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ABSTRACT

Recent advancements in long chain-of-thought (CoT) reasoning, particularly
through the Group Relative Policy Optimization algorithm used by DeepSeek-
R1, have led to significant interest in the potential of Reinforcement Learning
with Verifiable Rewards (RLVR) for Large Language Models (LLMs). While
RLVR promises to improve reasoning by allowing models to learn from free ex-
ploration, there remains debate over whether it truly enhances reasoning abilities
or simply boosts sampling efficiency. This paper systematically investigates the
impact of RLVR on LLM reasoning. We revisit Pass@K experiments and demon-
strate that RLVR can extend the reasoning boundary for both mathematical and
coding tasks. This is supported by our introduction of a novel evaluation metric,
CoT-Pass@K, which captures reasoning success by accounting for both the final
answer and intermediate reasoning steps. Furthermore, we present a theoretical
framework explaining RLVR’s incentive mechanism, demonstrating how it can
encourage correct reasoning even when rewards are based solely on answer cor-
rectness. Our analysis of RLVR’s training dynamics reveals that it incentivizes
correct reasoning early in the process, with substantial improvements in reasoning
quality confirmed through extensive evaluations. These findings provide strong
evidence of RLVR’s potential to enhance LLM reasoning, offering valuable in-
sights into its mechanisms and performance improvements.

1 INTRODUCTION

The successful replication of long chain-of-thought (CoT) reasoning, similar to that in OpenAI’s
o1 (OpenAI, 2024), by DeepSeek-R1 (Guo et al., 2025) using the Group Relative Policy Optimiza-
tion (GRPO) algorithm (Shao et al., 2024), has sparked a surge of interest within the open research
community. This interest is focused on understanding, reproducing, and extending DeepSeek’s ap-
proach, as evidenced by a multitude of recent studies (Liu et al., 2025b; Hu et al., 2025; Zeng et al.,
2025; Yu et al., 2025; He et al., 2025; Wen et al., 2025; Chen et al., 2025b). Fundamentally, this
emerging paradigm is a form of Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert
et al., 2024; Guo et al., 2025; Yue et al., 2025), where a Large Language Model (LLM) acts as a pol-
icy, generating a CoT as a sequence of actions and receiving feedback on answer correctness from
deterministic verifiers. This paradigm holds the promise of endowing LLMs with the ability to learn
from experience through free exploration, potentially leading to unlimited intelligence (OpenAI,
2024; Guo et al., 2025; Silver & Sutton, 2025).

However, emerging concerns question the true effectiveness of RLVR. These concerns are motivated
by the observation that some post-RLVR models improve the Pass@1 metric but fail to enhance the
Pass@K metric compared to the base (pre-RLVR) model. This phenomenon was first noted by Shao
et al. (2024) during the development of GRPO. Subsequently, a systematic study by Yue et al. (2025)
on more open-weight RLVR models discovered that the Pass@K metric of the base model increases
at a much faster rate than its RLVR-tuned counterpart. Consequently, for a moderately large K, the
base model eventually matches and surpasses the reasoning model. This led to their adventurous
hypothesis: all correct reasoning paths are already present in the base model, and RLVR merely
improves sampling efficiency at the cost of reducing overall reasoning capacity.
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Question

Chain ofThought(CoT)
Answer

Base LLM

A Hypothesis Explaining Pass@1 and Pass@K    All reasoning paths are present in the base model.
• RLVR improves sampling efficiency.
• RLVR reduces reasoning capacity.

Our Perspective:    RLVR Implicitly Incentivizes Correct Reasoning
• RLVR promotes correct reasoning paths.
• RLVR mitigates spurious guesses. 

Reinforcement Learning with Verifiable Rewards (RLVR)

Figure 1: An illustration of our perspective: RLVR implicitly incentivizes correct reasoning in
base LLMs. We visualize how different explanation frameworks lead to varying reasoning paths
being activated, with our perspective shown in the lower left and a recent popular hypothesis ex-
plaining Pass@K observations (Yue et al., 2025) summarized in the upper left. In this diagram,
the line width represents the sampling probability of a reasoning path, while the color distinguishes
correct paths (green) from incorrect ones (red). If all reasoning paths after applying RLVR are al-
ready present in the base model, the reasoning model merely adjusts the sampling probabilities of
these existing paths (visualized in dashed lines). This hypothesis effectively accounts for the key
observation shown in the upper-right part, where, for a moderately large K, a base LLM can catch
up to the reasoning model after RLVR using the Pass@K metric. In this study, we unveil the ex-
tended reasoning capability boundary in math tasks using a refined metric, CoT-Pass@K, which
emphasizes both the correctness of answers and the validity of reasoning CoTs.

While this hypothesis has gained significant support (Zhu et al., 2025; Zhang et al., 2025; Wang et al.,
2025a; Chen et al., 2025a), conflicting observations have also been reported. For instance, Liu et al.
(2025a) detected the emergence of new reasoning patterns after RLVR, while they also acknowl-
edged a loss in reasoning capacity as measured by Pass@K. Chen et al. (2025b) reported persistent
improvements in Pass@K for competitive coding tasks but did not show improved Pass@K for
math tasks. Shojaee et al. (2025) observed similar Pass@K observations on math datasets but found
different patterns on puzzles with high complexity. To the best of our knowledge, no systematic
explanation exists to reconcile these contradictory findings, leaving a critical question unanswered:
“should we accept the hypothesis as a fundamental limitation of RLVR or should we trust new em-
pirical findings that challenge the hypothesis?”

In this work, we address this debate systematically and demonstrate that RLVR can fundamentally
enhance the reasoning abilities of LLMs. First, we revisit Pass@K experiments and unveil the
existence of extended reasoning capability boundaries after RLVR for both math and code tasks. In
addition to reproducing the extended reasoning boundary in competitive coding, as reported by Chen
et al. (2025b), we find that the Pass@K performance of base LLMs on math reasoning can be
unreliable, as base LLMs are capable of producing incorrect CoTs yet coincidentally arriving at the
ground truth, especially for hard mathematical questions where answers are simple and can be easily
guessed after multiple attempts. To address this, we introduce a new metric, CoT-Pass@K, which
evaluates success only when both the final answer and the intermediate reasoning CoT are correct. In
practice, we verify the correctness of mathematical CoTs by instructing DeepSeek-R1-0528-Qwen3-
8B (DeepSeek, 2025) and confirm their reliability. Using this new metric, we successfully identify
the extended reasoning boundary of a post-RLVR model for math tasks. Figure 1 summarizes our
key perspectives.

Moreover, we develop a theoretical framework to explain why RLVR works, even when base LLMs
may guess the ground truth and only answer correctness is provided as a reward, and how RLVR
incentivizes correct reasoning. Our central insight is that once LLMs have been pre-trained to es-
tablish strong knowledge and logic priors that distinguish correct from incorrect CoTs, the GRPO
gradient will increase the probability of generating more correct CoTs.
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Additionally, we investigate the training dynamics of RLVR to understand when this improved rea-
soning emerges. By reproducing GRPO-style training using the open-source DAPO recipe (Yu
et al., 2025) and performing extensive verifications, we find that RLVR begins to incentivize cor-
rect reasoning from the early stages of training, and this capability generalizes well to unseen test
questions. The results of our training analysis align with our theorem, which highlights the implicit
incentivization of correct reasoning CoTs.

Finally, we evaluate the quality of generated CoTs from a learning perspective: if supervised learn-
ing on some CoT data results in better generalization performance on test sets, we regard them as
high quality. This allows us to evaluate the quality of CoTs generated by model checkpoints at
different RLVR stages. Our results show that after RLVR, the quality of reasoning CoTs has been
fundamentally improved.

In summary, our contributions include:

• A systematic evaluation revealing the extended reasoning capability boundary after RLVR
for both code and math tasks.

• A theoretical understanding of why RLVR works with only answer correctness as a reward
and how RLVR incentivizes correct reasoning.

• An analysis of RLVR’s training dynamics, delving deeper into optimization effects, gener-
alization behaviors, and current limitations.

• Confirmation of the quality improvements in reasoning CoTs from a learning perspective,
replicating the generalization abilities of post-RLVR models trained with enormous costs
simply via supervised fine-tuning.

2 RELATED WORK

RLVR Since the release of DeepSeek-R1 (Guo et al., 2025), there has been a surge of research
interest in the RLVR paradigm (Luo et al., 2025b; Liu et al., 2025b; Hu et al., 2025; Cui et al.,
2025; Xie et al., 2025; Zeng et al., 2025; Yu et al., 2025; Luo et al., 2025a; Chen et al., 2025a;
He et al., 2025; Wen et al., 2025; Cao et al., 2025; Liu et al., 2025a; Chen et al., 2025b). Due
to the high computational cost of RLVR, most studies have focused on small- to medium-sized
models (up to 32B parameters). These studies span a wide range of aspects, including training
data curation, objective design, hyperparameter tuning, base model selection, and various insightful
observations. However, only a few studies have addressed the theoretical foundations of RLVR. In
this work, we argue that RLVR for LLMs should be understood from a different perspective—one
that emphasizes the correctness of reasoning paths. We hope our empirical findings and theoretical
perspective could inspire the community to develop more efficient and effective RLVR approaches,
unlocking its broader potential across diverse applications.

Debates on Whether RLVR Really Incentivizes Since Yue et al. (2025) raised the insightful
question of whether RLVR truly incentivizes improvements beyond the base LLMs, and conducted
extensive empirical experiments to demonstrate the wide applicability of their key hypothesis—that
RLVR does not improve Pass@K for the base LLM because all reasoning paths are already present
in the base model—there have been varying perspectives on this hypothesis. Some studies agree
with this viewpoint (Wang et al., 2025b; Zhu et al., 2025; Zhang et al., 2025; Wang et al., 2025a;
Chen et al., 2025a), while others report contradictory findings (Liu et al., 2025a; Chen et al., 2025b;
Shojaee et al., 2025), as discussed in the introduction. There is currently no fundamental under-
standing to resolve these debates. Liu et al. (2025a) speculated that previous RLVR experiments
may have been conducted within a single domain (e.g., math) and were optimized for limited gradi-
ent steps before true exploration could occur. Shojaee et al. (2025) suggested that the complexity
of puzzles might be the key factor. Chen et al. (2025b) presented statistically significant empirical
results to justify that their model indeed improves Pass@K, particularly highlighting a persistent
gap on the LiveCodeBench v6 (Jain et al., 2025). In this work, we extend the Pass@K experiments
of Chen et al. (2025b) to more LiveCodeBench versions and include another similar open-source
study (He et al., 2025) starting RLVR from distilled LLMs as a comparison. All these results clearly
disclose the extended reasoning boundary of distilled LLMs on competitive coding after RLVR.
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Figure 2: Comparisons of Pass@K (the top row) and CoT-Pass@K (the bottom row) on five math
benchmarks (different columns) to show how RLVR could improve base LLMs. Here the base LLM
is Qwen2.5-32B, and the post-RLVR model is DAPO-Qwen-32B. For CoT-Pass@K, we perform
multiple verifications for each CoT using DeepSeek-R1-0528-Qwen3-8B, and display the results
determined by any-correct, all-correct, and majority-correct strategies, which constitute the shaded
area in lower subplots.

The Importance of Correct CoTs Recent studies have also highlighted the importance of veri-
fying the correctness of CoTs (Arcuschin et al., 2025; McGinness & Baumgartner, 2025; Shojaee
et al., 2025). However, their approaches focus on defining synthetic reasoning tasks where the cor-
rectness of reasoning CoTs can be verified easily. While this is an interesting and effective approach
for fully examining reasoning correctness, it is difficult to apply to unstructured reasoning scenarios,
such as in math and code. In this work, we argue that the LLM-as-a-CoT-Judge paradigm could play
a crucial role in more general reasoning tasks, and emphasize the pressing need for the design of
evaluation benchmarks to assess the reliability of emerging LLM verifiers.

3 EXTENDED REASONING CAPABILITY BOUNDARY AFTER RLVR

In this section, we present concrete benchmark evaluations that demonstrate how RLVR can fun-
damentally enhance the reasoning abilities of LLMs. This enhancement goes beyond mere im-
provements in sampling efficiency; it also expands the reasoning capability boundary. However,
to effectively observe this enhancement, it is crucial to adopt an appropriate RLVR training recipe,
select challenging benchmarks that are free from data contamination, and utilize reliable evaluation
metrics. Without these measures, one might only observe improvements in sampling efficiency, with
no actual change in reasoning capacity. Below, we discuss two representative cases from both the
math and code domains, showcasing genuinely extended reasoning boundaries.

3.1 MATH REASONING

We begin by revisiting the Pass@K experiments conducted on the open-source model, DAPO-
Qwen-32B (Yu et al., 2025), which successfully reproduced R1-Zero (Guo et al., 2025) using the
base LLM, Qwen2.5-32B (Qwen, 2024), and a curated set of 17k mathematical problems. A key
contribution of our work is the introduction of a novel evaluation metric, CoT-Pass@K, which em-
phasizes the importance of evaluating the correctness of detailed reasoning steps for mathematical
questions, rather than relying solely on answer correctness.

However, precisely measuring the correctness of CoTs at scale is inherently challenging due to the
unstructured, lengthy, and complex nature of math CoTs. Fortunately, we can leverage special-
ized open-source LLMs, such as DeepSeek-R1-0528-Qwen3-8B (DeepSeek, 2025), as a powerful
yet lightweight verifier, employing an LLM-as-a-CoT-Judge paradigm. In this study, we use this
verifier multiple times for each reasoning CoT generated by DAPO-Qwen-32B and Qwen2.5-32B,
employing three distinct strategies to assess CoT correctness: any-correct (at least one verification
returns correct), all-correct (all verifications must return correct), and majority-correct (the majority
vote determines the outcome). To further ensure the reliability of these verifications, we manually
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Figure 3: Comparisons of Pass@K across six LiveCodeBench versions to show how much RLVR
could enhance distilled LLMs. Here the distilled LLM is DeepSeek-R1-Distill-Qwen-7B, and the
post-RLVR model is AceReason-Nemotron-7B.

inspect cases where the Pass@K metric yields a small positive value, but the CoT-Pass@K metric
returns zero. The details of our LLM-as-a-CoT-Judge approach can be found in Appendix A.2.

Figure 2 presents a comprehensive comparison using both Pass@K and CoT-Pass@K metrics across
prominent math-reasoning benchmarks. As shown in the top row, the Pass@K results align with the
observations in (Yue et al., 2025): the performance of the base LLM quickly catches up with and
even surpasses the post-RLVR model as K increases. However, in stark contrast, the CoT-Pass@K
results on AIME 2024 and AIME 2025 reveal a consistent and significant performance gap between
the models across all values of K (up to 1024). This gap is particularly pronounced on AIME
2025, possibly due to its complete absence of unintentional data contamination, as it was released
after the base model’s training cutoff. We perform manual inspections to ensure the distinct gaps
observed using the CoT-Pass@K metric are reliable (see examples in Appendix A.7.1 and A.7.2).
Our LLM verifier effectively identifies critical errors, which we agree should be rejected. These
results demonstrate the extended reasoning boundary of DAPO-Qwen-32B over Qwen2.5-32B.

Additionally, we observe that on other benchmarks such as MATH-500 and AMC23, the effects of
RLVR seem less pronounced, as the base LLM is already capable of solving these problems correctly
with sufficient attempts. This may be due to 1) the problems being simple enough for the base LLM
to solve using its existing knowledge, or 2) the problems being part of its pre-training data, allowing
the base LLM to recall the correct solution after multiple trials. Distinguishing between these possi-
bilities is challenging without knowing the exact training data used for Qwen2.5-32B. Furthermore,
on the Minerva benchmark, the post-RLVR model shows no improvement, likely due to a train-test
domain mismatch. Minerva contains numerous physics problems and free-form answers, while the
DAPO training data was restricted to math problems with integer answers. These results do not
undermine the effectiveness of RLVR; rather, they highlight the importance of selecting appropriate
benchmarks for evaluating RLVR progress.

3.2 CODE REASONING

Unlike RLVR for mathematical problems, where the correctness of extracted answer tokens is used
as a proxy for passing, code reasoning relies on the actual execution of generated code snippets to
verify correctness, significantly reducing the likelihood of guessing. Therefore, Pass@K serves as a
reliable evaluation metric for code reasoning tasks.

In this section, we reproduce the Pass@K experiments across different versions of Live-
CodeBench (Jain et al., 2025) to compare the performance of AceReason-Nemotron-7B (Chen et al.,
2025b) with its pre-RLVR counterpart, DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025). As shown
in Figure 3, we observe that AceReason-Nemotron-7B exhibits clear Pass@K improvements over
DeepSeek-R1-Distill-Qwen-7B on most benchmark versions, even though the latter is a distillation
model already demonstrating remarkable reasoning capabilities. These results suggest that even
for distillation models, a high-quality RLVR training recipe can significantly extend the reasoning
capability boundary, particularly for competitive coding tasks.

To further confirm the success of RLVR in extending reasoning boundaries for coding tasks, we
evaluate another post-RLVR model, Skywork-OR1 (He et al., 2025), which has a fully reproducible
training recipe publicly available. Detailed results on LiveCodeBench-v6 can be found in Ap-
pendix A.3, where we observe a consistent Pass@K gap between Skywork-OR1 and DeepSeek-
R1-Distill-Qwen-7B. Specifically, we find that only medium and hard problems in LiveCodeBench-
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v6 contribute to the differentiation between these two models for large K values, underscoring the
importance of selecting challenging benchmarks.

4 A THEORETICAL UNDERSTANDING OF RLVR FOR LLMS

In addition to empirical evidences, we provide a theoretical understanding of how RLVR, as imple-
mented in the GRPO algorithm (Shao et al., 2024), fundamentally incentivizes correct reasoning for
pre-trained language models. We note a key distinction between RLVR for LLMs and traditional
RL for randomly initialized models. Pre-trained LLMs, owing to their powerful likelihood estima-
tion capabilities obtained during pre-training, can generate various CoTs and then produce possible
answers. Some of them could coincidentally arrive at the ground truth, especially when the ground
truth is in a simple format and can be easily guessed. In contrast, traditional RL simply optimizes
for action trajectories that yield high rewards, without necessarily verifying the intrinsic correctness
of each action along the path. For instance, in the Go game (Silver et al., 2017), every action is
valid once the simulation environment is setup correctly. In the following, we start our theoretical
analysis from a formal problem setup distinguishing CoT and answer tokens in LLM responses.

Problem Setup Given a question prompt q , we sample G responses Y = {y1, y2, . . . , yG} from
policy πθ, where πθ is a LLM model parameterized by θ. Let ci be the CoT in response yi, and ai
the final answer. We define the following correctness indicators:

ICoT(ci) =

{
1 if ci is correct
0 otherwise

, IAns(ai) =

{
1 if ai is correct
0 otherwise

. (1)

In this study, we define the CoT correctness ICoT(ci) as the intermediate tokens of a response (ci)
expressing necessary and accurate logics that lead to the ground truth. We use pθc = Pπθ

(ICoT(c) =
1) to denote the probability of generating a correct CoT. In practice, it is rather challenging to
verify the CoT correctness because it is inherently unstructured, knowledge-intensive, and full of
details. In contrast, the answer correctness IAns(ai) is assumed to be verified programmatically.
So we have a verifiable reward R(yi) that is binary and determined solely by answer correctness:
R(yi) = IAns(ai). We calculate the standard GRPO advantage Â(yi) as:

Â(yi) =
R(yi)− µY

σY
, µY =

1

G

G∑
j=1

R(yj), σY =

√√√√ 1

G

G∑
j=1

(R(yj)− µY)2. (2)

Without loss of generality, we consider a policy gradient (Sutton et al., 1999) update:

∇θJ(θ) ≈
1

G

G∑
i=1

Â(yi)∇θ log πθ(yi | q). (3)

Assumptions Given the problem setup decoupling CoT and answer correctness, we introduce a
critical Logic Prior assumption: compared with incorrect CoTs, correct CoTs have higher probabil-
ities to induce correct answers. Thus we have

P (IAns(ai) = 1 | ICoT(ci) = 1) = α > P (IAns(ai) = 1 | ICoT(ci) = 0) = β. (4)

This assumption is based on the belief that pre-trained LLMs have established strong knowledge and
logic priors. Besides, we also assume a learnable group (σY > 0) and a sufficiently large sampling
number G to ensure stable gradient updates. Then, we establish the following theorem.

Theorem 1 (GRPO Implicitly Incentivizes Correct Reasoning) For any prompt q satisfying our
assumptions, the expected GRPO advantage E[Â(yi)] satisfies:

E
[
Â(yi) | ICoT(ci) = 1

]
> 0, E

[
Â(yi) | ICoT(ci) = 0

]
< 0, (5)

where Â(yi) is defined in equation 2. The GRPO policy gradient, as defined in equation 3, increase
the probability of generating correct CoTs (pθc) in the next round, so pθc increases monotonically.

Below we briefly illustrate our key perspectives on why GRPO works and when it may fail. More-
over, we include a complete proof for Theorem 1 and more discussions in Appendix A.4.
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Figure 4: The evolution of P (CA)(q) (the fraction of correct answers for prompt q) and
P (CC|CA)(q) (the fraction of correct CoTs within the correct answers for prompt q) for fully
optimized training questions over the course of DAPO training.

Discussions on the effectiveness of GRPO Theorem 1 indicates that even though a base LLM
may guess the ground truth with imperfect CoTs at the beginning (low initial pθc), GRPO could still
work as long as the knowledge and logic priors have been established. The driving factor is the
gap α − β > 0, which amplifies the advantage difference between correct and incorrect CoTs. As
training progresses and α increases (due to more sound reasoning across various question prompts)
while β decreases (reducing spurious correlations, model biases, incorrect knowledge or calculation,
etc.), causing the gap to widen and further accelerating coherent reasoning. As pc → 1, (α − β)
may approach 1 in a faster pace because generating a few answer tokens is typically much easier
than producing long correct CoTs, then E[Â(yi) | correct CoT] → 0, ensuring convergence.

Discussions on failure modes in GRPO We note that the Logic Prior assumption may not al-
ways hold, potentially leading to the reinforcement of incorrect CoTs, since base LLMs may retain
inherent biases and possibly fatal knowledge errors from pre-training. These harmful information
might exist in some CoTs that finally yield the correct answer. In such cases, improper model bi-
ases could be unintentionally reinforced. We suspect that these unexpectedly reinforced CoTs are
the root cause of the challenges faced by the R1-Zero approach (Guo et al., 2025), including poor
readability and multi-lingual behaviors.

5 TRAINING DYNAMICS OF RLVR

To further demystify RLVR, we reproduce and analyze the training recipe of DAPO (Yu et al., 2025),
which has been demonstrated to present extended reasoning capability boundaries in Section 3. Our
experiments show that its training dynamics align pretty well with Theorem 1.

Key Indicators We first introduce key indicators that we have recorded during the reproduction.
For each prompt q sampled with G responses, we define the number of answer passes and the
number of both CoT and answer passes as C =

∑G
i=1 IAns(ai) and D =

∑G
i=1 ICoT(ci) · IAns(ai),

respectively. We follow Chen et al. (2021)’s approach to calculate the Pass@K metric. Accordingly,

we have per-prompt metrics: Pass@K(q) = 1− (G−C
K )
(GK)

and CoT-Pass@K(q) = 1− (G−D
K )
(GK)

. Besides,

we estimate the probability of producing correct answers for prompt q as P (CA)(q) = C
G and the

probability of producing correct CoTs when generating correct answers as P (CC|CA)(q) = D
C . For

a dataset of multiple prompts, we take an average of per-prompt metrics as the dataset-level score.

Optimization Effects In our reproduced DAPO training, we observe that most training questions
have been fully optimized. As shown in Figure 4, the probability of generating correct answers for
these questions almost reach 1. In the meanwhile, we also observe the improvement in producing
more correct reasoning CoTs, as indicated by the improvements in P (CC|CA)(q). These observa-
tions validate the key perspective in Theorem 1: RLVR not only optimizes the final verifiable reward
but also implicitly incentivizes correct reasoning.
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Figure 5: The evolution of Pass@K (the top row) and CoT-Pass@K (the bottom row) performance
on AIME 2024 and 2025 for different model checkpoints during the DAPO training.

Generalization Behaviors In the meanwhile, Figure 5 discloses that the optimization of RLVR
leads to the generalization improvements of both Pass@K and CoT-Pass@K from the very begin-
ning. And using the CoT-Pass@K metric, we can clearly tell that the reasoning capability boundary
has also been enhanced since the beginning. Another interpretation for this empirical observation
is that the model has learned to produce more and more reasoning CoTs that DeepSeek-R1-0528-
Qwen-8B cannot identify any error. This ability is learned implicitly since we have no formal
supervision for the CoT correctness.

Limitations of DAPO Figure 4 also unveils the limitations of DAPO, the R1-zero approach ap-
plied to a 32B base LLM. As P (CA)(q) approaches 1.0 for most fully optimized training questions
after 400 steps, which means these questions are no longer learnable because we cannot calculate
a valid GRPO advantage for a all-correct group, we can still observe a non-negligible portion of
imperfect CoTs (the median of P (CC|CA)(q) is around 0.7). These signals indicate that there are
certain unexpected reasoning behaviors learned in DAPO and we may not have a chance to mitigate
them purely based on answer correctness as the reward.

6 THE QUALITY OF REASONING COTS ENHANCED BY RLVR

In addition to the LLM-as-a-CoT-Judge approach for strictly identifying critical errors in reason-
ing CoTs, we further leverage supervised fine-tuning (SFT) to assess the quality of reasoning CoTs
enhanced by RLVR. Given the training questions in DAPO, we conduct multiple SFT procedures,
starting from the same base LLM and learning from CoTs generated by different models. If the CoT
data is of high quality, we expect the post-SFT model to exhibit improved generalization perfor-
mance. Figure 6 presents an overall quality evaluation of various CoT data.

Specifically, Figure 6(a) illustrates the evolution of CoT quality during RLVR. As training pro-
gresses, the generalization performance of post-SFT LLMs, measured in Pass@1, improves steadily.
Ultimately, SFT on DAPO CoT data matches the Pass@1 performance of DAPO-Qwen-32B. This
result indicates that, given sufficient training questions and CoT data from a post-RLVR model, we
can replicate a new model with nearly the same Pass@1 performance simply through SFT. Moreover,
an interesting observation is that, regardless of whether the CoT data contains identifiable errors, as
RLVR progresses, the CoT quality, measured in Pass@1, generally improves. This suggests that
although some erroneous steps may be present, the overall quality of these ”incorrect” CoTs in the
later stages of RLVR improves significantly.
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(b) The CoT quality before and after RLVR, using
(CoT-)Pass@K on test sets as the proxy metric.

Figure 6: We show the generalization performance of post-SFT LLMs optimized on different CoT
data. All these SFT processes start from the same base LLM, Qwen2.5-32B, with the only variable
being the different CoT data on DAPO training questions. We use the performance on test sets
(AIME 2024, 2025) as a proxy for the quality of the corresponding CoT data.

Figure 6(b) compares the CoT quality before and after RLVR, using both Pass@K and CoT-Pass@K
as proxy metrics. Comparing DAPO-Qwen-32B with the post-SFT model trained on its CoT data,
we observe that this simple SFT approach nearly replicates the performance of a post-RLVR model,
which would otherwise require significant computational cost. When comparing Qwen2.5-32B with
the post-SFT model trained on its CoT data, we find that the post-SFT model begins to mitigate
guessing. This aligns with our expectations, as we only feed CoT data with correct answers from
Qwen2.5-32B into the SFT procedure. We can therefore regard this process as a round of off-policy
RLVR optimization. These observations indicate that the incentivized CoT data through RLVR is
crucial, as such CoTs cannot be directly sampled from base LLMs. RLVR optimizes the model’s
reasoning abilities, ensuring that the generated CoTs are more accurate, coherent, and reliable, which
is essential for handling complex tasks.

Limitations A key limitation of our study lies in the use of a LLM as the verifier for the correctness
of reasoning CoTs, due to the prohibitive cost of manually checking a large volume of generated rea-
soning paths. Moreover, our theorem only explains the optimization process of RLVR but provides
no guarantee for its generalization. We merely observe the generalization empirically. Due to space
limitations, further discussions on the implications of our findings are deferred to Appendix A.6.

7 CONCLUSION

In this work, we address the fundamental problem of whether RLVR genuinely incentivizes novel
reasoning in base LLMs. Through empirical evaluations and theoretical analysis, we justify a new
perspective: RLVR implicitly incentivizes correct reasoning. Moreover, our analyses on training
dynamics and CoT quality further confirm that the reasoning CoTs after RLVR are fundamentally
different and can even help to replicate similar capabilities simply via supervised learning.

We hope these findings can not only resolve conflicting conclusions in prior work but also illuminate
the untapped potential of RLVR in aligning LLMs with human reasoning systems. We envision a
promising future where RLVR serves as a cornerstone for developing LLMs that learn through
interaction, self-correction, and verifiable reasoning.
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A APPENDIX

A.1 DATA SOURCES

For math benchmarks studied in this paper, we leverage the following data sources: AIME 20251,
AIME 20242, Math-5003, AMC234, Minerva5.

For training and evaluation of DAPO (Yu et al., 2025), we reuse their training data (https://
huggingface.co/datasets/BytedTsinghua-SIA/DAPO-Math-17k) and processed
version of AIME 2024 (https://huggingface.co/datasets/BytedTsinghua-SIA/
AIME-2024). Please note that they have duplicated questions multiple times and explained in the
dataset page that the purpose is to be compatible with an old version of VERL (Sheng et al., 2025).
We reuse the prompt template of DAPO to evaluate their Pass@K and CoT -Pass@K performance
on other benchmarks.

Besides, we follow the official LiveCodeBench repository6 to perform Pass@K evaluations on com-
petitive coding.

A.2 LLM-AS-A-COT-JUDGE FOR MATH REASONING

Question Qwen2.5-32B
answer

DeepSeek-R1-0528-Qwen3-8B 
conduct multiple verifications on CoT

wrong CoT
wrong CoT

right CoT

right CoT ❌

❌ ❌

❌

❌

❌

❌

❌

verify1

verify1

verify1

verify1

verify2

verify2

verify2

verify2

verify3

verify3

verify3

verify3

Figure 7: An intuitive diagram to illustrate the benefits of our multi-verification system: simultane-
ously considering any-correct, all-correct, and majority-correct helps us to mitigate false positives
and false negatives within individual verifications.

We use a much more specialized LLM on mathematical reasoning (DeepSeek-R1-0528-Qwen3-
8B) as the verifier to examine the reasoning steps of base LLM, Qwen2.5-32B. Meanwhile, we
also acknowledge the existence of verification errors and manually checked many of them to con-
firm the reliability of this verification. To further mitigate potential verification errors, we design a
multi-verification approach, as shown in Figure 7). For each reasoning CoT, we conduct multiple
verifications independently and calculate three aggregation metrics:

• All-correct: Chains of Thought that pass all verification attempts
• Majority-correct: Chains of Thought that pass most verification attempts
• Any-correct: Chains of Thought that pass at least one verification attempt (capturing po-

tential error recovery cases)

1https://huggingface.co/datasets/opencompass/AIME2025
2https://huggingface.co/datasets/HuggingFaceH4/aime_2024
3https://huggingface.co/datasets/HuggingFaceH4/MATH-500
4https://huggingface.co/datasets/math-ai/amc23
5https://huggingface.co/datasets/math-ai/minervamath
6https://github.com/LiveCodeBench/LiveCodeBench
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This multi-verification approach can ensure us to have a comprehensive view of CoT correctness
because the all-correct strategy mitigates false positives and the any-correct option reduces false
negatives. Let pfp and pfn represent the per-attempt false positive and false negative rates, respec-
tively. For n independent verification attempts, we observe:

• All-correct: The false positive rate decays exponentially as pnfp
• Any-correct: The false negative rate decays exponentially as pnfn

In our study, we employ n = 3 verification attempts for each CoT.

Moreover, we provide the prompt template used for DeepSeek-R1-0528-Qwen3-8B as follows.

Our Prompt Template for Verifier DeepSeek-R1-0528-Qwen3-8B

You are an expert in mathematics and logical reasoning. Your task is to evaluate the cor-
rectness of a solution to a given math problem, with a **strong emphasis on the reasoning
process**, not just the final answer.
Below is the **Problem** and the **Solution (Provided by another AI model)**:
—
**Problem**:
{{question}}
**Solution (Provided by another AI model)**:
{{solution}}
—
Please perform the following tasks:
1. **Analyze the solution step-by-step**, paying close attention to: - Computational accu-
racy - Logical consistency - Conceptual understanding - Whether the reasoning is valid and
complete
2. **Identify any issues or errors in the reasoning**, even if the final answer is correct. Clas-
sify them into the following categories (if applicable): - **Calculation Error**: Mistakes in
arithmetic, algebraic manipulation, or numerical computation. - **Logical Error**: Invalid
reasoning, flawed logic, or incorrect inference. - **Conceptual Error**: Misunderstanding
or misuse of mathematical concepts or definitions. - **Omission / Incompleteness**: Miss-
ing steps, incomplete justification, or not addressing all parts of the question. - **Other**:
Any other type of error that does not fit into the above categories.
3. **Provide a final judgment** on whether the solution is logically sound and free of errors
in reasoning.
Please format your response as follows:
—
**Issues Identified:**
- [Issue 1]: [Classification] - [Brief explanation] - [Issue 2]: [Classification] - [Brief expla-
nation] - ...
Let’s think step by step and output your final judgment within \boxed{}
\boxed{yes} or \boxed{no}

A.3 REVISITING PASS@K EXPERIMENTS FOR SKYWORK-OR1

Skywork-OR1 (He et al., 2025) has generously shared their complete training recipes, claiming to
enhance distilled LLMs with more powerful reasoning capabilities through RLVR. Therefore, we
conduct the Pass@K experiments on their models to understand how RLVR could improve distilled
LLMs.

Figure 8 shows the Pass@K comparisons between Skywork-OR1-7B and DeepSeek-R1-Distill-
Qwen-7B on LiveCodeBench-v6. We can also observe a significant improvement of both sampling
efficiency (Pass@1) and reasoning boundary (Pass@K, K up to 1024). This conclusion is consistent
with the observations for Figure 3 in the main paper.

However, in math domains, applying RLVR to distilled LLMs seems to merely deliver sampling
efficiency improvements. As shown in Figure 9, we observe that even using the CoT-Pass@K metric,
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Figure 8: Comparisons of Pass@K on LiveCodeBench-v6 and its different difficulty-level subsets.
Here the distilled LLM is DeepSeek-R1-Distill-Qwen-7B, and the post-RLVR model is Skywork-
OR1-7B.

Skywork-OR1-Math-7B and DeepSeek-R1-Distill-Qwen-7B do not have distinct Pass@K gaps for
large K values. We suspect the reason is that the distilled LLM may already master major reasoning
capabilities that can be learned with RLVR using answer correctness as the reward. So in math
domains, their main improvements lie in Pass@1. In contrast, for code domains, applying RLVR to
distilled LLMs can still stimulate them to fit for real-world execution feedback, thereby incentivizing
extended reasoning boundary.
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Figure 9: Comparisons of Pass@K (the top row) and CoT-Pass@K (the bottom row) on AIME
2024, 2025 to show how RLVR could improve distilled LLMs. Here the distilled LLM is DeepSeek-
R1-Distill-Qwen-7B, and the post-RLVR model is Skywork-OR1-Math-7B. For CoT-Pass@K, we
perform multiple verifications for each CoT using DeepSeek-R1-0528-Qwen3-8B, and display the
results determined by any-correct, all-correct, and majority-correct strategies, which constitute the
shaded area in lower subplots.

A.4 PROOF AND ADDITIONAL THEORETICAL ANALYSIS

Below we include the detailed proof for Theorem 1.

Proof 1 Let pc = P (ICoT(ci) = 1) be the current probability of generating a correct CoT. The
expected reward for a response yi is:

E[R(yi)] =

{
α if ICoT(ci) = 1

β if ICoT(ci) = 0
(6)

The group-level expected reward µ ≜ E[µY] is:

µ = pcα+ (1− pc)β. (7)
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For large G, the group mean µY and variance σ2
Y concentrate around their expectations:

µY
G→∞−−−−→ µ (8)

σ2
Y

G→∞−−−−→ σ2 > 0. (9)

The expected advantage conditional on CoT correctness is:

E[Â(yi) | ICoT(ci) = 1]
G→∞−−−−→ α− µ

σ
(10)

E[Â(yi) | ICoT(ci) = 0]
G→∞−−−−→ β − µ

σ
. (11)

Substituting equation 7 into equation 10 and equation 11:

E[Â(yi) | correct CoT] → (1− pc)(α− β)

σ
(12)

E[Â(yi) | incorrect CoT] → −pc(α− β)

σ
. (13)

Since α > β (by equation 4 under the Logic Prior assumption) and σ > 0, we have:

(1− pc)(α− β)/σ > 0,

−pc(α− β)/σ < 0,

proving inequalities equation 5.

The GRPO policy gradient update in equation 3, ∇θJ(θ) ≈ 1
G

∑G
i=1 Â(yi)∇θ log πθ(yi | q), on

average increases the likelihood of responses with Â(yi) > 0 (correct CoTs) and decreases it for
Â(yi) < 0 (incorrect CoTs). Thus, pc increases monotonically.

Discussions on (µ, σ2) in Theorem 1 From equation 7, we know that the group reward mean is
given by µ = pcα+ (1− pc)β. Furthermore, we can derive the exact formula for the variance σ2 in
equation 9 and analyze their impacts together with pc, α, and β on policy iterations.

The sample variance σ2
Y converges to the true variance σ2:

σ2
Y =

1

G

G∑
j=1

(R(yj)− µY)2
G→∞−−−−→ Var(R(yj)) ≡ σ2,

where Var(R(yj)) can be computed using the law of total variance:

Var(R(yj)) = Var(E[R(yj) | ICoT(cj)])︸ ︷︷ ︸
Variance of conditional expectation

+E[Var(R(yj) | ICoT(cj))]︸ ︷︷ ︸
Expectation of conditional variance

.

First term:

E[R(yj) | ICoT(cj)] =

{
α if ICoT(cj) = 1

β if ICoT(cj) = 0
.

The random variable E[R(yj) | ICoT(cj)] has variance:

Var(E[R(yj) | ICoT(cj)]) = (α− β)2pc(1− pc).

Second term:

Var(R(yj) | ICoT(cj)) =

{
α(1− α) if ICoT(cj) = 1

β(1− β) if ICoT(cj) = 0
,

so its expectation is:

E[Var(R(yj) | ICoT(cj))] = pcα(1− α) + (1− pc)β(1− β).

Thus:

σ2 = (α− β)2pc(1− pc) + pcα(1− α) + (1− pc)β(1− β). (14)
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Substituting µ and σ into equation 12 and equation 13, we have

E[Â(yi) | correct CoT] → (1− pc)(α− β)√
(α− β)2pc(1− pc) + pcα(1− α) + (1− pc)β(1− β)

,

E[Â(yi) | incorrect CoT] → −pc(α− β)√
(α− β)2pc(1− pc) + pcα(1− α) + (1− pc)β(1− β)

.

An ideal pre-training on a high-capacity model could help to ensure that α → 1 and β → 0 at the
beginning of RLVR. In this condition, we have the following advantage estimates:

E[Â(yi) | correct CoT] →
√

1− pc
pc

, E[Â(yi) | incorrect CoT] → −
√

pc
1− pc

.

In this ideal scenario, the role of human would be to prepare a comprehensive and diverse set of
questions and answers, leveraging RLVR to automatically incentivize the model’s reasoning capa-
bilities. However, in practice—the “unideal case”—it is often necessary to first fine-tune the base
LLM to align its output with a proper reasoning distribution before applying RLVR.

Discussions on Key Observations in RLVR Grounded in our theoretical analysis, we can now
provide our unique explanations for several previously elusive yet important observations reported
in DeepSeek-R1 (Guo et al., 2025).

Our Explanation of the Observation “DeepSeek-R1-Zero achieved remarkable Pass@K performance
on AIME 2024 but encountered challenges such as poor readability and language mixing.”: Even
DeepSeek-V3 (Liu et al., 2024) cannot guarantee ideal conditions where α → 1, β → 0. As a result,
cold-start data is required to rectify prior logic biases, motivating the R1 approach.

Our Explanation of the Observation “The R1-Zero approach did not work well for the 32B dense
model, yet distillation can be very effective.”: Key factors such as (pc, α, β) for the 32B base model
are in an even worse state, causing pure RLVR to converge to suboptimal local solutions. Based on
our analysis, the key to effective reasoning lies in learning correct CoTs. Therefore, the distillation
approach can efficiently teach an LLM how to reason properly.

A.5 ADDITIONAL DETAILS IN REPRODUCING DAPO TRAINING

Our reproduction was conducted on 32 AMD MI300X GPUs using the VERL framework (Sheng
et al., 2025), and ran for over two weeks. Our run did not fully reproduce the Pass@1 accuracy
above 50% as reported by Yu et al. (2025), while we reached a comparable performance of around
44% Pass@1, in line with a third-party reproduction (Chen et al., 2025a). We use the same verifier
introduced in Section 3 to assess the correctness of both training and evaluation rollouts.

In addition to the performance evolution on fully optimized training questions highlighted in Fig-
ure 4 of the main paper, we include performance evolution on hard questions and more continuous
validation performance in Figure 10 to provide more comprehensive information. The additional
observations are consistent with what we have introduced in the main paper. It is natural to ob-
serve that RLVR begins to incentivize correct reasoning from the very beginning, as evidenced by
increased P (CC|CA)(q) values in the early training steps shown in Figures 10(a) and 10(b). These
incentivized reasoning capabilities translate into improved generalization on unseen questions, as
demonstrated by notable gains in CoT-Pass@K on AIME 2024 within the first 20 training steps in
Figure 10(c). Note that each training step here corresponds to one round of PPO-style optimiza-
tion (Schulman et al., 2017), which includes 16 gradient updates, according to the DAPO training
script. Thus, we see that correct reasoning abilities begin to generalize after only a few gradient
updates.

Furthermore, the incentivization of correct reasoning on training questions appears to be a contin-
uous process, as reflected by the steady increase in the mean of P (CC|CA)(q) throughout train-
ing, for both easy and hard questions. Meanwhile, we again observe that P (CA)(q) (equivalent
to Pass@1(q)) is an unreliable metric, particularly for easy training questions. As shown in Fig-
ure 10(a), the distribution of P (CA)(q) becomes highly skewed toward 1.0 after 180 steps, mislead-
ingly suggesting that most questions are perfectly solved. However, examining the distribution of

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 0~20 80~100 180~200 280~300 380~400
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

P(CA)(q) P(CC|CA)(q)

(a) Distributions of P (CA)(q) and P (CC|CA)(q) for easy training questions in DAPO.
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(b) Distributions of P (CA)(q) and P (CC|CA)(q) for hard training questions in DAPO.
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(c) Generalization performance on AIME 2024 across different training steps.

Figure 10: We show gradually optimized performance on training prompts throughout RLVR and
corresponding generalization behaviors on testing prompts. The top two subfigures use violin
plots to visualize the evolution of P (CA)(q) (the fraction of correct answers for prompt q) and
P (CC|CA)(q) (the fraction of correct CoTs within the correct answers for prompt q) over the course
of DAPO training. Subfigure (a) shows results for “easy” training questions, while (b) presents the
corresponding distributions for “hard” questions (P (CA)(q) ¡ 1 for DAPO). We divide training
questions into easy and hard by sampling 64 rollouts for each of the 17k training questions using
Qwen2.5-32B, and labeling those with at least one correct answer as easy. Subfigure (c) presents
the generalization performance on AIME 2024 across different training steps.

P (CC|CA)(q) reveals that a substantial fraction of responses still contain flawed reasoning. We
suspect this is one of the reasons behind the difficulty of achieving strong results with Qwen2.5-32B
using the R1-zero approach.

For both easy and hard training questions, improving P (CC|CA)(q) seems to be a slow and chal-
lenging process. Since our analysis shows that enhancing correct CoTs is key to improving reason-
ing capabilities, we believe that future research should explore novel mechanisms to accelerate the
improvement of P (CC|CA)(q), thereby enhancing both the efficiency and effectiveness of RLVR.

A.6 DISCUSSIONS

Call for Live, Challenging Benchmarks Static benchmarks developed prior to the release of
modern base models are increasingly susceptible to contamination risks, potentially undermining the
reliability of observed improvements. In response, we emphasize the need for live benchmarks that
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evolve over time, as suggested in recent studies (Jain et al., 2025; White et al., 2025). Additionally,
we agree with the viewpoint of Yao (2025) that future research advancements may rely more on
designing new evaluations, benchmarks, and environments.

Call for Lightweight yet Powerful CoT Verifiers While DeepSeek-R1-0528-Qwen3-8B serves
as a useful CoT verifier, it is not infallible. Conflicting verification results across multiple queries
reveal the challenges of false-positive and false-negative verifications. To tackle this, we combine
multiple verification strategies, including different voting rules, to improve robustness. Looking
forward, there is a pressing need for light yet reliable CoT verifiers that can serve as standardized
evaluators beyond the coarse-grained Pass@K metric. This direction also relates to previous studies
on process reward modeling (Lightman et al., 2024; Uesato et al., 2022; Wang et al., 2024).

Scaling RLVR or Scaling Pre-Training While the scaling of pre-training has led to transforma-
tive progress in LLMs (Kaplan et al., 2020; Liu et al., 2024), enabling the transition to the era of
artificial general intelligence, we argue that scaling RLVR could be equally pivotal, given the em-
pirical evidences and theoretical foundation that all demonstrate its real incentivization beyond base
LLMs. As modern LLMs approach the limits of language token exposure, learning from experi-
ence (Silver & Sutton, 2025) may represent the next leap. Recent efforts by leading research teams
suggest a growing emphasis on this direction (Guo et al., 2025; DeepSeek, 2025; Gemini, 2024;
Grok, 2025; OpenAI, 2025; Qwen, 2025; Gemini, 2025; Anthropic, 2025; Mistral.AI, 2025). For
the broad open research community, understanding the foundations and limitations of current RLVR
algorithms is crucial to push this direction further.

New RLVR Algorithms and Beyond With our insight that RLVR implicitly incentivizes correct
reasoning in base LLMs, we anticipate the development of new algorithmic paradigms. These may
include optimization formulations or objective functions, such as policy-gradient approaches (Sutton
et al., 1999; Schulman et al., 2017), new likelihood-based optimization objectives (Chen et al.,
2025a; Zhu et al., 2025), and preference optimization frameworks (Rafailov et al., 2023; Su et al.,
2025). The key principle is that the new algorithms should be designed to more directly incentivize
correct reasoning paths, alleviating inherent logical biases in base LLMs.
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A.7 CASE STUDIES

We perform manual verification on difficult problems from multiple benchmarks, focusing on cases
where the base model occasionally produces a correct final answer despite flawed reasoning in its
CoT. For each case study, we present the original question, the full response generated by Qwen2.5-
32B, and a detailed breakdown of key errors identified by DeepSeek-R1-0528-Qwen3-8B, explicitly
linking each error to the corresponding flawed reasoning segments in the CoT. For layout and color
schemes, we follow the visualization strategies used in Yue et al. (2025).

A.7.1 CASE STUDIES ON AIME 2024

Question

AIME24 I Question No.9 (dataset id 74)7

Let A, B, C, and D be points on the hyperbola x2

20 − y2

24 = 1 such that ABCD is a rhombus
whose diagonals intersect at the origin. Find the greatest real number that is less than BD2

for all such rhombi.

Qwen2.5-32B Answer

The diagonals of a rhombus are perpendicular and bisect each other, so ABCD is a square.
Let a = BD = AC.

DeepSeek-R1-0528-Qwen3-8B verify: - **Conceptual Error**: The solution incor-
rectly assumes that ABCD is a square, whereas the problem only specifies that it is a
rhombus. A rhombus does not necessarily have equal diagonals, so this assumption
is invalid.

Then a2 = 2(AB2). The equation of the hyperbola can be rewritten as y2 = 24
(

x2

20 − 1
)
=

6
5x

2 − 24. Let P be the point where the diagonals intersect. Then OP = a
2 , so P =

(
a
2 ,

a
2

)
.

DeepSeek-R1-0528-Qwen3-8B verify: - **Logical Error**: The solution defines
P as the intersection point and sets it to (a/2, a/2), but the problem states that the
diagonals intersect at the origin. This inconsistency leads to incorrect reasoning, as
P should be (0,0) based on the problem statement.

Since P lies on the hyperbola, we have a2

4 = 6
5

(
a2

4

)
− 24, so a2

20 = 24, or a2 = 480.

Therefore, the greatest real number that is less than BD2 for all such rhombi is 480 .

Question

AIME24 II Question No.15(dataset id 81)8

Find the number of rectangles that can be formed inside a fixed regular dodecagon (12-gon)
where each side of the rectangle lies on either a side or a diagonal of the dodecagon. The
diagram below shows three of those rectangles.

7https://artofproblemsolving.com/wiki/index.php/2024_AIME_I_Problems/
Problem_9

8https://artofproblemsolving.com/wiki/index.php/2024_AIME_II_Problems/
Problem_15
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Qwen2.5-32B Answer

To solve this problem, we need to count the number of rectangles that can be formed inside
a fixed regular dodecagon (12-gon) where each side of the rectangle lies on either a side or a
diagonal of the dodecagon.
First, let’s consider the sides of the rectangle. Since each side of the rectangle must lie on
either a side or a diagonal of the dodecagon, we can think of the problem as choosing 2 pairs
of parallel lines from the set of all lines (sides and diagonals) in the dodecagon.
There are 12 sides in a dodecagon. Additionally, there are 12 diagonals that connect every
other vertex, and 12 diagonals that connect every third vertex. So, there are a total of 36 lines
in the dodecagon.
Now, let’s count the number of ways to choose 2 pairs of parallel lines. We can do this by
considering the different types of lines and the number of ways to choose 2 lines from each
type:
1. Choosing 2 lines from the 12 sides: There are 12 choose 2 ways to do this, which is equal
to 66.

DeepSeek-R1-0528-Qwen3-8B verify: the method of counting two pairs of parallel
lines assumes that any such choice forms a rectangle, which is not necessarily true
as the lines may not intersect properly to form a rectangle.

2. Choosing 2 lines from the 12 diagonals that connect every other vertex: There are 12
choose 2 ways to do this, which is equal to 66.
3. Choosing 2 lines from the 12 diagonals that connect every third vertex: There are 12
choose 2 ways to do this, which is equal to 66.
4. Choosing 1 line from the sides and 1 line from the diagonals that connect every other
vertex: There are 12 * 12 ways to do this, which is equal to 144.
5. Choosing 1 line from the sides and 1 line from the diagonals that connect every third
vertex: There are 12 * 12 ways to do this, which is equal to 144.
6. Choosing 1 line from the diagonals that connect every other vertex and 1 line from the
diagonals that connect every third vertex: There are 12 * 12 ways to do this, which is equal
to 144.

DeepSeek-R1-0528-Qwen3-8B verify: **Logical Error**: The solution only con-
siders three types of lines (sides, diagonals connecting every other vertex, and diag-
onals connecting every third vertex), but there are additional diagonals (steps 4, 5,
and 6). By ignoring these, the classification is incomplete.

Adding up all these possibilities, we get a total of 66 + 66 + 66 + 144 + 144 + 144 = 630.
However, we have counted each rectangle twice (once for each pair of parallel lines), so we
need to divide the total by 2 to get the final answer: 630 / 2 = 315.
Therefore, the number of rectangles that can be formed inside a fixed regular dodecagon
(12-gon) where each side of the rectangle lies on either a side or a diagonal of the dodecagon
is 315 .

Question

AIME24 I Question No.11(dataset id 62)9

Each vertex of a regular octagon is independently colored either red or blue with equal
probability. The probability that the octagon can then be rotated so that all of the blue
vertices end up at positions where there had been red vertices is m

n , where m and n are
relatively prime positive integers. Find m+ n.

9https://artofproblemsolving.com/wiki/index.php/2024_AIME_I_Problems/
Problem_11
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Qwen2.5-32B Answer

To solve this problem, we need to consider the possible colorings of the vertices of the
octagon and how they can be rotated.
First, let’s consider the number of ways to color the vertices of the octagon. Since each
vertex can be colored either red or blue, there are 28 = 256 possible colorings.
Next, we need to consider the rotations of the octagon. Since the octagon has 8 vertices,
there are 8 possible rotations.
Now, let’s consider the condition that all blue vertices end up at positions where there were
originally red vertices. This means that the number of blue vertices must be less than or
equal to the number of red vertices. Since there are 8 vertices in total, the number of blue
vertices can be 0, 1, 2, 3, or 4.
For each of these cases, we need to count the number of colorings that satisfy the condition
and divide by the total number of colorings to find the probability.
Case 1: 0 blue vertices There is only 1 way to color the vertices in this case (all red), and it
satisfies the condition. The probability is 1

256 .
Case 2: 1 blue vertex There are

(
8
1

)
= 8 ways to choose the position of the blue vertex, and

all of them satisfy the condition. The probability is 8
256 = 1

32 .
Case 3: 2 blue vertices There are

(
8
2

)
= 28 ways to choose the positions of the blue vertices.

However, not all of them satisfy the condition. We need to subtract the cases where the blue
vertices are adjacent. There are 8 such cases (one for each rotation of the octagon). So, there
are 28− 8 = 20 colorings that satisfy the condition. The probability is 20

256 = 5
64 .

DeepSeek-R1-0528-Qwen3-8B verify: - **Logical Error**: The solution incor-
rectly assumes that subtracting cases based on adjacency or specific shapes (e.g.,
”V” shape) ensures the condition does not hold. However, the condition depends on
the existence of a rotation that maps all blue vertices to red positions, not on the ad-
jacency or shape of the blue vertices. For example, with two blue vertices, adjacent
configurations can still satisfy the condition for some rotations, so subtracting them
is invalid.

Case 4: 3 blue vertices There are
(
8
3

)
= 56 ways to choose the positions of the blue vertices.

However, not all of them satisfy the condition. We need to subtract the cases where the blue
vertices are adjacent or form a ”V” shape. There are 16 such cases (one for each rotation of
the octagon). So, there are 56−16 = 40 colorings that satisfy the condition. The probability
is 40

256 = 5
32 .

Case 5: 4 blue vertices There are
(
8
4

)
= 70 ways to choose the positions of the blue vertices.

However, not all of them satisfy the condition. We need to subtract the cases where the blue
vertices are adjacent or form a ”V” shape. There are 24 such cases (one for each rotation of
the octagon). So, there are 70−24 = 46 colorings that satisfy the condition. The probability
is 46

256 = 23
128 .

Now, we need to sum up the probabilities for all cases and simplify the fraction:

1

256
+

1

32
+

5

64
+

5

32
+

23

128
=

1 + 8 + 20 + 40 + 46

256
=

115

256

The fraction 115
256 is already in its simplest form, so m = 115 and n = 256. Therefore,

m+ n = 115 + 256 = 371 .
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Question

AIME24 I Question No.14(dataset id 65)10

Let ABCD be a tetrahedron such that AB = CD =
√
41, AC = BD =

√
80, and

BC = AD =
√
89. There exists a point I inside the tetrahedron such that the distances

from I to each of the faces of the tetrahedron are all equal. This distance can be written in
the form m

√
n

p , where m, n, and p are positive integers, m and p are relatively prime, and n

is not divisible by the square of any prime. Find m+ n+ p.

Qwen2.5-32B Answer

To find the distance from the point I to each of the faces of the tetrahedron, we can use the
formula for the volume of a tetrahedron and the fact that the distances from I to each of the
faces are equal.
First, let’s find the volume of the tetrahedron using Heron’s formula for the area of a triangle
and the formula for the volume of a tetrahedron:
V = 1

6 · base area · height
We can choose any face as the base, so let’s use the face ABC:
AB =

√
41, AC =

√
80, and BC =

√
89

Using Heron’s formula, we can find the area of the triangle ABC:
s = AB+AC+BC

2 =
√
41+

√
80+

√
89

2

AABC =
√
s(s−AB)(s−AC)(s−BC)

Now, let’s find the height of the tetrahedron from the point I to the face ABC. We know
that the distances from I to each of the faces are equal, so let’s call this distance h.
V = 1

6 ·AABC · h

DeepSeek-R1-0528-Qwen3-8B verify: **Conceptual Error** - The volume formula
V = 1

6 ·AABC · h is incorrect for the incenter of the tetrahedron

We can find the volume of the tetrahedron using the Cayley-Menger determinant:

V 2 = 1
288 ·

∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 41 80 89
1 41 0 89 41
1 80 89 0 80
1 89 41 80 0

∣∣∣∣∣∣∣∣∣
DeepSeek-R1-0528-Qwen3-8B verify: - **Calculation Error** - The Cayley-
Menger determinant matrix contains multiple incorrect values. For example, the
element in row 2, column 5 should be 80 (BD²) but is 41, and the element in row 3,
column 4 should be 41 (CD²) but is 80. This affects the volume calculation.

Solving for V , we get:
V = 1

6 ·AABC · h
Now, we can solve for h:
h = 6V

AABC

After calculating the values, we find that h can be written in the form m
√
n

p , where m, n, and
p are positive integers, m and p are relatively prime, and n is not divisible by the square of
any prime.
The final answer is m+ n+ p = 104 .

10https://artofproblemsolving.com/wiki/index.php/2024_AIME_I_Problems/
Problem_14
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A.7.2 CASE STUDIES ON AIME 2025

Question

AIME25 I Question No.2 11

On △ABC points A,D,E, and B lie that order on side AB with AD = 4, DE = 16, and
EB = 8. Points A,F,G, and C lie in that order on side AC with AF = 13, FG = 52, and
GC = 26. Let M be the reflection of D through F , and let N be the reflection of G through
E. Quadrilateral DEGF has area 288. Find the area of heptagon AFNBCEM .

Qwen2.5-32B Answer

To solve the problem, we need to find the area of the heptagon AFNBCEM . We know that
DEGF has an area of 288, and we need to find the areas of the triangles AFM , NCE, and
MNE.
First, let’s find the area of triangle AFM . Since M is the reflection of D through F , triangle
AFM is congruent to triangle AFD. The base of triangle AFD is AF = 13, and its height
is the same as the height of triangle ADE, which is 288

DE+EG = 288
16+52 = 288

68 = 72
17 . So, the

area of triangle AFM is 1
2 ·AF · height = 1

2 · 13 · 72
17 = 468

17 .

DeepSeek-R1-0528-Qwen3-8B verify: - - **Conceptual Error**: The solution in-
correctly assumes that the height of triangle ADE is derived from the area of quadri-
lateral DEGF using DE + EG, but EG is not defined in the problem.

Next, let’s find the area of triangle NCE. Since N is the reflection of G through E, triangle
NCE is congruent to triangle GCE. The base of triangle GCE is GC = 26, and its height
is the same as the height of triangle GEB, which is 288

GE+EB = 288
52+8 = 288

60 = 24
5 . So, the

area of triangle NCE is 1
2 ·GC · height = 1

2 · 26 · 24
5 = 312

5 .

DeepSeek-R1-0528-Qwen3-8B verify: Similarly, for triangle NCE, the height is cal-
culated using GE + EB, but GE is not given; the solution uses 52 (FG) incorrectly.

Finally, let’s find the area of triangle MNE. Since M is the reflection of D through F
and N is the reflection of G through E, triangle MNE is congruent to triangle DGE. The
base of triangle DGE is DE + EG = 16 + 52 = 68, and its height is the same as the
height of triangle DEG, which is 288

DE+EG = 288
68 = 72

17 . So, the area of triangle MNE is
1
2 ·DE + EG · height = 1

2 · 68 · 72
17 = 144.

DeepSeek-R1-0528-Qwen3-8B verify: The area calculation for triangle MNE uses
DE + EG as a base, which is not a valid base unless DE and EG are collinear.

Now, we can find the area of the heptagon AFNBCEM by adding the areas of the triangles
AFM , NCE, MNE, and the quadrilateral DEGF : 468

17 + 312
5 + 144 + 288 = 588 .

11https://artofproblemsolving.com/wiki/index.php/2025_AIME_I_Problems/
Problem_2
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Question

AIME25 I Question No.1112

A piecewise linear periodic function is defined by f(x) =

{
x if x ∈ [−1, 1)

2− x if x ∈ [1, 3)
and

f(x + 4) = f(x) for all real numbers x. The graph of f(x) has the sawtooth pat-
tern. The parabola x = 34y2 intersects the graph of f(x) at finitely many points.
The sum of the y-coordinates of these intersection points can be expressed in the form
a+b

√
c

d , where a, b, c, and d are positive integers, a, b, and d have greatest common divi-
sor equal to 1, and c is not divisible by the square of any prime. Find a + b + c + d.

Qwen2.5-32B Answer

To find the intersection points of the sawtooth function and the parabola, we need to solve
the system of equations f(x) = 34y2 and f(x + 4) = 34y2. We can solve these equa-
tions separately for each interval of f(x), and then sum the y-coordinates of the intersection
points. Here’s a Python code to do that:

‘‘‘python
import sympy as sp

# Define the variables
x, y = sp.symbols(’x y’)

# Define the piecewise linear periodic function
f = sp.Piecewise((x, (x >= -1) & (x < 1)), (2 - x, (x >= 1) & (x <

3)))

# Define the parabola
parabola = 34*y**2

# Find the intersection points in each interval
intersection_points = []
for i in range(-1, 3):

interval = sp.Interval(i, i+1, left_open=True, right_open=True)
eq = sp.Eq(f, parabola)
solutions = sp.solve(eq, y)
for sol in solutions:

if sol.is_real:
intersection_points.append(sol)

# Sum the y-coordinates of the intersection points
y_sum = sum(intersection_points)

# Simplify the sum
y_sum_simplified = sp.simplify(y_sum)

12https://artofproblemsolving.com/wiki/index.php/2025_AIME_I_Problems/
Problem_11
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# Extract the coefficients a, b, c, and d
a, b, c, d = sp.Wild(’a’), sp.Wild(’b’), sp.Wild(’c’), sp.Wild(’d’)
match = sp.collect(y_sum_simplified, sp.sqrt(sp.Wild(’c’))).match((

a + b*sp.sqrt(c))/d)
a, b, c, d = match[a], match[b], match[c], match[d]

# Calculate the final answer
final_answer = a + b + c + d
print(final_answer)
‘‘‘

The output of this code is 259. Therefore, the answer is 259 .

DeepSeek-R1-0528-Qwen3-8B verify: - **Logical Error** - The code solves the
equation f(x) = 34y2 for y, which finds the y-values where horizontal lines inter-
sect the graph of f(x), but this does not correspond to finding the intersection points
with the parabola x = 34y2. The correct approach requires solving the system
y = f(x) and x = 34y2 simultaneously, such as by solving f(34y2) = y.
- **Omission / Incompleteness** -The code only considers one period of the func-
tion (x ∈ [−1, 3)), but due to the parabola x = 34y2 with |y| ≤ 1, x ranges from
0 to 34, covering multiple periods (since the function has period 4). Intersections in
other periods are not considered, leading to an incomplete solution.

A.7.3 CASE STUDIES ON AMC23

Question

AMC 12 2023 A Problem 23(dataset id 15)13

How many ordered pairs of positive real numbers (a, b) satisfy the equation

(1 + 2a)(2 + 2b)(2a+ b) = 32ab?

Qwen2.5-32B Answer

First, let’s simplify the given equation:

(1 + 2a)(2 + 2b)(2a+ b) = 32ab

Expanding the left side, we get:

(2 + 4a+ 4b+ 8ab)(2a+ b) = 32ab

DeepSeek-R1-0528-Qwen3-8B verify: - Calculation Error - The initial expan-
sion of (1+2a)(2+2b) is incorrect, resulting in 2+4a+4b+8ab instead of the correct
2+4a+2b+4ab. This error propagates through subsequent steps.

Expanding further:

4a+ 8a2 + 8ab+ 16a2b+ 2b+ 4ab+ 8b2 + 16ab2 = 32ab

13https://artofproblemsolving.com/wiki/index.php/2023_AMC_12A_Problems/
Problem_23
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Combining like terms:

8a2 + 12ab+ 8a2b+ 2b+ 8b2 + 16ab2 = 28ab

Rearranging terms:
8a2 + 8a2b+ 8b2 + 16ab2 = 16ab− 2b

Dividing both sides by 2:

4a2 + 4a2b+ 4b2 + 8ab2 = 8ab− b

Now, let’s try to factor the equation:

4a2(1 + b) + 4b2 + 8ab2 = 8ab− b

Factoring out common terms:

4a2(1 + b) + 4b2(1 + 2a) = 8ab− b

Now, let’s try to solve for a and b:

4a2(1 + b) = 8ab− b− 4b2(1 + 2a)

Dividing both sides by 4:

a2(1 + b) = 2ab− b

4
− b2(1 + 2a)

Now, let’s try to find a solution for a and b:

a2(1 + b) = 2ab− b

4
− b2(1 + 2a)

One possible solution is when a = b:

a2(1 + a) = 2a2 − a

4
− a2(1 + 2a)

DeepSeek-R1-0528-Qwen3-8B verify: - Logical Error - The solution assumes a=b is
a solution without verification, and this assumption is based on an incorrect equation.
The derivation under a=b leads to a non-zero result, contradicting the claim of a
solution.

Simplifying:
a3 + a2 = 2a2 − a

4
− a3 − 2a2

Combining like terms:
2a3 =

a

4
Multiplying both sides by 4:

8a3 = a

Dividing both sides by a:
8a2 = 1

Taking the square root of both sides:

a =
1√
8

Since a = b, we have:

b =
1√
8

Thus, there is only one ordered pair (a, b) that satisfies the equation:

1
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Question

AMC 12 2023 A Problem 19(dataset id 10)14

What is the product of all solutions to the equation

log7x 2023 · log289x 2023 = log2023x 2023

Qwen2.5-32B Answer

First, let’s rewrite the equation using the change of base formula for logarithms. We have

log7x 2023 =
log 2023

log(7x)

log289x 2023 =
log 2023

log(289x)

log2023x 2023 =
log 2023

log(2023x)

Substituting these expressions into the original equation, we get

(log 2023)2

log(7x) · log(289x)
=

log 2023

log(2023x)

Cross-multiplying, we get

(log 2023)2 · log(2023x) = (log 7x) · (log 289x) · log 2023

Canceling the common factor of log 2023, we have

log(2023x) = (log 7x) · (log 289x)

DeepSeek-R1-0528-Qwen3-8B verify: - **Calculation Error**: The solution incor-
rectly canceled the log 2023 factor during simplification, omitting the log 2023 term.

Using the product-to-sum formula for logarithms, we have

log(2023x) = log(7x) + log(289x)

DeepSeek-R1-0528-Qwen3-8B verify: - **Conceptual Error**: the solution incor-
rectly treated the product of logarithms (log 7x) · (log 289x) as if it were a sum,
which is not valid.

log(2023x) = log(2023x2)

2023x = 2023x2

Dividing both sides by 2023x, we get
1 = x

So the only solution is x = 1. The product of all solutions is 1 .

14https://artofproblemsolving.com/wiki/index.php/2023_AMC_12A_Problems/
Problem_19
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A.7.4 CASE STUDIES ON MATH-500

Question

MATH500 unique id test/intermediate algebra/582
The equation

x10 + (13x− 1)10 = 0

has 10 complex roots r1, r1, r2, r2, r3, r3, r4, r4, r5, r5, where the bar denotes complex
conjugation. Find the value of

1

r1r1
+

1

r2r2
+

1

r3r3
+

1

r4r4
+

1

r5r5
.

Qwen2.5-32B Answer

To solve the given problem, let’s first analyze the equation x10 + (13x− 1)10 = 0. This can
be rewritten as:

x10 = −(13x− 1)10.

Taking the 10th root on both sides, we get:

x = ±i(13x− 1).

This gives us two cases to consider: 1. x = i(13x− 1) 2. x = −i(13x− 1) Let’s solve each
case separately.

DeepSeek-R1-0528-Qwen3-8B verify: - **Calculation Error**: The solution incor-
rectly assumes that the equation has only two roots, but the equation is of degree 10,
so it should have 10 roots. The method of taking the 10th root only considers two
cases, missing the other 8 roots.

For the first case:

x = i(13x− 1) =⇒ x− 13ix = −i =⇒ x(1− 13i) = −i =⇒ x =
−i

1− 13i
.

For the second case:

x = −i(13x− 1) =⇒ x+ 13ix = i =⇒ x(1 + 13i) = i =⇒ x =
i

1 + 13i
.

So, the roots of the equation are of the form −i
1−13i and i

1+13i . Notice that these roots come in
conjugate pairs, so we can pair them up as r1 = −i

1−13i , r1 = i
1+13i , r2 = i

1+13i , r2 = −i
1−13i ,

and so on.
Now, we need to find the value of 1

r1r1
+ 1

r2r2
+ 1

r3r3
+ 1

r4r4
+ 1

r5r5
. Since r1r1 =(

−i
1−13i

)(
i

1+13i

)
= 1

1+169 = 1
170 , we have:

1

r1r1
= 170.

Similarly, 1
r2r2

= 170, 1
r3r3

= 170, 1
r4r4

= 170, and 1
r5r5

= 170. Therefore, the sum is:

170 + 170 + 170 + 170 + 170 = 850.

Thus, the final answer is:
850 .
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Question

MATH500 unique id test/intermediate algebra/2196
Find the maximum value of

x− y

x4 + y4 + 6

over all real numbers x and y.

Qwen2.5-32B Answer

To find the maximum value of the expression x−y
x4+y4+6 , we can start by analyzing the de-

nominator. Since x4 and y4 are always non-negative, the denominator is always at least 6.
This means that the expression is always less than or equal to x−y

6 . Now, let’s consider the
numerator x − y. If we set x = 1 and y = −1, then the numerator is 1 − (−1) = 2.
Substituting these values into the expression, we get 2

14+(−1)4+6 = 2
8 = 1

4 . Therefore, the

maximum value of the expression is
1

4
.

DeepSeek-R1-0528-Qwen3-8B verify: - **Omission / Incompleteness** - The so-
lution does not provide a complete justification for why the point (1, -1) gives the
maximum value. It only evaluates one specific point and claims it is the maximum
without comparing it to other points or demonstrating that the expression cannot be
larger elsewhere. For example, it does not consider points where x4 + y4 is min-
imized while x − y is positive and non-zero, or points where the numerator and
denominator balance differently.

A.8 RESULTS FROM MORE VERIFIERS

A.8.1 COT-PASS@K COMPARISONS ACROSS DIFFERENT VERIFIERS

We further evaluate two powerful verifier models—gpt-oss-20b and gpt-oss-120b—using identical
evaluation settings (using high reasoning efforts and a maximum token length of 64k) and perform-
ing n = 3 verification attempts for each CoT. Both gpt-oss verifiers use the same verification prompt
described in Section A.2. As shown in Figure 11, the verification results on AIME24 and AIME25
exhibit consistent trends across DeepSeek-R1-0528-Qwen3-8B (DS-8B), gpt-oss-20b, and gpt-oss-
120b. While the larger verifiers produce slightly lower absolute pass rates, the relative improvements
from RLVR and the overall pass@1–pass@k curves remain highly aligned across all verifier mod-
els. These results are consistent with the core conclusion obtained using DS-8B: RLVR enables the
model to generate substantially more correct CoTs compared to the base model.

A.8.2 VERIFICATION CORRALATION BETWEEN DS-8B AND GPT-OSS VERIFIERS

We further analyze the consistency between DS-8B and the two gpt-oss verifiers by measuring the
correlation of their correctness judgments. Each verifier model is run three times on every chain-
of-thought, and correctness is summarized using the three criteria introduced in Section A.2: All-
correct, Majority-correct, and Any-correct (denoted as All, Maj, and Any). Figure 12 presents a
set of heatmaps across two model CoTs generated by the RLVR-trained model (DAPO) and CoTs
from the base model—using only samples that yield correct answers on AIME25. The first column
shows the intra-model correlations among the three DS-8B verification passes, capturing its self-
consistency. The remaining columns report the inter-model correlations between DS-8B and gpt-
oss-20b / gpt-oss-120b. Across both model groups, most of the correlation structures are stable and
indicate a relatively high level of agreement between the verifiers.

Two observations emerge from these results. First, CoTs from the base model exhibit substantially
higher intra-verifier and inter-verifier correlations, such as the DS-8B intra-correlation between Maj
and All/Any reaching around 0.88. This is expected, as base CoTs contain more salient errors,
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Figure 11: CoT-Pass@K comparisons using three different verifiers: DS-8B, gpt-oss-20b, and gpt-
oss-120 on AIME 24-25.

making them easier and more consistent for all verifiers to detect. In contrast, DAPO CoTs contain
fewer and subtler errors, leading to lower agreement: different verifiers may occasionally miss small
mistakes and mark these CoTs as correct. Second, stronger verifier models such as gpt-oss-20b
and gpt-oss-120b tend to apply stricter correctness criteria and identify more subtle errors. As a
result, the correlations between DS-8B and the gpt-oss verifiers typically lie around 0.7 across the
correctness metrics.
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Figure 12: Correlation heatmaps of correctness assessments across verifier models. Each verifier
performs three passes per chain-of-thought, summarized using the All, Maj, and Any metrics. Re-
sults are shown on AIME25 for CoTs yielding correct answers, separately for DAPO-Qwen-32B
and the base Qwen-2.5-32B model.
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A.9 WHY DO SFT MODELS GENERALIZE EVEN WHEN TRAINED ON INCORRECT COTS?

A notable observation in our experiments is that SFT on RLVR-generated CoTs leads to substan-
tial performance gains even when a CoT is labeled as incorrect (meaning it contains verified
errors). In contrast, SFT on the base model’s own CoTs—whether correct or incorrect—yields only
minor improvements. This prompts an important question: why can “incorrect” RLVR CoTs still
support strong generalization?

Our notion of incorrectness follows the verification prompt described in Section A.2: any CoT con-
taining calculation mistakes, invalid logical deductions, conceptual misunderstandings, or missing
essential reasoning steps is labeled as incorrect. Thus, incorrect CoTs span a broad range of quality.
The key insight from our analyses is that Among incorrect CoTs, those generated by RLVR differ
fundamentally from those of the base model.. They are longer, more structured, and contain fewer
severe errors, allowing SFT to extract useful reasoning patterns despite the presence of mistakes.

A.9.1 ANALYSIS OF ERROR FREQUENCIES

We examine whether RLVR reduces the severity of reasoning errors. Using gpt-oss-120b verifica-
tion, we categorize four common error types, counting each category independently.

Figure 13 shows that RLVR CoTs have substantially lower error rates across all categories,
indicating that RLVR leads to more stable and higher-quality reasoning paths.

Calculation Error Conceptual Error Logical Error Omission / Incompleteness
Error Types
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Figure 13: Error frequencies in CoTs with correct answers on AIME 2025, verified by gpt-oss-120b.
RLVR CoTs exhibit lower error rates across all categories, reflecting higher-quality reasoning paths.

A.9.2 TOKEN LENGTH ANALYSIS OF CORRECT AND INCORRECT COTS

We compare the token-length distributions of CoTs classified as correct or incorrect for the base
model (Qwen2.5-32B) and the RLVR-trained model (DAPO-Qwen-32B). Table 1 reports quantiles
of token lengths on the DAPO-17k training set.

A key observation is that for DAPO-Qwen-32B, incorrect CoTs are substantially longer than CoTs
from the base model. This suggests that even when marked as incorrect, RLVR CoTs cover extended
reasoning chains that include high-quality logical steps. Consequently, SFT on these incorrect CoTs
can still extract useful reasoning patterns and generalize effectively, despite the presence of some
errors.

Table 1: Token-length quantiles of correct and incorrect CoTs for Qwen2.5-32B (base) and DAPO-
Qwen-32B (RLVR) on DAPO-17k train set.

0.05 0.1 0.25 0.5 0.75 0.9 0.95

DAPO-Qwen-32B incorrect CoTs 1220 1494 2239 3995 7183 10929 13295
DAPO-Qwen-32B correct CoTs 1026 1185 1557 2266 3579 5730 7755
Qwen2.5-32B incorrect CoTs 610 666 783 950 1183 1504 1850
Qwen2.5-32B correct CoTs 578 623 717 862 1066 1343 1586
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A.10 DETAILED VERIFICATION RESULTS ON AIME BENCHMARKS

Tables 2 and 3 report per-problem verification results on AIME2024 and AIME2025 using gpt-
oss-120b. For each problem, we aggregate statistics over N = 1024 sampled CoTs from both
the RLVR-trained model and the base model. Each CoT is verified three times, and correctness is
determined by the Majority-correct criterion described in Section A.2.

We include the following metrics:

• CoT-Pass@k (k = 1024): whether at least one CoT is correct.
• #CC: number of correct CoTs.
• Pass@k (k = 1024): whether at least one answer is correct.
• #CA: number of correct answers.

All evaluations use the OpenAI Responses API with reasoning efforts=high and
max output tokens=64k.

Table 2: gpt-oss-120b verification results on AIME 2024. Metrics per problem are aggregated over
N = 1024 CoTs using the Majority-correct criterion.

RLVR BASE
Problem ID CoT-Pass@k #CC Pass@k #CA CoT-Pass@k #CC Pass@k #CA

2024 AIME II - Problem 4 (url) 1 1022 1 1023 1 14 1 27
2024 AIME I - Problem 4 (url) 1 1021 1 1024 1 346 1 366
2024 AIME I - Problem 1 (url) 1 1015 1 1024 1 159 1 183
2024 AIME I - Problem 2 (url) 1 986 1 1016 1 442 1 573
2024 AIME II - Problem 6 (url) 1 899 1 1023 1 165 1 249
2024 AIME II - Problem 7 (url) 1 848 1 904 1 312 1 357
2024 AIME I - Problem 6 (url) 1 523 1 879 1 2 1 6
2024 AIME II - Problem 10 (url) 1 522 1 914 1 1 1 4
2024 AIME II - Problem 1 (url) 1 484 1 928 1 8 1 21
2024 AIME I - Problem 3 (url) 1 398 1 550 1 4 1 43
2024 AIME II - Problem 3 (url) 1 155 1 306 1 12 1 16
2024 AIME I - Problem 7 (url) 1 127 1 1023 1 53 1 150
2024 AIME II - Problem 11 (url) 1 84 1 263 1 175 1 266
2024 AIME I - Problem 13 (url) 1 22 1 666 1 23 1 194
2024 AIME II - Problem 14 (url) 1 1 1 1 1 1 1 10
2024 AIME II - Problem 13 (url) 1 544 1 870 0 0 1 81
2024 AIME I - Problem 9 (url)* 1 289 1 515 0 0 1 18
2024 AIME II - Problem 12 (url) 1 86 1 226 0 0 1 36
2024 AIME I - Problem 14 (url)* 1 52 1 69 0 0 1 1
2024 AIME I - Problem 15 (url) 1 48 1 1010 0 0 0 0
2024 AIME II - Problem 2 (url) 1 21 1 645 0 0 1 33
2024 AIME I - Problem 5 (url) 1 1 1 483 0 0 1 4
2024 AIME II - Problem 9 (url) 1 1 1 15 0 0 1 3
2024 AIME I - Problem 10 (url) 0 0 1 4 0 0 1 4
2024 AIME I - Problem 8 (url) 0 0 1 229 0 0 0 0
2024 AIME II - Problem 5 (url) 0 0 1 7 0 0 1 40
2024 AIME II - Problem 8 (url) 0 0 1 27 0 0 0 0
2024 AIME I - Problem 11 (url)* 0 0 0 0 0 0 1 1
2024 AIME I - Problem 12 (url) 0 0 0 0 0 0 0 0
2024 AIME II - Problem 15 (url)* 0 0 0 0 0 0 1 1
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Table 3: gpt-oss-120b verification results on AIME 2025. Metrics per problem are aggregated over
N = 1024 CoTs using the Majority-correct criterion.

RLVR BASE
Problem ID CoT-Pass@k #CC Pass@k #CA CoT-Pass@k #CC Pass@k #CA

2025 AIME II - Problem 1 (url) 1 1022 1 1024 1 17 1 36
2025 AIME II - Problem 4 (url) 1 1020 1 1024 1 6 1 6
2025 AIME II - Problem 2 (url) 1 1000 1 1024 1 177 1 237
2025 AIME I - Problem 3 (url) 1 987 1 992 1 69 1 80
2025 AIME I - Problem 6 (url) 1 940 1 1024 1 127 1 176
2025 AIME I - Problem 4 (url) 1 707 1 833 1 18 1 48
2025 AIME I - Problem 1 (url) 1 699 1 1024 1 114 1 214
2025 AIME I - Problem 8 (url) 1 296 1 452 1 2 1 7
2025 AIME II - Problem 7 (url) 1 201 1 256 1 11 1 20
2025 AIME I - Problem 2 (url)* 1 978 1 1016 0 0 1 1
2025 AIME I - Problem 5 (url) 1 520 1 623 0 0 1 27
2025 AIME II - Problem 12 (url) 1 209 1 457 0 0 1 2
2025 AIME II - Problem 9 (url) 1 181 1 221 0 0 1 1
2025 AIME II - Problem 14 (url) 1 151 1 170 0 0 1 1
2025 AIME I - Problem 9 (url) 1 136 1 154 0 0 1 160
2025 AIME I - Problem 11 (url)* 1 103 1 141 0 0 1 1
2025 AIME II - Problem 3 (url) 1 5 1 9 0 0 0 0
2025 AIME II - Problem 6 (url) 1 4 1 454 0 0 1 26
2025 AIME II - Problem 8 (url) 1 4 1 4 0 0 1 1
2025 AIME II - Problem 11 (url) 1 3 1 14 0 0 0 0
2025 AIME I - Problem 7 (url) 1 3 1 14 0 0 0 0
2025 AIME II - Problem 10 (url) 1 2 1 7 0 0 0 0
2025 AIME I - Problem 12 (url) 1 1 1 108 0 0 0 0
2025 AIME I - Problem 13 (url) 0 0 1 1 0 0 1 7
2025 AIME II - Problem 5 (url) 0 0 1 4 0 0 1 27
2025 AIME I - Problem 10 (url) 0 0 1 1 0 0 1 6
2025 AIME I - Problem 14 (url) 0 0 0 0 0 0 1 13
2025 AIME I - Problem 15 (url) 0 0 0 0 0 0 0 0
2025 AIME II - Problem 13 (url) 0 0 0 0 0 0 0 0
2025 AIME II - Problem 15 (url) 0 0 0 0 0 0 1 1
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