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ABSTRACT

Theory of Mind (ToM) assesses whether models can infer hidden mental states such
as beliefs, desires, and intentions, which is essential for natural social interaction.
Although recent progress in Large Reasoning Models (LRMs) has boosted step-
by-step inference in mathematics and coding, it is still underexplored whether
this benefit transfers to socio-cognitive skills. We present a systematic study of
11 advanced Large Language Models (LLMs), comparing reasoning models with
non-reasoning models on three representative ToM benchmarks. The results show
that reasoning models do not consistently outperform base models and sometimes
perform worse. A fine-grained analysis reveals two main failure reasons. First,
slow thinking collapse: accuracy significantly drops as responses grow longer,
and larger reasoning budgets hurt performance. Second, option matching shortcut:
when multiple choice options are removed, reasoning models improve markedly,
indicating reliance on option matching rather than genuine deduction. These
results highlight the advancement of LRMs in formal reasoning (e.g., math, code)
cannot be transferred to ToM, a typical task in social reasoning. We conclude
that achieving robust ToM requires developing unique capabilities beyond existing
reasoning methods and we provide a preliminary exploration of such an approach
with a combination of Slow-to-Fast (S2F) adaptive reasoning and Think-to-Match
(T2M) shortcut prevention.

1 INTRODUCTION

Theory of Mind (ToM) refers to the human capacity to infer the unobservable mental states of
others, such as beliefs, desires, and emotions, forming the foundation of social cognition (Chen
et al., 2025; Sarıtaş et al., 2025; Nguyen et al., 2025). It enables individuals to interpret subtle cues,
anticipate behavior, and maintain meaningful communication. Research in large-scale reasoning
has recently gained significant momentum (Guo et al., 2025b; Yang et al., 2025). Breakthroughs
in Large Reasoning Models (LRMs) have shown that enhancing step-by-step inference capabilities
yields dramatic improvements in structured domains like mathematics, code generation, and scien-
tific problem-solving. These advances suggest that explicit reasoning serves as a general catalyst,
potentially elevating models beyond surface-level pattern recognition toward more systematic and
reliable intelligence. Against this backdrop, a critical question arises: Can these powerful reasoning
mechanisms, proven effective in analytical domains, be successfully transferred to enhance the
socio-cognitive capabilities required for ToM in LLMs?

Existing research has only provided a preliminary exploration of the role of reasoning in ToM. The
HiToM study demonstrated that applying Chain-of-Thought (CoT) prompting yields insignificant
performance increases and may even amplify the model’s susceptibility to deceptive information
during testing (He et al., 2023). Subsequent research has focused on incorporating more structured,
human-like reasoning processes. Strategies such as integrating perspective-taking and reflection into
CoT templates have effectively enhanced performance on ToM benchmarks (Zhou et al., 2023; Wilf
et al., 2023; Wang & Zhao, 2023). More recently, significant attention has shifted towards Reinforce-
ment Learning (RL) methods like GRPO, introduced by DeepSeek-R1, prompting exploration into
R1-style inherent reasoning capabilities (Guo et al., 2025b; Wang et al., 2025; Zheng et al., 2025).
However, the efficacy of this approach remains contested; the ToM-RL study found that small models
trained with GRPO can suffer from reasoning collapse, performing worse than those trained with
standard Supervised Fine-Tuning (SFT) (Lu et al., 2025). The current focus on method-level en-
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hancements sidesteps a more fundamental question: To what extent does reasoning itself intrinsically
contribute to ToM capabilities? A systematic analysis contrasting the ToM performance of reasoning
models against non-reasoning models is essential to isolate and understand the genetic impact of
reasoning mechanisms.

To fill this gap, we conduct a comprehensive study on the effectiveness of LRMs on ToM tasks.
Specifically, we evaluate model performance across three representative benchmarks, i.e., HiToM,
ToMATO, and ToMBench, covering a range of reasoning order, taxonomy, and scenarios. We find
that reasoning models (e.g., DeepSeek-R1, Qwen3-8B-Reasoning) generally fail to outperform their
non-reasoning counterparts (e.g., DeepSeek-V3, Qwen3-8B). For example, Qwen3-8B-Reasoning
achieves a score of 0.6478, which is significantly lower than the 0.7047 scored by its non-reasoning
version on the latest ToMATO benchmark. This counter-intuitive performance suggests that the
inherent reasoning capability in reasoning models may not be effective for ToM tasks. To move
beyond this observation, we provide a deeper analysis to diagnose when these failures occur and the
underlying reasons why.

Our analysis reveals two fundamental mechanisms behind models’ reasoning errors: (i) Slow thinking
leads to reasoning collapse. We find that errors are heavily concentrated in longer responses, meaning
the longer a model thinks, the more likely it is to fail. Pushing models like GPT-o3 and GPT-o4-
mini to expend more reasoning effort actually backfires, leading to decreased performance. This
demonstrates that for complex ToM tasks, prolonged computation is a liability, not an asset. (ii)
Reasoning takes option matching rather than step-by-step deduction. Our ablation study on
HiToM demonstrates that when we remove the multiple-choice options, the performance of reasoning
models such as DeepSeek-R1 and Qwen3-8B-Reasoning dramatically improves. A look “under the
hood” at their thinking process confirms why: they are not reasoning to a solution from the ground
up, but rather matching the most likely answer from the provided list. This suggests their success
often relies on option matching rather than genuine, step-by-step deduction.

The identified failure mechanisms of reasoning collapse and option matching shortcuts highlight the
advancement of LRMs in formal reasoning (e.g., math, code) cannot effectively lead to increasing
performance in ToM, a typical task in social reasoning. Our findings suggest that strategies beneficial
in formal domains, such as prolonged deliberation, are often counterproductive in the ambiguous
context of ToM. This implies that improving ToM is not about simply scaling existing analytical
methods, but requires developing unique capabilities tailored for social reasoning. We leverage a
combination of Slow-to-Fast reasoning (S2F) and Think-to-Match (T2M) to provides a preliminary
exploration into these necessary new approaches. Our contributions can be summarized as:

• We provide a systematic comparison of reasoning and non-reasoning models on ToM tasks,
revealing the counter-intuitive finding that reasoning models fail to establish advantages.

• We identify and provide empirical evidence for two core failure reasons in ToM reasoning:
slow thinking collapse, where prolonged deliberation becomes counterproductive, and option
matching shortcut, where models favor superficial pattern matching over genuine deduction.

• Based on these findings, we discuss the fundamental divergence between ToM and formal
reasoning and provide a preliminary exploration of solutions, including the Slow-to-Fast adaptive
reasoning method and Think-to-Match shortcut prevention.

2 RELATED WORK

Theory of Mind Capability Evaluation. The benchmarks in ToM are mainly based on the Sally-
Anne test, following a multi-choice format (Sarıtaş et al., 2025; Nguyen et al., 2025). ToMi extends
ToM-bAbi via procedurally varied narratives and a systematic sweep over reality, memory, and
first-/second-order belief queries, while HI-TOM pushes the envelope to fourth-order belief reasoning
(He et al., 2023). Moving beyond templated narratives, FANTOM introduces dialogue-mediated
settings and explicitly targets “illusory ToM,” where responses appear correct yet violate underlying
logical constraints (Kim et al., 2023). In parallel, BigToM (Gandhi et al., 2023) and OpenToM (Xu
et al., 2024) broaden the mental-state taxonomy to include percepts, desires, and emotions. Domain-
specific evaluations have also emerged: NegotiationToM integrates belief–desire–intention (BDI)
reasoning within multi-round bargaining dialogues (Chan et al., 2024), and ToMBench pursues near-
comprehensive ATOMS coverage with bilingual construction to mitigate pretraining contamination

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(Chen et al., 2024). Complementary efforts explore search- and generation-centric data creation,
including A*-driven diversification in ExploreToM (Sclar et al., 2024) and LLM–LLM self-play with
information asymmetry in ToMATO (Shinoda et al., 2025). To comprehensively assess reasoning
effectiveness, we evaluate on HiToM, ToMBench, and ToMATO, which together span higher-order
belief depth, a broad mental-state taxonomy, and diverse evaluation scenarios.

Large Reasoning Model Evaluation. Benchmarks for LRMs span mathematics, formal logic,
commonsense, code, and agentic interaction. Math suites range from contest-style and grade-school
word-problem sets (MATH, GSM8K) to visually grounded mathematics (MathVista) and chart
reasoning (ChartQA) (Hendrycks et al., 2021b; Cobbe et al., 2021; Lu et al., 2023; Masry et al.,
2022). Logical-reasoning datasets cover deductive and abductive regimes (ProofWriter, FOLIO)
and relational induction stress tests (CLUTRR) (Tafjord et al., 2021; Han et al., 2022; Sinha et al.,
2019). Commonsense resources probe physical plausibility and broad knowledge (WinoGrande,
MMLU) (Sakaguchi et al., 2020; Hendrycks et al., 2021a). Code benchmarks emphasize exactness and
executability, from function synthesis to real-world issue resolution (HumanEval, MBPP, SWE-bench)
(Chen et al., 2021; Austin et al., 2021; Jimenez et al., 2023). Finally, web/embodied environments
evaluate multi-step planning and tool use under interaction (Mind2Web, ALFWorld) (Liu et al., 2023;
Shridhar et al., 2021). We systematically evaluate LRMs on ToM tasks, diagnose the failure modes
underlying their reasoning errors, and outline directions for strengthening social reasoning.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

To comprehensively study the effectiveness of reasoning, we select 10 models including (i) Rea-
soning Models: Claude-Sonnet-4, Grok-3-mini, GPT-o4-mini, GPT-o3, DeepSeek-R1, Qwen3-
8B-Reasoning, and Qwen3-32B-Reasoning; (ii) Non-Reasoning Models: GPT-4o, DeepSeek-V3,
Qwen3-8B, and Qwen3-32B. Unless not adjustable, all models use the same settings: temperature 0,
top-p 1, and a maximum output length of 2048 tokens.

To systematically evaluate ToM, we select three specialized benchmarks, each designed to probe a
distinct aspect of social reasoning. This ensures a multi-faceted assessment of model capabilities.
(i) HiToM (He et al., 2023) focuses on the depth of reasoning. It tests a model’s ability to handle
complex, multi-level recursive beliefs (from 0- to 4th-order) in narratives that include deceptive
agents. (ii) ToMATO Shinoda et al. (2025) assesses ToM in realistic, interactive contexts. It
uses conversation-based scenarios between role-playing agents to test how well a model can infer
mental states from dynamic, ongoing dialogues. (iii) ToMBench (Chen et al., 2024) provides broad
taxonomic coverage. It systematically evaluates a wide range of distinct mental states, including
beliefs, desires, emotions, and intentions, ensuring a comprehensive assessment of ToM abilities.

3.2 EXPERIMENTAL RESULTS

To intuitively compare reasoning and non-reasoning models, we present a side-by-side performance
comparison of models from the same series. This analysis investigates whether a focus on reasoning
leads to universal improvements in ToM tasks.

Table 1: Overall results of all reasoning and non-reasoning models on three benchmarks

Dataset GPT DeepSeek Qwen3-8B Qwen3-32B
GPT-4o GPT-o4-mini GPT-o3 DeepSeek-V3 DeepSeek-R1 Qwen3-8B Qwen3-8B-Reasoning Qwen3-32B Qwen3-32B-Reasoning

HiToM 0.607 0.547 0.747 0.694 0.549 0.558 0.481 0.586 0.680
ToMATO 0.822 0.792 0.817 0.782 0.749 0.705 0.648 0.732 0.714
ToMBench 0.797 0.803 0.818 0.763 0.801 0.674 0.729 0.754 0.775

Our experimental results in Table 1 show a conter-intuitive pattern: Reasoning cohort fails to consis-
tently outperform the Non-Reasoning Models. Instead, it often results in a significant performance
trade-off depending on the task. This pattern is remarkably consistent across different model families.
The advantage of Reasoning Models is almost exclusively isolated to the ToMBench benchmark,
where they reliably outperform their non-reasoning siblings. However, this superiority is not only
lost but completely reversed on the ToMATO benchmark. In every single pairing, the Non-Reasoning
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Model achieves a higher score, highlighting a clear performance cost associated with the reasoning-
specific tuning. The HiToM benchmark further complicates the picture with mixed results, where
non-reasoning models win in two of the three comparisons. These results lead to further questions on
when and why reasoning fails to outperform. Detailed results are reported in Appendix B.

4 ANALYSIS & EXPLORATION

4.1 WHEN REASONING FAILS TO OUTPERFORM?

Table 2: Performance of models on HiToM (reasoning orders) and ToMBench (taxonomy categories).

Model HiToM ToMBench
Order 0 Order 1 Order 2 Order 3 Order 4 Belief Desire Emotion Intention Knowledge Non

GPT
GPT-o4-mini 1.000 0.731 0.460 0.293 0.249 0.916 0.678 0.769 0.824 0.648 0.770
GPT-o3 0.996 0.912 0.733 0.625 0.467 0.923 0.689 0.786 0.856 0.617 0.803
GPT-4o 0.979 0.692 0.571 0.408 0.383 0.909 0.661 0.762 0.847 0.624 0.782

DeepSeek
DeepSeek-R1 0.988 0.762 0.508 0.292 0.196 0.902 0.661 0.764 0.853 0.593 0.794
DeepSeek-V3 0.979 0.650 0.600 0.633 0.608 0.812 0.683 0.738 0.838 0.479 0.814

Qwen3-8B
Qwen3-8B-Reasoning 0.850 0.679 0.421 0.246 0.208 0.833 0.628 0.702 0.726 0.479 0.745
Qwen3-8B 0.846 0.667 0.529 0.379 0.367 0.656 0.611 0.674 0.715 0.555 0.737

Qwen3-32B
Qwen3-32B-Reasoning 1.000 0.775 0.600 0.579 0.446 0.872 0.650 0.743 0.818 0.534 0.782
Qwen3-32B 0.971 0.629 0.546 0.379 0.404 0.846 0.689 0.695 0.824 0.462 0.775

Others
Claude-Sonnet-4 1.000 0.846 0.775 0.767 0.721 0.939 0.672 0.762 0.885 0.666 0.822
Grok-3-mini 0.925 0.319 0.197 0.188 0.173 0.889 0.622 0.745 0.850 0.493 0.837

Moving beyond overall performance comparison, this section provides a fine-grained analysis along
two axes: the reasoning order and taxonomy. The benchmarks test different reasoning complexities,
as ToMBench requires 1st-order reasoning, ToMATO up to 2nd-order, and HiToM up to 4th-order.
Their taxonomic scope also expands from the belief-focused HiToM to the more comprehensive
ToMBench, which covers 6 mental state dimensions. Our results confirm that model proficiency is
not uniform: it degrades with higher-order reasoning and varies across different mental states.

4.1.1 REASONING COLLAPSES IN HIGH-ORDER INFERENCE

Table 2 shows the detailed performance on different reasoning orders. In low-complexity scenarios
(Orders 0-1), reasoning models exhibit a significant performance advantage. For example, GPT-o3
maintains an accuracy above 0.9 on 1st-order tasks. However, this trend reverses as reasoning
complexity increases to Orders 2-4, where non-reasoning models begin to show a notable advantage.
A stark example can be seen in the DeepSeek family on 4th-order tasks: the non-reasoning DeepSeek-
V3 achieves a robust score of 0.608, while the performance of the reasoning-focused DeepSeek-R1
collapses to 0.196. This susceptibility to failure under high complexity is even more pronounced in
models like Grok-3-mini, whose accuracy plummets to 0.197 as early as Order 2, suggesting that
reasoning-tuned models can be more prone to error when confronted with deeply nested inference. A
key exception to this pattern is Claude-Sonnet-4, which sustains an impressively high accuracy of
0.721 even at the 4th-order. A more in-depth analysis of these behaviors is in Section 4.2.1.

4.1.2 REASONING’S BENEFITS VARY ACROSS TAXONOMY

We also study the influence of taxonomy on the performance of LLMs, as shown in Table 2. A
consistent advantage for reasoning models emerges in categories requiring the inference of structured,
propositional attitudes. For example, in Belief, Intention, and the more challenging Knowledge
categories, advanced reasoning models like Claude-Sonnet-4 and GPT-o3 consistently outperform
the non-reasoning models, suggesting explicit thinking path is particularly effective for tracking
cognitive states. However, this performance gap diminishes when assessing some mental states. Most
notably, in the Desire category, the non-reasoning Qwen3-32B is tied for the top score at 0.689. These
results reveal that the improvements from current reasoning capabilities are selective, rather than
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universal. While they may enhance some aspects of ToM, they fail to provide a discernible advantage
in challenging inferences, such as desire.

4.2 WHY REASONING FAILS TO OUTPERFORM?

4.2.1 RESPONSE LENGTH AS A SIGNATURE OF FAILURE

(a) Response analysis on HiToM (b) Response analysis on ToMATO (c) Orders and lengths in HiToM

Figure 1: The distribution of the length and correctness of reasoning model responses.
To understand how reasoning strategy changes between successful and failed attempts, we analyze
the response length distribution for DeepSeek-R1. The results reveal a striking pattern, particularly on
the HiToM benchmark. As shown in Figure 1a, the errors made by DeepSeek-R1 on this benchmark
predominantly appear in a high-response-length region, forming a massive peak around 8,000 to
10,000 characters. This contrasts sharply with the higher-performing Claude-Sonnet-4, whose
responses are consistently concise. However, this extreme pattern is mitigated on the ToMATO
benchmark. While a distinction between the length of correct and incorrect responses for DeepSeek-
R1 still exists on ToMATO, the separation is less pronounced, the error count is lower, and the
distributions are more dispersed. The reason for this difference becomes clear when we analyze the
source of these failures. Figure 1c, a heatmap of DeepSeek-R1’s errors on HiToM, shows that the
higher the task complexity, the more likely the model is to produce long and erroneous responses.
While HiToM scales to the highly challenging Order 4, ToMATO peaks at the less demanding Order
2. These results suggest that slow thinking on complex ToM tasks leads to failure.

4.2.2 HIGHER REASONING EFFORT DOES NOT LEAD TO BETTER PERFORMANCE

(a) HiToM (b) ToMATO

Figure 2: Model performance with various reason-
ing efforts on benchmarks.

Our experiments on the influence of reasoning
effort also provide strong evidence for the neg-
ative impact of slow thinking. On the complex,
higher-order HiToM benchmark, we observe a
clear inverse relationship between effort and ac-
curacy. As illustrated in Figure 2a, the perfor-
mance of the GPT-o3 model drops substantially
from a high of 0.838 at the lowest effort level to
0.693 at the highest. This negative correlation is
weakened on the less complex ToMATO bench-
mark (Figure 2b). We found that varying the
reasoning effort had a negligible impact on final accuracy. This divergence between two benchmarks
demonstrates that the slow thinking failure is triggered by the high cognitive load of complex tasks.

4.2.3 OPTION HINDERS SUCCESSFUL REASONING

To comprehensively understand the reasons behind reasoning failure, We further conduct experiments
to investigate the influence of options on the reasoning process. We modify the HiToM benchmark
by removing the multiple-choice options, reframing the task to require models to search the answer
directly from the context. Note that the choice of HiToM was deliberate. Its answer options are
directly extractive from the story, a unique property among our selected benchmarks that ensures
the resulting open-ended evaluation remains unambiguous. As shown in Figure 3a, the performance
improvement upon removing the options is substantial and consistent across all reasoning models. For
example, the performance of DeepSeek-R1 surged from 0.549 to 0.691, and Qwen3-8B achieves a
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(a) Accuracy comparison (b) Behavior comparison with an example case

Figure 3: The comparison of model performance when options are provided or not.

dramatic improvement from 0.481 to 0.629. In contrast, for the non-reasoning model, the performance
of Qwen3-8B drops from 0.557 to 0.510. A qualitative analysis of DeepSeek-R1’s thinking processes
in Figure 3b explains this divergence. When presented with options, the model often abandons a
linear deductive process, instead engaging in a chaotic search to find superficial justifications for
potential choice. Conversely, when the options are removed, the model is compelled to perform
a more structured, step-by-step deduction that strictly follows the story’s timeline. These results
indicate that explicit candidates introduce an option matching heuristic that short-circuits step-by-step
deduction. Confronted with an option set, reasoning models can anchor on salient lexical or shallow
semantic overlap and terminate early, whereas the option-free format compels retrieval and integration
of evidence from the passage, benefiting systems with greater capacity for structured reasoning. The
non-reasoning baseline appears to depend more heavily on choice-level signals and therefore loses
support when those signals are removed.

4.2.4 MODERATE THINKING IS HELPFUL

(a) Model performance with CoT prompting (b) Response lengths and correctness

Figure 4: Model performance with CoT prompting.
To determine whether a generic reasoning instruction like rule-based Chain-of-Thought (CoT) would
help non-reasoning models and avoid triggering reasoning models’ failure modes, we conduct
experiments to study the usefulness of CoT prompt on the complex HiToM benchmark. Figure 4a
shows that CoT prompting provides a significant boost to non-reasoning models. For example, the
performance of GPT-4o increases substantially from 0.547 to 0.667. Furthermore, our visualization
of the response length distribution in Figure 4b also shows an interesting pattern. DeepSeek-V3
with CoT engages in moderate thinking, a process that improves its performance while successfully
avoiding the pitfalls of prolonged deliberation and reasoning collapse. This balanced approach
elevates the model’s performance to nearly the level of the advanced GPT-o3. This suggests that
while reasoning is inherently beneficial, the specific cognitive processes of current reasoning models
may be flawed or misaligned with the unique demands of ToM tasks, which leads to the observed
failure of reasoning. Finally, a minor finding shows that CoT is counterproductive for reasoning
models, leading to a degradation in their performance.
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4.2.5 COMPLEMENTARY STRENGTHS OF REASONING AND NON-REASONING

Figure 5: Overlap between reasoning and non-reasoning models’ correct answers.
To investigate how task complexity impacts reasoning versus non-reasoning models, we use Qwen3-
32B as a case study. We perform a granular comparison of decision outcomes between the standard
Qwen3-32B and the Qwen3-32B-Reasoning variant on the HiToM benchmark to illuminate their
evolving roles. The results in Figure 5 reveal a clear pattern: the models’ capabilities are redundant in
simple scenarios but become highly complementary as task complexity increases. In low-complexity
scenarios like Order 0 and Order 1, the models are largely in agreement, correctly answering a shared
set of 233 and 135 samples, respectively. However, a significant divergence emerges at Order 2, where
their complementary strengths become apparent with 87 overlapping correct answers but a combined
101 distinct correct answers where only one model succeeded. This trend culminates at the highest
complexity, Order 4, where the Reasoning model uniquely solves 49 samples and the Non-Reasoning
model uniquely solves 39, while they only agree on 58. This substantial non-overlapping success
clearly demonstrates that each model possesses unique problem-solving abilities that are crucial for
tackling complex ToM challenges.

4.3 DISCUSSION

Moving beyond the above experimental results, we derive key insights from the reasoning failure and
provide inspiration for the future directions of ToM reasoning method design.

4.3.1 EMPIRICAL INSIGHTS FROM REASONING FAILURE.

Slow Thinking Leads to Reasoning Collapse. We find that slow thinking in ToM tasks is strongly
correlated with failure from the analysis in Section 4.2.1 and 4.2.2. This occurs because the inherent
ambiguity of ToM tasks makes extended deliberation a liability. A model can become trapped in a
divergent search for plausible-but-incorrect interpretations, leading to counterproductive loops of
self-correction that derail the entire reasoning process.

Reasoning Takes Option Matching Shortcut. The analysis in Section 4.2.3 demonstrates when
the multiple-choice options are presented, reasoning models often abandon genuine deduction for a
brittle, reverse-lookup process to justify each choice, making them susceptible to plausible distractors.

4.3.2 FROM FORMAL REASONING TO TOM REASONING.

Reasoning Effort Aids Formal Reasoning but Impairs ToM Reasoning. ToM and formal reasoning
exhibit distinct relationships between computational effort and success. In Figure 1a, ToM reasoning
follows a bi-phasic profile: correct answers are typically concise, while errors cluster in a high-
response-length region, indicating a ”reasoning collapse” where prolonged deliberation becomes
counterproductive. Formal reasoning, by contrast, is unimodal: additional steps are generally
beneficial for exploring the logical space, with performance degrading only gently after an optimum.
We attribute this difference to their underlying nature. ToM is a weakly verifiable and pragmatics-
sensitive domain; once initial cues are extracted, further steps tend to amplify noise and cause the
model’s perspective to drift, creating an overlength failure mode where initially correct intuitions are
overwritten. In contrast, formal reasoning provides checkable intermediate states (e.g., arithmetic
sub-results), allowing evidence to accumulate with steps and preventing drifts.

Multiple Choice Helps Formal Reasoning, Hurts ToM Reasoning. A second critical distinction
lies in the impact of multiple-choice options. As we demonstrated in Figure 3a, for ToM reasoning
tasks, the presence of an option set often degrades reasoning-model performance: models may adopt
an option matching shortcut, becoming vulnerable to distractors. By contrast, in formal reasoning
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domains, a multiple-choice format can help by constraining the hypothesis space and providing clear
targets for verification, often improving performance (Raman et al., 2025). These divergent outcomes
show that ToM and formal reasoning are qualitatively distinct problem classes requiring different
capabilities and strategies.

4.3.3 TOWARDS TOM REASONING IMPROVEMENT

A System 1 & System 2 Perspective. Our findings suggest that progress on ToM reasoning can
be fruitfully framed by dual-process theory, where non-reasoning models approximate an intuitive
System 1 and reasoning models approximate a deliberative System 2. This view reconciles our results:
Section 4.2.5 shows complementary strengths that neither system suffices universally. Section 4.2.4
shows that a System 1-like model can be guided with simple CoT prompt to outperform System
2-like deliberate thinking. A key limitation is that current systems are typically run in a fixed mode
per instance, rather than adapting effort to instance difficulty. Thus the goal is not merely building
a stronger System 2, but integrating adaptive strategy selection. Future work can explore hybrids
(e.g., a System 1 proposer with a System 2 verifier) and training that rewards choosing the minimal
effective reasoning path. By shifting the target from thinking more to knowing how and when to
think, we move toward more robust, human-like ToM reasoning.

4.4 EXPLORATION ON IMPROVING TOM REASONING

As a preliminary exploration into improving ToM reasoning, we conduct two experiments designed to
address the empirical reasoning failures in Section 4.3.1. First, we leverage Slow-to-Fast reasoning to
investigate the potential of an adaptive cognitive strategy. Building on it, we design Think-to-Match
to deeply study the influence of the options on reasoning.

4.4.1 SLOW-TO-FAST REASONING

Figure 6: Overview of the Slow-to-Fast (S2F) and Think-to-Match (T2M) techniques.
The existing works mark “wait” as a proxy for extended deliberation. In reasoning models, such mark-
ers typically trigger additional verification or strategy switches, thereby lengthening the reasoning
trajectory Guo et al. (2025a). To avoid prolonged slow thinking, inspired by previous research (Zhang
et al., 2025), S2F uses the frequency of “wait” as a direct trigger for our dynamic intervention When
its count exceeds a threshold, the overlong reasoning path tends to be unproductive in ToM tasks.
Thus, we terminate the slow thinking process and compel the model to switch to fast thinking for an
intuitive answer.

The results in Table 3 reveal that the effectiveness of S2F intervention is directly correlated with task
complexity. The benefits are most pronounced on the complex, higher-order benchmark HiToM. For
instance, the R1-Distill-Qwen-32B model’s performance surges from 0.571 to 0.701. However, on
the 1st-order ToMBench, the intervention has a negligible impact across all models. These results
offers a twofold conclusion. On one hand, the performance gains on HiToM demonstrate that the S2F
strategy can successfully mitigate the problem of redundant reasoning. On the other hand, our results
show that most of the reasoning models cannot successfully determine the reasoning efforts for ToM
questions and the problem is more severe in complex questions. They do not lack ToM capabilities,
but their wrong reasoning strategy damages performance.

4.4.2 THINK-TO-MATCH

Building on the S2F intervention, we develop T2M, a two-stage method designed to prevent option
matching shortcuts. First, in the thinking phase, T2M removes the multiple-choice options from the

8
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Table 3: S2F performance across various reasoning models.

Benchmark Qwen3-8B Qwen3-32B R1-Distill-Qwen-7B R1-Distill-Qwen-32B

Vanilla S2F Vanilla S2F Vanilla S2F Vanilla S2F

HiToM 0.481 0.557 (+0.076) 0.680 0.682 (+0.002) 0.353 0.397 (+0.044) 0.571 0.701 (+0.130)
ToMATO 0.648 0.700 (+0.052) 0.714 0.724 (+0.010) 0.490 0.505 (+0.015) 0.706 0.708 (+0.002)
ToMBench 0.729 0.731 (+0.002) 0.775 0.777 (+0.002) 0.559 0.560 (+0.001) 0.773 0.769 (-0.004)

original prompt. This compels the model to perform first-principles reasoning, generating a chain
of thought based solely on the context. This unconstrained thinking process continues until it either
concludes naturally or is terminated by the S2F monitoring mechanism when it detects unproductive
reasoning. In the matching phase, the original multiple-choice options are appended to the model’s
inner thoughts, prompting it to select the final answer based on the alignment between its deduction
and the provided candidates. By forcing the model to think before it matches, T2M ensures the
final decision is grounded in the model’s own reasoning rather than a superficial justification of a
pre-existing choice. Figure 7 shows that T2M significantly improves performance on the HiToM
benchmark, verifying that eliminating option matching shortcut can unleash LRMs’ ToM capability.

Figure 7: T2M performance.

Furthermore, we learn an important lesson on ToM bench-
mark design from T2M’s ineffectiveness on ToMBench.
Cases in Figure 8 reveal that the wrong results by T2M of-
ten follow the pattern: when the options do not match the
initial reasoning direction, the answer can be wrong. This
issue is related to the benchmark designs. In ToMBench,
questions are often more open-ended, such as inferring
potential activities that a person might invite another to do.
These questions can have a large answer space, meaning
that models can take various thinking directions to gen-
erate many more potentially correct answers than those provided as options. As a result, without
showing potential options in advance, T2M can lead to mismatch between the thinking directions
and the provided options, further resulting in a wrong answer. With the lens of T2M, a considerable
challenge in ToM evaluation is revealed. In a benchmark, questions with options can greatly restrict
the search space for answers and thus lead to undesired option matching shortcuts. The performance
growth led by these option matching behaviors is risky, as the ToM capability might be over-estimated.
On the other hand, if we only present the open-ended questions to models, the evaluation can be
tricky, as the reasoning process may converge in many directions, leading to challenges of assessing
them consistently.

Figure 8: Cases to illustrate the different performance of T2M on HiToM and ToMBench.

5 CONCLUSION

In this paper, we investigate whether LRMs can enhance ToM, and find that their direct application
is often ineffective and sometimes detrimental. Our systematic comparison reveals that reasoning
models consistently fail to outperform their non-reasoning counterparts due to two primary failure
reasons: reasoning collapse, where prolonged deliberation backfires, and a reliance on brittle option-
matching shortcuts. These findings highlight a fundamental divergence between the requirements of
formal and social reasoning, showing that strategies successful in logic-based tasks become liabilities
in ambiguous social contexts. This implies that improving ToM is not about simply scaling existing
analytical methods but requires developing unique capabilities. Our preliminary explorations with
Slow-to-Fast (S2F) reasoning and the Think-to-Match (T2M) analysis provide initial steps in this
new direction toward more adaptive and efficient social intelligence.
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A LLM USAGE STATEMENT

We used LLMs (e.g., ChatGPT) only for grammar and wording edits.

B EXPERIMENTAL RESULTS

B.1 OVERALL COMPARISON

(a) HiToM (b) ToMATO (c) ToMBench

Figure 9: Overall comparison on three ToM benchmarks.

A comprehensive evaluation across the three ToM benchmarks in Figure 9 shows a heterogeneous
performance landscape. Claude-Sonnet-4 sets the state of the art, leading all three benchmarks with
HiToM 0.8217, ToMATO 0.8317, and ToMBench 0.8315. GPT-o3 performs near this level with
consistently strong results. Most other models vary widely by benchmark, indicating strengths that
are dependent on the benchmark rather than uniform capability.

B.2 IDENTIFYING REASONING ERROR TYPES

To understand why models fail, we move from quantitative scoring to a qualitative analysis of their
reasoning processes. By manually inspecting the chain-of-thought outputs for incorrect predictions,
we identified five recurring and distinct categories of reasoning failures. These categories, which
form a general, cross-benchmark error taxonomy, are defined and exemplified in Table 4.

Evidence Grounding Errors. This is one of the most fundamental types of failure, where the
model’s reasoning path deviates from the provided context. An Evidence Grounding Error occurs
when a model bases its conclusion on information that is not present in the evidence or makes a
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Table 4: General, cross-benchmark error taxonomy with simplified definitions and examples that
highlight faulty model thinking. Each row uses a distinct highlight color.

Error Type Description Example

Evidence Grounding Error Prediction is not grounded on the evidence
or cites an entity that is not supported by
the given context.

Thinking: “Choose red basket; it sounds plausible.”
Fault: red basket is not in the evidence set; no justifi-
cation links it to the task options.

State Tracking Error Timeline or observability is tracked incor-
rectly.

Thinking: “The last move puts it in X, so Owen believes
X.”
Fault: Owen had already left before the last move; belief
should freeze at his last observation.

Perspective Attribution Error Answers the wrong subject or wrong men-
tal construct.

Thinking: “I (A) saw it in Y; therefore B thinks Y.”
Fault: Egocentric projection; the question asks for A’s
belief about B’s belief, not A’s own knowledge.

Discourse Misinterpretation Speech acts or rhetorical cues are treated
as factual updates.

Thinking: “He claimed it is in X; so it is in X and others
now know X.”
Fault: Claims do not change world state or shared knowl-
edge without corroboration.

Commonsense & Causal Error Over-applies a generic script or inserts
unsupported causality not warranted by
context.

Thinking: “This looks like a negotiation; the goal is to
persuade, so the counterpart is cautious.”
Fault: Injects a persuasion script and causal story absent
from the evidence; mislabels the speaker’s stance.

decision by citing an entity that cannot be factually supported by the scenario. As the example in
Table 4 shows, this can manifest as the model choosing an option because it ”sounds plausible” rather
than because it is logically derived from the given facts. This error type highlights a critical weakness
in a model’s ability to strictly adhere to its input context, often resorting to unverified assumptions or
hallucinated details.

State Tracking Error. This error reveals a model’s difficulty with temporal and observational logic.
A State Tracking Error happens when the model incorrectly processes the timeline of events or fails
to account for an agent’s limited perspective. A common failure mode is updating an agent’s belief
based on an event that the agent did not witness. For instance, a model might incorrectly conclude
that ”Owen believes X” because the object was moved to location X, while failing to register that
Owen had already left the room and could not have observed the move. This points to a deficient
mechanism for maintaining and freezing the mental state of different agents at specific points in time.

Perspective Attribution Error. This error is a classic failure of Theory of Mind, where the model
fails to correctly simulate another agent’s perspective and instead defaults to its own. A Perspective
Attribution Error occurs when the model answers from the wrong point of view—often its own
”all-seeing” one—or confuses whose mental state is being queried. This frequently manifests as
egocentric projection, where the model imputes its own knowledge onto an agent (e.g., ”I, the model,
know it is in Y, therefore Agent B must think it is in Y”). This shows a breakdown in handling nested
beliefs and maintaining the crucial distinction between objective reality and an agent’s subjective
perception.

Discourse Misinterpretation. This category of error highlights a model’s lack of pragmatic un-
derstanding in social communication. A Discourse Misinterpretation occurs when the model treats
non-factual speech acts—such as claims, questions, jokes, or rhetorical statements—as literal updates
to the world state or shared knowledge. For example, a model might incorrectly assume that because
a character claimed an object was in a certain location, the object is now factually in that location
and all other characters are aware of this. This reveals a naive, literal interpretation of language that
misses the social nuances and reliability judgments inherent in human discourse.

Commonsense & Causal Error. This error type involves the misapplication of world knowledge
or the fabrication of unsupported causal links. A Commonsense & Causal Error happens when a
model imposes a generic script or schema onto a situation where it does not fit, or when it invents
a cause-and-effect relationship that is not warranted by the evidence. For example, a model might
incorrectly classify a simple information exchange as a ”negotiation,” thereby misinterpreting the
agents’ stances and intentions. This shows that while models possess vast commonsense knowledge,
they struggle to apply it appropriately and can over-generalize, leading to a distorted understanding
of the specific context.
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B.3 DETAILED RESULTS ON TOMATO

Detailed results on ToMATO across different reasoning order and taxonomy is provided in Table 5

Table 5: ToMATO fine-grained accuracy by order and taxonomy

Model 1st-Order 2nd-Order All
belief desire emotion intention knowledge belief desire emotion intention knowledge belief desire emotion intention knowledge

Qwen3-32B 0.773 0.848 0.772 0.802 0.747 0.599 0.731 0.727 0.658 0.680 0.685 0.782 0.749 0.735 0.714
Qwen3-32B-Reasoning 0.773 0.859 0.788 0.751 0.696 0.586 0.724 0.713 0.617 0.663 0.679 0.783 0.750 0.689 0.680
Qwen3-8B 0.717 0.830 0.760 0.810 0.686 0.595 0.703 0.705 0.660 0.606 0.656 0.759 0.732 0.741 0.646
Qwen3-8B-Reasoning 0.719 0.839 0.735 0.750 0.644 0.493 0.570 0.677 0.518 0.572 0.605 0.689 0.706 0.642 0.608
Claude-Sonnet-4 0.891 0.894 0.840 0.844 0.837 0.785 0.857 0.846 0.726 0.803 0.838 0.873 0.843 0.789 0.820
Grok-3-mini 0.840 0.859 0.820 0.827 0.747 0.699 0.788 0.806 0.668 0.691 0.769 0.820 0.813 0.753 0.719
GPT-4o 0.844 0.901 0.848 0.859 0.808 0.767 0.836 0.812 0.744 0.807 0.805 0.864 0.830 0.805 0.807
GPT-o3 0.866 0.874 0.867 0.859 0.814 0.737 0.827 0.864 0.720 0.758 0.801 0.848 0.865 0.795 0.786
GPT-o4-mini 0.851 0.879 0.818 0.849 0.808 0.695 0.806 0.774 0.672 0.772 0.773 0.838 0.796 0.767 0.790
DeepSeek-R1 0.789 0.874 0.786 0.827 0.720 0.670 0.726 0.758 0.672 0.693 0.729 0.791 0.772 0.755 0.706
DeepSeek-V3 0.826 0.863 0.804 0.832 0.751 0.706 0.794 0.796 0.713 0.750 0.766 0.824 0.800 0.777 0.750

B.4 RESPONSE LENGTH DISTRIBUTION

The response length distributions for the models are presented for each benchmark: HiToM in
Figure 10, ToMATO in Figure 11, and ToMBench in Figure 12. A clear trend emerges when
comparing these distributions in order of task complexity. The distinct pattern of failure we have
identified—where errors cluster in an extremely high response-length region—is most pronounced
on the most complex benchmark, HiToM. This effect is noticeably mitigated on ToMATO and
is least apparent on ToMBench. This progression provides strong corroborating evidence for our
hypothesis: the counterproductive slow thinking that leads to reasoning collapse is a failure mode
that is specifically triggered and amplified by high task complexity.

(a) Claude-Sonnet-4 (b) DeepSeek-R1

(c) Qwen3-32B-Reasoning (d) Qwen3-8B-Reasoning

Figure 10: Response Length Distribution on HiToM.
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(a) Claude-Sonnet-4 (b) DeepSeek-R1

(c) Qwen3-32B-Reasoning (d) Qwen3-8B-Reasoning

Figure 11: Response Length Distribution on ToMATO.

(a) Claude-Sonnet-4 (b) DeepSeek-R1

(c) Qwen3-32B-Reasoning (d) Qwen3-8B-Reasoning

Figure 12: Response Length Distribution on ToMBench.

B.5 ORDER AND LENGTH

We provide the heatmaps of incorrect answers on different orders and response lengths on HiToM in
Figure 13.
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(a) Claude-Sonnet-4 (b) Qwen3-32B-Reasoning

(c) Qwen3-8B-Reasoning

Figure 13: Order and Length on HiToM

B.6 REASONING EFFORT

We provide the results of different reasoning efforts on ToMBench in Figure 14. The findings are
similar to those on ToMATO: increasing the reasoning effort does not lead to a significant change
in performance. This reinforces our conclusion that the detrimental effects of slow thinking are
specifically triggered by high task complexity. On less complex benchmarks like ToMBench and
ToMATO, the reasoning collapse failure mode is not induced, and therefore, additional computational
effort is neither beneficial nor harmful.

Figure 14: Resoning effort on ToMBench.

B.7 CORRECT ANSWER OVERLAP

We provide the results of correct answer overlap on HiToM in Figure 15 and on ToMATO in Figure
16. They aligns with the observation in Figure 5, where the overlap between correct answers of
reasoning and non-reasoning models in the same family grows when the order is higher. The results
imply the complementary advantages of two types of models.
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(a) DeepSeek

(b) Qwen3-8B

(c) GPT

Figure 15: Correct Answer Overlap on HiToM

(a) DeepSeek (b) Qwen3-8B

(c) Qwen3-32B (d) GPT

Figure 16: Correct Answer Overlap on ToMATO

C METHOD

C.1 PSEDUO-CODE

We provide pseudo-code of S2F and T2M in Algorithm 1 and 2 respectively for reproducibility.
Specifically, we set the threshold of “wait” count to 3 in our experiments. As S2F intervention
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requires token-level generation control, we conduct these experiments on open-source models. To
analyse comprehensively, we use Qwen3 models and introduce two R1-Distill-Qwen variants.

Algorithm 1 Slow-to-Fast Reasoning

1: Input: Prompt x, LLM fθ, threshold τ , target token w = “wait”, preset sentence Sins, max
length Lmax

2: Output: Generated text Y
3: Y ← ””; c← 0; finished← false
4: while not finished do
5: p(·)← fθ(x⊕ Y )
6: t⋆ ← argmaxt p(t)
7: if c ≥ τ − 1 and t⋆ = w then
8: Y ← Y ⊕ Sins
9: c← 0

10: else
11: sample t ∼ Decode(p(·))
12: Y ← Y ⊕ t
13: if t = w then
14: c← c+ 1
15: end if
16: if t is EOS or length(Y ) ≥ Lmax then
17: finished← true
18: end if
19: end if
20: end while
21: return Y
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Algorithm 2 Think-to-Match

1: Inputs: base prompt xbase (prompt without options), options string O, LLM fθ, threshold τ ,
target token w = “wait”, preset sentence Sins, max length Lmax

2: Output: Generated text Y
3: Sfull ← Sins ⊕O
4: Y ← ””; c← 0; finished← false; inserted← false
5: while not finished do
6: p(·)← fθ(xbase ⊕ Y )
7: t⋆ ← argmaxt p(t)
8: if (c ≥ τ − 1) and (t⋆ = w) and not inserted then
9: Y ← Y ⊕ Sfull

10: c← 0; inserted← true
11: continue
12: end if
13: if (t⋆ =< /think >) and not inserted then
14: Y ← Y ⊕ Sfull
15: c← 0; inserted← true
16: continue
17: end if
18: sample t ∼ Decode(p(·))
19: Y ← Y ⊕ t
20: if t = w then
21: c← c+ 1
22: end if
23: if t = ⟨END⟩ or length(Y ) ≥ Lmax then
24: finished← true
25: end if
26: end while
27: return Y

C.2 CASE STUDY

We provide detailed cases of reasoning process of T2M on the three benchmarks.

Case on HiToM
Story: “The following story happens in chronological order. You will be given a multiple-
choice question and a note at the end. First give step-by-step analysis about the question.
Then output the answer.
1 Sophia, Jacob, Lily, Lucas and Alexander entered the bathroom.
2 The green pepper is in the blue suitcase.
3 Sophia moved the green pepper to the blue bottle.
4 Sophia exited the bathroom.
5 Jacob made no movements and stayed in the bathroom for 1 minute.
6 Jacob exited the bathroom.
7 Lily moved the green pepper to the green pantry.
8 Lily exited the bathroom.
9 Lucas made no movements and stayed in the bathroom for 1 minute.
10 Lucas exited the bathroom.
11 Alexander moved the green pepper to the blue suitcase.
12 Alexander exited the bathroom.
13 Sophia, Jacob, Lily, Lucas and Alexander entered the waiting room.”

Question: “Where is the green pepper really?”

Choices: “A. blue suitcase, B. red bottle, C. green pantry, D. green envelope, E. blue bottle,
F. red cupboard, G. green cupboard, H. green bathtub, I. green basket, J. green crate, K.
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blue crate, L. blue bathtub, M. blue cupboard, N. red suitcase, O. red container”

Response:
<think>
Okay, let’s try to figure out where the green pepper is. The story is in chronological order, so
I need to follow each step carefully.

First, the initial state: The green pepper is in the blue suitcase. That’s step 2. Then,
step 3 says Sophia moves it to the blue bottle. So after that, the green pepper is in the
blue bottle. Then Sophia exits (step 4).

Next, Jacob stays for a minute (step 5) and exits (step 6). No movement here, so
the green pepper remains in the blue bottle. Then Lily moves it to the green pantry (step 7),
so now it’s in the green pantry. She exits (step 8).

Then Lucas stays for a minute (step 9) and exits (step 10). No movement, so the
green pepper is still in the green pantry. Then Alexander moves it to the blue suitcase (step
11), so now it’s back in the blue suitcase. He exits (step 12).

Finally, everyone enters the waiting room (step 13). The question is asking where
the green pepper really is. The last action was Alexander moving it to the blue suitcase. So
the final location should be the blue suitcase. Let me check again to make sure I didn’t miss
any steps.

Yes, step 11 is the last movement. So the answer should be blue suitcase.

Now I need to choose an answer based on my intuition from: A. blue suitcase, B.
red bottle, C. green pantry, D. green envelope, E. blue bottle, F. red cupboard, G.
green cupboard, H. green bathtub, I. green basket, J. green crate, K. blue crate, L.
blue bathtub, M. blue cupboard, N. red suitcase, O. red container
</think>

Answer: A. blue suitcase

Case on ToMATO
Conversation: Liam Johnson: “Hi!”
Ethan Johnson: “Hi, how are you?”
Liam Johnson: “Ethan, I’ve noticed you’ve been a bit distant lately, is everything okay?”
Ethan Johnson: “Yeah, everything’s fine, just been really busy with the restaurant and some
personal stuff, you know how it is.”
Liam Johnson: “Come on, Ethan, we’ve been friends for years, I can tell when something’s
bothering you. What’s really going on?”
Ethan Johnson: “Alright, alright... to be honest, I’ve been having some trouble making ends
meet, the restaurant’s been slow and I’m falling behind on some bills, but I’ll figure it out, I
always do.”
Liam Johnson: “Ethan, you’re not going to ’figure it out’ on your own, you need a plan and
some guidance. Let me take a look at your finances and we can go over some options together,
okay?”
Ethan Johnson: “Man, I appreciate that, Liam, but I don’t want to be a burden, I can handle it,
I just need to get my head out of my... okay, fine, yeah, maybe a fresh set of eyes would help,
thanks.”
Liam Johnson: “Alright, let’s get down to business then. I’ll take a look at your books and
we’ll get a plan in place. But next time, don’t be so stubborn and come to me sooner, got it?”
Ethan Johnson: “Ha! Yeah, yeah, got it, I’ll try to work on that, thanks, Liam. And thanks
again, man, I owe you one... or a few thousand, it seems.”
Liam Johnson: “Yeah, yeah, just pay me back in free meals at the restaurant, and we’ll call it
square. But seriously, let’s take a close look at your expenses and see where we can cut back,
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okay?”
Ethan Johnson: “Aww, man, you’re a lifesaver, Liam. Yeah, let’s dig in and see where I can
tighten the belt, I’m sure there’s some fat to trim. And don’t worry, you’ll be eating like a
king at my place for a long time to come.”
Liam Johnson: “Alright, let’s get to work then. I’ll start going over the numbers and we can
discuss some options. And don’t make promises you can’t keep, just focus on getting back on
your feet, okay?”
Ethan Johnson: “Yeah, yeah, got it, thanks for keeping me grounded, Liam. I’ll let you do
your magic with the numbers, and I’ll focus on getting the restaurant back on track. You’re
right, one step at a time.”
Liam Johnson: “That’s the spirit, Ethan. Just remember, I’m not a miracle worker, you need
to be effort too. Let’s schedule a follow-up meeting for next week and we’ll reassess where
we’re at, sound good?”
Ethan Johnson: “Absolutely, sounds like a plan, Liam. I’ll make sure to have all my ducks in
a row by then. And thanks again, man, just knowing you’ve got my back makes me feel a hell
of a lot better.”

a0: “He feels a sense of dry amusement at Ethan’s joke, but also a bit of unease
about the seriousness of his financial situation”
a1: “He feels a bit frustrated that Ethan is not being open about his struggles, and he’s worried
that he might be hiding something”
a2: “He feels a bit anxious about bringing up the sensitive topic of Ethan’s financial struggles,
but he want to help his friend”
a3: “He feels a sense of relief that Ethan is finally opening up and accepting help, but also a
bit of irritation that he didn’t listen to him sooner”

q: “How does Liam feel when he says “Come on, Ethan, we’ve been friends for
years, I can tell when something’s bothering you. What’s really going on?”

response:
<think>
Okay, let’s see. The question is about how Liam feels when he says that specific line. Let me
look at the conversation again.

So, Liam starts by greeting Ethan. Then Ethan says he’s been busy with the restau-
rant and personal stuff. Liam responds with “Come on, Ethan... What’s really going on?”
That line seems like Liam is pushing Ethan to be honest.

Earlier, Ethan had said he’s been busy, but Liam is pointing out that they’ve been
friends for years and he can tell something’s up. So Liam is probably feeling concerned or
worried about Ethan. He’s trying to get Ethan to open up because he’s noticed something’s
wrong.

Looking at the options, even though the options aren’t listed here, the possible an-
swers would likely be emotions like concern, frustration, patience, or maybe anger. But based
on the context, Liam is a friend trying to help, so it’s more about concern and wanting to
support Ethan. He’s not angry, but rather trying to get Ethan to talk. So the answer is probably
that Liam feels concerned or worried.

Now I need to choose an answer based on my intuition from: [A] He feels a sense
of dry amusement at Ethan’s joke, but also a bit of unease about the seriousness of his
financial situation
[B] He feels a bit frustrated that Ethan is not being open about his struggles, and he’s worried
that he might be hiding something
[C] He feels a bit anxious about bringing up the sensitive topic of Ethan’s financial struggles,
but he want to help his friend
[D] He feels a sense of relief that Ethan is finally opening up and accepting help, but also a bit
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of irritation that he didn’t listen to him sooner
</think>

Answer: B

Case on ToMBench
STORY: “Zhang Wei is the performance champion of the department, but he encoun-
ters some challenges in his recent project, which causes his performance to be not
good. Li Yun is the department manager, he always supports Zhang Wei, hoping to
fight for the best evaluation for him in the year-end review. Chen Tao is Zhang Wei’s
colleague, he also hopes to get promoted in the year-end review. This afternoon, Li
Yun quickly browses Zhang Wei’s review form in the office. When Zhang Wei passes
by Li Yun’s office, Li Yun looks up at him and nods to him. Zhang Wei gives a slight
smile to Li Yun and continues to walk past. Chen Tao sees all this in the tea room not far away.”

QUESTION: “Why does Li Yun nod to Zhang Wei?”

OPTION-A: “Li Yun just sees Zhang Wei’s review form and thinks his performance is good.”
OPTION-B: “Li Yun wants to tell Zhang Wei that he gets a high evaluation.”
OPTION-C: “Li Yun is greeting Zhang Wei.”
OPTION-D: “Li Yun nods to Zhang Wei unintentionally.”

ANSWER: “B”

map: {“A”: “D”, “B”: “C”, “C”: “A”, “D”: “B”}

output:
<think>
Okay, let’s try to figure out why Li Yun nodded to Zhang Wei. So, the story says that Zhang
Wei is the performance champion of the department, but he’s having some challenges in his
recent project, which is affecting his performance. Li Yun is the department manager who
supports Zhang Wei and wants to fight for the best evaluation for him in the year-end review.
Chen Tao is another colleague who also wants to get promoted.

Now, the key moment is when Li Yun quickly browses Zhang Wei’s review form in
the office. Then, when Zhang Wei passes by Li Yun’s office, Li Yun nods at him, and Zhang
Wei gives a slight smile and continues walking. Chen Tao sees this from the tea room.

So, why would Li Yun nod to Zhang Wei? Let’s think. Since Li Yun is the man-
ager and wants to help Zhang Wei get the best evaluation, maybe he’s trying to show support.
But why nod specifically? Maybe because he just looked at Zhang Wei’s review form. If he’s
looking at the form, perhaps he’s checking Zhang Wei’s performance or the evaluation. But
since Zhang Wei is having challenges, maybe Li Yun is trying to encourage him. Alternatively,
maybe Li Yun is trying to signal that he’s aware of Zhang Wei’s situation and is supporting him.

Alternatively, could it be that Li Yun is trying to get Zhang Wei to know that he’s
being considered for a good evaluation? Or maybe Li Yun is trying to make sure that Zhang
Wei’s performance isn’t overlooked despite the recent challenges. The nod could be a gesture
of support or a reminder that Li Yun is on his side.

Another angle: since Chen Tao is also hoping for promotion, maybe there’s some
competition. But the question is about Li Yun’s action towards Zhang Wei. The story says Li
Yun always supports Zhang Wei and wants to fight for the best evaluation. So the nod is likely
a supportive gesture.

But why would Li Yun look at the review form before nodding? Maybe he’s check-
ing the form and wants to confirm that Zhang Wei’s performance is being considered, or
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maybe he’s trying to influence the evaluation. The nod could be a way to communicate that
he’s aware of Zhang Wei’s situation and is advocating for him.

Alternatively, maybe Li Yun is trying to get Zhang Wei to acknowledge his support,
but the story says Zhang Wei just gives a slight smile and continues. So the nod is probably a
sign of support or encouragement.

Looking at the answer options, even though they aren’t listed here, the options would likely
be something like: A. To show support, B. To check his performance, C. To compete with
Chen Tao, D. To inform about the review. But since the options aren’t given, based on the
story, the most logical answer is that Li Yun is supporting Zhang Wei, so the answer would be
something like A. But since the user hasn’t provided the options, I have to assume that the
answer is based on the given context. The answer is likely related to support or advocacy for
Zhang Wei’s evaluation. So the answer index would be the one that matches that reasoning.

Now I need to choose an answer based on my intuition from: A. Li Yun nods to
Zhang Wei unintentionally. B. Li Yun is greeting Zhang Wei. C. Li Yun just sees Zhang Wei’s
review form and thinks his performance is good. D. Li Yun wants to tell Zhang Wei that he
gets a high evaluation.
</think>

Final Answer: D
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