

000 REINFORCEMENT LEARNING WITH VERIFIABLE RE- 001 WARDS IMPLICITLY INCENTIVIZES CORRECT REA- 002 SONING IN BASE LLMs 003

004 **Anonymous authors**
 005
 006

007 Paper under double-blind review
 008
 009

010 ABSTRACT 011

012 Recent advancements in long chain-of-thought (CoT) reasoning, particularly
 013 through the Group Relative Policy Optimization algorithm used by DeepSeek-
 014 R1, have led to significant interest in the potential of Reinforcement Learning
 015 with Verifiable Rewards (RLVR) for Large Language Models (LLMs). While
 016 RLVR promises to improve reasoning by allowing models to learn from free ex-
 017 ploration, there remains debate over whether it truly enhances reasoning abilities
 018 or simply boosts sampling efficiency. This paper systematically investigates the
 019 impact of RLVR on LLM reasoning. We revisit Pass@K experiments and demon-
 020 strate that RLVR can extend the reasoning boundary for both mathematical and
 021 coding tasks. This is supported by our introduction of a novel evaluation metric,
 022 CoT-Pass@K, which captures reasoning success by accounting for both the final
 023 answer and intermediate reasoning steps. Furthermore, we present a theoretical
 024 framework explaining RLVR’s incentive mechanism, demonstrating how it can
 025 encourage correct reasoning even when rewards are based solely on answer cor-
 026 rectness. Our analysis of RLVR’s training dynamics reveals that it incentivizes
 027 correct reasoning early in the process, with substantial improvements in reasoning
 028 quality confirmed through extensive evaluations. These findings provide strong
 029 evidence of RLVR’s potential to enhance LLM reasoning, offering valuable in-
 030 sights into its mechanisms and performance improvements.
 031

032 1 INTRODUCTION 033

034 The successful replication of long chain-of-thought (CoT) reasoning, similar to that in OpenAI’s
 035 o1 (OpenAI, 2024), by DeepSeek-R1 (Guo et al., 2025) using the Group Relative Policy Optimiza-
 036 tion (GRPO) algorithm (Shao et al., 2024), has sparked a surge of interest within the open research
 037 community. This interest is focused on understanding, reproducing, and extending DeepSeek’s ap-
 038 proach, as evidenced by a multitude of recent studies (Liu et al., 2025b; Hu et al., 2025; Zeng et al.,
 039 2025; Yu et al., 2025; He et al., 2025; Wen et al., 2025; Chen et al., 2025b). Fundamentally, this
 040 emerging paradigm is a form of Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert
 041 et al., 2024; Guo et al., 2025; Yue et al., 2025), where a Large Language Model (LLM) acts as a pol-
 042 icy, generating a CoT as a sequence of actions and receiving feedback on answer correctness from
 043 deterministic verifiers. This paradigm holds the promise of endowing LLMs with the ability to learn
 044 from experience through free exploration, potentially leading to unlimited intelligence (OpenAI,
 045 2024; Guo et al., 2025; Silver & Sutton, 2025).

046 However, emerging concerns question the true effectiveness of RLVR. These concerns are motivated
 047 by the observation that some post-RLVR models improve the Pass@1 metric but fail to enhance the
 048 Pass@K metric compared to the base (pre-RLVR) model. This phenomenon was first noted by Shao
 049 et al. (2024) during the development of GRPO. Subsequently, a systematic study by Yue et al. (2025)
 050 on more open-weight RLVR models discovered that the Pass@K metric of the base model increases
 051 at a much faster rate than its RLVR-tuned counterpart. Consequently, for a moderately large K, the
 052 base model eventually matches and surpasses the reasoning model. This led to their adventurous
 053 hypothesis: all correct reasoning paths are already present in the base model, and RLVR merely
 improves sampling efficiency at the cost of reducing overall reasoning capacity.

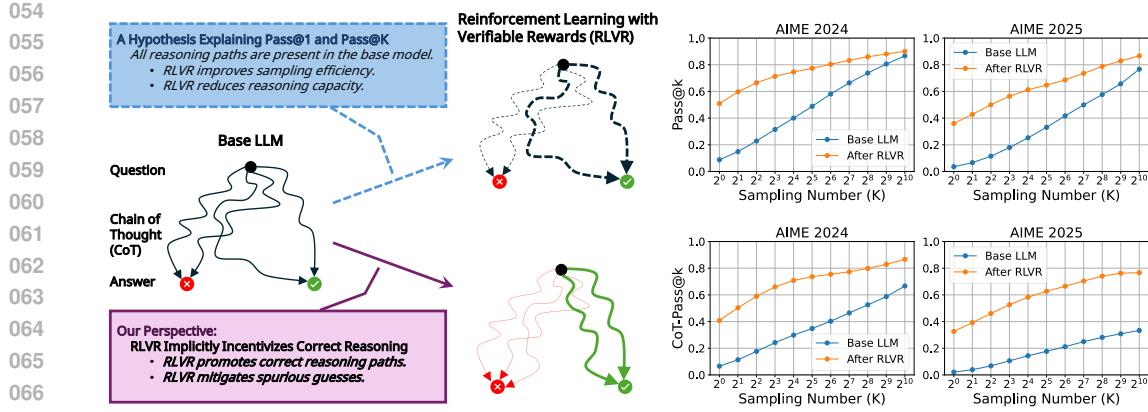


Figure 1: An illustration of our perspective: **RLVR implicitly incentivizes correct reasoning in base LLMs**. We visualize how different explanation frameworks lead to varying reasoning paths being activated, with our perspective shown in the lower left and a recent popular hypothesis explaining Pass@K observations (Yue et al., 2025) summarized in the upper left. In this diagram, the line width represents the sampling probability of a reasoning path, while the color distinguishes correct paths (green) from incorrect ones (red). If all reasoning paths after applying RLVR are already present in the base model, the reasoning model merely adjusts the sampling probabilities of these existing paths (visualized in dashed lines). This hypothesis effectively accounts for the key observation shown in the upper-right part, where, for a moderately large K , a base LLM can catch up to the reasoning model after RLVR using the Pass@K metric. In this study, we unveil **the extended reasoning capability boundary** in math tasks using a refined metric, **CoT-Pass@K**, which emphasizes both the correctness of answers and the validity of reasoning CoTs.

While this hypothesis has gained significant support (Zhu et al., 2025; Zhang et al., 2025; Wang et al., 2025a; Chen et al., 2025a), conflicting observations have also been reported. For instance, Liu et al. (2025a) detected the emergence of new reasoning patterns after RLVR, while they also acknowledged a loss in reasoning capacity as measured by Pass@K. Chen et al. (2025b) reported persistent improvements in Pass@K for competitive coding tasks but did not show improved Pass@K for math tasks. Shojaee et al. (2025) observed similar Pass@K observations on math datasets but found different patterns on puzzles with high complexity. To the best of our knowledge, no systematic explanation exists to reconcile these contradictory findings, leaving a critical question unanswered: “*should we accept the hypothesis as a fundamental limitation of RLVR or should we trust new empirical findings that challenge the hypothesis?*”

In this work, we address this debate systematically and demonstrate that RLVR can fundamentally enhance the reasoning abilities of LLMs. First, we revisit Pass@K experiments and unveil the existence of extended reasoning capability boundaries after RLVR for both math and code tasks. In addition to reproducing the extended reasoning boundary in competitive coding, as reported by Chen et al. (2025b), we find that the Pass@K performance of base LLMs on math reasoning can be unreliable, as base LLMs are capable of producing incorrect CoTs yet coincidentally arriving at the ground truth, especially for hard mathematical questions where answers are simple and can be easily guessed after multiple attempts. To address this, we introduce a new metric, CoT-Pass@K, which evaluates success only when both the final answer and the intermediate reasoning CoT are correct. In practice, we verify the correctness of mathematical CoTs by instructing DeepSeek-R1-0528-Qwen3-8B (DeepSeek, 2025) and confirm their reliability. Using this new metric, we successfully identify the extended reasoning boundary of a post-RLVR model for math tasks. Figure 1 summarizes our key perspectives.

Moreover, we develop a theoretical framework to explain why RLVR works, even when base LLMs may guess the ground truth and only answer correctness is provided as a reward, and how RLVR incentivizes correct reasoning. Our central insight is that once LLMs have been pre-trained to establish strong knowledge and logic priors that distinguish correct from incorrect CoTs, the GRPO gradient will increase the probability of generating more correct CoTs.

108 Additionally, we investigate the training dynamics of RLVR to understand when this improved rea-
 109 soning emerges. By reproducing GRPO-style training using the open-source DAPO recipe (Yu
 110 et al., 2025) and performing extensive verifications, we find that RLVR begins to incentivize cor-
 111 rect reasoning from the early stages of training, and this capability generalizes well to unseen test
 112 questions. The results of our training analysis align with our theorem, which highlights the implicit
 113 incentivization of correct reasoning CoTs.

114 Finally, we evaluate the quality of generated CoTs from a learning perspective: if supervised learn-
 115 ing on some CoT data results in better generalization performance on test sets, we regard them as
 116 high quality. This allows us to evaluate the quality of CoTs generated by model checkpoints at
 117 different RLVR stages. Our results show that after RLVR, the quality of reasoning CoTs has been
 118 fundamentally improved.

119 In summary, our contributions include:

120

- 121 • A systematic evaluation revealing the extended reasoning capability boundary after RLVR
 122 for both code and math tasks.
- 123 • A theoretical understanding of why RLVR works with only answer correctness as a reward
 124 and how RLVR incentivizes correct reasoning.
- 125 • An analysis of RLVR’s training dynamics, delving deeper into optimization effects, gener-
 126 alization behaviors, and current limitations.
- 127 • Confirmation of the quality improvements in reasoning CoTs from a learning perspective,
 128 replicating the generalization abilities of post-RLVR models trained with enormous costs
 129 simply via supervised fine-tuning.

130

132 2 RELATED WORK

133

134 **RLVR** Since the release of DeepSeek-R1 (Guo et al., 2025), there has been a surge of research
 135 interest in the RLVR paradigm (Luo et al., 2025b; Liu et al., 2025b; Hu et al., 2025; Cui et al.,
 136 2025; Xie et al., 2025; Zeng et al., 2025; Yu et al., 2025; Luo et al., 2025a; Chen et al., 2025a;
 137 He et al., 2025; Wen et al., 2025; Cao et al., 2025; Liu et al., 2025a; Chen et al., 2025b). Due
 138 to the high computational cost of RLVR, most studies have focused on small- to medium-sized
 139 models (up to 32B parameters). These studies span a wide range of aspects, including training
 140 data curation, objective design, hyperparameter tuning, base model selection, and various insightful
 141 observations. However, only a few studies have addressed the theoretical foundations of RLVR. In
 142 this work, we argue that RLVR for LLMs should be understood from a different perspective—one
 143 that emphasizes the correctness of reasoning paths. We hope our empirical findings and theoretical
 144 perspective could inspire the community to develop more efficient and effective RLVR approaches,
 145 unlocking its broader potential across diverse applications.

146

147 **Debates on Whether RLVR Really Incentivizes** Since Yue et al. (2025) raised the insightful
 148 question of whether RLVR truly incentivizes improvements beyond the base LLMs, and conducted
 149 extensive empirical experiments to demonstrate the wide applicability of their key hypothesis—that
 150 RLVR does not improve *Pass@K* for the base LLM because all reasoning paths are already present
 151 in the base model—there have been varying perspectives on this hypothesis. Some studies agree
 152 with this viewpoint (Wang et al., 2025b; Zhu et al., 2025; Zhang et al., 2025; Wang et al., 2025a;
 153 Chen et al., 2025a), while others report contradictory findings (Liu et al., 2025a; Chen et al., 2025b;
 154 Shojaee et al., 2025), as discussed in the introduction. There is currently no fundamental under-
 155 standing to resolve these debates. Liu et al. (2025a) speculated that previous RLVR experiments
 156 may have been conducted within a single domain (e.g., math) and were optimized for limited grad-
 157 ient steps before true exploration could occur. Shojaee et al. (2025) suggested that the complexity
 158 of puzzles might be the key factor. Chen et al. (2025b) presented statistically significant empirical
 159 results to justify that their model indeed improves *Pass@K*, particularly highlighting a persistent
 160 gap on the LiveCodeBench v6 (Jain et al., 2025). In this work, we extend the *Pass@K* experiments
 161 of Chen et al. (2025b) to more LiveCodeBench versions and include another similar open-source
 162 study (He et al., 2025) starting RLVR from distilled LLMs as a comparison. All these results clearly
 163 disclose the extended reasoning boundary of distilled LLMs on competitive coding after RLVR.

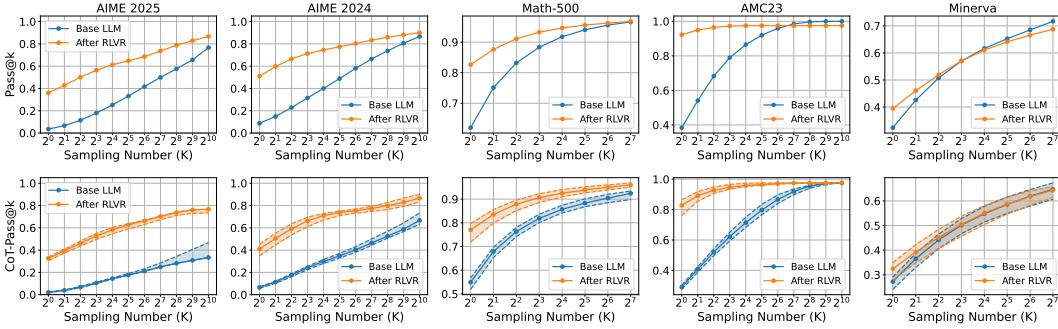


Figure 2: Comparisons of Pass@K (the top row) and CoT-Pass@K (the bottom row) on five math benchmarks (different columns) to show how RLVR could improve base LLMs. Here the base LLM is Qwen2.5-32B, and the post-RLVR model is DAPO-Qwen-32B. For CoT-Pass@K, we perform multiple verifications for each CoT using DeepSeek-R1-0528-Qwen3-8B, and display the results determined by *any-correct*, *all-correct*, and *majority-correct* strategies, which constitute the shaded area in lower subplots.

The Importance of Correct CoTs Recent studies have also highlighted the importance of verifying the correctness of CoTs (Arcuschin et al., 2025; McGinnes & Baumgartner, 2025; Shojaee et al., 2025). However, their approaches focus on defining synthetic reasoning tasks where the correctness of reasoning CoTs can be verified easily. While this is an interesting and effective approach for fully examining reasoning correctness, it is difficult to apply to unstructured reasoning scenarios, such as in math and code. In this work, we argue that the LLM-as-a-CoT-Judge paradigm could play a crucial role in more general reasoning tasks, and emphasize the pressing need for the design of evaluation benchmarks to assess the reliability of emerging LLM verifiers.

3 EXTENDED REASONING CAPABILITY BOUNDARY AFTER RLVR

In this section, we present concrete benchmark evaluations that demonstrate how RLVR can fundamentally enhance the reasoning abilities of LLMs. This enhancement goes beyond mere improvements in sampling efficiency; it also expands the reasoning capability boundary. However, to effectively observe this enhancement, it is crucial to adopt an appropriate RLVR training recipe, select challenging benchmarks that are free from data contamination, and utilize reliable evaluation metrics. Without these measures, one might only observe improvements in sampling efficiency, with no actual change in reasoning capacity. Below, we discuss two representative cases from both the math and code domains, showcasing genuinely extended reasoning boundaries.

3.1 MATH REASONING

We begin by revisiting the Pass@K experiments conducted on the open-source model, DAPO-Qwen-32B (Yu et al., 2025), which successfully reproduced R1-Zero (Guo et al., 2025) using the base LLM, Qwen2.5-32B (Qwen, 2024), and a curated set of 17k mathematical problems. A key contribution of our work is the introduction of a novel evaluation metric, CoT-Pass@K, which emphasizes the importance of evaluating the correctness of detailed reasoning steps for mathematical questions, rather than relying solely on answer correctness.

However, precisely measuring the correctness of CoTs at scale is inherently challenging due to the unstructured, lengthy, and complex nature of math CoTs. Fortunately, we can leverage specialized open-source LLMs, such as DeepSeek-R1-0528-Qwen3-8B (DeepSeek, 2025), as a powerful yet lightweight verifier, employing an LLM-as-a-CoT-Judge paradigm. In this study, we use this verifier multiple times for each reasoning CoT generated by DAPO-Qwen-32B and Qwen2.5-32B, employing three distinct strategies to assess CoT correctness: *any-correct* (at least one verification returns correct), *all-correct* (all verifications must return correct), and *majority-correct* (the majority vote determines the outcome). To further ensure the reliability of these verifications, we manually

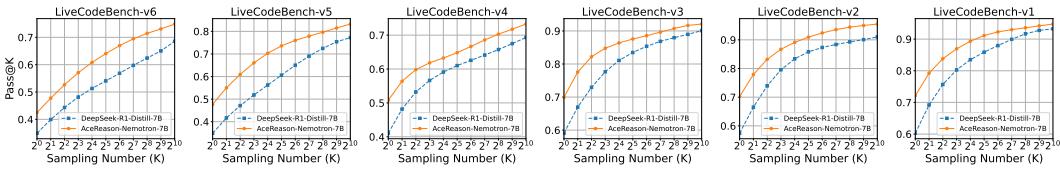


Figure 3: Comparisons of Pass@K across six LiveCodeBench versions to show how much RLVR could enhance distilled LLMs. Here the distilled LLM is DeepSeek-R1-Distill-Qwen-7B, and the post-RLVR model is AceReason-Nemotron-7B.

inspect cases where the Pass@K metric yields a small positive value, but the CoT-Pass@K metric returns zero. The details of our LLM-as-a-CoT-Judge approach can be found in Appendix A.2.

Figure 2 presents a comprehensive comparison using both Pass@K and CoT-Pass@K metrics across prominent math-reasoning benchmarks. As shown in the top row, the Pass@K results align with the observations in (Yue et al., 2025): the performance of the base LLM quickly catches up with and even surpasses the post-RLVR model as K increases. However, in stark contrast, the CoT-Pass@K results on AIME 2024 and AIME 2025 reveal a consistent and significant performance gap between the models across all values of K (up to 1024). This gap is particularly pronounced on AIME 2025, possibly due to its complete absence of unintentional data contamination, as it was released after the base model’s training cutoff. We perform manual inspections to ensure the distinct gaps observed using the CoT-Pass@K metric are reliable (see examples in Appendix A.7.1 and A.7.2). Our LLM verifier effectively identifies critical errors, which we agree should be rejected. These results demonstrate the extended reasoning boundary of DAPO-Qwen-32B over Qwen2.5-32B.

Additionally, we observe that on other benchmarks such as MATH-500 and AMC23, the effects of RLVR seem less pronounced, as the base LLM is already capable of solving these problems correctly with sufficient attempts. This may be due to 1) the problems being simple enough for the base LLM to solve using its existing knowledge, or 2) the problems being part of its pre-training data, allowing the base LLM to recall the correct solution after multiple trials. Distinguishing between these possibilities is challenging without knowing the exact training data used for Qwen2.5-32B. Furthermore, on the Minerva benchmark, the post-RLVR model shows no improvement, likely due to a train-test domain mismatch. Minerva contains numerous physics problems and free-form answers, while the DAPO training data was restricted to math problems with integer answers. These results do not undermine the effectiveness of RLVR; rather, they highlight the importance of selecting appropriate benchmarks for evaluating RLVR progress.

3.2 CODE REASONING

Unlike RLVR for mathematical problems, where the correctness of extracted answer tokens is used as a proxy for passing, code reasoning relies on the actual execution of generated code snippets to verify correctness, significantly reducing the likelihood of guessing. Therefore, Pass@K serves as a reliable evaluation metric for code reasoning tasks.

In this section, we reproduce the Pass@K experiments across different versions of LiveCodeBench (Jain et al., 2025) to compare the performance of AceReason-Nemotron-7B (Chen et al., 2025b) with its pre-RLVR counterpart, DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025). As shown in Figure 3, we observe that AceReason-Nemotron-7B exhibits clear Pass@K improvements over DeepSeek-R1-Distill-Qwen-7B on most benchmark versions, even though the latter is a distillation model already demonstrating remarkable reasoning capabilities. These results suggest that even for distillation models, a high-quality RLVR training recipe can significantly extend the reasoning capability boundary, particularly for competitive coding tasks.

To further confirm the success of RLVR in extending reasoning boundaries for coding tasks, we evaluate another post-RLVR model, Skywork-OR1 (He et al., 2025), which has a fully reproducible training recipe publicly available. Detailed results on LiveCodeBench-v6 can be found in Appendix A.3, where we observe a consistent Pass@K gap between Skywork-OR1 and DeepSeek-R1-Distill-Qwen-7B. Specifically, we find that only medium and hard problems in LiveCodeBench-

270 v6 contribute to the differentiation between these two models for large K values, underscoring the
 271 importance of selecting challenging benchmarks.
 272

273 4 A THEORETICAL UNDERSTANDING OF RLVR FOR LLMs 274

275 In addition to empirical evidences, we provide a theoretical understanding of how RLVR, as imple-
 276 mented in the GRPO algorithm (Shao et al., 2024), fundamentally incentivizes correct reasoning for
 277 pre-trained language models. We note a key distinction between RLVR for LLMs and traditional
 278 RL for randomly initialized models. Pre-trained LLMs, owing to their powerful likelihood estima-
 279 tion capabilities obtained during pre-training, can generate various CoTs and then produce possible
 280 answers. Some of them could coincidentally arrive at the ground truth, especially when the ground
 281 truth is in a simple format and can be easily guessed. In contrast, traditional RL simply optimizes
 282 for action trajectories that yield high rewards, without necessarily verifying the intrinsic correctness
 283 of each action along the path. For instance, in the Go game (Silver et al., 2017), every action is
 284 valid once the simulation environment is setup correctly. In the following, we start our theoretical
 285 analysis from a formal problem setup distinguishing CoT and answer tokens in LLM responses.
 286

287 **Problem Setup** Given a question prompt q , we sample G responses $\mathbf{Y} = \{y_1, y_2, \dots, y_G\}$ from
 288 policy π_θ , where π_θ is a LLM model parameterized by θ . Let c_i be the CoT in response y_i , and a_i
 289 the final answer. We define the following correctness indicators:

$$290 \mathcal{I}_{\text{CoT}}(c_i) = \begin{cases} 1 & \text{if } c_i \text{ is correct} \\ 0 & \text{otherwise} \end{cases}, \quad \mathcal{I}_{\text{Ans}}(a_i) = \begin{cases} 1 & \text{if } a_i \text{ is correct} \\ 0 & \text{otherwise} \end{cases}. \quad (1)$$

291 In this study, we define the CoT correctness $\mathcal{I}_{\text{CoT}}(c_i)$ as the intermediate tokens of a response (c_i)
 292 expressing necessary and accurate logics that lead to the ground truth. We use $p_c^\theta = P_{\pi_\theta}(\mathcal{I}_{\text{CoT}}(c) =$
 293 1) to denote the probability of generating a correct CoT. In practice, it is rather challenging to
 294 verify the CoT correctness because it is inherently unstructured, knowledge-intensive, and full of
 295 details. In contrast, the answer correctness $\mathcal{I}_{\text{Ans}}(a_i)$ is assumed to be verified programmatically.
 296 So we have a verifiable reward $R(y_i)$ that is binary and determined solely by answer correctness:
 297 $R(y_i) = \mathcal{I}_{\text{Ans}}(a_i)$. We calculate the standard GRPO advantage $\hat{A}(y_i)$ as:
 298

$$300 \hat{A}(y_i) = \frac{R(y_i) - \mu_{\mathbf{Y}}}{\sigma_{\mathbf{Y}}}, \quad \mu_{\mathbf{Y}} = \frac{1}{G} \sum_{j=1}^G R(y_j), \quad \sigma_{\mathbf{Y}} = \sqrt{\frac{1}{G} \sum_{j=1}^G (R(y_j) - \mu_{\mathbf{Y}})^2}. \quad (2)$$

303 Without loss of generality, we consider a policy gradient (Sutton et al., 1999) update:

$$304 \nabla_\theta J(\theta) \approx \frac{1}{G} \sum_{i=1}^G \hat{A}(y_i) \nabla_\theta \log \pi_\theta(y_i \mid q). \quad (3)$$

307 **Assumptions** Given the problem setup decoupling CoT and answer correctness, we introduce a
 308 critical *Logic Prior* assumption: compared with incorrect CoTs, correct CoTs have higher probabili-
 309 ties to induce correct answers. Thus we have
 310

$$311 P(\mathcal{I}_{\text{Ans}}(a_i) = 1 \mid \mathcal{I}_{\text{CoT}}(c_i) = 1) = \alpha > P(\mathcal{I}_{\text{Ans}}(a_i) = 1 \mid \mathcal{I}_{\text{CoT}}(c_i) = 0) = \beta. \quad (4)$$

312 This assumption is based on the belief that pre-trained LLMs have established strong knowledge and
 313 logic priors. Besides, we also assume a learnable group ($\sigma_{\mathbf{Y}} > 0$) and a sufficiently large sampling
 314 number G to ensure stable gradient updates. Then, we establish the following theorem.

315 **Theorem 1 (GRPO Implicitly Incentivizes Correct Reasoning)** *For any prompt q satisfying our
 316 assumptions, the expected GRPO advantage $\mathbb{E}[\hat{A}(y_i)]$ satisfies:*

$$318 \mathbb{E}[\hat{A}(y_i) \mid \mathcal{I}_{\text{CoT}}(c_i) = 1] > 0, \quad \mathbb{E}[\hat{A}(y_i) \mid \mathcal{I}_{\text{CoT}}(c_i) = 0] < 0, \quad (5)$$

320 where $\hat{A}(y_i)$ is defined in equation 2. The GRPO policy gradient, as defined in equation 3, increase
 321 the probability of generating correct CoTs (p_c^θ) in the next round, so p_c^θ increases monotonically.
 322

323 Below we briefly illustrate our key perspectives on why GRPO works and when it may fail. More-
 324 over, we include a complete proof for Theorem 1 and more discussions in Appendix A.4.

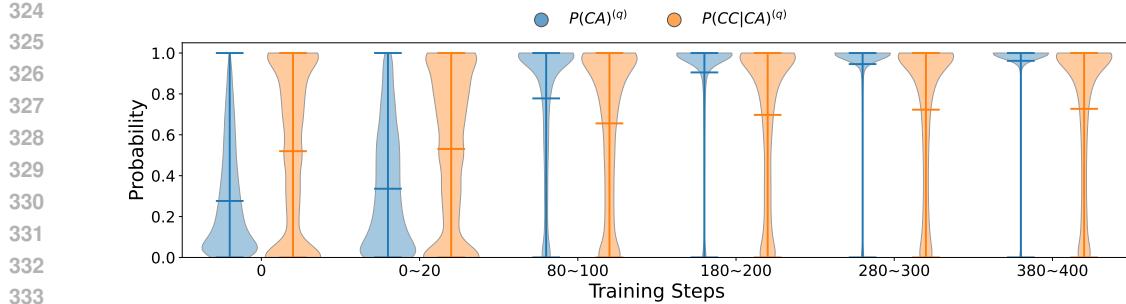


Figure 4: The evolution of $P(CA)^{(q)}$ (the fraction of correct answers for prompt q) and $P(CC|CA)^{(q)}$ (the fraction of correct CoTs within the correct answers for prompt q) for fully optimized training questions over the course of DAPO training.

Discussions on the effectiveness of GRPO Theorem 1 indicates that even though a base LLM may guess the ground truth with imperfect CoTs at the beginning (low initial p_c^θ), GRPO could still work as long as the knowledge and logic priors have been established. The driving factor is the gap $\alpha - \beta > 0$, which amplifies the advantage difference between correct and incorrect CoTs. As training progresses and α increases (due to more sound reasoning across various question prompts) while β decreases (reducing spurious correlations, model biases, incorrect knowledge or calculation, etc.), causing the gap to widen and further accelerating coherent reasoning. As $p_c \rightarrow 1$, $(\alpha - \beta)$ may approach 1 in a faster pace because generating a few answer tokens is typically much easier than producing long correct CoTs, then $\mathbb{E}[\hat{A}(y_i) \mid \text{correct CoT}] \rightarrow 0$, ensuring convergence.

Discussions on failure modes in GRPO We note that the *Logic Prior* assumption may not always hold, potentially leading to the reinforcement of incorrect CoTs, since base LLMs may retain inherent biases and possibly fatal knowledge errors from pre-training. These harmful information might exist in some CoTs that finally yield the correct answer. In such cases, improper model biases could be unintentionally reinforced. We suspect that these unexpectedly reinforced CoTs are the root cause of the challenges faced by the R1-Zero approach (Guo et al., 2025), including poor readability and multi-lingual behaviors.

5 TRAINING DYNAMICS OF RLVR

To further demystify RLVR, we reproduce and analyze the training recipe of DAPO (Yu et al., 2025), which has been demonstrated to present extended reasoning capability boundaries in Section 3. Our experiments show that its training dynamics align pretty well with Theorem 1.

Key Indicators We first introduce key indicators that we have recorded during the reproduction. For each prompt q sampled with G responses, we define the number of answer passes and the number of both CoT and answer passes as $C = \sum_{i=1}^G \mathcal{I}_{\text{Ans}}(a_i)$ and $D = \sum_{i=1}^G \mathcal{I}_{\text{CoT}}(c_i) \cdot \mathcal{I}_{\text{Ans}}(a_i)$, respectively. We follow Chen et al. (2021)'s approach to calculate the Pass@K metric. Accordingly, we have per-prompt metrics: $\text{Pass}@K^{(q)} = 1 - \frac{(G-C)}{(G)}$ and $\text{CoT-Pass}@K^{(q)} = 1 - \frac{(G-D)}{(G)}$. Besides, we estimate the probability of producing correct answers for prompt q as $P(CA)^{(q)} = \frac{C}{G}$ and the probability of producing correct CoTs when generating correct answers as $P(CC|CA)^{(q)} = \frac{D}{C}$. For a dataset of multiple prompts, we take an average of per-prompt metrics as the dataset-level score.

Optimization Effects In our reproduced DAPO training, we observe that most training questions have been fully optimized. As shown in Figure 4, the probability of generating correct answers for these questions almost reach 1. In the meanwhile, we also observe the improvement in producing more correct reasoning CoTs, as indicated by the improvements in $P(CC|CA)^{(q)}$. These observations validate the key perspective in Theorem 1: RLVR not only optimizes the final verifiable reward but also implicitly incentivizes correct reasoning.

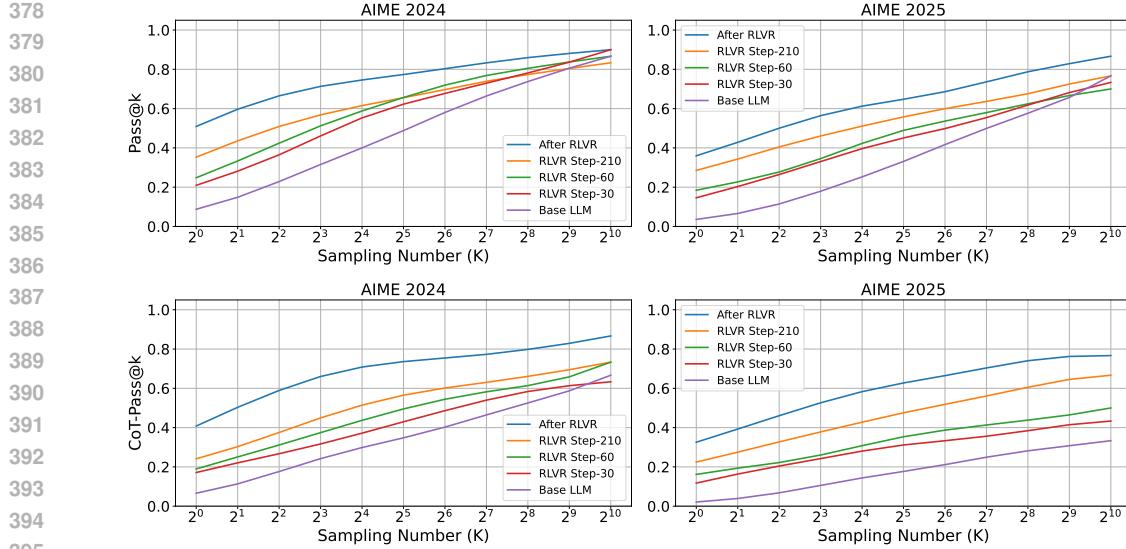


Figure 5: The evolution of Pass@K (the top row) and CoT-Pass@K (the bottom row) performance on AIME 2024 and 2025 for different model checkpoints during the DAPO training.

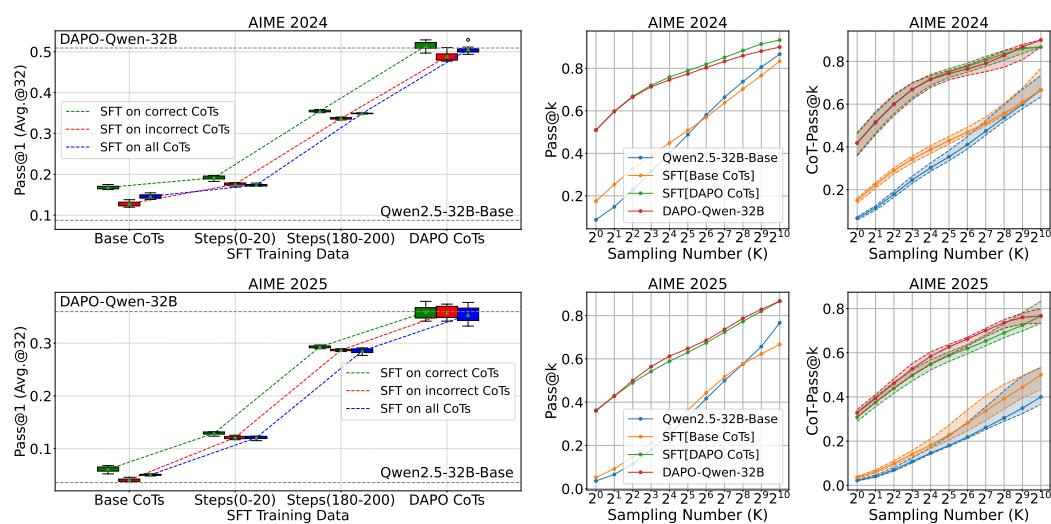
Generalization Behaviors In the meanwhile, Figure 5 discloses that the optimization of RLVR leads to the generalization improvements of both Pass@K and CoT-Pass@K from the very beginning. And using the CoT-Pass@K metric, we can clearly tell that the reasoning capability boundary has also been enhanced since the beginning. Another interpretation for this empirical observation is that the model has learned to produce more and more reasoning CoTs that DeepSeek-R1-0528-Qwen-8B cannot identify any error. This ability is learned implicitly since we have no formal supervision for the CoT correctness.

Limitations of DAPO Figure 4 also unveils the limitations of DAPO, the R1-zero approach applied to a 32B base LLM. As $P(CA)^{(q)}$ approaches 1.0 for most fully optimized training questions after 400 steps, which means these questions are no longer learnable because we cannot calculate a valid GRPO advantage for a all-correct group, we can still observe a non-negligible portion of imperfect CoTs (the median of $P(CC|CA)^{(q)}$ is around 0.7). These signals indicate that there are certain unexpected reasoning behaviors learned in DAPO and we may not have a chance to mitigate them purely based on answer correctness as the reward.

6 THE QUALITY OF REASONING COTs ENHANCED BY RLVR

In addition to the LLM-as-a-CoT-Judge approach for strictly identifying critical errors in reasoning CoTs, we further leverage supervised fine-tuning (SFT) to assess the quality of reasoning CoTs enhanced by RLVR. Given the training questions in DAPO, we conduct multiple SFT procedures, starting from the same base LLM and learning from CoTs generated by different models. If the CoT data is of high quality, we expect the post-SFT model to exhibit improved generalization performance. Figure 6 presents an overall quality evaluation of various CoT data.

Specifically, Figure 6(a) illustrates the evolution of CoT quality during RLVR. As training progresses, the generalization performance of post-SFT LLMs, measured in Pass@1, improves steadily. Ultimately, SFT on DAPO CoT data matches the Pass@1 performance of DAPO-Qwen-32B. This result indicates that, given sufficient training questions and CoT data from a post-RLVR model, we can replicate a new model with nearly the same Pass@1 performance simply through SFT. Moreover, an interesting observation is that, regardless of whether the CoT data contains identifiable errors, as RLVR progresses, the CoT quality, measured in Pass@1, generally improves. This suggests that although some erroneous steps may be present, the overall quality of these "incorrect" CoTs in the later stages of RLVR improves significantly.



(a) The CoT quality at different RLVR stages, using Pass@1 on test sets as the proxy metric. (b) The CoT quality before and after RLVR, using (CoT-)Pass@K on test sets as the proxy metric.

Figure 6: We show the generalization performance of post-SFT LLMs optimized on different CoT data. All these SFT processes start from the same base LLM, Qwen2.5-32B, with the only variable being the different CoT data on DAPO training questions. We use the performance on test sets (AIME 2024, 2025) as a proxy for the quality of the corresponding CoT data.

Figure 6(b) compares the CoT quality before and after RLVR, using both Pass@K and CoT-Pass@K as proxy metrics. Comparing DAPO-Qwen-32B with the post-SFT model trained on its CoT data, we observe that this simple SFT approach nearly replicates the performance of a post-RLVR model, which would otherwise require significant computational cost. When comparing Qwen2.5-32B with the post-SFT model trained on its CoT data, we find that the post-SFT model begins to mitigate guessing. This aligns with our expectations, as we only feed CoT data with correct answers from Qwen2.5-32B into the SFT procedure. We can therefore regard this process as a round of off-policy RLVR optimization. These observations indicate that the incentivized CoT data through RLVR is crucial, as such CoTs cannot be directly sampled from base LLMs. RLVR optimizes the model’s reasoning abilities, ensuring that the generated CoTs are more accurate, coherent, and reliable, which is essential for handling complex tasks.

Limitations A key limitation of our study lies in the use of a LLM as the verifier for the correctness of reasoning CoTs, due to the prohibitive cost of manually checking a large volume of generated reasoning paths. Moreover, our theorem only explains the optimization process of RLVR but provides no guarantee for its generalization. We merely observe the generalization empirically. Due to space limitations, further discussions on the implications of our findings are deferred to Appendix A.6.

7 CONCLUSION

In this work, we address the fundamental problem of whether RLVR genuinely incentivizes novel reasoning in base LLMs. Through empirical evaluations and theoretical analysis, we justify a new perspective: RLVR implicitly incentivizes correct reasoning. Moreover, our analyses on training dynamics and CoT quality further confirm that the reasoning CoTs after RLVR are fundamentally different and can even help to replicate similar capabilities simply via supervised learning.

We hope these findings can not only resolve conflicting conclusions in prior work but also illuminate the untapped potential of RLVR in aligning LLMs with human reasoning systems. We envision a promising future where RLVR serves as a cornerstone for developing LLMs that learn through interaction, self-correction, and verifiable reasoning.

486 REFERENCES
487488 Team Anthropic. Introducing Claude 4. <https://www.anthropic.com/news/clause-4>,
489 2025. [Released 23-05-2025].490 Iván Arcuschin, Jett Janiak, Robert Krzyzanowski, Senthooran Rajamanoharan, Neel Nanda, and
491 Arthur Conmy. Chain-of-thought reasoning in the wild is not always faithful. *arXiv preprint*
492 *arXiv:2503.08679*, 2025.493 Shiyi Cao, Sumanth Hegde, Dacheng Li, Tyler Griggs, Shu Liu, Eric Tang, Jiayi Pan, Xingyao
494 Wang, Akshay Malik, Graham Neubig, Kurosh Hakhamaneshi, Richard Liaw, Philipp Moritz,
495 Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica. SkyRL-v0: Train real-world long-horizon
496 agents via reinforcement learning. <https://novasky-ai.notion.site/skyrl-v0>,
497 2025.498 Huayu Chen, Kaiwen Zheng, Qinsheng Zhang, Ganqu Cui, Yin Cui, Haotian Ye, Tsung-Yi Lin,
499 Ming-Yu Liu, Jun Zhu, and Haoxiang Wang. Bridging supervised learning and reinforcement
500 learning in math reasoning. *arXiv preprint arXiv:2505.18116*, 2025a.502 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
503 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
504 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.505 Yang Chen, Zhuolin Yang, Zihan Liu, Chankyu Lee, Peng Xu, Mohammad Shoeybi, Bryan Catan-
506 zaro, and Wei Ping. AceReason-Nemotron: Advancing math and code reasoning through rein-
507 forcement learning. *arXiv preprint arXiv:2505.16400*, 2025b.509 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
510 Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint*
511 *arXiv:2502.01456*, 2025.512 Team DeepSeek. DeepSeek-R1-0528 release. <https://api-docs.deepseek.com/news/news250528>, 2025. [Released 28-05-2025].515 Team Gemini. Introducing Gemini 2.0: our new AI model for the agen-
516 tic era. [https://blog.google/technology/google-deepmind/](https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/)
517 [google-gemini-ai-update-december-2024/](https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/), 2024. [Released 11-12-2024].518 Team Gemini. Gemini 2.5: Our most intelligent models are getting even
519 better. [https://blog.google/technology/google-deepmind/](https://blog.google/technology/google-deepmind/google-gemini-updates-io-2025/)
520 [google-gemini-updates-io-2025/](https://blog.google/technology/google-deepmind/google-gemini-updates-io-2025/), 2025. [Released 20-05-2025].522 Team Grok. Grok 3 Beta — The age of reasoning agents. <https://x.ai/news/grok-3>,
523 2025. [Released 19-02-2025].524 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
525 Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing reasoning capability in
526 LLMs via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.528 Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
529 Zhang, Jiacheng Xu, Wei Shen, et al. Skywork open reasoner 1 technical report. *arXiv preprint*
530 *arXiv:2505.22312*, 2025.531 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
532 Open-Reasoner-Zero: An open source approach to scaling up reinforcement learning on the base
533 model. *arXiv preprint arXiv:2503.24290*, 2025.534 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
535 Solar-Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and contamination free
536 evaluation of large language models for code. In *ICLR*, 2025.538 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
539 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. *arXiv preprint arXiv:2001.08361*, 2020.

540 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 541 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
 542 in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

543

544 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 545 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *ICLR*, 2024.

546

547 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 548 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. DeepSeek-V3 technical report. *arXiv preprint*
 549 *arXiv:2412.19437*, 2024.

550

551 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 552 ProRL: Prolonged reinforcement learning expands reasoning boundaries in large language mod-
 553 els. *arXiv preprint arXiv:2505.24864*, 2025a.

554

555 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
 556 and Min Lin. Understanding R1-Zero-like training: A critical perspective. *arXiv preprint*
 557 *arXiv:2503.20783*, 2025b.

558

559 Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaox-
 560 iang Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada
 561 Popa, and Ion Stoica. Deepcoder: A fully open-source 14b coder at o3-mini
 562 level. [https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-
 563 mini-Level-1cf81902c14680b3bee5eb349a512a51](https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51), 2025a. Notion Blog.

564

565 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
 566 Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
 567 with a 1.5b model by scaling rl. [https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-
 569 Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2](https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-

 568 Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2), 2025b. Not-
 570 ion Blog.

571

572 Lachlan McGinness and Peter Baumgartner. Large language models' reasoning stalls: An investi-
 573 gation into the capabilities of frontier models. *arXiv preprint arXiv:2505.19676*, 2025.

574

575 Team Mistral.AI. Stands to reason. Magistral. <https://mistral.ai/news/magistral>,
 576 2025. [Released 10-06-2025].

577

578 Team OpenAI. Learning to reason with LLMs. <https://openai.com/index/learning-to-reason-with-llms/>, 2024. [Released 12-09-2024].

579

580 Team OpenAI. Introducing OpenAI o3 and o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, 2025. [Released 16-04-2025].

581

582 Team Qwen. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.

583

584 Team Qwen. Qwen3: Think deeper, act faster. <https://qwenlm.github.io/blog/qwen3/>, 2025. [Released 29-04-2025].

585

586 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 587 Finn. Direct preference optimization: Your language model is secretly a reward model. In
 588 *NeurIPS*, 2023.

589

590 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 591 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

592

593 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 594 Mingchuan Zhang, YK Li, Y Wu, et al. DeepSeekMath: Pushing the limits of mathematical
 595 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

596

597 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 598 Haibin Lin, and Chuan Wu. HybridFlow: A flexible and efficient RLHF framework. In *EuroSys*,
 599 2025.

600

594 Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
 595 Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
 596 models via the lens of problem complexity. *arXiv preprint arXiv:2506.06941*, 2025.

597

598 David Silver and Richard S Sutton. Welcome to the era of experience. *Google AI*, 2025.

599

600 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
 601 Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of Go
 602 without human knowledge. *Nature*, 2017.

603

604 Xuerui Su, Shufang Xie, Guoqing Liu, Yingce Xia, Renqian Luo, Peiran Jin, Zhiming Ma, Yue
 605 Wang, Zun Wang, and Yuting Liu. Trust region preference approximation: A simple and stable
 606 reinforcement learning algorithm for LLM reasoning. *arXiv preprint arXiv:2504.04524*, 2025.

607

608 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
 609 for reinforcement learning with function approximation. In *NeurIPS*, 1999.

610

611 Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
 612 Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
 613 outcome-based feedback. *arXiv preprint arXiv:2211.14275*, 2022.

614

615 Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
 616 Sui. Math-Shepherd: Verify and reinforce LLMs step-by-step without human annotations. In
 617 *ACL*, 2024.

618

619 Yibin Wang, Zhimin Li, Yuhang Zang, Chunyu Wang, Qinglin Lu, Cheng Jin, and Jiaqi Wang.
 620 Unified multimodal chain-of-thought reward model through reinforcement fine-tuning. *arXiv
 621 preprint arXiv:2505.03318*, 2025a.

622

623 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
 624 He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
 625 models with one training example. *arXiv preprint arXiv:2504.20571*, 2025b.

626

627 Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
 628 Tang, Xiaowei Lv, et al. Light-R1: Curriculum SFT, DPO and RL for long CoT from scratch and
 629 beyond. *arXiv preprint arXiv:2503.10460*, 2025.

630

631 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
 632 Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh Sandha, Sid-
 633 dartha Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie Neiswanger, and Micah
 634 Goldblum. LiveBench: A challenging, contamination-limited LLM benchmark. In *ICLR*, 2025.

635

636 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 637 Zhirong Wu, and Chong Luo. Logic-RL: Unleashing LLM reasoning with rule-based reinforce-
 638 ment learning. *arXiv preprint arXiv:2502.14768*, 2025.

639

640 Shunyu Yao. The second half. <https://ysymyth.github.io/The-Second-Half/>,
 641 2025.

642

643 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 644 Liu, Lingjun Liu, Xin Liu, et al. DAPO: An open-source LLM reinforcement learning system at
 645 scale. *arXiv preprint arXiv:2503.14476*, 2025.

646

647 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
 648 reinforcement learning really incentivize reasoning capacity in LLMs beyond the base model?
 649 *arXiv preprint arXiv:2504.13837*, 2025.

650

651 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. SimpleRL-
 652 Zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *arXiv
 653 preprint arXiv:2503.18892*, 2025.

654

655 Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
 656 is already half the answer: Fully unsupervised LLM reasoning incentivization. *arXiv preprint
 657 arXiv:2504.05812*, 2025.

648 Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The surprising
 649 effectiveness of negative reinforcement in LLM reasoning. *arXiv preprint arXiv:2506.01347*,
 650 2025.

651
 652 **A APPENDIX**

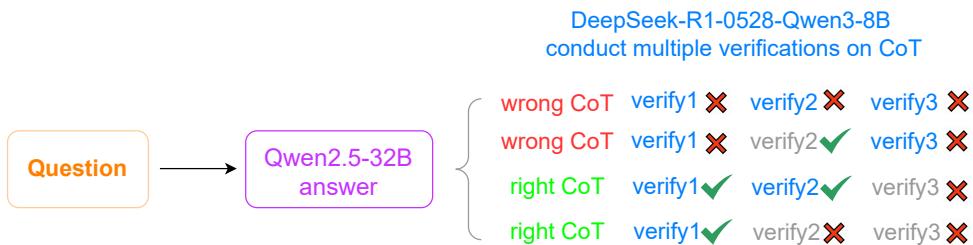
653 **A.1 DATA SOURCES**

654 For math benchmarks studied in this paper, we leverage the following data sources: AIME 2025¹,
 655 AIME 2024², Math-500³, AMC23⁴, Minerva⁵.

656 For training and evaluation of DAPO (Yu et al., 2025), we reuse their training data (<https://huggingface.co/datasets/BytedTsinghua-SIA/DAPO-Math-17k>) and processed
 657 version of AIME 2024 (<https://huggingface.co/datasets/BytedTsinghua-SIA/AIME-2024>). Please note that they have duplicated questions multiple times and explained in the
 658 dataset page that the purpose is to be compatible with an old version of VERL (Sheng et al., 2025).
 659 We reuse the prompt template of DAPO to evaluate their *Pass@K* and *CoT-Pass@K* performance
 660 on other benchmarks.

661 Besides, we follow the official LiveCodeBench repository⁶ to perform Pass@K evaluations on com-
 662 petitive coding.

663 **A.2 LLM-AS-A-CoT-JUDGE FOR MATH REASONING**



680 Figure 7: An intuitive diagram to illustrate the benefits of our multi-verification system: simultane-
 681 ously considering *any-correct*, *all-correct*, and *majority-correct* helps us to mitigate false positives
 682 and false negatives within individual verifications.

683 We use a much more specialized LLM on mathematical reasoning (DeepSeek-R1-0528-Qwen3-
 684 8B) as the verifier to examine the reasoning steps of base LLM, Qwen2.5-32B. Meanwhile, we
 685 also acknowledge the existence of verification errors and manually checked many of them to con-
 686 firm the reliability of this verification. To further mitigate potential verification errors, we design a
 687 multi-verification approach, as shown in Figure 7). For each reasoning CoT, we conduct multiple
 688 verifications independently and calculate three aggregation metrics:

689

- *All-correct*: Chains of Thought that pass all verification attempts
- *Majority-correct*: Chains of Thought that pass most verification attempts
- *Any-correct*: Chains of Thought that pass at least one verification attempt (capturing po-
 690 tential error recovery cases)

691¹<https://huggingface.co/datasets/opencompass/AIME2025>

692²https://huggingface.co/datasets/HuggingFaceH4/aime_2024

693³<https://huggingface.co/datasets/HuggingFaceH4/MATH-500>

694⁴<https://huggingface.co/datasets/math-ai/amc23>

695⁵<https://huggingface.co/datasets/math-ai/minervamatht>

696⁶<https://github.com/LiveCodeBench/LiveCodeBench>

This multi-verification approach can ensure us to have a comprehensive view of CoT correctness because the *all-correct* strategy mitigates false positives and the *any-correct* option reduces false negatives. Let p_{fp} and p_{fn} represent the per-attempt false positive and false negative rates, respectively. For n independent verification attempts, we observe:

- *All-correct*: The false positive rate decays exponentially as p_{fp}^n
- *Any-correct*: The false negative rate decays exponentially as p_{fn}^n

In our study, we employ $n = 3$ verification attempts for each CoT.

Moreover, we provide the prompt template used for DeepSeek-R1-0528-Qwen3-8B as follows.

Our Prompt Template for Verifier DeepSeek-R1-0528-Qwen3-8B

You are an expert in mathematics and logical reasoning. Your task is to evaluate the correctness of a solution to a given math problem, with a **strong emphasis on the reasoning process**, not just the final answer.

Below is the **Problem** and the **Solution (Provided by another AI model)**:

—
Problem:

 {{question}}

Solution (Provided by another AI model):

 {{solution}}

—
Please perform the following tasks:

1. **Analyze the solution step-by-step**, paying close attention to: - Computational accuracy - Logical consistency - Conceptual understanding - Whether the reasoning is valid and complete

2. **Identify any issues or errors in the reasoning**, even if the final answer is correct. Classify them into the following categories (if applicable): - **Calculation Error**: Mistakes in arithmetic, algebraic manipulation, or numerical computation. - **Logical Error**: Invalid reasoning, flawed logic, or incorrect inference. - **Conceptual Error**: Misunderstanding or misuse of mathematical concepts or definitions. - **Omission / Incompleteness**: Missing steps, incomplete justification, or not addressing all parts of the question. - **Other**: Any other type of error that does not fit into the above categories.

3. **Provide a final judgment** on whether the solution is logically sound and free of errors in reasoning.

Please format your response as follows:

—
Issues Identified:

 - [Issue 1]: [Classification] - [Brief explanation] - [Issue 2]: [Classification] - [Brief explanation] - ...

Let's think step by step and output your final judgment within `\boxed{}`
`\boxed{yes}` or `\boxed{no}`

A.3 REVISITING PASS@K EXPERIMENTS FOR SKYWORK-OR1

Skywork-OR1 (He et al., 2025) has generously shared their complete training recipes, claiming to enhance distilled LLMs with more powerful reasoning capabilities through RLVR. Therefore, we conduct the Pass@K experiments on their models to understand how RLVR could improve distilled LLMs.

Figure 8 shows the Pass@K comparisons between Skywork-OR1-7B and DeepSeek-R1-Distill-Qwen-7B on LiveCodeBench-v6. We can also observe a significant improvement of both sampling efficiency (Pass@1) and reasoning boundary (Pass@K, K up to 1024). This conclusion is consistent with the observations for Figure 3 in the main paper.

However, in math domains, applying RLVR to distilled LLMs seems to merely deliver sampling efficiency improvements. As shown in Figure 9, we observe that even using the CoT-Pass@K metric,

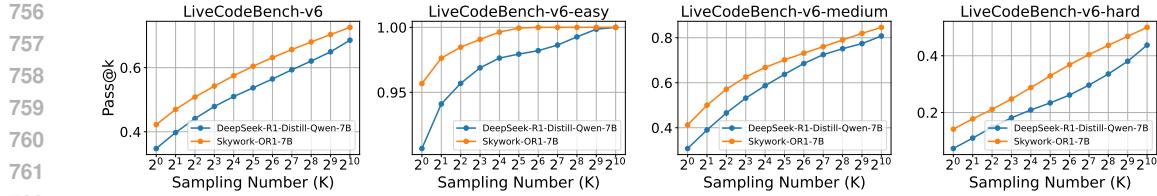


Figure 8: Comparisons of Pass@K on LiveCodeBench-v6 and its different difficulty-level subsets. Here the distilled LLM is DeepSeek-R1-Distill-Qwen-7B, and the post-RLVR model is Skywork-OR1-7B.

Skywork-OR1-Math-7B and DeepSeek-R1-Distill-Qwen-7B do not have distinct Pass@K gaps for large K values. We suspect the reason is that the distilled LLM may already master major reasoning capabilities that can be learned with RLVR using answer correctness as the reward. So in math domains, their main improvements lie in Pass@1. In contrast, for code domains, applying RLVR to distilled LLMs can still stimulate them to fit for real-world execution feedback, thereby incentivizing extended reasoning boundary.

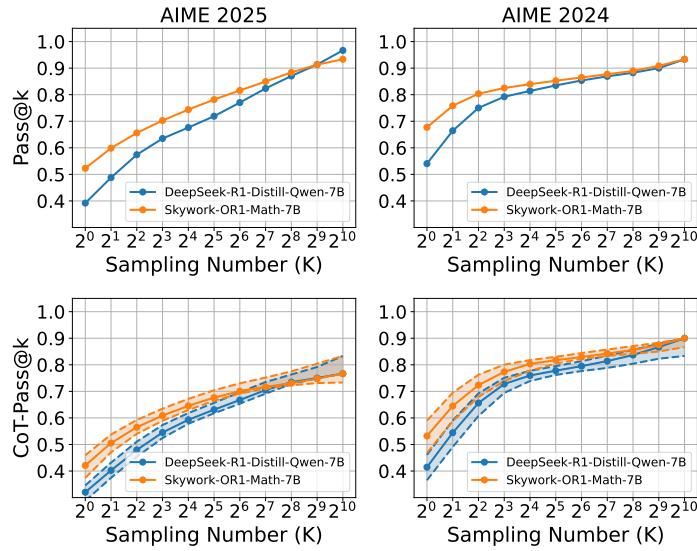


Figure 9: Comparisons of Pass@K (the top row) and CoT-Pass@K (the bottom row) on AIME 2024, 2025 to show how RLVR could improve distilled LLMs. Here the distilled LLM is DeepSeek-R1-Distill-Qwen-7B, and the post-RLVR model is Skywork-OR1-Math-7B. For CoT-Pass@K, we perform multiple verifications for each CoT using DeepSeek-R1-0528-Qwen3-8B, and display the results determined by *any-correct*, *all-correct*, and *majority-correct* strategies, which constitute the shaded area in lower subplots.

A.4 PROOF AND ADDITIONAL THEORETICAL ANALYSIS

Below we include the detailed proof for Theorem 1.

Proof 1 Let $p_c = P(\mathcal{I}_{CoT}(c_i) = 1)$ be the current probability of generating a correct CoT. The expected reward for a response y_i is:

$$\mathbb{E}[R(y_i)] = \begin{cases} \alpha & \text{if } \mathcal{I}_{CoT}(c_i) = 1 \\ \beta & \text{if } \mathcal{I}_{CoT}(c_i) = 0 \end{cases} \quad (6)$$

The group-level expected reward $\mu \triangleq \mathbb{E}[\mu_Y]$ is:

$$\mu = p_c \alpha + (1 - p_c) \beta. \quad (7)$$

810 For large G , the group mean $\mu_{\mathbf{Y}}$ and variance $\sigma_{\mathbf{Y}}^2$ concentrate around their expectations:
 811

$$\mu_{\mathbf{Y}} \xrightarrow{G \rightarrow \infty} \mu \quad (8)$$

$$\sigma_{\mathbf{Y}}^2 \xrightarrow{G \rightarrow \infty} \sigma^2 > 0. \quad (9)$$

815 The expected advantage conditional on CoT correctness is:
 816

$$\mathbb{E}[\hat{A}(y_i) \mid \mathcal{I}_{CoT}(c_i) = 1] \xrightarrow{G \rightarrow \infty} \frac{\alpha - \mu}{\sigma} \quad (10)$$

$$\mathbb{E}[\hat{A}(y_i) \mid \mathcal{I}_{CoT}(c_i) = 0] \xrightarrow{G \rightarrow \infty} \frac{\beta - \mu}{\sigma}. \quad (11)$$

821 Substituting equation 7 into equation 10 and equation 11:
 822

$$\mathbb{E}[\hat{A}(y_i) \mid \text{correct CoT}] \rightarrow \frac{(1 - p_c)(\alpha - \beta)}{\sigma} \quad (12)$$

$$\mathbb{E}[\hat{A}(y_i) \mid \text{incorrect CoT}] \rightarrow \frac{-p_c(\alpha - \beta)}{\sigma}. \quad (13)$$

827 Since $\alpha > \beta$ (by equation 4 under the Logic Prior assumption) and $\sigma > 0$, we have:
 828

$$\begin{aligned} (1 - p_c)(\alpha - \beta)/\sigma &> 0, \\ -p_c(\alpha - \beta)/\sigma &< 0, \end{aligned}$$

831 proving inequalities equation 5.
 832

833 The GRPO policy gradient update in equation 3, $\nabla_{\theta} J(\theta) \approx \frac{1}{G} \sum_{i=1}^G \hat{A}(y_i) \nabla_{\theta} \log \pi_{\theta}(y_i \mid q)$, on
 834 average increases the likelihood of responses with $\hat{A}(y_i) > 0$ (correct CoTs) and decreases it for
 835 $\hat{A}(y_i) < 0$ (incorrect CoTs). Thus, p_c increases monotonically.
 836

837 **Discussions on (μ, σ^2) in Theorem 1** From equation 7, we know that the group reward mean is
 838 given by $\mu = p_c\alpha + (1 - p_c)\beta$. Furthermore, we can derive the exact formula for the variance σ^2 in
 839 equation 9 and analyze their impacts together with p_c , α , and β on policy iterations.
 840

The sample variance $\sigma_{\mathbf{Y}}^2$ converges to the true variance σ^2 :

$$\sigma_{\mathbf{Y}}^2 = \frac{1}{G} \sum_{j=1}^G (R(y_j) - \mu_{\mathbf{Y}})^2 \xrightarrow{G \rightarrow \infty} \text{Var}(R(y_j)) \equiv \sigma^2,$$

845 where $\text{Var}(R(y_j))$ can be computed using the law of total variance:
 846

$$\text{Var}(R(y_j)) = \underbrace{\text{Var}(\mathbb{E}[R(y_j) \mid \mathcal{I}_{CoT}(c_j)])}_{\text{Variance of conditional expectation}} + \underbrace{\mathbb{E}[\text{Var}(R(y_j) \mid \mathcal{I}_{CoT}(c_j))]}_{\text{Expectation of conditional variance}}.$$

849 First term:
 850

$$\mathbb{E}[R(y_j) \mid \mathcal{I}_{CoT}(c_j)] = \begin{cases} \alpha & \text{if } \mathcal{I}_{CoT}(c_j) = 1 \\ \beta & \text{if } \mathcal{I}_{CoT}(c_j) = 0 \end{cases}.$$

853 The random variable $\mathbb{E}[R(y_j) \mid \mathcal{I}_{CoT}(c_j)]$ has variance:
 854

$$\text{Var}(\mathbb{E}[R(y_j) \mid \mathcal{I}_{CoT}(c_j)]) = (\alpha - \beta)^2 p_c (1 - p_c).$$

856 Second term:
 857

$$\text{Var}(R(y_j) \mid \mathcal{I}_{CoT}(c_j)) = \begin{cases} \alpha(1 - \alpha) & \text{if } \mathcal{I}_{CoT}(c_j) = 1 \\ \beta(1 - \beta) & \text{if } \mathcal{I}_{CoT}(c_j) = 0 \end{cases},$$

859 so its expectation is:
 860

$$\mathbb{E}[\text{Var}(R(y_j) \mid \mathcal{I}_{CoT}(c_j))] = p_c \alpha(1 - \alpha) + (1 - p_c) \beta(1 - \beta).$$

862 Thus:
 863

$$\sigma^2 = (\alpha - \beta)^2 p_c (1 - p_c) + p_c \alpha(1 - \alpha) + (1 - p_c) \beta(1 - \beta). \quad (14)$$

864 Substituting μ and σ into equation 12 and equation 13, we have
 865

$$\mathbb{E}[\hat{A}(y_i) \mid \text{correct CoT}] \rightarrow \frac{(1 - p_c)(\alpha - \beta)}{\sqrt{(\alpha - \beta)^2 p_c(1 - p_c) + p_c\alpha(1 - \alpha) + (1 - p_c)\beta(1 - \beta)}},$$

$$\mathbb{E}[\hat{A}(y_i) \mid \text{incorrect CoT}] \rightarrow \frac{-p_c(\alpha - \beta)}{\sqrt{(\alpha - \beta)^2 p_c(1 - p_c) + p_c\alpha(1 - \alpha) + (1 - p_c)\beta(1 - \beta)}}.$$

871 An ideal pre-training on a high-capacity model could help to ensure that $\alpha \rightarrow 1$ and $\beta \rightarrow 0$ at the
 872 beginning of RLVR. In this condition, we have the following advantage estimates:
 873

$$\mathbb{E}[\hat{A}(y_i) \mid \text{correct CoT}] \rightarrow \sqrt{\frac{1 - p_c}{p_c}}, \quad \mathbb{E}[\hat{A}(y_i) \mid \text{incorrect CoT}] \rightarrow -\sqrt{\frac{p_c}{1 - p_c}}.$$

876 In this ideal scenario, the role of human would be to prepare a comprehensive and diverse set of
 877 questions and answers, leveraging RLVR to automatically incentivize the model’s reasoning capa-
 878 bilities. However, in practice—the “unideal case”—it is often necessary to first fine-tune the base
 879 LLM to align its output with a proper reasoning distribution before applying RLVR.
 880

881 **Discussions on Key Observations in RLVR** Grounded in our theoretical analysis, we can now
 882 provide our unique explanations for several previously elusive yet important observations reported
 883 in DeepSeek-R1 (Guo et al., 2025).

884 Our Explanation of the Observation “*DeepSeek-R1-Zero achieved remarkable Pass@K performance*
 885 *on AIME 2024 but encountered challenges such as poor readability and language mixing.*”: Even
 886 DeepSeek-V3 (Liu et al., 2024) cannot guarantee ideal conditions where $\alpha \rightarrow 1, \beta \rightarrow 0$. As a result,
 887 cold-start data is required to rectify prior logic biases, motivating the R1 approach.
 888

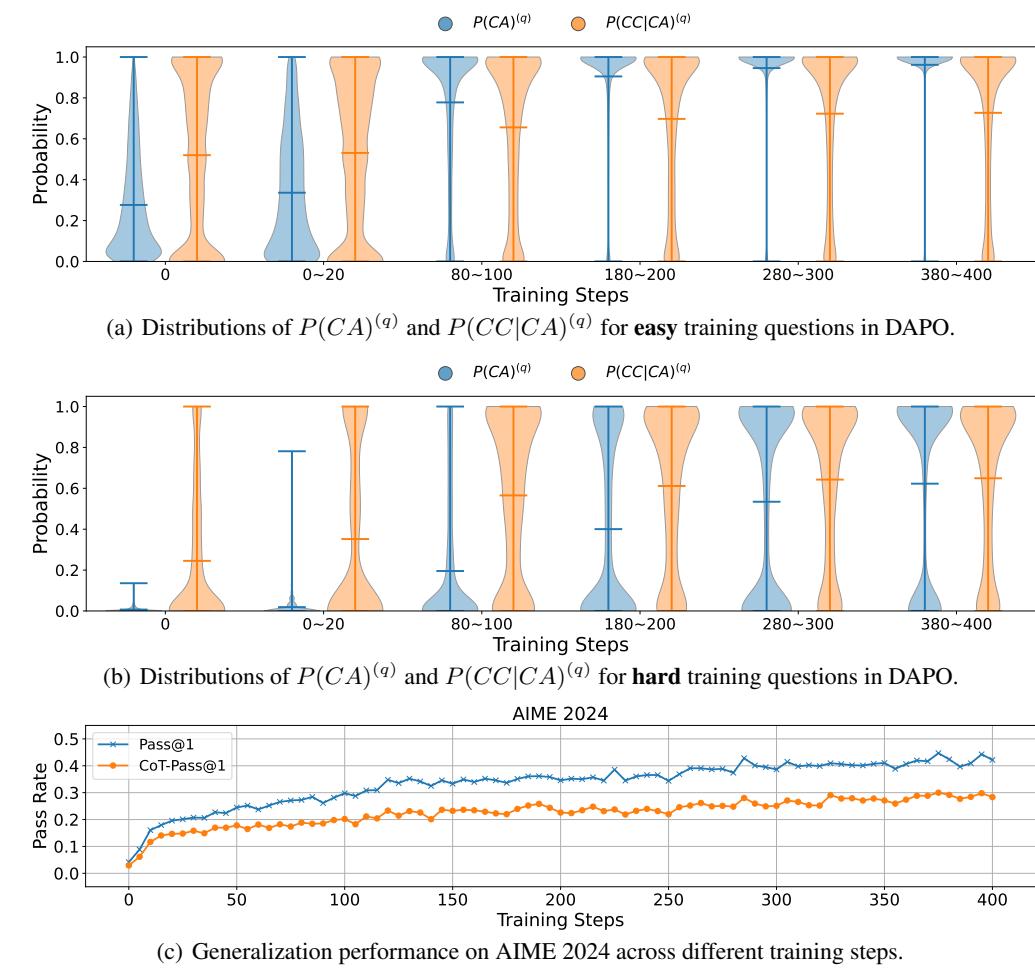
889 Our Explanation of the Observation “*The R1-Zero approach did not work well for the 32B dense*
 890 *model, yet distillation can be very effective.*”: Key factors such as (p_c, α, β) for the 32B base model
 891 are in an even worse state, causing pure RLVR to converge to suboptimal local solutions. Based on
 892 our analysis, the key to effective reasoning lies in learning correct CoTs. Therefore, the distillation
 893 approach can efficiently teach an LLM how to reason properly.
 894

894 A.5 ADDITIONAL DETAILS IN REPRODUCING DAPO TRAINING

896 Our reproduction was conducted on 32 AMD MI300X GPUs using the VERL framework (Sheng
 897 et al., 2025), and ran for over two weeks. Our run did not fully reproduce the *Pass@1* accuracy
 898 above 50% as reported by Yu et al. (2025), while we reached a comparable performance of around
 899 44% *Pass@1*, in line with a third-party reproduction (Chen et al., 2025a). We use the same verifier
 900 introduced in Section 3 to assess the correctness of both training and evaluation rollouts.

901 In addition to the performance evolution on fully optimized training questions highlighted in Fig-
 902 ure 4 of the main paper, we include performance evolution on hard questions and more continuous
 903 validation performance in Figure 10 to provide more comprehensive information. The additional
 904 observations are consistent with what we have introduced in the main paper. It is natural to ob-
 905 serve that RLVR begins to incentivize correct reasoning from the very beginning, as evidenced by
 906 increased $P(CC|CA)^{(q)}$ values in the early training steps shown in Figures 10(a) and 10(b). These
 907 incentivized reasoning capabilities translate into improved generalization on unseen questions, as
 908 demonstrated by notable gains in CoT-Pass@K on AIME 2024 within the first 20 training steps in
 909 Figure 10(c). Note that each training step here corresponds to one round of PPO-style optimiza-
 910 tion (Schulman et al., 2017), which includes 16 gradient updates, according to the DAPO training
 911 script. Thus, we see that correct reasoning abilities begin to generalize after only a few gradient
 912 updates.
 913

914 Furthermore, the incentivization of correct reasoning on training questions appears to be a contin-
 915 uous process, as reflected by the steady increase in the mean of $P(CC|CA)^{(q)}$ throughout train-
 916 ing, for both easy and hard questions. Meanwhile, we again observe that $P(CA)^{(q)}$ (equivalent
 917 to $Pass@1^{(q)}$) is an unreliable metric, particularly for easy training questions. As shown in Fig-
 918 ure 10(a), the distribution of $P(CA)^{(q)}$ becomes highly skewed toward 1.0 after 180 steps, mislead-
 919 ingly suggesting that most questions are perfectly solved. However, examining the distribution of



972 evolve over time, as suggested in recent studies (Jain et al., 2025; White et al., 2025). Additionally,
 973 we agree with the viewpoint of Yao (2025) that future research advancements may rely more on
 974 designing new evaluations, benchmarks, and environments.
 975

976 **Call for Lightweight yet Powerful CoT Verifiers** While DeepSeek-R1-0528-Qwen3-8B serves
 977 as a useful CoT verifier, it is not infallible. Conflicting verification results across multiple queries
 978 reveal the challenges of false-positive and false-negative verifications. To tackle this, we combine
 979 multiple verification strategies, including different voting rules, to improve robustness. Looking
 980 forward, there is a pressing need for light yet reliable CoT verifiers that can serve as standardized
 981 evaluators beyond the coarse-grained Pass@K metric. This direction also relates to previous studies
 982 on process reward modeling (Lightman et al., 2024; Uesato et al., 2022; Wang et al., 2024).
 983

984 **Scaling RLVR or Scaling Pre-Training** While the scaling of pre-training has led to transformative
 985 progress in LLMs (Kaplan et al., 2020; Liu et al., 2024), enabling the transition to the era of
 986 artificial general intelligence, we argue that scaling RLVR could be equally pivotal, given the em-
 987 pirical evidences and theoretical foundation that all demonstrate its real incentivization beyond base
 988 LLMs. As modern LLMs approach the limits of language token exposure, learning from experi-
 989 ence (Silver & Sutton, 2025) may represent the next leap. Recent efforts by leading research teams
 990 suggest a growing emphasis on this direction (Guo et al., 2025; DeepSeek, 2025; Gemini, 2024;
 991 Grok, 2025; OpenAI, 2025; Qwen, 2025; Gemini, 2025; Anthropic, 2025; Mistral.AI, 2025). For
 992 the broad open research community, understanding the foundations and limitations of current RLVR
 993 algorithms is crucial to push this direction further.
 994

995 **New RLVR Algorithms and Beyond** With our insight that RLVR implicitly incentivizes correct
 996 reasoning in base LLMs, we anticipate the development of new algorithmic paradigms. These may
 997 include optimization formulations or objective functions, such as policy-gradient approaches (Sutton
 998 et al., 1999; Schulman et al., 2017), new likelihood-based optimization objectives (Chen et al.,
 999 2025a; Zhu et al., 2025), and preference optimization frameworks (Rafailov et al., 2023; Su et al.,
 1000 2025). The key principle is that the new algorithms should be designed to more directly incentivize
 1001 correct reasoning paths, alleviating inherent logical biases in base LLMs.
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026
1027

A.7 CASE STUDIES

1028
1029
1030
1031
1032
1033

We perform manual verification on difficult problems from multiple benchmarks, focusing on cases where the base model occasionally produces a correct final answer despite flawed reasoning in its CoT. For each case study, we present the original question, the full response generated by Qwen2.5-32B, and a detailed breakdown of key errors identified by DeepSeek-R1-0528-Qwen3-8B, explicitly linking each error to the corresponding flawed reasoning segments in the CoT. For layout and color schemes, we follow the visualization strategies used in Yue et al. (2025).

1034
1035

A.7.1 CASE STUDIES ON AIME 2024

1036
1037

Question

1038
1039
1040
1041
1042AIME24 I Question No.9 (dataset id 74)⁷

Let A, B, C , and D be points on the hyperbola $\frac{x^2}{20} - \frac{y^2}{24} = 1$ such that $ABCD$ is a rhombus whose diagonals intersect at the origin. Find the greatest real number that is less than BD^2 for all such rhombi.

1043
1044

Qwen2.5-32B Answer

1045
1046

The diagonals of a rhombus are perpendicular and bisect each other, so $ABCD$ is a square. Let $a = BD = AC$.

1047
1048
1049
1050
1051

DeepSeek-R1-0528-Qwen3-8B verify: - **Conceptual Error**: The solution incorrectly assumes that $ABCD$ is a square, whereas the problem only specifies that it is a rhombus. A rhombus does not necessarily have equal diagonals, so this assumption is invalid.

1052
1053
1054
1055

Then $a^2 = 2(AB^2)$. The equation of the hyperbola can be rewritten as $y^2 = 24\left(\frac{x^2}{20} - 1\right) = \frac{6}{5}x^2 - 24$. Let P be the point where the diagonals intersect. Then $OP = \frac{a}{2}$, so $P = \left(\frac{a}{2}, \frac{a}{2}\right)$.

1056
1057
1058
1059
1060

DeepSeek-R1-0528-Qwen3-8B verify: - **Logical Error**: The solution defines P as the intersection point and sets it to $(a/2, a/2)$, but the problem states that the diagonals intersect at the origin. This inconsistency leads to incorrect reasoning, as P should be $(0,0)$ based on the problem statement.

1061
1062
1063
1064

Since P lies on the hyperbola, we have $\frac{a^2}{4} = \frac{6}{5}\left(\frac{a^2}{4}\right) - 24$, so $\frac{a^2}{20} = 24$, or $a^2 = 480$. Therefore, the greatest real number that is less than BD^2 for all such rhombi is 480 .

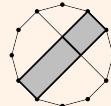
1065

Question

1066

AIME24 II Question No.15(dataset id 81)⁸1067
1068
1069
1070

Find the number of rectangles that can be formed inside a fixed regular dodecagon (12-gon) where each side of the rectangle lies on either a side or a diagonal of the dodecagon. The diagram below shows three of those rectangles.

1071
1072
1073
1074
1075

⁷https://artofproblemsolving.com/wiki/index.php/2024_AIME_I_Problems/Problem_9

⁸https://artofproblemsolving.com/wiki/index.php/2024_AIME_II_Problems/Problem_15

1080
1081**Qwen2.5-32B Answer**1082
1083
1084

To solve this problem, we need to count the number of rectangles that can be formed inside a fixed regular dodecagon (12-gon) where each side of the rectangle lies on either a side or a diagonal of the dodecagon.

1085
1086
1087

First, let's consider the sides of the rectangle. Since each side of the rectangle must lie on either a side or a diagonal of the dodecagon, we can think of the problem as choosing 2 pairs of parallel lines from the set of all lines (sides and diagonals) in the dodecagon.

1088
1089

There are 12 sides in a dodecagon. Additionally, there are 12 diagonals that connect every other vertex, and 12 diagonals that connect every third vertex. So, there are a total of 36 lines in the dodecagon.

1090
1091
1092

Now, let's count the number of ways to choose 2 pairs of parallel lines. We can do this by considering the different types of lines and the number of ways to choose 2 lines from each type:

1093
1094

1. Choosing 2 lines from the 12 sides: There are 12 choose 2 ways to do this, which is equal to 66.

1095
1096
1097
1098
1099

DeepSeek-R1-0528-Qwen3-8B verify: the method of counting two pairs of parallel lines assumes that any such choice forms a rectangle, which is not necessarily true as the lines may not intersect properly to form a rectangle.

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110

2. Choosing 2 lines from the 12 diagonals that connect every other vertex: There are 12 choose 2 ways to do this, which is equal to 66.

3. Choosing 2 lines from the 12 diagonals that connect every third vertex: There are 12 choose 2 ways to do this, which is equal to 66.

4. Choosing 1 line from the sides and 1 line from the diagonals that connect every other vertex: There are 12 * 12 ways to do this, which is equal to 144.

5. Choosing 1 line from the sides and 1 line from the diagonals that connect every third vertex: There are 12 * 12 ways to do this, which is equal to 144.

6. Choosing 1 line from the diagonals that connect every other vertex and 1 line from the diagonals that connect every third vertex: There are 12 * 12 ways to do this, which is equal to 144.

1111
1112
1113
1114
1115

DeepSeek-R1-0528-Qwen3-8B verify: **Logical Error**: The solution only considers three types of lines (sides, diagonals connecting every other vertex, and diagonals connecting every third vertex), but there are additional diagonals (steps 4, 5, and 6). By ignoring these, the classification is incomplete.

1116
1117
1118
1119
1120
1121
1122

Adding up all these possibilities, we get a total of $66 + 66 + 66 + 144 + 144 + 144 = 630$. However, we have counted each rectangle twice (once for each pair of parallel lines), so we need to divide the total by 2 to get the final answer: $630 / 2 = 315$.

Therefore, the number of rectangles that can be formed inside a fixed regular dodecagon (12-gon) where each side of the rectangle lies on either a side or a diagonal of the dodecagon is 315.

1123
1124**Question**1125
1126
1127
1128
1129
1130
1131
1132
1133**AIME24 I Question No.11(dataset id 62)⁹**

Each vertex of a regular octagon is independently colored either red or blue with equal probability. The probability that the octagon can then be rotated so that all of the blue vertices end up at positions where there had been red vertices is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m + n$.

⁹https://artofproblemsolving.com/wiki/index.php/2024_AIME_I_Problems/Problem_11

1134
1135**Qwen2.5-32B Answer**1136
1137

To solve this problem, we need to consider the possible colorings of the vertices of the octagon and how they can be rotated.

1138
1139

First, let's consider the number of ways to color the vertices of the octagon. Since each vertex can be colored either red or blue, there are $2^8 = 256$ possible colorings.

1140
1141

Next, we need to consider the rotations of the octagon. Since the octagon has 8 vertices, there are 8 possible rotations.

1142
1143
1144

Now, let's consider the condition that all blue vertices end up at positions where there were originally red vertices. This means that the number of blue vertices must be less than or equal to the number of red vertices. Since there are 8 vertices in total, the number of blue vertices can be 0, 1, 2, 3, or 4.

1145
1146

For each of these cases, we need to count the number of colorings that satisfy the condition and divide by the total number of colorings to find the probability.

1147
1148

Case 1: 0 blue vertices There is only 1 way to color the vertices in this case (all red), and it satisfies the condition. The probability is $\frac{1}{256}$.

1149
1150

Case 2: 1 blue vertex There are $\binom{8}{1} = 8$ ways to choose the position of the blue vertex, and all of them satisfy the condition. The probability is $\frac{8}{256} = \frac{1}{32}$.

1151
1152
1153
1154

Case 3: 2 blue vertices There are $\binom{8}{2} = 28$ ways to choose the positions of the blue vertices. However, not all of them satisfy the condition. We need to subtract the cases where the blue vertices are adjacent. There are 8 such cases (one for each rotation of the octagon). So, there are $28 - 8 = 20$ colorings that satisfy the condition. The probability is $\frac{20}{256} = \frac{5}{64}$.

1155

DeepSeek-R1-0528-Qwen3-8B verify: - **Logical Error**: The solution incorrectly assumes that subtracting cases based on adjacency or specific shapes (e.g., "V" shape) ensures the condition does not hold. However, the condition depends on the existence of a rotation that maps all blue vertices to red positions, not on the adjacency or shape of the blue vertices. For example, with two blue vertices, adjacent configurations can still satisfy the condition for some rotations, so subtracting them is invalid.

1163
1164
1165
1166
1167

Case 4: 3 blue vertices There are $\binom{8}{3} = 56$ ways to choose the positions of the blue vertices. However, not all of them satisfy the condition. We need to subtract the cases where the blue vertices are adjacent or form a "V" shape. There are 16 such cases (one for each rotation of the octagon). So, there are $56 - 16 = 40$ colorings that satisfy the condition. The probability is $\frac{40}{256} = \frac{5}{32}$.

1168
1169
1170
1171
1172

Case 5: 4 blue vertices There are $\binom{8}{4} = 70$ ways to choose the positions of the blue vertices. However, not all of them satisfy the condition. We need to subtract the cases where the blue vertices are adjacent or form a "V" shape. There are 24 such cases (one for each rotation of the octagon). So, there are $70 - 24 = 46$ colorings that satisfy the condition. The probability is $\frac{46}{256} = \frac{23}{128}$.

1173
1174

Now, we need to sum up the probabilities for all cases and simplify the fraction:

1175
1176

$$\frac{1}{256} + \frac{1}{32} + \frac{5}{64} + \frac{5}{32} + \frac{23}{128} = \frac{1 + 8 + 20 + 40 + 46}{256} = \frac{115}{256}$$

1177
1178
1179

The fraction $\frac{115}{256}$ is already in its simplest form, so $m = 115$ and $n = 256$. Therefore, $m + n = 115 + 256 = \boxed{371}$.

1180
1181
1182
1183
1184
1185
1186
1187

1188
1189**Question**

1190

AIME24 I Question No.14(dataset id 65)¹⁰

1191

Let $ABCD$ be a tetrahedron such that $AB = CD = \sqrt{41}$, $AC = BD = \sqrt{80}$, and $BC = AD = \sqrt{89}$. There exists a point I inside the tetrahedron such that the distances from I to each of the faces of the tetrahedron are all equal. This distance can be written in the form $\frac{m\sqrt{n}}{p}$, where m , n , and p are positive integers, m and p are relatively prime, and n is not divisible by the square of any prime. Find $m + n + p$.

1192

1193

1194

1195

1196

1197

1198

To find the distance from the point I to each of the faces of the tetrahedron, we can use the formula for the volume of a tetrahedron and the fact that the distances from I to each of the faces are equal.

1202

1203

First, let's find the volume of the tetrahedron using Heron's formula for the area of a triangle and the formula for the volume of a tetrahedron:

1204

$$V = \frac{1}{6} \cdot \text{base area} \cdot \text{height}$$

1205

We can choose any face as the base, so let's use the face ABC :

1206

$$AB = \sqrt{41}, AC = \sqrt{80}, \text{ and } BC = \sqrt{89}$$

1207

Using Heron's formula, we can find the area of the triangle ABC :

1208

$$s = \frac{AB+AC+BC}{2} = \frac{\sqrt{41}+\sqrt{80}+\sqrt{89}}{2}$$

1209

$$A_{ABC} = \sqrt{s(s-AB)(s-AC)(s-BC)}$$

1210

Now, let's find the height of the tetrahedron from the point I to the face ABC . We know that the distances from I to each of the faces are equal, so let's call this distance h .

1211

$$V = \frac{1}{6} \cdot A_{ABC} \cdot h$$

1212

1213

1214

1215

1216

DeepSeek-R1-0528-Qwen3-8B verify: ***Conceptual Error** - The volume formula

$$V = \frac{1}{6} \cdot A_{ABC} \cdot h \text{ is incorrect for the incenter of the tetrahedron}$$

1217

1218

1219

1220

1221

1222

We can find the volume of the tetrahedron using the Cayley-Menger determinant:

$$V^2 = \frac{1}{288} \cdot \begin{vmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 41 & 80 & 89 \\ 1 & 41 & 0 & 89 & 41 \\ 1 & 80 & 89 & 0 & 80 \\ 1 & 89 & 41 & 80 & 0 \end{vmatrix}$$

1223

1224

1225

1226

1227

1228

DeepSeek-R1-0528-Qwen3-8B verify: - ***Calculation Error** - The Cayley-Menger determinant matrix contains multiple incorrect values. For example, the element in row 2, column 5 should be 80 (BD^2) but is 41 , and the element in row 3, column 4 should be 41 (CD^2) but is 80 . This affects the volume calculation.

1229

1230

1231

1232

Solving for V , we get:

$$V = \frac{1}{6} \cdot A_{ABC} \cdot h$$

Now, we can solve for h :

$$h = \frac{6V}{A_{ABC}}$$

1233

1234

1235

1236

1237

1238

1239

1240

1241

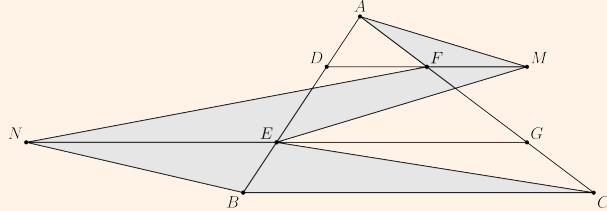
After calculating the values, we find that h can be written in the form $\frac{m\sqrt{n}}{p}$, where m , n , and p are positive integers, m and p are relatively prime, and n is not divisible by the square of any prime.

The final answer is $m + n + p = \boxed{104}$.

¹⁰https://artofproblemsolving.com/wiki/index.php/2024_AIME_I_Problems/Problem_14

1242 A.7.2 CASE STUDIES ON AIME 2025
12431244 Question
12451246 AIME25 I Question No.2¹¹

1247 On $\triangle ABC$ points A, D, E , and B lie in that order on side \overline{AB} with $AD = 4$, $DE = 16$, and
1248 $EB = 8$. Points A, F, G , and C lie in that order on side \overline{AC} with $AF = 13$, $FG = 52$, and
1249 $GC = 26$. Let M be the reflection of D through F , and let N be the reflection of G through
1250 E . Quadrilateral $DEGF$ has area 288. Find the area of heptagon $AFN B C E M$.

1258 Qwen2.5-32B Answer
1259

1260 To solve the problem, we need to find the area of the heptagon $AFN B C E M$. We know that
1261 $DEGF$ has an area of 288, and we need to find the areas of the triangles AFM , NCE , and
1262 MNE .

1263 First, let's find the area of triangle AFM . Since M is the reflection of D through F , triangle
1264 AFM is congruent to triangle AFD . The base of triangle AFD is $AF = 13$, and its height
1265 is the same as the height of triangle ADE , which is $\frac{288}{DE+EG} = \frac{288}{16+52} = \frac{288}{68} = \frac{72}{17}$. So, the
1266 area of triangle AFM is $\frac{1}{2} \cdot AF \cdot \text{height} = \frac{1}{2} \cdot 13 \cdot \frac{72}{17} = \frac{468}{17}$.

1268 DeepSeek-R1-0528-Qwen3-8B verify: - - **Conceptual Error**: The solution in-
1269 correctly assumes that the height of triangle ADE is derived from the area of quadri-
1270 lateral $DEGF$ using $DE + EG$, but EG is not defined in the problem.

1272 Next, let's find the area of triangle NCE . Since N is the reflection of G through E , triangle
1273 NCE is congruent to triangle GCE . The base of triangle GCE is $GC = 26$, and its height
1274 is the same as the height of triangle GEB , which is $\frac{288}{GE+EB} = \frac{288}{52+8} = \frac{288}{60} = \frac{24}{5}$. So, the
1275 area of triangle NCE is $\frac{1}{2} \cdot GC \cdot \text{height} = \frac{1}{2} \cdot 26 \cdot \frac{24}{5} = \frac{312}{5}$.

1277 DeepSeek-R1-0528-Qwen3-8B verify: Similarly, for triangle NCE , the height is cal-
1278 culated using $GE + EB$, but GE is not given; the solution uses 52 (FG) incorrectly.

1280 Finally, let's find the area of triangle MNE . Since M is the reflection of D through F
1281 and N is the reflection of G through E , triangle MNE is congruent to triangle DGE . The
1282 base of triangle DGE is $DE + EG = 16 + 52 = 68$, and its height is the same as the
1283 height of triangle DEG , which is $\frac{288}{DE+EG} = \frac{288}{68} = \frac{72}{17}$. So, the area of triangle MNE is
1284 $\frac{1}{2} \cdot DE + EG \cdot \text{height} = \frac{1}{2} \cdot 68 \cdot \frac{72}{17} = 144$.

1286 DeepSeek-R1-0528-Qwen3-8B verify: The area calculation for triangle MNE uses
1287 $DE + EG$ as a base, which is not a valid base unless DE and EG are collinear.

1289 Now, we can find the area of the heptagon $AFN B C E M$ by adding the areas of the triangles
1290 AFM , NCE , MNE , and the quadrilateral $DEGF$: $\frac{468}{17} + \frac{312}{5} + 144 + 288 = \boxed{588}$.

1292
1293 ¹¹https://artofproblemsolving.com/wiki/index.php/2025_AIME_I_Problems/Problem_2

1296
1297**Question**

1298

AIME25 I Question No.11¹²

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

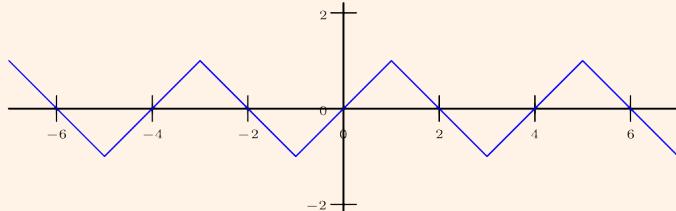
1310

1311

1312

1313

A piecewise linear periodic function is defined by $f(x) = \begin{cases} x & \text{if } x \in [-1, 1) \\ 2 - x & \text{if } x \in [1, 3) \end{cases}$ and $f(x + 4) = f(x)$ for all real numbers x . The graph of $f(x)$ has the sawtooth pattern. The parabola $x = 34y^2$ intersects the graph of $f(x)$ at finitely many points. The sum of the y -coordinates of these intersection points can be expressed in the form $\frac{a+b\sqrt{c}}{d}$, where a, b, c , and d are positive integers, a, b , and d have greatest common divisor equal to 1, and c is not divisible by the square of any prime. Find $a + b + c + d$.



1314

1315

Qwen2.5-32B Answer

1316

1317

1318

1319

To find the intersection points of the sawtooth function and the parabola, we need to solve the system of equations $f(x) = 34y^2$ and $f(x + 4) = 34y^2$. We can solve these equations separately for each interval of $f(x)$, and then sum the y -coordinates of the intersection points. Here's a Python code to do that:

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

```
'''python
import sympy as sp

# Define the variables
x, y = sp.symbols('x,y')

# Define the piecewise linear periodic function
f = sp.Piecewise((x, (x >= -1) & (x < 1)), (2 - x, (x >= 1) & (x < 3)))

# Define the parabola
parabola = 34*y**2

# Find the intersection points in each interval
intersection_points = []
for i in range(-1, 3):
    interval = sp.Interval(i, i+1, left_open=True, right_open=True)
    eq = sp.Eq(f, parabola)
    solutions = sp.solve(eq, y)
    for sol in solutions:
        if sol.is_real:
            intersection_points.append(sol)

# Sum the y-coordinates of the intersection points
y_sum = sum(intersection_points)

# Simplify the sum
y_sum_simplified = sp.simplify(y_sum)
```

¹²https://artofproblemsolving.com/wiki/index.php/2025_AIME_I_Problems/Problem_11

```

1350
1351 # Extract the coefficients a, b, c, and d
1352 a, b, c, d = sp.Wild('a'), sp.Wild('b'), sp.Wild('c'), sp.Wild('d')
1353 match = sp.collect(y_sum_simplified, sp.sqrt(sp.Wild('c'))).match(
1354     a + b*sp.sqrt(c))/d
1355 a, b, c, d = match[a], match[b], match[c], match[d]
1356
1357 # Calculate the final answer
1358 final_answer = a + b + c + d
1359 print(final_answer)
1360 ```

```

The output of this code is 259. Therefore, the answer is 259.

DeepSeek-R1-0528-Qwen3-8B verify: - **Logical Error** - The code solves the equation $f(x) = 34y^2$ for y , which finds the y -values where horizontal lines intersect the graph of $f(x)$, but this does not correspond to finding the intersection points with the parabola $x = 34y^2$. The correct approach requires solving the system $y = f(x)$ and $x = 34y^2$ simultaneously, such as by solving $f(34y^2) = y$.
- **Omission / Incompleteness** -**The code only considers one period of the function ($x \in [-1, 3]$)**, but due to the parabola $x = 34y^2$ with $|y| \leq 1$, x ranges from 0 to 34, covering multiple periods (since the function has period 4). Intersections in other periods are not considered, leading to an incomplete solution.

A.7.3 CASE STUDIES ON AMC23

Question

AMC 12 2023 A Problem 23(dataset id 15)¹³

How many ordered pairs of positive real numbers (a, b) satisfy the equation

$$(1 + 2a)(2 + 2b)(2a + b) = 32ab?$$

Qwen2.5-32B Answer

First, let's simplify the given equation:

$$(1 + 2a)(2 + 2b)(2a + b) = 32ab$$

Expanding the left side, we get:

$$(2 + 4a + 4b + 8ab)(2a + b) = 32ab$$

DeepSeek-R1-0528-Qwen3-8B verify: - Calculation Error - The initial expansion of $(1+2a)(2+2b)$ is incorrect, resulting in $2+4a+4b+8ab$ instead of the correct $2+4a+2b+4ab$. This error propagates through subsequent steps.

Expanding further:

$$4a + 8a^2 + 8ab + 16a^2b + 2b + 4ab + 8b^2 + 16ab^2 = 32ab$$

¹³https://artofproblemsolving.com/wiki/index.php/2023_AMC_12A_Problems/Problem_23

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Combining like terms:

$$8a^2 + 12ab + 8a^2b + 2b + 8b^2 + 16ab^2 = 28ab$$

Rearranging terms:

$$8a^2 + 8a^2b + 8b^2 + 16ab^2 = 16ab - 2b$$

Dividing both sides by 2:

$$4a^2 + 4a^2b + 4b^2 + 8ab^2 = 8ab - b$$

Now, let's try to factor the equation:

$$4a^2(1 + b) + 4b^2 + 8ab^2 = 8ab - b$$

Factoring out common terms:

$$4a^2(1 + b) + 4b^2(1 + 2a) = 8ab - b$$

Now, let's try to solve for a and b :

$$4a^2(1 + b) = 8ab - b - 4b^2(1 + 2a)$$

Dividing both sides by 4:

$$a^2(1 + b) = 2ab - \frac{b}{4} - b^2(1 + 2a)$$

Now, let's try to find a solution for a and b :

$$a^2(1 + b) = 2ab - \frac{b}{4} - b^2(1 + 2a)$$

One possible solution is when $a = b$:

$$a^2(1 + a) = 2a^2 - \frac{a}{4} - a^2(1 + 2a)$$

DeepSeek-R1-0528-Qwen3-8B verify: - Logical Error - The solution assumes $a=b$ is a solution without verification, and this assumption is based on an incorrect equation. The derivation under $a=b$ leads to a non-zero result, contradicting the claim of a solution.

Simplifying:

$$a^3 + a^2 = 2a^2 - \frac{a}{4} - a^3 - 2a^2$$

Combining like terms:

$$2a^3 = \frac{a}{4}$$

Multiplying both sides by 4:

$$8a^3 = a$$

Dividing both sides by a :

$$8a^2 = 1$$

Taking the square root of both sides:

$$a = \frac{1}{\sqrt{8}}$$

Since $a = b$, we have:

$$b = \frac{1}{\sqrt{8}}$$

Thus, there is only one ordered pair (a, b) that satisfies the equation:

1458
1459**Question**1460
1461
1462
1463
1464**AMC 12 2023 A Problem 19(dataset id 10)¹⁴**

What is the product of all solutions to the equation

$$\log_{7x} 2023 \cdot \log_{289x} 2023 = \log_{2023x} 2023$$

1465
1466
1467**Qwen2.5-32B Answer**

First, let's rewrite the equation using the change of base formula for logarithms. We have

1468
1469
1470
1471
1472
1473
1474

$$\log_{7x} 2023 = \frac{\log 2023}{\log(7x)}$$

$$\log_{289x} 2023 = \frac{\log 2023}{\log(289x)}$$

$$\log_{2023x} 2023 = \frac{\log 2023}{\log(2023x)}$$

Substituting these expressions into the original equation, we get

1475
1476
1477
1478

$$\frac{(\log 2023)^2}{\log(7x) \cdot \log(289x)} = \frac{\log 2023}{\log(2023x)}$$

Cross-multiplying, we get

1479
1480
1481

$$(\log 2023)^2 \cdot \log(2023x) = (\log 7x) \cdot (\log 289x) \cdot \log 2023$$

Canceling the common factor of $\log 2023$, we have1482
1483
1484
1485
1486

$$\log(2023x) = (\log 7x) \cdot (\log 289x)$$

1487
1488
1489
1490
1491DeepSeek-R1-0528-Qwen3-8B verify: - **Calculation Error**: The solution incorrectly canceled the $\log 2023$ factor during simplification, omitting the $\log 2023$ term.

Using the product-to-sum formula for logarithms, we have

1492
1493
1494
1495
1496
1497
1498
1499

$$\log(2023x) = \log(7x) + \log(289x)$$

1500
1501
1502
1503
1504
1505
1506DeepSeek-R1-0528-Qwen3-8B verify: - **Conceptual Error**: the solution incorrectly treated the product of logarithms $(\log 7x) \cdot (\log 289x)$ as if it were a sum, which is not valid.

$$\log(2023x) = \log(2023x^2)$$

$$2023x = 2023x^2$$

Dividing both sides by $2023x$, we get

$$1 = x$$

So the only solution is $x = 1$. The product of all solutions is $\boxed{1}$.1507
1508
1509
1510
1511

¹⁴https://artofproblemsolving.com/wiki/index.php/2023_AMC_12A_Problems/Problem_19

1512 A.7.4 CASE STUDIES ON MATH-500
15131514 **Question**1515 **MATH500 unique_id test/intermediate_algebra/582**

1516 The equation

1517
$$x^{10} + (13x - 1)^{10} = 0$$

1518 has 10 complex roots $r_1, \bar{r}_1, r_2, \bar{r}_2, r_3, \bar{r}_3, r_4, \bar{r}_4, r_5, \bar{r}_5$, where the bar denotes complex
1519 conjugation. Find the value of
1520

1521
$$\frac{1}{r_1 \bar{r}_1} + \frac{1}{r_2 \bar{r}_2} + \frac{1}{r_3 \bar{r}_3} + \frac{1}{r_4 \bar{r}_4} + \frac{1}{r_5 \bar{r}_5}.$$

1522
1523

1524 **Qwen2.5-32B Answer**
15251526 To solve the given problem, let's first analyze the equation $x^{10} + (13x - 1)^{10} = 0$. This can
1527 be rewritten as:

1528
$$x^{10} = -(13x - 1)^{10}.$$

1529 Taking the 10th root on both sides, we get:
1530

1531
$$x = \pm i(13x - 1).$$

1532 This gives us two cases to consider: 1. $x = i(13x - 1)$ 2. $x = -i(13x - 1)$ Let's solve each
1533 case separately.
15341535 DeepSeek-R1-0528-Qwen3-8B verify: - **Calculation Error**: The solution incor-
1536 rectly assumes that the equation has only two roots, but the equation is of degree 10,
1537 so it should have 10 roots. The method of taking the 10th root only considers two
1538 cases, missing the other 8 roots.
15391540 For the first case:
1541

1542
$$x = i(13x - 1) \implies x - 13ix = -i \implies x(1 - 13i) = -i \implies x = \frac{-i}{1 - 13i}.$$

1543

1544 For the second case:
1545

1546
$$x = -i(13x - 1) \implies x + 13ix = i \implies x(1 + 13i) = i \implies x = \frac{i}{1 + 13i}.$$

1547

1548 So, the roots of the equation are of the form $\frac{-i}{1-13i}$ and $\frac{i}{1+13i}$. Notice that these roots come in
1549 conjugate pairs, so we can pair them up as $r_1 = \frac{-i}{1-13i}, \bar{r}_1 = \frac{i}{1+13i}, r_2 = \frac{i}{1+13i}, \bar{r}_2 = \frac{-i}{1-13i}$,
1550 and so on.1551 Now, we need to find the value of $\frac{1}{r_1 \bar{r}_1} + \frac{1}{r_2 \bar{r}_2} + \frac{1}{r_3 \bar{r}_3} + \frac{1}{r_4 \bar{r}_4} + \frac{1}{r_5 \bar{r}_5}$. Since $r_1 \bar{r}_1 =$
1552 $\left(\frac{-i}{1-13i}\right) \left(\frac{i}{1+13i}\right) = \frac{1}{1+169} = \frac{1}{170}$, we have:
1553

1554
$$\frac{1}{r_1 \bar{r}_1} = 170.$$

1555

1556 Similarly, $\frac{1}{r_2 \bar{r}_2} = 170, \frac{1}{r_3 \bar{r}_3} = 170, \frac{1}{r_4 \bar{r}_4} = 170$, and $\frac{1}{r_5 \bar{r}_5} = 170$. Therefore, the sum is:
1557

1558
$$170 + 170 + 170 + 170 + 170 = 850.$$

1559 Thus, the final answer is:
15601561
$$[850].$$

1562
1563
1564
1565

1566

1567

1568

1569

1570

1571

1572

1573

Question**MATH500 unique_id test/intermediate_algebra/2196**

Find the maximum value of

$$\frac{x-y}{x^4+y^4+6}$$

over all real numbers x and y .**Qwen2.5-32B Answer**

To find the maximum value of the expression $\frac{x-y}{x^4+y^4+6}$, we can start by analyzing the denominator. Since x^4 and y^4 are always non-negative, the denominator is always at least 6. This means that the expression is always less than or equal to $\frac{x-y}{6}$. Now, let's consider the numerator $x-y$. If we set $x = 1$ and $y = -1$, then the numerator is $1 - (-1) = 2$. Substituting these values into the expression, we get $\frac{2}{1^4+(-1)^4+6} = \frac{2}{8} = \frac{1}{4}$. Therefore, the

maximum value of the expression is $\boxed{\frac{1}{4}}$.

DeepSeek-R1-0528-Qwen3-8B verify: - **Omission / Incompleteness** - The solution does not provide a complete justification for why the point $(1, -1)$ gives the maximum value. It only evaluates one specific point and claims it is the maximum without comparing it to other points or demonstrating that the expression cannot be larger elsewhere. For example, it does not consider points where $x^4 + y^4$ is minimized while $x - y$ is positive and non-zero, or points where the numerator and denominator balance differently.

A.8 RESULTS FROM MORE VERIFIERS**A.8.1 CoT-PASS@K COMPARISONS ACROSS DIFFERENT VERIFIERS**

We further evaluate two powerful verifier models—gpt-oss-20b and gpt-oss-120b—using identical evaluation settings (using high reasoning efforts and a maximum token length of 64k) and performing $n = 3$ verification attempts for each CoT. Both gpt-oss verifiers use the same verification prompt described in Section A.2. As shown in Figure 11, the verification results on AIME24 and AIME25 exhibit consistent trends across DeepSeek-R1-0528-Qwen3-8B (DS-8B), gpt-oss-20b, and gpt-oss-120b. While the larger verifiers produce slightly lower absolute pass rates, the relative improvements from RLVR and the overall pass@1-pass@k curves remain highly aligned across all verifier models. These results are consistent with the core conclusion obtained using DS-8B: RLVR enables the model to generate substantially more correct CoTs compared to the base model.

A.8.2 VERIFICATION CORRALATION BETWEEN DS-8B AND GPT-OSS VERIFIERS

We further analyze the consistency between DS-8B and the two gpt-oss verifiers by measuring the correlation of their correctness judgments. Each verifier model is run three times on every chain-of-thought, and correctness is summarized using the three criteria introduced in Section A.2: *All-correct*, *Majority-correct*, and *Any-correct* (denoted as All, Maj, and Any). Figure 12 presents a set of heatmaps across two model CoTs generated by the RLVR-trained model (DAPO) and CoTs from the base model—using only samples that yield correct answers on AIME25. The first column shows the intra-model correlations among the three DS-8B verification passes, capturing its self-consistency. The remaining columns report the inter-model correlations between DS-8B and gpt-oss-20b / gpt-oss-120b. Across both model groups, most of the correlation structures are stable and indicate a relatively high level of agreement between the verifiers.

Two observations emerge from these results. First, CoTs from the base model exhibit substantially higher intra-verifier and inter-verifier correlations, such as the DS-8B intra-correlation between Maj and All/Any reaching around 0.88. This is expected, as base CoTs contain more salient errors,

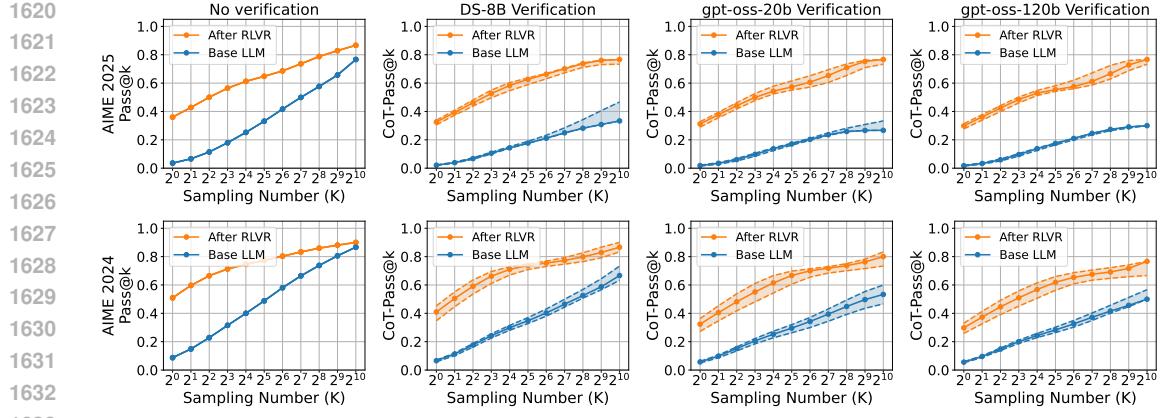


Figure 11: CoT-Pass@K comparisons using three different verifiers: DS-8B, gpt-oss-20b, and gpt-oss-120 on AIME 24-25.

making them easier and more consistent for all verifiers to detect. In contrast, DAPO CoTs contain fewer and subtler errors, leading to lower agreement: different verifiers may occasionally miss small mistakes and mark these CoTs as correct. Second, stronger verifier models such as gpt-oss-20b and gpt-oss-120b tend to apply stricter correctness criteria and identify more subtle errors. As a result, the correlations between DS-8B and the gpt-oss verifiers typically lie around 0.7 across the correctness metrics.

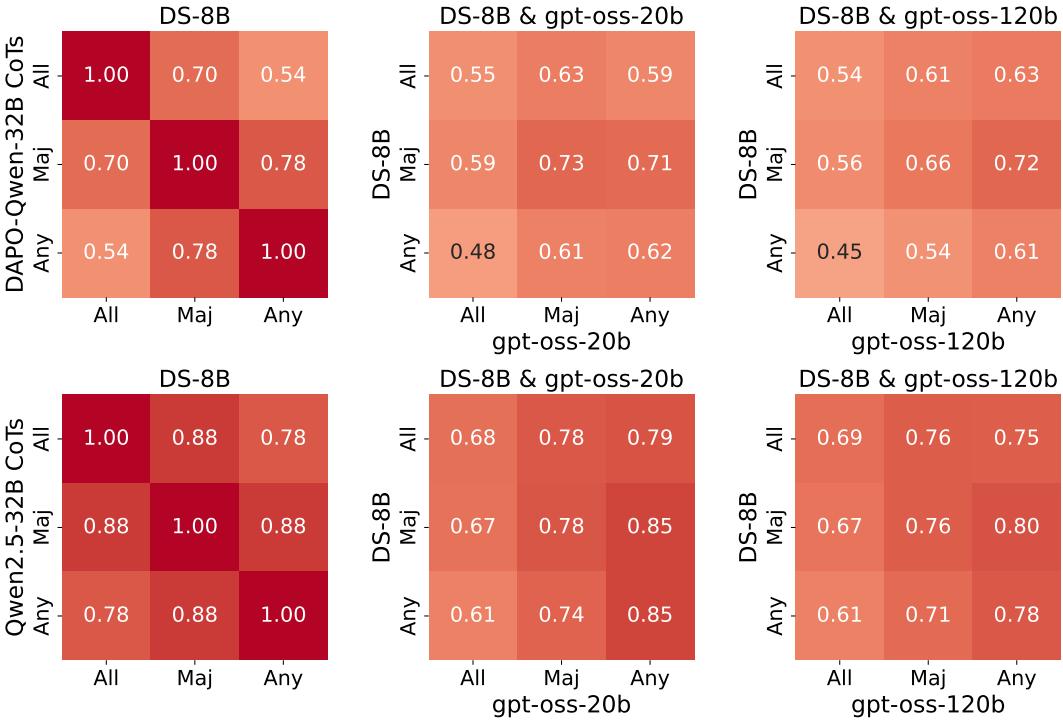


Figure 12: Correlation heatmaps of correctness assessments across verifier models. Each verifier performs three passes per chain-of-thought, summarized using the All, Maj, and Any metrics. Results are shown on AIME25 for CoTs yielding correct answers, separately for DAPO-Qwen-32B and the base Qwen-2.5-32B model.

1674 A.9 WHY DO SFT MODELS GENERALIZE EVEN WHEN TRAINED ON INCORRECT CoTs?
1675

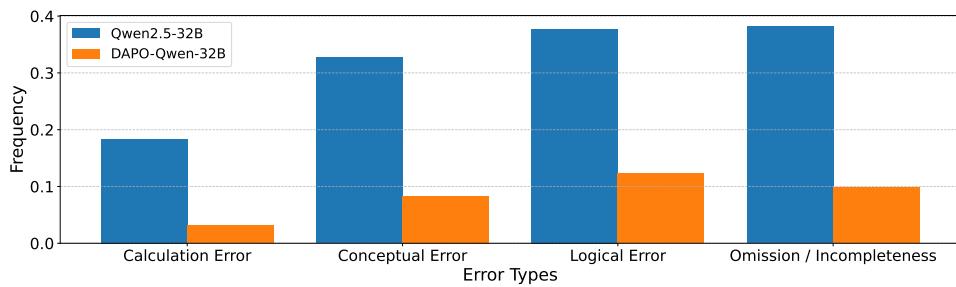
1676 A notable observation in our experiments is that **SFT on RLVR-generated CoTs leads to substantial**
 1677 **performance gains even when a CoT is labeled as incorrect (meaning it contains verified**
 1678 **errors)**. In contrast, SFT on the base model’s own CoTs—whether correct or incorrect—yields only
 1679 minor improvements. This prompts an important question: why can “incorrect” RLVR CoTs still
 1680 support strong generalization?

1681 Our notion of incorrectness follows the verification prompt described in Section A.2: any CoT con-
 1682 taining calculation mistakes, invalid logical deductions, conceptual misunderstandings, or missing
 1683 essential reasoning steps is labeled as incorrect. Thus, incorrect CoTs span a broad range of quality.
 1684 The key insight from our analyses is that **Among incorrect CoTs, those generated by RLVR differ**
 1685 **fundamentally from those of the base model.** They are longer, more structured, and contain fewer
 1686 severe errors, allowing SFT to extract useful reasoning patterns despite the presence of mistakes.

1687 A.9.1 ANALYSIS OF ERROR FREQUENCIES
1688

1689 We examine whether RLVR reduces the severity of reasoning errors. Using gpt-oss-120b verifica-
 1690 tion, we categorize four common error types, counting each category independently.

1691 Figure 13 shows that **RLVR CoTs have substantially lower error rates across all categories**,
 1692 indicating that RLVR leads to more stable and higher-quality reasoning paths.
1693



1703 Figure 13: Error frequencies in CoTs with correct answers on AIME 2025, verified by gpt-oss-120b.
 1704 RLVR CoTs exhibit lower error rates across all categories, reflecting higher-quality reasoning paths.
1705

1706 A.9.2 TOKEN LENGTH ANALYSIS OF CORRECT AND INCORRECT CoTs
1707

1709 We compare the token-length distributions of CoTs classified as correct or incorrect for the base
 1710 model (Qwen2.5-32B) and the RLVR-trained model (DAPO-Qwen-32B). Table 1 reports quantiles
 1711 of token lengths on the DAPO-17k training set.

1712 A key observation is that for DAPO-Qwen-32B, incorrect CoTs are substantially longer than CoTs
 1713 from the base model. This suggests that even when marked as incorrect, RLVR CoTs cover extended
 1714 reasoning chains that include high-quality logical steps. Consequently, SFT on these incorrect CoTs
 1715 can still extract useful reasoning patterns and generalize effectively, despite the presence of some
 1716 errors.

1717 Table 1: Token-length quantiles of correct and incorrect CoTs for Qwen2.5-32B (base) and DAPO-
 1718 Qwen-32B (RLVR) on DAPO-17k train set.
1719

	0.05	0.1	0.25	0.5	0.75	0.9	0.95
DAPO-Qwen-32B incorrect CoTs	1220	1494	2239	3995	7183	10929	13295
DAPO-Qwen-32B correct CoTs	1026	1185	1557	2266	3579	5730	7755
Qwen2.5-32B incorrect CoTs	610	666	783	950	1183	1504	1850
Qwen2.5-32B correct CoTs	578	623	717	862	1066	1343	1586

1728 A.10 DETAILED VERIFICATION RESULTS ON AIME BENCHMARKS
1729

1730 Tables 2 and 3 report per-problem verification results on AIME2024 and AIME2025 using gpt-
1731 oss-120b. For each problem, we aggregate statistics over $N = 1024$ sampled CoTs from both
1732 the RLVR-trained model and the base model. Each CoT is verified three times, and correctness is
1733 determined by the Majority-correct criterion described in Section A.2.

1734 We include the following metrics:

1735

- 1736 • **CoT-Pass@k** ($k = 1024$): whether at least one CoT is correct.
- 1737 • **#CC**: number of correct CoTs.
- 1738 • **Pass@k** ($k = 1024$): whether at least one answer is correct.
- 1739 • **#CA**: number of correct answers.

1740
1741 All evaluations use the OpenAI Responses API with `reasoning_efforts=high` and
1742 `max_output_tokens=64k`.
1743

1744 Table 2: gpt-oss-120b verification results on AIME 2024. Metrics per problem are aggregated over
1745 $N = 1024$ CoTs using the Majority-correct criterion.
1746

Problem ID	RLVR				BASE			
	CoT-Pass@k	#CC	Pass@k	#CA	CoT-Pass@k	#CC	Pass@k	#CA
2024 AIME II - Problem 4 (url)	1	1022	1	1023	1	14	1	27
2024 AIME I - Problem 4 (url)	1	1021	1	1024	1	346	1	366
2024 AIME I - Problem 1 (url)	1	1015	1	1024	1	159	1	183
2024 AIME I - Problem 2 (url)	1	986	1	1016	1	442	1	573
2024 AIME II - Problem 6 (url)	1	899	1	1023	1	165	1	249
2024 AIME II - Problem 7 (url)	1	848	1	904	1	312	1	357
2024 AIME I - Problem 6 (url)	1	523	1	879	1	2	1	6
2024 AIME II - Problem 10 (url)	1	522	1	914	1	1	1	4
2024 AIME II - Problem 1 (url)	1	484	1	928	1	8	1	21
2024 AIME I - Problem 3 (url)	1	398	1	550	1	4	1	43
2024 AIME II - Problem 3 (url)	1	155	1	306	1	12	1	16
2024 AIME I - Problem 7 (url)	1	127	1	1023	1	53	1	150
2024 AIME II - Problem 11 (url)	1	84	1	263	1	175	1	266
2024 AIME I - Problem 13 (url)	1	22	1	666	1	23	1	194
2024 AIME II - Problem 14 (url)	1	1	1	1	1	1	1	10
2024 AIME II - Problem 13 (url)	1	544	1	870	0	0	1	81
2024 AIME I - Problem 9 (url)*	1	289	1	515	0	0	1	18
2024 AIME II - Problem 12 (url)	1	86	1	226	0	0	1	36
2024 AIME I - Problem 14 (url)*	1	52	1	69	0	0	1	1
2024 AIME I - Problem 15 (url)	1	48	1	1010	0	0	0	0
2024 AIME II - Problem 2 (url)	1	21	1	645	0	0	1	33
2024 AIME I - Problem 5 (url)	1	1	1	483	0	0	1	4
2024 AIME II - Problem 9 (url)	1	1	1	15	0	0	1	3
2024 AIME I - Problem 10 (url)	0	0	1	4	0	0	1	4
2024 AIME I - Problem 8 (url)	0	0	1	229	0	0	0	0
2024 AIME II - Problem 5 (url)	0	0	1	7	0	0	1	40
2024 AIME II - Problem 8 (url)	0	0	1	27	0	0	0	0
2024 AIME I - Problem 11 (url)*	0	0	0	0	0	0	1	1
2024 AIME I - Problem 12 (url)	0	0	0	0	0	0	0	0
2024 AIME II - Problem 15 (url)*	0	0	0	0	0	0	1	1

1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796

1797 Table 3: gpt-oss-120b verification results on AIME 2025. Metrics per problem are aggregated over
 1798 $N = 1024$ CoTs using the Majority-correct criterion.

1799

1800 1801	Problem ID	RLVR				BASE			
		CoT-Pass@k	#CC	Pass@k	#CA	CoT-Pass@k	#CC	Pass@k	#CA
1802	2025 AIME II - Problem 1 (url)	1	1022	1	1024	1	17	1	36
1803	2025 AIME II - Problem 4 (url)	1	1020	1	1024	1	6	1	6
1804	2025 AIME II - Problem 2 (url)	1	1000	1	1024	1	177	1	237
1805	2025 AIME I - Problem 3 (url)	1	987	1	992	1	69	1	80
1806	2025 AIME I - Problem 6 (url)	1	940	1	1024	1	127	1	176
1807	2025 AIME I - Problem 4 (url)	1	707	1	833	1	18	1	48
1808	2025 AIME I - Problem 1 (url)	1	699	1	1024	1	114	1	214
1809	2025 AIME I - Problem 8 (url)	1	296	1	452	1	2	1	7
1810	2025 AIME II - Problem 7 (url)	1	201	1	256	1	11	1	20
1811	2025 AIME I - Problem 2 (url)*	1	978	1	1016	0	0	1	1
1812	2025 AIME I - Problem 5 (url)	1	520	1	623	0	0	1	27
1813	2025 AIME II - Problem 12 (url)	1	209	1	457	0	0	1	2
1814	2025 AIME II - Problem 9 (url)	1	181	1	221	0	0	1	1
1815	2025 AIME II - Problem 14 (url)	1	151	1	170	0	0	1	1
1816	2025 AIME I - Problem 9 (url)	1	136	1	154	0	0	1	160
1817	2025 AIME I - Problem 11 (url)*	1	103	1	141	0	0	1	1
1818	2025 AIME II - Problem 3 (url)	1	5	1	9	0	0	0	0
1819	2025 AIME II - Problem 6 (url)	1	4	1	454	0	0	1	26
1820	2025 AIME II - Problem 8 (url)	1	4	1	4	0	0	1	1
1821	2025 AIME II - Problem 11 (url)	1	3	1	14	0	0	0	0
1822	2025 AIME I - Problem 7 (url)	1	3	1	14	0	0	0	0
1823	2025 AIME II - Problem 10 (url)	1	2	1	7	0	0	0	0
1824	2025 AIME I - Problem 12 (url)	1	1	1	108	0	0	0	0
1825	2025 AIME I - Problem 13 (url)	0	0	1	1	0	0	1	7
1826	2025 AIME II - Problem 5 (url)	0	0	1	4	0	0	1	27
1827	2025 AIME I - Problem 10 (url)	0	0	1	1	0	0	1	6
1828	2025 AIME I - Problem 14 (url)	0	0	0	0	0	0	1	13
1829	2025 AIME I - Problem 15 (url)	0	0	0	0	0	0	0	0
1830	2025 AIME II - Problem 13 (url)	0	0	0	0	0	0	0	0
1831	2025 AIME II - Problem 15 (url)	0	0	0	0	0	0	1	1

1832
 1833
 1834
 1835