assessment 323

of arbitrary (question, answer) pairs. 324
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Question:  A tower is made out of 4 blue 
blocks, twice as many yellow blocks, and an 
unknown number of red blocks. If there are 
32 blocks in the tower in total, how many 
red blocks are there?

BSDetector
0.137
0.406

0.929

24

16

20

T=1.0

Select which answer ? confidence

20
correct !

Select based on confidence

Figure 2: ChatGPT is used to generate the answers to arithmetic problem "A tower is ..." with temperature sampling
T = 1.0. Subsequently, BSDETECTOR is utilized to select the most confident answer from the three possible
answers.

4 Application: Generating More Reliable325

Answers from any LLM326

One straightforward application of our BSDETEC-327

TOR uncertainty estimate is to apply it to (each328

of) multiple candidate answers produced from the329

same LLM: {y′
1,y

′
2, ...,y

′
k} (including the origi-330

nal reference answer y in this set). This assessment331

allows is to determine which candidate LLM an-332

swer y′
i appears most trustworthy, and return that333

one instead of always returning y (see Figure 2).334

Specifically, we use the same prompt to ask the335

LLM to produce several responses via temperature336

sampling. For each candidate answer, we reuse the337

same set of previously-described LLM outputs {y1,338

y2, ..., yk} to compute an observed-consistency339

score (reducing the computation required to assess340

the trustworthiness of a set of candidate answers).341

Following the standard BSDETECTOR procedure,342

we prompt the LLM to assign a self-reflection cer-343

tainty to each candidate response. Finally we select344

the answer with highest BSDETECTOR confidence345

score, which is often the original reference answer346

y, but not always. An alternate answer y′
i ̸= y347

can be deemed most trustworthy via this procedure348

only if: the LLM was able to identify fewer likely349

answers that contradict y′
i and was more certain350

about the correctness of y′
i during the intrinsic self-351

reflection assessment.352

5 Application: More reliable LLM-based353

(automated) evaluation354

In open-domain tasks, it is challenging to evaluate355

the correctness/quality of answers (irrespective of356

whether these answers were generated by a LLM357

or human). Often one resorts to automated evalua-358

tion using models like GPT-3.5-turbo or GPT-4 to359

assess the correctness of answers (Lin et al., 2023;360

Chen et al., 2023c; Taori et al., 2023; Chen et al.,361

2023b; Xu et al., 2023; Chen et al., 2023a). Re-362

cent instruction fine-tuning techniques such as Al-363

paca (Taori et al., 2023) and WizardLM (Xu et al.,364

2023) also utilize GPT-4 for automated evaluation 365

of generated answers. Even when they are based 366

on advanced LLMs like GPT-4, there remain ques- 367

tions about the reliability of these LLM-based 368

evaluations. 369

Here we outline two ways to boost the reliability 370

of LLM-based evaluation: human-in-the–loop and 371

fully automated. Both start by computing BSDe- 372

tector confidence scores for each LLM-evaluation 373

(these scores estimate not the trustworthiness of the 374

generator of the answers, but rather the evaluator 375

of their correctness). Let A denote the subset of 376

answers where the corresponding LLM-evaluation 377

had the lowest BSDetector confidence scores (in- 378

dicating the automated evaluation for this answer 379

is untrustworthy). The gold-standard for evaluat- 380

ing open-domain answers is human inspection, but 381

this is costly. Under a limited labor budget, we 382

can boost the reliability of LLM-based evaluation 383

by having humans only inspect and provide eval- 384

uations for the answers in A. In settings where 385

this human-in-the-loop approach is not possible, 386

an alternative fully-automated way to boost the re- 387

liability of LLM-evaluation is to simply omit the 388

answers in A entirely from the evaluation-set. 389

6 Experiments 390

6.1 Calibration of uncertainty estimates 391

Datasets. Our experiments consider numerous 392

question-answering benchmarks listed below. For 393

each example in each benchmark dataset, the true 394

answer is known enabling us to precisely assess 395

the accuracy of LLM responses. We study per- 396

formance in: GSM8K (Cobbe et al., 2021) and 397

SVAMP (Patel et al., 2021), datasets composed 398

of grade school math word problems, Common- 399

sense Question Answering (CSQA) (Talmor et al., 400

2019), a dataset requiring some level of reasoning, 401

and TriviaQA (Joshi et al., 2017), an open-form 402

trivia question dataset that gauges models’ factual 403

knowledge. Because TriviaQA is open-domain, the 404

correct answers provided do not entail all valid so- 405
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Figure 3: Confusion matrix comparing automated GPT-4 evaluations vs. human evaluations.

lutions, so we also manually validated the accuracy406

of LLM-generated responses.407

Experiment details. We experiment on two408

LLMs from OpenAI: Text-Davinci-003 and GPT-409

3.5 Turbo. The reference answer y is always pro-410

duced with the temperature set at 0. To evaluate411

the confidence of y, we use prompt in Figure 6a to412

generate k = 5 outputs (unless otherwise stated)413

with the temperature set at 1.0 (the highest value al-414

lowed by the OpenAI API), combined with the indi-415

cator function to compute the observed-consistency416

score. For self-reflection certainty, two follow-417

up questions in Figure 6b are used to assess the418

correctness of the answer y. As previously de-419

scribed, we combine the observed-consistency and420

self-reflection certainty to derive the final confi-421

dence score. Following Kuhn et al. (2023), we422

use Area Under the Receiver Operator Character-423

istic Curve (AUROC) to evaluate the quality of424

our uncertainty estimates. AUROC represents the425

likelihood that a correct answer selected at random426

will have a higher uncertainty score compared to427

an randomly chosen incorrect answer. A higher428

AUROC value is preferable, with an ideal AUROC429

rating being 1, whereas a random uncertainty es-430

timate would yield AUROC = 0.5. To evaluate431

generation quality from the method to get better432

LLM answers in Section 4, we simply rely on the433

accuracy of LLM answers.434

Baseline Methods. Our study also evaluates the435

following baseline uncertainty estimation methods:436

Likelihood Based Uncertainty calculates the joint437

log-probability of a sequence from the autoregres-438

sive estimator and normalizes it by the sequence439

length (Malinin and Gales, 2020). While it repre-440

sents the typical way to estimate aleatoric uncer-441

tainty in traditional supervised learning and struc- 442

tured prediction (Hendrycks and Gimpel, 2017), 443

this approach can only can be applied to Text- 444

Davinci-003, since the GPT-3.5 Turbo API does 445

not provide access to token-level probabilities from 446

the model. Self-reflection Certainty and BSDE- 447

TECTOR are introduced in Fig 1a. Temperature 448

sampling is equivalent to BSDETECTOR without: 449

CoT prompting, self-reflection certainty, and the 450

indicator function term inside of the text-similarity 451

metric. 452

Results. Table 1 presents the performance results 453

for our various benchmark tasks and uncertainty 454

estimation methods. Here BSDETECTOR signif- 455

icantly outperforms all baselines across datasets, 456

revealing that confidence from BSDETECTOR well 457

aligns with accuracy. 458

6.2 Generating More Reliable Answers from 459

any LLM 460

In Table 2, we select the response with the high- 461

est confidence out of 5 generated responses as de- 462

scribed in Section 4. For all tasks, BSDETECTOR 463

can identify less accurate responses and notably 464

improve LLM accuracy. Table 2 compares this 465

approach against the original single answer y gen- 466

erated by the LLM (with temperature set to 0), re- 467

ferred to as the Reference Answer. While answers 468

produced via the BSDETECTOR filtering procedure 469

from Section 4 require 10x as much LLM-inference 470

computation as the Reference Answer, the consis- 471

tent accuracy gain observed in Table 2 makes this 472

worthwhile for high-stakes applications. 473
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Table 1: AUROC achieved by different confidence scoring methods across various datasets.

LLM Dataset Likelihood Based Temperature Self-reflection BSDETECTORUncertainty Sampling Certainty

Text-Davinci-003

GSM8K 0.647 0.614 0.521 0.867
CSQA 0.490 0.540 0.539 0.743

SVAMP 0.668 0.653 0.619 0.936
TriviaQA 0.708 0.769 0.653 0.828

GPT-3.5 Turbo

GSM8K - 0.660 0.831 0.951
CSQA - 0.583 0.506 0.769

SVAMP - 0.671 0.839 0.927
TriviaQA - 0.689 0.655 0.817

Table 2: Generating more reliable LLM answers. We
show the accuracy of each set of answers for the dataset
produced from the LLM with a particular method.

LLM Dataset Reference Answer (%) BSDETECTOR (%)

Text-Davinci-003

GSM8K 12.50 16.83
CSQA 71.50 72.83

SVAMP 65.67 70.00
TriviaQA 69.80 70.50

GPT-3.5 Turbo

GSM8K 47.47 69.44
CSQA 72.72 73.22

SVAMP 75.30 82.00
TriviaQA 73.50 76.00

6.3 More reliable LLM-based (automated)474

evaluation475

We first investigate how reliable GPT-4 based eval-476

uation is in practice. First we employ the Text-477

Davinci-003 model to produce answers for Triv-478

iaQA (Joshi et al., 2017). Subsequently, GPT-4479

is given the question and generated answer (from480

Text-Davinci-003) and asked to designate the an-481

swer as correct or incorrect (see the Figure 6c for482

the specific evaluation prompt). Since ground-truth483

answers are available for TriviaQA, we can report484

the accuracy of GPT-4 based evaluation, which is485

only 83.67% in this setting (Figure 3a). Next, we486

try using GPT-4 to assess the quality of answers.487

For example, alpaca-eval (Yann, 2023) utilizes488

GPT-4 to discern which answer from two LLMs489

is superior but it is unknown how reliable GPT-4490

judgements are in their application. To investigate491

this, we consider a similar task: Summarize-from-492

feedback (Stiennon et al., 2020). This dataset pro-493

vides the original context, a summary derived from494

that context, and a human assessment of the sum-495

mary’s quality (which we hold out only for report-496

ing purposes here). We employ GPT-4 based evalu-497

ation to automatically rate each summary’s quality,498

asking the LLM-evaluator to select from options:499

Bad, Fair, Good, or Excellent (see the Figure 6d500

for the specific evaluation prompt). Translating501

these ratings to a 1-4 numerical scale, we report the502

mean square error (MSE) between these automated503

GPT-4 ratings vs. the ground truth human ratings.504

Figure 3b shows this MSE is approximately 0.707. 505

In both experiments, automated evaluation based 506

on GPT-4 is not as reliable as one would hope to 507

reach trustworthy conclusions. 508

Finally we study whether BSDETECTOR can 509

help us achieve more reliable evaluations with GPT- 510

4, as described in Section 5. We consider the Trivi- 511

aQA and Summarize-from-feedback datasets with 512

the same GPT-4 model and evaluation prompts 513

from the previous paragraph, and compute BS- 514

DETECTOR confidence scores for the GPT-4 eval- 515

uator as described in Section 5. We first consider 516

the human-in-the-loop setting, where a human pro- 517

vides the evaluation for answers in A, defined as the 518

subset of answers where the corresponding GPT- 519

4 evaluation has BSDETECTOR confidence score 520

amongst the K lowest values. We compare the 521

resulting set of combined automated + human eval- 522

uations (confidence selection) against a baseline 523

set of combined automated + human evaluations, 524

where the subset of answers evaluated by a human 525

is chosen via random selection (rather than based 526

on our confidence score). Figure 4 depicts the 527

performance of the resulting human-in-the-loop 528

evaluation vs. the number of answers K evalu- 529

ated by a human (remaining answers are all auto- 530

evaluated by GPT-4). Across both datasets, guiding 531

the human-the-loop evaluation based on BSDE- 532

TECTOR confidence yields more reliable evalua- 533

tions. 534

To conclude, we study the fully-automated ap- 535

proach to LLM-based evaluation from Section 5, 536

which offers a labor-free way to utilize the BSDE- 537

TECTOR confidence scores. Recall in this approach 538

we simply omit the subset of answers in A from the 539

evaluation-set entirely. We can then compute the 540

average evaluation-score from GPT-4 as an over- 541

all quality estimate for the collection of generated 542

answers. Intuitively, we do not want to include 543

answers in this average whose GPT-4 evaluation is 544

highly uncertain (to reduce variance), but discard- 545

ing answers shrinks the remaining evaluation-set 546

7
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(b) Summarize-from-feedback

Figure 4: Human in the loop LLM-based evaluation,
with the number of answers evaluated by humans varied
along the x-axis (remaining answers are auto-evaluated
by GPT-4). The resulting accuracy/MSE of the com-
bined set of human + GPT-4 evaluations is shown along
y-axis, under confidence-based vs. random selection to
decide which subset of answers receive human evalua-
tion.

thus increasing variance of the resulting average.547

Evaluating the impact of these variance changes548

requires statistical repetition, so we repeat the fol-549

lowing procedure 500 times: For both datasets550

(TriviaQA, Summarize-from-feedback), we select551

500 answers and calculate the average GPT4552

evaluation-score over these answers. We call these553

the full dataset and the resulting average is the base-554

line score (estimator), whose accuracy/MSE we555

report against the average human evaluation score556

across the full dataset (estimand). To utilize BS-557

DETECTOR for a more reliable estimator of the av-558

erage human-evaluation score, we simply remove559

the 20% of answers with the lowest confidence560

scores for the corresponding GPT-4 evaluation, and561

compute the average GPT-4 evaluation score over562

the remaining 400 answers. As a sanity check,563

we also repeat this procedure but this time ran-564

domly dropping 20% of the answers (rather than565

based on confidence score), which purely increases566

the variance of resulting average GPT-4 evalua-567

tion score with no benefits. Figure 5 shows the re-568

sulting deviation between average GPT-evaluation569

score and average human evaluation score over all570
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(b) Summarize-from-feedback

Figure 5: Fully-automated GPT-4 based evaluation, as-
sessing the accuracy/MSE over many replicate datasets
(observed counts amongst replicates on y-axis). By dis-
carding the bottom 20% of evaluations with the lowest
confidence, the average GPT-4 evaluation score con-
sistently reaches an accuracy of 1.0 on TriviaQA, indi-
cating completely trustworthy LLM-based evaluations
(and the MSE of the average GPT-4 score consistently
improves compared to the full dataset or discarding a
random 20%).

of these statistical replicate experiments. Across 571

both datasets, we get more reliable average LLM- 572

evaluation scores by discarding the answers with 573

the lowest confidence scores for the corresponding 574

LLM-evaluation. Preventing the high-uncertainty 575

LLM-evaluations from corrupting the average eval- 576

uation score is clearly worth the variance-penalty 577

paid by shrinking the size of the evaluation set. 578

7 Discussion 579

This paper presents BSDETECTOR, a method de- 580

signed to identify unreliable or speculative answers 581

from LLMs by computing a confidence score for 582

its generated outputs. Our uncertainty estimates 583

are applicable to any LLM, even those only acces- 584

sible via a black-box API, and combine both in- 585

trinsic and extrinsic evaluations of confidence. By 586

sampling multiple LLM answers and selecting the 587

one with the highest associated confidence score, 588

we can produce more accurate responses from the 589

same LLM without any additional training. 590
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A Appendix725

A.1 Details about NLI model726

Specifically, the input of NLI is formed by con-727

catenating yi and y, and then NLI returns the728

probabilities p for each of these 3 classes. Here729

we choose 1− pcontradiction (output by an already730

trained NLI system (He et al., 2020)) as our simi-731

larity between two sampled LLM outputs. To mit-732

igate positional bias within the NLI system, we733

consider both orders (yi,y) and (y,yi), produc-734

ing 1−pcontradiction and 1−p′contradiction for each735

order and averaging these two values into a single736

similarity score. The similarity scores using NLI737

to assess each sampled LLM answer for contradic-738

tions with respect to the original reference answer739

are denoted, for i = 1, 2, ..., k:740

si =
1

2
(1− pcontradiction + 1− p′contradiction).741

A.2 Compute costs742

The compute costs associated with various uncer-743

tainty methods differ. Uncertainty based on au-744

toregressive likelihood is the most cost-effective,745

requiring only a single API call that returns the746

token-level probability. However, this cannot be747

implemented on GPT-3.5 Turbo since it does not748

provide token-level probabilities. While BSDE-749

TECTOR incurs a slight additional cost for self-750

certainty reflection in comparison to the baseline751

Temperature Sampling approach, Table 3a shows752

that even when we double the number of outputs753

from Temperature Sampling (thus allowing it far754

more compute than our approach), its performance755

remains inferior to BSDETECTOR.756

A.3 Prompts used in BSDETECTOR757

Figure 6 show the prompts used in BSDETECTOR.758

759

A.4 Ablation Study760

In this section, we study that whether each compo-761

nent is required to achieve high quality. Our inves-762

tigation leads to the following primary insights: 1)763

Enhancing the number of outputs and integrating764

CoT prompt in Observed Consistency result in a765

greater variety of responses, thereby making the766

confidence estimation more reliable. 2) Our simi-767

larity metric is crucial for capturing the variation768

between different responses.769

A.4.1 Increasing the number of outputs and 770

integrating CoT prompt introduce more 771

diversity? 772

Table 3a shows an ablation study involving the 773

number of outputs in Observed Consistency, we 774

compare 5 and 10 outputs, observing that for each 775

dataset 10 outputs outperforms 5 outputs. However, 776

for GSM8K, SVAMP, and TriviaQA, the gain from 777

5 to 10 outputs is marginal. Given the trade-off 778

between cost and performance, and considering 779

that doubling the API calls results in only a slight 780

improvement, we decide to stick with 5 outputs in 781

our experiments. Table 3b indicates that CoT is 782

essential for introducing the diversity of responses 783

and achieving the good confidence estimation per- 784

formance. 785

A.4.2 Effect of different sentence similarity 786

metrics 787

Table 4 shows the AUC performance with different 788

similarity metrics. We compare Jaccard similar- 789

ity calculated by dividing the number of obser- 790

vations in both output strings by the number of 791

observations in either string, LLM-embedding uti- 792

lizing text-embedding-ada-0021 to get embedding 793

for each output answers and calculating the cosine 794

similarities between them, NLI using an off-the- 795

shelf DeBERTa-large model (He et al., 2020) for 796

the purpose of categorizing into one of: entailment, 797

contradiction, and neutral, NLI (1-contradiction) 798

using 1−pcontradiction as the final similarities met- 799

rics. Table 4 shows that the similarity metric used 800

in BSDETECTOR is essential for discerning the 801

differences among various responses. 802

1https://platform.openai.com/docs/api-
reference/embeddings
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Table 3: Ablation study

(a) AUC of BSDETECTOR with different num-
bers of outputs.

5 outputs 10 outputs

GSM8K 0.951 0.961
CSQA 0.769 0.802
SVAMP 0.927 0.937
TriviaQA 0.817 0.814

(b) AUC of BSDETECTOR without and with CoT prompt aug-
mentation.

Remove CoT prompting BSDETECTOR

GSM8K 0.837 0.951
CSQA 0.665 0.769
SVAMP 0.882 0.927
TriviaQA 0.792 0.817

Table 4: Effect of different sentence similarity metrics

Dataset Jaccard LLM-embedding NLI (1-contradiction) BSDETECTOR

GSM8K 0.896 0.866 0.892 0.951
CSQA 0.857 0.849 0.727 0.769
SVAMP 0.917 0.888 0.901 0.927
TriviaQA 0.650 0.642 0.794 0.817
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Please strictly use the following template to provide answer: 
explanation: [insert step-by-step analysis], answer: [provide 
your answer] + Question: [User Provided]

(a) Prompt template for Observed Consistency

1. Question: [User Provided], Proposed Answer: [User/LLMs  
Provided]. Is the proposed answer: (A) Correct (B) Incorrect 
(C) I am not sure. The output should strictly use the 
following template: explanation: [insert analysis], answer: 
[choose one letter from among choices A through C]

2. Question: [User Provided], Proposed Answer: [User/LLMs  
Provided]. Are you really sure the proposed answer is 
correct? Choose again: (A) Correct (B) Incorrect (C) I am 
not sure. The output should strictly use the following 
template: explanation: [insert analysis], answer: [choose 
one letter from among choices A through C]

(b) Prompt template for Self-reflection Certainty

"Statement: " + [User Provided Question] + "\n" + "Response: " +  
+ [User Provided Answer] + "\n" + "What do you think of this 
response to the statement is correct or incorrect, please pick 
one of these choices:"

(c) Prompt template for triviaQA in the application of using BSDETECTOR as an evaluator.

"Article: " + [User Provided Context] + "\n\n\n" + "Summary: " + 
[User Provided Summary] + " Your task: Rate how well this 
Summary overall represents the original Article? Choose from the 
options: [Bad, Fair, Good, Excellent]. Bad indicates the Summary 
is inaccurate, misses important information, or is incoherent 
and hard to understand. Fair indicates the Summary has some flaw 
in terms of accuracy, coverage, and coherence, but is otherwise 
decent along the other dimensions. Good indicates the Summary 
accurately matches the factual information, conveys the main 
idea of the Article, and is easy to understand but has some 
minor flaws in any dimensions. Excellent indicates it is hard to 
find ways to make the Summary better. Your rating (chosen from 
Bad, Fair, Good, Excellent):"

(d) Prompt template for Summarize-from-feedback in the application of using BSDETECTOR as an evaluator.

Figure 6: Prompts used to produce the confidence score in BSDETECTOR.
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