
Under review as a conference paper at ICLR 2021

REPRESENTATIONAL ASPECTS OF DEPTH AND CONDI-
TIONING IN NORMALIZING FLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

Normalizing flows are among the most popular paradigms in generative modeling,
especially for images, primarily because we can efficiently evaluate the likelihood
of a data point. This is desirable both for evaluating the fit of a model, and for
ease of training, as maximizing the likelihood can be done by gradient descent.
However, training normalizing flows comes with difficulties as well: models which
produce good samples typically need to be extremely deep – which comes with
accompanying vanishing/exploding gradient problems. A very related problem is
that they are often poorly conditioned: since they are parametrized as invertible
maps from Rd → Rd, and typical training data like images intuitively is lower-
dimensional, the learned maps often have Jacobians that are close to being singular.
In our paper, we tackle representational aspects around depth and conditioning of
normalizing flows—both for general invertible architectures, and for a particular
common architecture—affine couplings.
For general invertible architectures, we prove that invertibility comes at a cost in
terms of depth: we show examples where a much deeper normalizing flow model
may need to be used to match the performance of a non-invertible generator.
For affine couplings, we first show that the choice of partitions isn’t a likely bottle-
neck for depth: we show that any invertible linear map (and hence a permutation)
can be simulated by a constant number of affine coupling layers, using a fixed
partition. This shows that the extra flexibility conferred by 1x1 convolution layers,
as in GLOW, can in principle be simulated by increasing the size by a constant
factor. Next, in terms of conditioning, we show that affine couplings are universal
approximators – provided the Jacobian of the model is allowed to be close to singu-
lar. We furthermore empirically explore the benefit of different kinds of padding –
a common strategy for improving conditioning.

1 INTRODUCTION

Deep generative models are one of the lynchpins of unsupervised learning, underlying tasks spanning
distribution learning, feature extraction and transfer learning. Parametric families of neural-network
based models have been improved to the point of being able to model complex distributions like
images of human faces. One paradigm that has received a lot attention is normalizing flows, which
model distributions as pushforwards of a standard Gaussian (or other simple distribution) through an
invertible neural network G. Thus, the likelihood has an explicit form via the change of variables
formula using the Jacobian of G. Training normalizing flows is challenging due to a couple of
main issues. Empirically, these models seem to require a much larger size than other generative
models (e.g. GANs) and most notably, a much larger depth. This makes training challenging
due to vanishing/exploding gradients. A very related problem is conditioning, more precisely the
smallest singular value of the forward map G. It’s intuitively clear that natural images will have
a low-dimensional structure, thus a close-to-singular G might be needed. On the other hand, the
change-of-variables formula involves the determinant of the Jacobian of G−1, which grows larger the
more singular G is.

While recently, the universal approximation power of various types of invertible architectures has
been studied (Dupont et al., 2019; Huang et al., 2020) if the input is padded with a sufficiently large
number of all-0 coordinates, precise quantification of the cost of invertibility in terms of the depth
required and the conditioning of the model has not been fleshed out.
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In this paper, we study both mathematically and empirically representational aspects of depth and
conditioning in normalizing flows and answer several fundamental questions.

2 OVERVIEW OF RESULTS

2.1 RESULTS ABOUT GENERAL ARCHITECTURES

In order to guarantee that the network is invertible, normalizing flow models place significant
restrictions on the architecture of the model. The most basic question we can ask is how this
restriction affects the expressive power of the model — in particular, how much the depth must
increase to compensate.

More precisely, we ask:

Question 1: is there a distribution over Rd which can be written as the pushforward of a Gaussian
through a small, shallow generator, which cannot be approximated by the pushforward of a Gaussian
through a small, shallow layerwise invertible neural network?

Given that there is great latitude in terms of the choice of layer architecture, while keeping the network
invertible, the most general way to pose this question is to require each layer to be a function of p
parameters – i.e. f = f1◦f2◦· · ·◦f` where ◦ denotes function composition and each fi : Rd → Rd is
an invertible function specified by a vector θi ∈ Rp of parameters. This framing is extremely general:
for instance it includes layerwise invertible feedforward networks in which fi(x) = σ⊗d(Aix+ bi),
σ is invertible, Ai ∈ Rd×d is invertible, θi = (Ai, bi) and p = d(d + 1). It also includes popular
architectures based on affine coupling blocks (e.g. Dinh et al. (2014; 2016); Kingma & Dhariwal
(2018)) where each fi has the form fi(xSi

, x[d]\Si
) = (xSi

, x[d]\Si
� gi(xSi

) + hi(xSi
)) for some

S ⊂ [d] which we revisit in more detail in the following subsection.

We answer this question in the affirmative: namely, we show for any k that there is a distribution
over Rd which can be expressed as the pushforward of a network with depth O(1) and size O(k) that
cannot be (even very approximately) expressed as the pushforward of a Gaussian through a Lipschitz
layerwise invertible network of depth smaller than k/p.

Towards formally stating the result, let θ = (θ1, . . . , θ`) ∈ Θ ⊂ Rd′ be the vector of all parameters
(e.g. weights, biases) in the network, where θi ∈ Rp are the parameters that correspond to layer i,
and let fθ : Rd → Rd denote the resulting function. Define R so that Θ is contained in the Euclidean
ball of radius R.

We say the family fθ is L-Lipschitz with respect to its parameters and inputs, if

∀θ, θ′ ∈ Θ : Ex∼N (0,Id×d)‖fθ(x)− fθ′(x)‖ ≤ L‖θ − θ′‖

and ∀x, y ∈ Rd, ‖fθ(x)− fθ(y)‖ ≤ L‖x− y‖. 1 We will discuss the reasonable range for L in terms
of the weights after the Theorem statement. We show2:

Theorem 1. For any k = exp(o(d)), L = exp(o(d)), R = exp(o(d)), we have that for d sufficiently
large and any γ > 0 there exists a neural network g : Rd+1 → Rd with O(k) parameters and depth
O(1), s.t. for any family {fθ, θ ∈ Θ} of layerwise invertible networks that are L-Lipschitz with
respect to its parameters and inputs, have p parameters per layer and depth at most k/p we have

∀θ ∈ Θ,W1((fθ)#N , g#N ) ≥ 10γ2d

Furthermore, for all θ ∈ Θ, KL((fθ)#N , g#N ) ≥ 1/10 and KL(g#N , (fθ)#N ) ≥ 10γ2d
L2 .

Remark 1: First, note that while the number of parameters in both networks is comparable (i.e. it’s
O(k)), the invertible network is deeper, which usually is accompanied with algorithmic difficulties for
training, due to vanishing and exploding gradients. For layerwise invertible generators, if we assume
that the nonlinearity σ is 1-Lipschitz and each matrix in the network has operator norm at most M ,

1Note for architectures having trainable biases in the input layer, these two notions of Lipschitzness should
be expected to behave similarly.

2In this Theorem and throughout, we use the standard asymptotic notation f(d) = o(g(d)) to indicate
that lim supd→∞

f(d)
g(d)

= 0. For example, the assumption k, L,R = exp(o(d)) means that for any sequence

(kd, Ld, Rd)
∞
d=1 such that lim supd→∞

max(log kd,logLd,logRd)
d

= 0 the result holds true.
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then a depth ` network will have L = O(M `)3 and p = O(d2). For an affine coupling network
with g, h parameterized by H-layer networks with p/2 parameters each, 1-Lipschitz activations and
weights bounded by M as above, we would similarly have L = O(M `H).
Remark 2: We make a couple of comments on the “hard” distribution g we construct, as well as
the meaning of the parameter γ and how to interpret the various lower bounds in the different metrics.
The distribution g for a given γ will in fact be close to a mixture of k Gaussians, each with mean on
the sphere of radius 10γ2d and covariance matrix γ2Id. Thus this distribution has most of it’s mass
in a sphere of radius O(γ2d) — so the Wasserstein guarantee gives close to a trivial approximation
for g. The KL divergence bounds are derived by so-called transport inequalities between KL and
Wasserstein for subgaussian distributions Bobkov & Götze (1999). The discrepancy between the two
KL divergences comes from the fact that the functions g, fθ may have different Lipschitz constants,
hence the tails of g#N and f#N behave differently. In fact, if the function fθ had the same Lipschitz
constant as g, both KL lower bounds would be on the order of a constant.

2.2 RESULTS ABOUT AFFINE COUPLING ARCHITECTURES

Next, we prove several results for a particularly common normalizing flow architectures: those
based on affine coupling layers (Dinh et al., 2014; 2016; Kingma & Dhariwal, 2018). The appeal of
these architecture comes from training efficiency. Although layerwise invertible neural networks (i.e.
networks for which each layer consists of an invertible matrix and invertible pointwise nonlinearity)
seem like a natural choice, in practice these models have several disadvantages: for example,
computing the determinant of the Jacobian is expensive unless the weight matrices are restricted.

Consequently, it’s typical for the transformations in a flow network to be constrained in a manner that
allows for efficient computation of the Jacobian determinant. The most common building block is an
affine coupling block, originally proposed by Dinh et al. (2014; 2016). A coupling block partitions
the coordinates [d] into two parts: S and [d] \ S, for a subset S with |S| containing around half the
coordinates of d. The transformation then has the form:
Definition 1. An affine coupling block is a map f : Rd → Rd, s.t. f(xS , x[d]\S) = (xS , x[d]\S �
s(xS) + t(xS))

Of course, the modeling power will be severely constrained if the coordinates in S never change: so
typically, flow models either change the set S in a fixed or learned way (e.g. alternating between
different partitions of the channel in Dinh et al. (2016) or applying a learned permutation in Kingma &
Dhariwal (2018)). Of course, a permutation is a discrete object, so difficult to learn in a differentiable
manner – so Kingma & Dhariwal (2018) simply learns an invertible linear function (i.e. a 1x1
convolution) as a differentiation-friendly relaxation thereof.

2.2.1 THE EFFECT OF CHOICE OF PARTITION ON DEPTH

The first question about affine couplings we ask is how much of a saving in terms of the depth of
the network can one hope to gain from using learned partitions (ala GLOW) as compared to a fixed
partition. More precisely:

Question 2: Can models like Glow (Kingma & Dhariwal, 2018) be simulated by a sequence of affine
blocks with a fixed partition without increasing the depth by much?

We answer this question in the affirmative at least for equally sized partitions (which is what is
typically used in practice). We show the following surprising fact: consider an arbitrary partition
(S, [2d] \ S) of [2d], such that S satisfies |S| = d, for d ∈ N. Then for any invertible matrix
T ∈ R2d×2d, the linear map T : R2d → R2d can be exactly represented by a composition of O(1)
affine coupling layers that are linear, namely have the formLi(xS , x[2d]\S) = (xS , Bix[2d]\S+AixS)

or Li(xS , x[2d]\S) = (CixS + Dix[2d]\S , x[2d]\S) for matrices Ai, Bi, Ci, Di ∈ Rd×d, s.t. each
Bi, Ci is diagonal. For convenience of notation, without loss of generality let S = [d]. Then, each

of the layers Li is a matrix of the form
[
I 0
Ai Bi

]
or
[
Ci Di

0 I

]
, where the rows and columns are

partitioned into blocks of size d.

With this notation in place, we show the following theorem:
3Note, our theorem applies to exponentially large Lipschitz constants.
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Theorem 2. For all d ≥ 4, there exists a k ≤ 24 such that for any invertible T ∈ R2d×2d with
det(T ) > 0, there exist matrices Ai, Di ∈ Rd×d and diagonal matrices Bi, Ci ∈ Rd×d≥0 for all i ∈ [k]
such that

T =

k∏
i=1

[
I 0
Ai Bi

] [
Ci Di

0 I

]

Note that the condition det(T ) > 0 is required, since affine coupling networks are always orientation-
preserving. Adding one diagonal layer with negative signs suffices to model general matrices. In
particular, since permutation matrices are invertible, this means that any applications of permutations
to achieve a different partition of the inputs (e.g. like in Glow (Kingma & Dhariwal, 2018)) can in
principle be represented as a composition of not-too-many affine coupling layers, indicating that the
flexibility in the choice of partition is not the representational bottleneck.

It’s a reasonable to ask how optimal the k ≤ 24 bound is – we supplement our upper bound with
a lower bound, namely that k ≥ 3. This is surprising, as naive parameter counting would suggest
k = 2 might work. Namely, we show:

Theorem 3. For all d ≥ 4 and k ≤ 2, there exists an invertible T ∈ R2d×2d with det(T ) > 0, s.t.
for all Ai, Di ∈ Rd×d and for all diagonal matrices Bi, Ci ∈ Rd×d≥0 , i ∈ [k] it holds that

T 6=
k∏
i=1

[
I 0
Ai Bi

] [
Ci Di

0 I

]

Beyond the relevance of this result in the context of how important the choice of partitions is, it also
shows a lower bound on the depth for an equal number of nonlinear affine coupling layers (even with
quite complex functions s and t in each layer) – since a nonlinear network can always be linearized
about a (smooth) point to give a linear network with the same number of layers. In other words,
studying linear affine coupling networks lets us prove a depth lower bound/depth separation for
nonlinear networks for free.

Finally, in Section 5.3, we include an empirical investigation of our theoretical results on synthetic
data, by fitting random linear functions of varying dimensionality with linear affine networks of
varying depths in order to see the required number of layers. The results there suggest that the
constant in the upper bound is quite loose – and the correct value for k is likely closer to the lower
bound – at least for random matrices.

2.2.2 UNIVERSAL APPROXIMATION WITH ILL-CONDITIONED AFFINE COUPLING NETWORKS

Finally, we turn to universal approximation and the close ties to conditioning. Namely, a recent
work (Theorem 1 of Huang et al. (2020)) showed that deep affine coupling networks are universal
approximators if we allow the training data to be padded with sufficiently many zeros. While zero
padding is convenient for their analysis (in fact, similar proofs have appeared for other invertible
architectures like Augmented Neural ODEs (Zhang et al.)), in practice models trained on zero-padded
data often perform poorly (see Appendix C).

In fact, we show that neither padding nor depth is necessary representationally: shallow models
without zero padding are already universal approximators in Wasserstein.

Theorem 4 (Universal approximation without padding). Suppose that P is the standard Gaussian
measure in Rn with n even and Q is a distribution on Rn with bounded support and absolutely
continuous with respect to the Lebesgue measure. Then for any ε > 0, there exists a depth-3
affine coupling network g, with maps s, t represented by feedforward ReLU networks such that
W2(g#P,Q) ≤ ε.

Remark 1: A shared caveat of the universality construction in Theorem 4 with the construction in
Huang et al. (2020) is that the resulting network is poorly conditioned. In the case of the construction
in Huang et al. (2020), this is obvious because they pad the d-dimensional training data with d
additional zeros, and a network that takes as input a Gaussian distribution in R2d (i.e. has full support)
and outputs data on d-dimensional manifold (the space of zero padded data) must have a singular
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Jacobian almost everywhere.4 In the case of Theorem 4, the condition number of the network blows
up at least as quickly as 1/ε as we take the approximation error ε → 0, so this network is also
ill-conditioned if we are aiming for a very accurate approximation.
Remark 2: Based on Theorem 3, the condition number blowup of either the Jacobian or the Hessian
is necessary for a shallow model to be universal, even when approximating well-conditioned linear
maps (see Remark 7). The network constructed in Theorem 4 is also consistent with the lower bound
from Theorem 1, because the network we construct in Theorem 4 is highly non-Lipschitz and uses
many parameters per layer.

3 RELATED WORK

On the empirical side, flow models were first popularized by Dinh et al. (2014), who introduce
the NICE model and the idea of parametrizing a distribution as a sequence of transformations with
triangular Jacobians, so that maximum likelihood training is tractable. Quickly thereafter, Dinh
et al. (2016) improved the affine coupling block architecture they introduced to allow non-volume-
preserving (NVP) transformations, Papamakarios et al. (2017) introduced an autoregressive version,
and finally Kingma & Dhariwal (2018) introduced 1x1 convolutions in the architecture, which they
view as relaxations of permutation matrices—intuitively, allowing learned partitions for the affine
blocks. Subsequently, there have been variants on these ideas: (Grathwohl et al., 2018; Dupont et al.,
2019; Behrmann et al., 2018) viewed these models as discretizations of ODEs and introduced ways to
approximate determinants of non-triangular Jacobians, though these models still don’t scale beyond
datasets the size of CIFAR10. The conditioning/invertibility of trained models was experimentally
studied in (Behrmann et al., 2019), along with some “adversarial vulnerabilities” of the conditioning.
Mathematically understanding the relative representational power and statistical/algorithmic implica-
tions thereof for different types of generative models is still however a very poorly understood and
nascent area of study.

Most closely related to our results are the recent works of Huang et al. (2020) and Zhang et al.. Both
prove universal approximation results for invertible architectures (the former affine couplings, the
latter neural ODEs) if the input is allowed to be padded with zeroes. As already expounded upon in
the previous sections – our results prove universal approximation even without padding, but we focus
on more fine-grained implications to depth and conditioning of the learned model. Another work
(Kong & Chaudhuri, 2020) studies the representational power of Sylvester and Householder flows,
normalizing flow architectures which are quite different from affine coupling networks. In particular,
they prove a depth lower bound for local planar flows with bounded weights; for planar flows, our
general Theorem 1 can also be applied, but the resulting lower bound instances are very different
(ours targets multimodality, theirs targets tail behavior).

More generally, there are various classical results that show a particular family of generative models
can closely approximate most sufficiently regular distributions over some domain. Some examples
are standard results for mixture models with very mild conditions on the component distribution
(e.g. Gaussians, see (Everitt, 2014)); Restricted Boltzmann Machines and Deep Belief Networks
(Montúfar et al., 2011; Montufar & Ay, 2011); GANs (Bailey & Telgarsky, 2018).

4 PROOF SKETCH OF THEOREM 1: DEPTH LOWER BOUNDS ON INVERTIBLE
MODELS

In this section we sketch the proof of Theorem 1. The intuition behind the k/p bound on the depth
relies on parameter counting: a depth k/p invertible network will have k parameters in total (p per
layer)—which is the size of the network we are trying to represent. Of course, the difficulty is that we
need more than fθ, g simply not being identical: we need a quantitative bound in various probability
metrics.

The proof will proceed as follows. First, we will exhibit a large family of distributions (of size
exp(kd)), s.t. each pair of these distributions has a large pairwise Wasserstein distance between them.
Moreover, each distribution in this family will be approximately expressible as the pushforward of

4Alternatively, we could feed a degenerate Gaussian supported on a d-dimensional subspace into the network
as input, but there is no way to train such a model using maximum-likelihood training, since the prior is
degenerate.
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the Gaussian through a small neural network. Since the family of distributions will have a large
pairwise Wasserstein distance, by the triangle inequality, no other distribution can be close to two
distinct members of the family.

Second, we can count the number of “approximately distinct” invertible networks of depth l: each
layer is described by p weights, hence there are lp parameters in total. The Lipschitzness of the neural
network in terms of its parameters then allows to argue about discretizations of the weights.

Formally, we show the following lemma:
Lemma 1 (Large family of well-separated distributions). For every k = o(exp(d)), for d sufficiently
large and γ > 0 there exists a family D of distributions, s.t. |D| ≥ exp(kd/20) and:

1. Each distribution p ∈ D is a mixture of k Gaussians with means {µi}ki=1, ‖µi‖2 = 20γ2d and
covariance γ2Id.

2. ∀p ∈ D and ∀ε > 0, we have W1(p, g#N ) ≤ ε for a neural network g with at most O(k)
parameters.5

3. For any p, p′ ∈ D, W1(p, p′) ≥ 20γ2d.

The proof of this lemma will rely on two ideas: first, we will show that there is a family of distributions
consisting of mixtures of Gaussians with k components – s.t. each pair of members of this family
is far in W1 distance, and each member in the family can be approximated by the pushforward of a
network of size O(k).

The reason for choosing mixtures is that it’s easy to lower bound the Wasserstein distance between
two mixtures with equal weights and covariance matrices in terms of the distances between the means.
We show this as Lemma 5 in Appendix A.

Given this, to design a family of mixtures of Gaussians with large pairwise Wasserstein distance,
it suffices to construct a large family of k-tuples for the means, s.t. for each pair of k-tuples
({µi}ki=1, {νi}ki=1), there exists a set S ⊆ [k], |S| ≥ k/10, s.t. ∀i ∈ S,min1≤j≤k ‖µi − νj‖2 ≥
20γ2d. We do this by leveraging ideas from coding theory (the Gilbert-Varshamov bound Gilbert
(1952); Varshamov (1957)). Namely, we first pick a set of exp(Ω(d)) vectors of norm 20γ2d, each
pair of which has a large distance; second, we pick a large number (exp(Ω(kd))) of k-tuples from
this set at random, and show with high probability, no pair of tuples intersect in more than k/10
elements. This is subsumed by Lemmas 6 and 7 in Section A.

To handle part 2 of Lemma 1, we also show that a mixture of k Gaussians can be approximated as the
pushforward of a Gaussian through a network of size O(k). The idea is rather simple: the network
will use a sample from a standard Gaussian in Rd+1. We will subsequently use the first coordinate to
implement a “mask” that most of the time masks all but one randomly chosen coordinate in [k]. The
remaining coordinates are used to produce a sample from each of the components in the Gaussian,
and the mask is used to select only one of them. For details, see Section A.

With this lemma in hand, we finish the Wasserstein lower bound with a standard epsilon-net argument,
using the parameter Lipschitzness of the invertible networks by showing the number of “different”
invertible neural networks is on the order of O

(
(LR)d

′
)

. This is Lemma 8 in Appendix A. The
proof of Theorem 1 can then be finished by triangle inequality: since the family of distributions
has large Wasserstein distance, by the triangle inequality, no other distribution can be close to two
distinct members of the family. Finally, KL divergence bounds can be derived from the Bobkov-Götze
inequality Bobkov & Götze (1999), which lower bounds KL divergence by the squared Wasserstein
distance. The details are in Section A.

5 PROOF SKETCH OF THEOREMS 2 AND 3: SIMULATING LINEAR FUNCTIONS
WITH AFFINE COUPLINGS

In this section, we will prove Theorems 3 and 2. Before proceeding to the proofs, we will introduce
a bit of helpful notation. We let GL+(2d,R) denote the group of 2d × 2d matrices with positive

5The size of g doesn’t indeed depend on ε. The weights in the networks will simply grow as ε becomes small.
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determinant (see Artin (2011) for a reference on group theory). The lower triangular linear affine
coupling layers are the subgroup AL ⊂ GL+(2d,R) of the form

AL =

{[
I 0
A B

]
: A ∈ Rd×d, B is diagonal with positive entries

}
,

and likewise the upper triangular linear affine coupling layers are the subgroup AU ⊂ GL+(2d,R)
of the form

AU =

{[
C D
0 I

]
: D ∈ Rd×d, C is diagonal with positive entries

}
.

Finally, define A = AL ∪ AU ⊂ GL+(2d,R). This set is not a subgroup because it is not closed
under multiplication. Let Ak denote the kth power of A, i.e. all elements of the form a1 · · · ak for
ai ∈ A.

5.1 UPPER BOUND

The main result of this section is the following:
Theorem 5 (Restatement of Theorem 2). There exists an absolute constant 1 < K ≤ 47 such that
for any d ≥ 1, GL+(2d,R) = AK .

In other words, any linear map with positive determinant (“orientation-preserving”) can be imple-
mented using a bounded number of linear affine coupling layers. Note that there is a difference in
a factor of two between the counting of layers in the statement of Theorem 2 and the counting of
matrices in Theorem 5, because each layer is composed of two matrices.

In group-theoretic language, this says that A generates GL+(2d,R) and furthermore the diameter of
the corresponding (uncountably infinite) Cayley graph is upper bounded by a constant independent
of d. The proof relies on the following two structural results. The first one is about representing
permutation matrices, up to sign, using a constant number of linear affine coupling layers:

Lemma 2. For any permutation matrix P ∈ R2d×2d, there exists P̃ ∈ A21 with |P̃ij | = |Pij | for all
i, j.

The second one proves how to represent using a constant number of linear affine couplings matrices
with special eigenvalue structure:
Lemma 3. Let M be an arbitrary invertible d× d matrix with distinct real eigenvalues and S be a

d× d lower triangular matrix with the same eigenvalues as M−1. Then
[
M 0
0 S

]
∈ A4.

Given these Lemmas, we briefly describe the strategy to prove Theorem 5. Every matrix has a an
LUP factorization Horn & Johnson (2012) into a lower-triangular, upper-triangular, and permutation
matrix. Lemma 2 takes care of the permutation part, so what remains is building an arbitrary
lower/upper triangular matrix; because the eigenvalues of lower-triangular matrices are explicit, a
careful argument allows us to reduce this to Lemma 3. All the proofs are in Section B.

5.2 LOWER BOUND

We proceed to the lower bound. Note, a simple parameter counting argument shows that for
sufficiently large d, at least four affine coupling layers are needed to implement an arbitrary linear
map (each affine coupling layer has only d2 + d parameters whereas GL+(2d,R) is a Lie group of
dimension 4d2). Perhaps surprisingly, it turns out that four affine coupling layers do not suffice to
construct an arbitrary linear map. We prove this in the following Theorem.
Theorem 6 (Restatement of Theorem 3). For d ≥ 4, A4 is a proper subset of GL+(2d,R). In other
words, there exists a matrix T ∈ GL+(2d,R) which is not in A4.

Again, this translates to the result in Theorem 3 because each layer corresponds to two matrices — so
this shows two layers are not enough to get arbitrary matrices. The key observation is that matrices
in ALAUALAU satisfy a strong algebraic invariant which is not true of arbitrary matrices. This
invariant can be expressed in terms of the Schur complement Zhang (2006):
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Lemma 4. Suppose that T =

[
X Y
Z W

]
is an invertible 2d × 2d matrix and suppose there exist

matrices A,E ∈ Rd×d, D,H ∈ Rd×d and diagonal matrices B,F ∈ Rd×d, C,G ∈ Rd×d such that

T =

[
I 0
A B

] [
C D
0 I

] [
I 0
E F

] [
G H
0 I

]
.

Then the Schur complement T/X := W − ZX−1Y is similar to X−1C: more precisely, if U =
Z −AX then T/X = UX−1CU−1.

The proof of this Lemma is presented in Appendix B, as well as the resulting proof of Theorem 6.
We remark that the argument in the proof is actually fairly general; it can be shown, for example, that
for a random choice of X and W from the Ginibre ensemble, that T cannot typically be expressed in
A4. So there are significant restrictions on what matrices can be expressed even four affine coupling
layers.
Remark 7 (Connection to Universal Approximation). As mentioned earlier, this lower bound shows
that the map computed by general 4-layer affine coupling networks is quite restricted in its local
behavior (it’s Jacobian cannot be arbitrary). This implies that smooth 4-layer affine coupling networks,
where smooth means the Hessian (of each coordinate of the output) is bounded in spectral norm,
cannot be universal function approximators as they cannot even approximate some linear maps. In
contrast, if we allow the computed function to be very jagged then three layers are universal (see
Theorem 4).

5.3 EXPERIMENTAL RESULTS

We also verify the bounds from this section. At least on randomly chosen matrices, the correct
bound is closer to the lower bound. Precisely, we generate (synthetic) training data of the form
Az, where z ∼ N (0, I) for a fixed d × d square matrix A with random standard Gaussian entries
and train a linear affine coupling network with n = 1, 2, 4, 8, 16 layers by minimizing the loss
Ez∼N (0,I)

[
(fn(z)−Az)2

]
. We are training this “supervised” regression loss instead of the standard

unsupervised likelihood loss to minimize algorithmic (training) effects as the theorems are focusing
on the representational aspects. The results for d = 16 are shown in Figure 1, and more details are in
Section C. To test a different distribution other than the Gaussian ensemble, we also generated random
Toeplitz matrices with constant diagonals by sampling the value for each diagonal from a standard
Gaussian and performed the same regression experiments. We found the same dependence on number
of layers but an overall higher error, suggesting that that this distribution is slightly ‘harder’. We
provide results in Section C. We also regress a nonlinear RealNVP architecture on the same problems
and see a similar increase in representational power though the nonlinear models seem to require
more training to reach good performance.

Additional Remarks Finally, we also note that there are some surprisingly simple functions that
cannot be exactly implemented by a finite affine coupling network. For instance, an entrywise tanh
function (i.e. an entrywise nonlinearity) cannot be exactly represented by any finite affine coupling
network, regardless of the nonlinearity used. Details of this are in Appendix E.

6 PROOF SKETCH OF THEOREM 4: UNIVERSAL APPROXIMATION WITH
ILL-CONDITIONED AFFINE COUPLING NETWORKS

In this section, we sketch the proof of Theorem 4 to show how to approximate a distribution in Rn
using three layers of affine coupling networks, where the dimension n = 2d is even. The partition in
the affine coupling network is between the first d coordinates and second d coordinates in R2d.

The first element in the proof is a well-known theorem from optimal transport called Brenier’s
theorem, which states that for Q a probability measure over Rn satisfying weak regularity conditions
(see Theorem 9 in Section D), there exists a map ϕ : Rn → Rn such that if X ∼ N(0, In×n), then
the pushforward ϕ#(X) is distributed according to Q.

The proof then proceeds by using a lattice-based encoding and decoding scheme. Concretely, let
ε > 0 be a small constant, to be taking sufficiently small. Let ε′ ∈ (0, ε) be a further constant, taken
sufficiently small with respect to ε and similar for ε′′ wrt ε′. Let the input to the affine coupling

8
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Figure 1: Fitting 32-dimensional linear maps on
a using n-layer linear affine coupling networks.
The squared Frobenius error is normalized by
1/d2 so it is independent of dimensionality. We
shade the standard error regions of these losses
across the seeds tried.

Figure 2: Fitting a 4-component mixture of Gaus-
sians using a RealNVP model with no padding,
zero padding and Gaussian padding.

network be X = (X1, X2) such that X1 ∼ N(0, Id×d) and X2 ∼ N(0, Id×d). Let f(x) be the map
which rounds x ∈ Rd to the closest grid point in the lattice εZd and define g(x) = x− f(x). Note
that for a point of the form z = f(x)+ ε′y for y which is not too large, we have that f(z) = f(x) and
g(z) = y. Suppose the optimal transportation map from Brenier’s Theorem is ϕ(x) = (ϕ1(x), ϕ2(x))
where ϕ1, ϕ2 : Rd → Rn correspond to the two halves of the output. Now we consider the following
sequence of maps, all which form an affine coupling layer:

(X1, X2) 7→ (X1, ε
′X2 + f(X1)) (1)

7→ (f(ϕ1(f(X1), X2)) + ε′ϕ2(f(X1), X2) +O(ε′′), ε′X2 + f(X1)) (2)

7→ (f(ϕ1(f(X1), X2)) + ε′ϕ2(f(X1), X2) +O(ε′′), ϕ2(f(X1), X2) +O(ε′′/ε′)). (3)

To explicitly see why the above are affine coupling layers, in the first step we take s1(x) = log(ε′)~1

and t1(x) = f(x). In the second step, we take s2(x) = log(ε′′)~1 and t2 is defined by t2(x) =

f(ϕ1(f(x), g(x))) + ε′ϕ2(f(x), g(x)). In the third step, we take s3(x) = log(ε′′)~1 and define
t3(x) = g(x)

ε′ . Taking sufficiently good approximations to all of the maps allows to approximate this
map with neural networks, which we formalize in Appendix D.

6.1 EXPERIMENTAL RESULTS

On the empirical side, we explore the effect that different types of padding has on the training on
various synthetic datasets. For Gaussian padding, this means we add to the d-dimensional training
data point, an additional d dimensions sampled from N(0, Id). We consistently observe that zero
padding has the worst performance and Gaussian padding has the best performance. On Figure 2 we
show the performance of a simple RealNVP architecture trained via max-likelihood on a mixture of
4 Gaussians, as well as plot the condition number of the Jacobian during training for each padding
method. The latter gives support to the fact that conditioning is a major culprit for why zero padding
performs so badly. In Appendix C.2 we provide figures from more synthetic datasets.

7 CONCLUSION

Normalizing flows are one of the most heavily used generative models across various domains, though
we still have a relatively narrow understanding of their relative pros and cons compared to other
models. In this paper, we tackled representational aspects of two issues that are frequent sources of
training difficulties, depth and conditioning. We hope this work will inspire more theoretical study of
fine-grained properties of different generative models.

9
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A MISSING PROOFS FOR SECTION 4

A.1 WASSERSTEIN DISTANCE FOR MIXTURES

Lemma 5. Let µ and ν be two mixtures of k spherical Gaussians in d dimensions with mixing
weights 1/k, means (µ1, µ2, . . . , µk) and (ν1, ν2, . . . , νk) respectively, and with all of the Gaussians
having spherical covariance matrix γ2I for some γ > 0. Suppose that there exists a set S ⊆ [k] with
|S| ≥ k/10 such that for every i ∈ S,

min
1≤j≤k

‖µi − νj‖2 ≥ 20γ2d.

Then W1(µ, ν) = Ω(γ
√
d).

Proof. By the dual formulation of Wasserstein distance (Kantorovich-Rubinstein Theorem) Villani
(2003), we have W1(µ, ν) = supϕ

[∫
ϕdµ−

∫
ϕdν

]
where the supremum is taken over all 1-

Lipschitz functions ϕ. Towards lower bounding this, consider ϕ(x) = max(0, 2γ
√
d−mini∈S ‖xi−

µi‖) and note that this function is 1-Lipschitz and always valued in [0, 2γ
√
d]. For a single Gaussian

Z ∼ N (0, γ2Id×d), observe that

EZ∼N (0,γ2I)[max(0, 2γ
√
d− ‖Z‖)] ≥ 2γ

√
d− EZ)[‖Z‖] ≥ 2γ

√
d−

√
EZ∼N [‖Z‖2] ≥ γ

√
d.

Therefore, we see that
∫
ϕdµ = Ω(γ

√
d) by combining the above calculation with the fact that at

least 1/10 of the centers for µ are in S. On the other hand, for Z ∼ N (0, γ2Id×d) we have

Pr(‖Z‖2 ≥ 10γ2d) ≤ 2e−10d

(e.g. by Bernstein’s inequality Vershynin (2018), as ‖Z‖2 is a sum of squares of Gaussians, i.e. a
χ2-random variable). In particular, since the points in S do not have a close point in {νi}ki=1, we
similarly have

∫
ϕdν = O(e−10dγ

√
d) = o(γ

√
d), since very little mass from each Gaussian in νi

lands in the support of ϕ by the separation assumption. Combining the bounds gives the result.

A.2 CONSTRUCTING TUPLES OF WELL-SEPARATED MEANS

First, by elementary Chernoff bounds, we have the following result:

Lemma 6 (Large family of well-separated points). Let ε > 0. There exists a set {v1, v2, . . . , vN} of
vectors vi ∈ Rd, ‖vi‖ = 1 with N = exp(dε2/4), s.t. ‖vi − vj‖2 ≥ 2(1− ε) for all i 6= j.

Proof. Recall that for a random unit vector v on the sphere in d dimensions, Pr(vi > t/
√
d) ≤ e−t2/2.

(This is a basic fact about spherical caps, see e.g. Rao (2011)). By spherical symmetry and the union
bound, this means for two unit vectors v, w sampled uniformly at random Pr(|〈v, w〉| > t/

√
d) ≤

2e−t
2/2. Taking t = ε

√
d gives that the probability is 2e−dε

2/2; therefore if draw N i.i.d. vectors,
the probability that two have inner product larger than ε in absolute value is at most N2e−dε

2/2 < 1

if N = edε
2/4, which in particular implies such a collection of vectors exists.

To construct tuples with small intersections, we use the following result by Rödl:

Lemma 7 (Rödl & Thoma (1996)). There exists a set consisting of (N2k )k/10 subsets of size k of [N ],
s.t. no pair of subsets intersect in more than k/10 elements.

A.3 EPSILON-NET COUNT

The following lemma is immediate:

Lemma 8. Suppose that Θ ⊂ Rd′ is contained in a ball of radius R > 0 and fθ is a family of
invertible layerwise networks which is L-Lipschitz with respect to its parameters. Then there exists a
set of neural networks Sε = {fi}, s.t. |Sε| = O

(
(LRε )d

′
)

and for every θ ∈ Θ there exists a fi ∈ Sε,
s.t. Ex∼N(0,Id×d)‖fθ(x)− fi(x)‖∞ ≤ ε.
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A.4 SIMULATING A MIXTURE WITH A NEURAL NETWORK

Lemma 9. Let p : Rd → R+ be a mixture of k Gaussians with means {µi}ki=1, ‖µi‖2 = 20γ2d
and covariance γ2Id. Then, ∀ε > 0, we have W1(p, g#N ) ≤ ε for a neural network g with O(k)
parameters.6
Moreover, for every 1-Lipschitz φ : Rd → R+ and X ∼ g#N , φ(X) is O(γ2d)-subgaussian.

Proof. We will use a construction similar to Arora et al. (2017). Since the latent variable dimension
is d + 1, the idea is to use the first variable, say h as input to a “selector” circuit which picks one
of the components of the mixture with approximately the right probability, then use the remaning
dimensions—say variable z, to output a sample from the appropriate component.

For notational convenience, let M =
√

20γ2d. Let {hi}k−1
i=1 be real values that partition R into k

intervals that have equal probability under the Gaussian measure. Then, the map

f̃(h, z) = γz +

k∑
i=1

1(h ∈ (hi−1, hi])µi (4)

exactly generates the desired mixture, where h0 is understood to be −∞ and hk = +∞.

To construct g, first we approximate the indicators using two ReLUs, s.t. we design for each interval
(hi−1, hi] a function 1̃i, s.t.:
(1) 1̃i(h) = 1(h ∈ (hi−1, hi]) unless h ∈ [hi−1, hi−1 + δ+

i−1] ∪ [hi − δ−i , hi], and the Gaussian
measure of the union of the above two intervals is δ.
(2)
∑
i 1̃i(h) = 1.

The constructions of the functions 1̃i above can be found in Arora et al. (2017), Lemma 3. We
subsequently construct the neural network f(h, z) using ReLUs defined as

f(h, z) = γz +

k∑
i=1

(
ReLU(−M(1− 1̃i(h)) + µi)− ReLU(−M(1− 1̃i(h))− µi))

)
. (5)

Denoting

B :=

k−1⋃
i=1

[hi − δ−i , hi + δ+
i ]

note that if h /∈ B, ∀z, f(h, z) = f̃(h, z), as desired. If h ∈ [hi − δ−i , hi + δ+
i ], f(h, z) by

construction will be γz +
∑k
i=1 wi(h)µi for some wi(h) ∈ [0, 1] s.t.

∑
i wi(h) = 1.

Denoting by φ(h, z) the joint pdf of h, z, by the coupling definition of W1, we have

W1(f#N , µ) ≤
∫
h∈R,z∈Rd

∣∣∣f̃(h, z)− f(h, z)
∣∣∣
1
dφ(h, z)

=

∫
h∈R

∣∣∣∣∣
k∑
i=1

1(h ∈ (hi−1, hi])µi −
k∑
i=1

(
ReLU(−M(1− 1̃i(h)) + µi)−

ReLU(−M(1− 1̃i(h))− µi))
)∣∣

1
dφ(h)

=

∫
h∈B

∣∣∣∣∣
k∑
i=1

1(h ∈ (hi−1, hi])µi −
∑
i

wi(h)µi

∣∣∣∣∣
1

dφ(h)

≤
∫
h∈B

max
i,j
|µi − µj |1dφ(h)

=

∫
h∈B

2M
√
ddφ(h)

= 2M
√
dPr [h ∈ B]

= 2M
√
dkδ

6The size of g doesn’t indeed depend on ε. The weights in the networks will simply grow with ε.
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So if we choose δ = ε
2M
√
dk

, we have the desired bound in W1. (We note, making δ small only

manifests in the size of the weights of the functions 1̃, and not in the size of the network itself. This
is obvious from the construction in Lemma 3 in Arora et al. (2017).)

Proceeding to subgaussianity, consider a 1-Lipschitz function ϕ centered such that E[(ϕ◦f)#N ] = 0.
Next, we’ll show that (ϕ ◦ f)#N is subgaussian with an appropriate constant. We can view f#N as
the sum of two random variables: γz and

k∑
i=1

(
ReLU(−M(1− 1̃i(h)) + µi)− ReLU(−M(1− 1̃i(h))− µi))

)
.

γz is a Gaussian with covariance γ2I . The other term is contained in an l2 ball of radiusM . Using the
Lipschitz property and Lipschitz concentration for Gaussians (Theorem 5.2.2 of Vershynin (2018)),
we see that Pr[|(ϕ ◦ f)| ≥ t] ≤ exp

(
− (t−M)2

2γ2

)
. By considering separately the cases |t| ≤ 2M and

|t| > 2M , we immediately see this implies that the pushforward is O(γ2 +M2)-subgaussian. Since
M2 = O(γ2d), the claim follows.

A.5 KL DIVERGENCE BOUNDS

In this section, we use the Bobkov-Goetze inequality to derive the KL divergence bounds from the
Wasserstein bounds.

Concretely:
Theorem 8 (Bobkov & Götze (1999)). Let p, q : Rd → R+ be two distributions s.t. for every
1-Lipschitz f : Rd → R+ and X ∼ p, f(X) is c2-subgaussian. Then, we have KL(q, p) ≥

1
2c2W1(p, q)2.

Then, to finish the two inequalities in the statement of the main theorem, we will show that:

• For any mixture of k Gaussians where the component means µi satisfy ‖µi‖ ≤M , the condition of
Theorem 8 is satisfied with c2 = O(γ2 +M2). (In fact, we show this for the pushforward through
g, the neural network which approximates the mixture, which poses some non-trivial technical
challenges. See Appendix A, Lemma 9.)

• A pushforward of the standard Gaussian through a L-Lipschitz generator f satisfies the conditions
of Theorem 8 with c2 = L2, which implies the second part of the claim. (Theorem 5.2.2 in
Vershynin (2018).)

B MISSING PROOFS FOR SECTION 5

B.1 UPPER BOUND

First, we recall a folklore result about permutations. Let Sn denote the symmetric group on n
elements, i.e. the set of permutations of {1, . . . , n} equipped with the multiplication operation of
composition. Recall that the order of a permutation π is the smallest positive integer k such that πk
is the identity permutation.
Lemma 10. For any permutation π ∈ Sn, there exists σ1, σ2 ∈ Sn of order at most 2 such that

π = σ1σ2.

Proof. This result is folklore. We include a proof of it for completeness7.

First, recall that every permutation π has a unique decomposition π = c1 · · · ck as a product of
disjoint cycles. Therefore if we show the result for a single cycle, so ci = σi1σi2 for every i, then

7This proof, given by HH Rugh, and some other ways to prove this result
can be found at https://math.stackexchange.com/questions/1871783/
every-permutation-is-a-product-of-two-permutations-of-order-2 .
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taking σ1 =
∏k
i=1 σi1 and σ2 =

∏k
i=1 σi2 proves the desired result since π = σ1σ2 and σ1, σ2 are

both of order at most 2.

It remains to prove the result for a single cycle c of length r. The cases r ≤ 2 are trivial. Without loss
of generality, we assume c = (1 · · · r). Let σ1(1) = 2, σ1(2) = 1, and otherwise σ1(s) = r + 3− s.
Let σ2(1) = 3, σ2(2) = 2, σ2(3) = 1, and otherwise σ2(s) = r + 4− s. It’s easy to check from the
definition that both of these elements are order at most 2.

We now claim c = σ2 ◦ σ1. To see this, we consider the following cases:

1. σ2(σ1(1)) = σ2(2) = 2.

2. σ2(σ1(2)) = σ2(1) = 3.

3. σ2(σ1(r)) = σ2(3) = 1.

4. For all other s, σ2(σ1(s)) = σ2(r + 3− s) = s+ 1.

In all cases we see that c(s) = σ2(σ1(s)) which proves the result.

Next, we supply the proof of Lemma 2

Proof of Lemma 2. It is easy to see that swapping two elements is possible in a fashion that doesn’t
affect other dimensions by the following ‘signed swap’ procedure requiring 3 matrices:

(x, y) 7→ (x, y − x) 7→ (y, y − x) 7→ (y,−x). (6)

Next, let L = {1, . . . , d} and R = {d + 1, . . . , 2d}. There will be an equal number of elements
which in a particular permutation will be permuted from L to R as those which will be permuted
from R to L. We can choose an arbitrary bijection between the two sets of elements and perform
these ‘signed swaps’ in parallel as they are disjoint, using a total of 3 matrices. The result of this will
be the elements partitioned into L and R that would need to be mapped there.

We can also (up to sign) transpose elements within a given set L or R via the following computation
using our previous ‘signed swaps’ that requires one ‘storage component’ in the other set:

([x, y], z) 7→ ([z, y],−x) 7→ ([z, x], y) 7→ ([y, x],−z).

So, up to sign, we can in 9 matrices compute any transposition in L or R separately. In fact, since
any permutation can be represented as the product of two order-2 permutations (Lemma 10) and any
order-2 permutation is a disjoint union of transpositions, we can implement an order-2 permutation
up to sign using 9 matrices and an arbitrary permutation up to sign using 18 matrices.

In total, we used 3 matrices to move elements to the correct side and 18 matrices to move them to
their correct position, for a total of 21 matrices.

Lemma 11. Suppose A ∈ Rn×n is a matrix with n distinct real eigenvalues. Then there exists an
invertible matrix S ∈ Rn×n such that A = SDS−1 where D is a diagonal matrix containing the
eigenvalues of A.

Proof. Observe that for every eigenvalue λi of A, the matrix (A− λiI) has rank n− 1 by definition,
hence there exists a corresponding real eigenvector vi by taking a nonzero solution of the real linear
system (A− λI)v = 0. Taking S to be the linear operator which maps ei to standard basis vector vi,
and D = diag(λ1, . . . , λn) proves the result.

Next, we give the proof of Lemma 3

Proof of Lemma 3. Let
D = (M − I)E−1,

H = (M−1 − I)E−1,

E = −AM,

15



Under review as a conference paper at ICLR 2021

where A is an invertible matrix that will be specified later. We can multiply out with these values
giving [

I 0
A I

] [
I D
0 I

] [
I 0
E I

] [
I H
0 I

]
=

[
I 0
A I

] [
I (I −M)M−1A−1

0 I

] [
I 0

−AM I

] [
I (I −M−1)M−1A−1

0 I

]
=

[
I (M−1 − I)A−1

A AM−1A−1

] [
I 0

−AM I

] [
I (I −M−1)M−1A−1

0 I

]
=

[
M (M−1 − I)A−1

0 AM−1A−1

] [
I (I −M−1)M−1A−1

0 I

]
=

[
M 0
0 AM−1A−1

]
Here what remains is to guarantee AM−1A−1 = S. Since S and M−1 have the same eigenvalues,
by Lemma 11 there exist real matrices U, V such that S = UXU−1 and M−1 = V XV −1 for the
same diagonal matrix X , hence S = UV −1M−1V U−1. Therefore taking A = UV −1 gives the
result.

Now that we have the Lemmas, we prove the upper bound.

Proof of Theorem 5. Recall that our goal is to show that GL+(2d,R) ⊂ AK for an absolute constant
K > 0. To show this, we consider an arbitrary matrix T ∈ GL+(2d,R), i.e. an arbitrary matrix
T : 2d× 2d with positive determinant, and show how to build it as a product of a bounded number of
elements from A. As T is a square matrix, it admits an LUP decomposition Horn & Johnson (2012):
i.e. a decomposition into the product of a lower triangular matrix L, an upper triangular matrix U ,
and a permutation matrix P . This proof proceeds essentially by showing how to construct the L, U ,
and P components in a constant number of our desired matrices.

By Lemma 2, we can produce a matrix P̃ with det P̃ > 0 which agrees with P up to the sign
of its entries using O(1) linear affine coupling layers. Then T P̃−1 is a matrix which admits an
LU decomposition: for example, given that we know TP−1 has an LU decomposition, we can
modify flip the sign of some entries of U to get an LU decomposition of T P̃−1. Furthermore, since
det(T P̃−1) > 0, we can choose an LU decomposition T P̃−1 = LU such that det(L),det(U) > 0
(for any decomposition which does not satisfy this, the two matrices L and U must both have negative
determinant as 0 < det(T P̃−1) = det(L) det(U). In this case, we can flip the sign of column i in L
and row i in U to make the two matrices positive determinant).

It remains to show how to construct a lower/upper triangular matrix with positive determinant out of
our matrices. We show how to build such a lower triangular matrix L as building U is symmetrical.

At this point we have a matrix
[
A 0
B C

]
, where A and C are lower triangular. We can use column

elimination to eliminate the bottom-left block:[
A 0
B C

] [
I 0

−C−1B I

]
=

[
A 0
0 C

]
,

where A and C are lower-triangular.

Recall from equation 6 that we can perform the signed swap operation in R2 of taking (x, y) 7→
(y,−x) for x using 3 affine coupling blocks. Therefore using 6 affine coupling blocks we can perform
a sign flip map (x, y) 7→ (−x,−y). Note that because det(L) > 0, the number of negative entries
in the first d diagonal entries has the same parity as the number of negative entries in the second d
diagonal entries. Therefore, using these sign flips in parallel, we can ensure using 6 affine coupling
layers that that the first d and last d diagonal entries of L have the same number of negative elements.
Now that the number of negative entries match, we can apply two diagonal rescalings to ensure that:

1. The first d diagonal entries of the matrix are distinct.
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2. The last d diagonal entries contain the multiplicative inverses of the first d entries up to
reordering. Here we use that the number of negative elements in the first d and last d
elements are the same, which we ensured earlier.

At this point, we can apply Lemma 3 to construct this matrix from four of our desired matrices. Since
this shows we can build L and U , this shows we can build any matrix with positive determinant.

Now, let’s count the matrices we needed to accomplish this. In order to construct P̃ , we needed 21
matrices. To construct L, we needed 1 for column elimination, 6 for the sign flip, 2 for the rescaling
of diagonal elements, and 4 for Lemma 3 giving a total of 13. So, we need 21 + 13 + 13 = 47 total
matrices to construct the whole LUP decomposition.

B.2 LOWER BOUND

Finally, we proceed to give the proof of Lemma 4.

Proof of Lemma 4. We explicitly solve the block matrix equations. Multiplying out the LHS gives[
C D
AC AD +B

] [
G H
EG EH + F

]
=

[
CG+DEG CH +DEH +DF

ACG+ADEG+BEG ACH +ADEH +ADF +BEH +BF

]
.

Say

T =

[
X Y
Z W

]
.

Starting with the top-left block gives that

X = (C +DE)G

D = (XG−1 − C)E−1 (7)
Next, the top-right block gives that

Y = (C +DE)H +DF = XG−1H +DF

H = GX−1(Y −DF ). (8)
Equivalently,

D = (Y −XG−1H)F−1 (9)
Combining equation 8 and equation 7 gives

H = GX−1(Y − (XG−1 − C)E−1F )

H = GX−1Y − (I −GX−1C)E−1F (10)
The bottom-left and equation 7 gives

Z = ACG+ADEG+BEG

ZG−1 = AC + (AD +B)E

E = (AD +B)−1(ZG−1 −AC) (11)

E = (A(XG−1 − C)E−1 +B)−1(ZG−1 −AC)

E−1 = (ZG−1 −AC)−1(A(XG−1 − C)E−1 +B)

(ZG−1 −AC) = (A(XG−1 − C)E−1 +B)E = A(XG−1 − C) +BE

E = B−1((ZG−1 −AC)−A(XG−1 − C))

E = B−1(ZG−1 −AXG−1) (12)
Taking the bottom-right block and substituting equation 11 gives

W = ACH + (AD +B)(EH + F ) = ACH + (ZG−1 −AC)H + (AD +B)F

W = ZG−1H +ADF +BF. (13)
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Substituting equation 7 into equation 13 gives

W = ZG−1H +A(Y −XG−1H) +BF = (Z −AX)G−1H +AY +BF.

Substituting equation 10 gives

W = (Z −AX)G−1(GX−1Y − (I −GX−1C)E−1F ) +AY +BF

= (Z −AX)(X−1Y − (G−1 −X−1C)E−1F ) +AY +BF.

Substituting equation 12 gives

W = (Z −AX)(X−1Y − (G−1 −X−1C)(ZG−1 −AXG−1)−1BF ) +AY +BF

W − ZX−1Y −BF = (Z −AX)(X−1C −G−1)((Z −AX)G−1)−1BF

= (Z −AX)(X−1C −G−1)G(Z −AX)−1BF

= (Z −AX)X−1C(Z −AX)−1 −BF
W − ZX−1Y = (Z −AX)X−1C(Z −AX)−1 (14)

Here we notice that W − ZX−1Y is similar to X−1C, where we get to choose values along
the diagonal of C. In particular, this means that W − ZX−1Y and X−1C must have the same
eigenvalues.

Proof of Theorem 6. First, note that element in A4 can be written in either the form L1R1L2R2 or
R1L1R2L2 for L1, L2 ∈ AL and R1, R2 ∈ AR. We construct an explicit matrix which cannot be
written in either form.

Consider an invertible matrix of the form

T =

[
X 0
0 W

]
and observe that the Schur complement T/X is simply W . Therefore Lemma 4 says that this matrix
can only be in ALARALAR if W is similar to X−1C for some diagonal matrix C. Now consider
the case where W is a permutation matrix encoding the permutation (1 2 · · · d) and X is a diagonal
matrix with nonzero entries. Then X−1C is a diagonal matrix as well, hence has real eigenvalues,
while the eigenvalues of W are the d-roots of unity. (The latter claim follows because for any ζ
with ζd = 1, the vector (1, ζ, · · · , ζd−1) is an eigenvector of W with eigenvalue ζ). Since similar
matrices must have the same eigenvalues, it is impossible that X−1C and W are similar.

The remaining possibility we must consider is that this matrix is in ARALARAL. In this case by
applying the symmetrical version of Lemma 4 (which follows by swapping the first n and last n
coordinates), we see that W−1C and X must be similar. Since Tr(W−1C) = 0 and Tr(X) > 0, this
is impossible.

C EXPERIMENTAL VERIFICATION

C.1 PARTITIONED LINEAR NETWORKS

In this section, we will provide empirical support for Theorems 2 and 3. More precisely, empirically,
the number of required linear affine coupling layers at least for random matrices seems closer to the
lower bound – so it’s even better than the upper bound we provide.

Setup We consider the following synthetic setup. We train n layers of affine coupling layers,
namely networks of the form

fn(z) =

n∏
i=1

Ei

[
Ci Di

0 I

] [
I 0
Ai Bi

]
with Ei, Bi, Ci diagonal. Notice the latter two follow the statement of Theorem 2 and the alternating
order of upper vs lower triangular matrices can be assumed without loss of generality, as a product of
upper/lower triangular matrices results in an upper/lower triangular matrix. The matrices Ei turn out
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to be necessary for training – they enable “renormalizing” the units in the network (in fact, Glow
uses these and calls them actnorm layers; in older models like RealNVP, batchnorm layers are used
instead).

The training data is of the form Az, where z ∼ N (0, I) for a fixed d× d square matrix A with either
random standard Gaussian entries in Figures 4 to 8 or random standard Gaussian entries that are
diagonal-constant (that latter giving a natural random ensemble of Toeplitz matrices) in Figures 9 to
13. This ensures that there is a “ground” truth linear model that fits the data well. 8 We then train the
affine coupling network by minimizing the loss Ez∼N (0,I)

[
(fn(z)−Az)2

]
and trained on a variety

of values for n and d in order to investigate how the depth of linear networks affects the ability to fit
linear functions of varying dimension.

Note, we are not training via maximum likelihood, but rather we are minimizing a “supervised”
loss, wherein the network fn “knows” which point x a latent z is mapped to. This is intentional
and is meant to separate the representational vs training aspect of different architectures. Namely,
this objective is easier to train, and our results address the representational aspects of different
architectures of flow networks – so we wish our experiments to be confounded as little as possible by
aspects of training dynamics.

We chose n = 1, 2, 4, 8, 16 layers and d = 4, 8, 16, 32, 64 dimensions (here a layer is one matrix
and not a flipped pair as in our theoretical results). We present the standard L2 training loss and
the squared Frobenius error of the recovered matrix Â obtained by multiplying out the linear layers
||Â−A||2F , both normalized by 1/d2 so that they are independent of dimensionality. We shade the
standard error regions of these losses across the seeds tried. All these plots are log-scale, so the noise
seen lower in the charts is very small.

We initialize the E,C,B matrices with 1s on the diagonal and A,D with random Gaussian elements
with σ = 10−5 and train with Adam with learning rate 10−4. We train on 5 random seeds which
affect the matrix A generated and the datapoints z sampled.

Finally, we also train similar RealNVP models on the same datasets, using a regression objective
as done with the PLNs but s and t networks with two hidden layers with 128 units and the same
numbers of couplings as with the PNN experiments.

Results The results demonstrate that the 1- and 2- layer networks fail to fit even coarsely any of the
linear functions we tried. Furthermore, the 4-layer networks consistently under-perform compared to
the 8- and 16-layer networks. The 8- and 16-layer networks seem to perform comparably, though we
note the larger mean error for d=64, which suggests that the performance can potentially be further
improved (either by adding more layers, or improving the training by better choice of hyperparameters;
even on this synthetic setup, we found training of very deep networks to be non-trivial).

These experimental results suggest that at least for random linear transformations T , the number of
required linear layers is closer to the lower bound. Moreover, the error for the Toeplitz ensemble is
slightly larger, indicating this distribution is slightly harder. Closing this gap (both in a worst-case
and distributional sense) is an interesting question for further work.

In our experiments with the RealNVP architecture, we observe more difficulty in fitting these linear
maps, as they seem to need more training data to reach similar levels or error. We hypothesize this is
due to the larger model class that comes with allowing nonlinear functions in the couplings.

C.2 ADDITIONAL PADDING RESULTS ON SYNTHETIC DATASETS

We provide further results on the performance of Real NVP models on datasets with different kinds of
padding (no padding, zero-padding and Gaussian padding) on standard synthetic datasets–Swissroll,
2 Moons and Checkerboard.

The results are consistent with the performance on the mixture of 4 Gaussians: in Figures 24, 25, and
26, we see that the zero padding greatly degrades the conditioning and somewhat degrades the visual
quality of the learned distribution. On the other hand, Gaussian padding consistently performs best,
both in terms of conditioning of the Jacobian, and in terms of the quality of the recovered distribution.

8As a side remark, this ground truth is only specified up to orthogonal matrices U , as AUz is identically
distributed to Az, due to the rotational invariance of the standard Gaussian.
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D UNIVERSAL APPROXIMATION WITH ILL-CONDITIONED AFFINE COUPLING
NETWORKS

D.1 SIMPLER UNIVERSALITY UNDER ZERO-PADDING.

First (as a warmup), we give a much simpler proof than Huang et al. (2020) that affine coupling
networks are universal approximators in Wasserstein under zero-padding, which moreover shows
that only a small number of affine coupling layers are required. For Q a probability measure over Rn
satisfying weak regularity conditions (see Theorem 9 below), by Brenier’s Theorem Villani (2003)
there a W2 optimal transport map

ϕ : Rn → Rn

such that if X ∼ N(0, In×n), then the pushforward ϕ#(X) is distributed according to Q, and a
corresponding transport map in the opposite direction which we denote ϕ−1. If we allow for arbitrary
functions t in the affine coupling network, then we can implement the zero-padded transport map
(X, 0) 7→ (ϕ(X), 0) as follows:

(X, 0) 7→ (X,ϕ(X)) 7→ (ϕ(X), ϕ(X)) 7→ (ϕ(X), 0). (15)

Explicitly, in the first layer the translation map is t1(x) = ϕ(x), in the second layer the translation
map is t2(x) = x− ϕ−1(x), and in the third layer the translation map is t3(x) = −x. Note that no
scaling maps are required: with zero-padding the basic NICE architecture can be universal, unlike
in the unpadded case where NICE can only hope to implement volume preserving maps. This is
because every map from zero-padded data to zero-padded data is volume preserving. Finally, if
we are required to implement the translation maps using neural networks, we can use standard
approximation-theoretic results for neural networks, combined with standard results from optimal
transport, to show universality of affine coupling networks in Wasserstein. First, we recall the formal
statement of Brenier’s Theorem:
Theorem 9 (Brenier’s Theorem, Theorem 2.12 of Villani (2003)). Suppose that P and Q are
probability measures on Rn with densities with respect to the Lebesgue measure. ThenQ = (∇ψ)#P
for ψ a convex function, and moreover∇ψ is the unique W2-optimal transport map from P to Q.

It turns out that the transportation map ϕ := ∇ψ is not always a continuous function, however
there are simple sufficient conditions for the distribution Q under which the map is continuous
(see e.g. Caffarelli (1992)). From these results (or by directly smoothing the transport map), we
know any distribution with bounded support can be approached in Wasserstein distance by smooth
pushforwards of Gaussians. So for simplicity, we state the following Theorem for distributions which
are the pushforward of smooth maps.
Theorem 10 (Universal approximation with zero-padding). Suppose that P is the standard Gaussian
measure in Rn and Q = ϕ#P is the pushforward of the Gaussian measure through ϕ and ϕ is a
smooth map. Then for any ε > 0 there exists a depth 3 affine coupling network g with no scaling and
feedforward ReLU net translation maps such that W2(g#(P × δ0n), Q× δ0n) ≤ ε.

Proof. For any M > 0, let fM (x) = min(M,max(−M,x)) be the 1-dimensional truncation
map to [−M,M ] and for a vector x ∈ Rn let fM (x) ∈ [−M,M ]n be the result of applying fM
coordinate-wise. Note that fM can be implemented as a ReLU network with two hidden units per
input dimension. Also, any continuous function on [−M,M ]n can be approximated arbitrarily well in
L∞ by a sufficiently large ReLU neural network with one hidden layer Leshno et al. (1993). Finally,
note that if ‖f − g‖L∞ ≤ ε then for any distribution P we have W2(f#P, g#P ) ≤ ε by considering
the natural coupling that feeds the same input into f and g.

Now we show how to approximate the construction of equation 15 using these tools. For any ε > 0,
if we choose M sufficiently large and then take ϕ̃ and ϕ̃−1 to be sufficiently good approximations
of ϕ and ϕ−1 on [−M,M ]n, we can construct an affine coupling network with ReLU feedforward
network translation maps t̃1(x) = fM (ϕ̃(fM (x))), t̃2(x) = x− ϕ̃−1(x), and t̃3(x) = −x, such that
the output has W2 distance at most ε from Q.

Universality without padding. We now show that universality in Wasserstein can be proved even
if we don’t have zero-padding, using a lattice-based encoding and decoding scheme. Let ε > 0
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be a small constant, to be taking sufficiently small. Let ε′ ∈ (0, ε) be a further constant, taken
sufficiently small with respect to ε and similar for ε′′ wrt ε′. Suppose the input dimension is 2n, and
let X = (X1, X2) with independent X1 ∼ N(0, In×n) and X2 ∼ N(0, In×n) be the input the the
affine coupling network. Let f(x) be the map which rounds x ∈ Rn to the closest grid point in εZn
and define g(x) = x − f(x). Note that for a point of the form z = f(x) + ε′y for y which is not
too large, we have that f(z) = f(x) and g(z) = y. Let ϕ1, ϕ2 be the desired transportation maps
guaranteed by Brenier’s theorem, so that the distribution of ϕ1(X) is the target distribution Q and
ϕ2(X) is a standard Gaussian independent of ϕ1(X). (In other words, ϕ1, ϕ2 correspond to the first
half and second half of the output coordinates of the transport map from the 2n dimensional standard
Gaussian to the desired padded distribution.) Now we consider the following sequence of maps:

(X1, X2) 7→ (X1, ε
′X2 + f(X1)) (16)

7→ (f(ϕ1(f(X1), X2)) + ε′ϕ2(f(X1), X2) +O(ε′′), ε′X2 + f(X1)) (17)

7→ (f(ϕ1(f(X1), X2)) + ε′ϕ2(f(X1), X2) +O(ε′′), ϕ2(f(X1), X2) +O(ε′′/ε′)).
(18)

More explicitly, in the first step we take s1(x) = log(ε′)~1 and t1(x) = f(x). In the second step, we
take s2(x) = log(ε′′)~1 and t2 is defined by t2(x) = f(ϕ1(f(x), g(x))) + ε′ϕ2(f(x), g(x)). In the
third step, we take s3(x) = log(ε′′)~1 and define t3(x) = g(x)

ε′ .

Again, taking sufficiently good approximations to all of the maps allows to approximate this map
with neural networks, which we formalize below.

Proof of Theorem 4. Turning equation 16,equation 17, and equation 18 into a universal approxi-
mation theorem for ReLU-net based feedforward networks just requires to modify the proof of
Theorem 10 for this scenario.

Fix δ > 0, the above argument shows we can choose ε, ε′, ε′′ > 0 sufficiently small so that if h is
map defined by composing equation 16,equation 17, and equation 18, then W2(h#P,Q) ≤ ε/4. The
layers defining h may not be continuous, since f is only continuous almost everywhere. Using that
continuous functions are dense in L2, we can find a function fε which is continuous and such that if
we define hε by replacing each application of f by fε, then W2(hε#P,Q) ≤ ε/2.

Finally, since fε is an affine coupling network with continuous s and t functions, we can use the same
truncation-and-approximation argument from Theorem 10 to approximate it by an affine coupling
network g with ReLU feedforward s and t functions such that W2(g#P,Q) ≤ ε, which proves the
result.

E APPROXIMATING ENTRYWISE NONLINEARITY WITH AFFINE COUPLINGS

To show how surprisingly hard it may be to represent even simple functions using affine couplings,
we show an example of a very simple function—an entrywise application of hyperbolic tangent,
s.t. an arbitrary depth/width sequence of affine coupling blocks with tanh nonlinearities cannot
exactly represent it. Thus, even for simple functions, the affine-coupling structure imposes nontrivial
restrictions. Note that in contrast to Theorem 4, we are considering exact representation here.

Precisely, we show:

Theorem 11. Let d ≥ 2 and denote g : Rd → Rd, g(z) := (tanh z1, . . . , tanh zd). Then, for any
W,D,N ∈ N and norm ‖ · ‖, there exists an ε(W,D,N) > 0, s.t. for any network f consisting of a
sequence of at most N affine coupling layers of the form:

(yS , yS̄)→ (yS , yS̄ � a(yS) + b(yS))

for in each layer an arbitrary set S ( [d] and a, b arbitrary feed-forward tanh neural networks of
width at most W , depth at most D, and weight norm into each unit of at most R, it holds that

Ex∈[−1,1]d‖f(x)− g(x)‖ > ε(W,D,N,R).
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The proof of the theorem is fairly unusual, as it uses some tools from complex analysis in several
variables (see Grauert & Fritzsche (2012) for a reference) — though it’s so short that we include it
here. The result also generalizes to other neural networks with analytic activations.

Proof of Theorem 11. By compactness of the class of models bounded by W,D,N,R, it suffices to
prove that there is no way to exactly represent the function.

Suppose for contradiction that f = g on the entirety of [−1, 1]d. Let z1, . . . , zd denote the d
inputs to the function: we now consider the behavior of f and g when we extend their definition
to Cd. From the definition, g extends to a holomorphic function (of several variables) on all of
Cd \ {z : ∃j, zj = iπ(k + 1/2) : k ∈ Z}, i.e. everywhere where tanh doesn’t have a pole. Similarly,
there exists an dense open subset D ⊂ Cd on which the affine coupling network f is holomorphic,
because it is formed by the addition, multiplication, and composition of holomorphic functions.

We next prove that f = g on their complex extensions by the Identity Theorem (Theorem 4.1 of
Grauert & Fritzsche (2012)). We must first show that f = g on an open subset of Cd. To prove
this, observe that f is analytic at zero and its power series expansion is uniquely defined in terms of
the values of f on Rd (for example, we can compute the coefficients by taking partial derivatives).
It follows that the power series expansions of f and g are both equal at zero and convergent in an
open neighborhood of 0 in Cd, so we can indeed apply the Identity Theorem; this shows that f = g
wherever they are both defined.

From the definition tanh(z) = e2z−1
e2z+1 we can see that g is periodic in the sense that g(z+πik) = g(z)

for any k ∈ Zd. However, by construction the affine coupling network f is invertible whenever, at
every layer, the output of the function a is not equal to zero. By the identity theorem, the set of
inputs where each a vanishes is nowhere dense — otherwise, by continuity a vanishes on the open
neighborhood of some point, so a = 0 by the Identity Theorem which contradicts the assumption.
Therefore the union of inputs where a at any layer vanishes is also nowhere dense. Consider the
behavior of f on an open neighborhood of 0 and of iπ: we have shown that f is invertible except on a
nowhere dense set, and also that g = f wherever f is defined, but g(z) = g(z+ iπ) so it’s impossible
for f to be invertible on these neighborhoods except on a nowhere dense subset. By contradiction,
f 6= g on [−1, 1]d.

Finally, to give empirical evidence that the above is not merely a theoretical artifact, we regress an
affine coupling architecture to fit entrywise tanh.

Specifically, we sample 10-dimensional vectors from a standard Gaussian distribution and train
networks as in the padding section on a squared error objective such that each input is regressed on its
elementwise tanh. We train an affine coupling network with 5 pairs of alternating couplings with g
and h networks consisting of 2 hidden layers with 128 units each. For comparison, we also regress a
simple MLP with 2 hidden layers with 128 units in each layer, exactly one of the g or h subnetworks
from the coupling architecture, which contains 20 such subnetworks. For another comparison, we
also try this on the elementwise ReLU function, using affine couplings with tanh activations and the
same small MLP.

As we see in Figure 3, the affine couplings fit the function substantially worse than a much smaller
MLP – corroborating our theoretical result.
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Figure 3: The smaller MLPs are much better able to fit simple elementwise nonlinearities than the
affine couplings.

Figure 4: Learning Partitioned Linear Networks on 4-D linear functions.

Figure 5: Learning Partitioned Linear Networks on 8-D linear functions.
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Figure 6: Learning Partitioned Linear Networks on 16-D linear functions.

Figure 7: Learning Partitioned Linear Networks on 32-D linear functions.
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Figure 8: Learning Partitioned Linear Networks on 64-D linear functions.

Figure 9: Learning Partitioned Linear Networks on 4-D Toeplitz functions.
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Figure 10: Learning Partitioned Linear Networks on 8-D Toeplitz functions.

Figure 11: Learning Partitioned Linear Networks on 16-D Toeplitz functions.
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Figure 12: Learning Partitioned Linear Networks on 32-D Toeplitz functions.

Figure 13: Learning Partitioned Linear Networks on 64-D Toeplitz functions.
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Figure 14: Real NVP Regressed on 4-D Linear
Functions

Figure 15: Real NVP Regressed on 8-D Linear
Functions

Figure 16: Real NVP Regressed on 16-D Linear
Functions

Figure 17: Real NVP Regressed on 32-D Linear
Functions
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Figure 18: Real NVP Regressed on 64-D Linear
Functions

Figure 19: Real NVP Regressed on 4-D Toeplitz
Functions

Figure 20: Real NVP Regressed on 8-D Toeplitz
Functions

Figure 21: Real NVP Regressed on 16-D
Toeplitz Functions
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Figure 22: Real NVP Regressed on 32-D
Toeplitz Functions

Figure 23: Real NVP Regressed on 164-D
Toeplitz Functions
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Figure 24: Real NVP on Swissroll Dataset

Figure 25: Real NVP on 2 Moons Dataset

Figure 26: Real NVP on Checkerboard Dataset
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