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Abstract

Partial domain adaptation which assumes that the unknown target label space is a
subset of the source label space has attracted much attention in computer vision.
Despite recent progress, existing methods often suffer from three key problems:
negative transfer, lack of discriminability, and domain invariance in the latent
space. To alleviate the above issues, we develop a novel ‘Select, Label, and Mix’
(SLM) framework that aims to learn discriminative invariant feature representations
for partial domain adaptation. First, we present an efficient “select” module that
automatically filters out the outlier source samples to avoid negative transfer while
aligning distributions across both domains. Second, the “label” module iteratively
trains the classifier using both the labeled source domain data and the generated
pseudo-labels for the target domain to enhance the discriminability of the latent
space. Finally, the “mix” module utilizes domain mixup jointly with the other two
modules to explore more intrinsic structures across domains leading to a domain-
invariant latent space for partial domain adaptation. Experiments on two datasets
demonstrate the superiority of our framework over state-of-the-art methods. Project
page: https://cvir.github.io/projects/slm.

1 Introduction

Partial domain adaptation (PDA), which assumes that the target label space is a subset of the source
label space in unsupervised domain adaptation [8, 24], has received increasing research attention
recently. Several methods have been proposed by training domain discriminators with weighting [2,
3, 27, 4], using residual correction blocks [14, 15], or reweighting source samples [1, 6, 7, 11, 25].
However, (1) most of the existing methods still suffer from negative transfer due to presence of outlier
source domain classes, which cripples domain-wise transfer with untransferable knowledge; (2) in
absence of labels, they often neglect the class-aware information in target domain which fails to
guarantee the discriminability of the latent space; and (3) given filtering of the outliers, limited number
of samples from source and target domain are not alone sufficient to learn domain invariant features
for such a complex problem. As a result, a domain classifier may falsely align unlabeled target
samples with samples of a different class in the source domain, leading to inconsistent predictions.

To address these challenges, we propose a novel end-to-end Select, Label, and Mix (SLM) frame-
work for learning discriminative invariant features while preventing negative transfer in PDA. Our
framework consists of three unique modules working in concert, i.e., select, label and mix. First,
the select module facilitates the identification of relevant source samples preventing the negative
transfer. To be specific, our main idea is to learn a model (referred to as selector network) that
outputs probabilities of binary decisions for selecting or discarding each source domain sample before
aligning source and target distributions using an adversarial discriminator [9]. As these decision
functions are discrete and non-differentiable, we rely on Gumbel Softmax sampling [12] to learn
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Figure 1: Illustration of our proposed framework. During training, for a mini-batch of images, all the three
modules are trained jointly and during testing, we evaluate performance using classification accuracy of the
network F(G(.)) on target domain data Dtarget. See Section 2 for more details. Best viewed in color.

the policy jointly with network parameters through standard back-propagation, without resorting to
complex reinforcement learning settings, as in [6, 7]. Second, we develop an efficient self-labeling
strategy that iteratively trains the classifier using both labeled source domain data and generated soft
pseudo-labels for target domain to enhance the discriminabilty of the latent space. Finally, the mix
module utilizes both intra-domain and inter-domain mixup regularization [26] to generate convex
combinations of pairs of training samples and their corresponding labels in both domains. Our
proposed modules are simple yet very effective which explore three unique aspects for the first time
in partial domain adaptation setting in an end-to-end manner. Specifically, in each mini-batch, our
framework simultaneously eliminates negative transfer by removing outlier source samples and learns
discriminative invariant features by labeling and mixing samples.

2 Proposed Method
Partial domain adaptation aims to mitigate the domain shift and generalize the model to an unlabelled
target domain with a label space which is a subset of that of the labelled source domain. Formally,
we define the set of labelled source domain samples as Dsource = {(xsi , yi)}

NS
i=1 and unlabelled

target domain samples as Dtarget = {xti}
NT
i=1, with label spaces Lsource and Ltarget, respectively,

where Lsource(Ltarget. NS and NT represent the number of samples in source and target domain
respectively. Our goal is to develop an approach with the above given data to improve the performance
of a model on Dtarget. Figure 1 illustrates an overview of our approach. Our framework consists
of a feature extractor G, a classifier network F , a domain discriminator D, and a selector network
H for discarding outlier source samples (“Select”) to mitigate negative transfer in partial domain
adaptation. Our approach also comprises of two additional modules namely “Label” and “Mix” that
works in conjunction with the “Select” module to ensure the discriminability and domain invariance
of the latent space. Given a mini-batch of source and target domain images, all the components are
optimized jointly in an iterative manner. The individual modules are discussed below.

Select Module. This module stands in the core of our framework with an aim to get rid of the
outlier source samples in order to minimize negative transfer. Instead of using different heuristically
designed criteria for weighting source samples, we develop a novel selector networkH, that takes
source domain images as input and makes instance-level binary predictions to obtain relevant source
samples for adaptation, as shown in Figure 2. Specifically, the selectorH provides a discrete binary
output of either a 0 (discard) or 1 (select) for each source sample, i.e., H : Dsource → {0, 1}.
However, the discrete decision policy makes the network non-differentiable and therefore difficult to
optimize via standard backpropagation. To resolve non-differentiability, we adopt Gumbel-Softmax
trick [12, 19] and draw samples from a categorical distribution parameterized by α0, α1, where α0,
α1 are the output logits of the selector for a sample to be selected and discarded respectively. The
selector H takes a batch of source images (size b) as input, and outputs a two-dimensional matrix
β ∈ Rb×2, where each row corresponds to [α0, α1] for an image. We then draw i.i.d. samples G0,
G1 from Gumbel(0, 1) = −log(−log(U)), where U ∼ Uniform[0, 1] and generate discrete samples
in forward pass as: X = argmaxi[logαi +Gi] resulting in hard binary predictions, while during
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backward pass, we approximate gradients using continuous softmax relaxation as:

Yi =
exp((logαi+Gi)/τ)∑

j∈{0,1} exp((logαj+Gj)/τ)
for i∈{0, 1} (1)

where Gi’s are i.i.d samples from standard Gumbel distribution Gumbel(0, 1) and τ denotes
temperature of softmax. As τ approaches 0, Yi becomes one-hot and discrete.
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Figure 2: Learning with Gumbel Softmax Sampling.

Learning to Discard the Outliers. We propose
a novel Hausdorff distance-based triplet loss
function for the select module which ensures
that the selector network learns to distinguish
between the outlier and the non-outlier distribu-
tion in the source domain. For a given batch
of source images Db

source and target images
Db

target, each of size b, the selector results in two
subsets of source samples Db

sel={x∈Db
source :

H(x)=1} andDb
dis={x∈Db

source :H(x)=0}.
The idea is to pull the selected source samples Db

sel & target samples Db
target closer while pushing

discarded source samples Db
dis & Db

target apart in the feature space of G. To achieve this, we
formulate the loss function as follows:

dsel = dH(G(Db
sel),G(Db

target)) ddis = dH(G(Db
dis),G(Db

target))

Lselect = λsmax(dsel − ddis +margin, 0) + Lreg (2)

where dH(X,Y ) represents the average Hausdorff distance between the set of features X and Y .
Lreg = λreg1

∑
x∈Dbsource

H(x) log(H(x)) + λreg2{
∑

p̂ lent(p̂) − lent(p̂m)}, with lent being the
entropy loss, p̂ is the Softmax prediction of F(G(Dtarget)) and p̂m is mean prediction for the target
domain. Lreg is a regularization to restrictH from producing trivial all-0 or all-1 outputs as well as
ensuring confident and diverse predictions by F(G(.)) for Dtarget. Note that given the selection Db

sel,
we forward only the selected samples to the successive modules.

Label Module. While select module helps in removing source domain outliers, it fails to guarantee
discriminability of the latent space due to absence of class-aware information in target domain. To this
end, we propose a label module that provides additional self-supervision for target domain samples.
Specifically, we generate soft pseudo-labels [28] for target domain samples that efficiently attenuates
the unwanted deviations caused by false and noisy one-hot pseudo-labels. For a target domain sample
xtk ∈ Dtarget, the soft-pseudo-label ŷtk and the corresponding loss is computed as follows:

ŷ
t(i)
k =

p(i|xti)
1
α∑|Lsource|

j=1 p(j|xt
i)

1
α

Llabel = Exti∈Dbtarget lce(F(G(x
t
i)), ŷ

t
i) (3)

where p(j|xt
i) is the softmax probability of the classifier for class j given xti as input, and α controls

the softness of the label. Db
target is a batch of target samples, lce(.) represents the cross-entropy loss.

Mix Module. With limited samples per batch and after discarding the outlier samples, it becomes
more challenging in preventing over-fitting and learning domain invariant representation using only
select and label modules. Thus, we apply MixUp [26] on the selected source samples and the target
samples for discovering ingrained structures in establishing domain invariance. Given Db

sel from
select module and Db

target with corresponding labels ŷt from label module, we perform convex
combinations of images belonging to these two sets on pixel-level in three different ways namely,
inter-domain, intra-source domain and intra-target domain to obtain Db

inter_mix, Db
intra_mix_s, and

Db
intra_mix_t respectively. Given the new augmented images, we utilize these three sets in training both

the classifier F and the domain discriminator D as follows:

Lmix_dom = Exi∼Dbinter_mix
[λ log(D(G(xi))) + (1−λ) log(1−D(G(xi)))]

+Exi∼Dbintra_mix_s
log(D(G(xi))) + Exi∼Dbintra_mix_t

log(1−D(G(xi)))
Lmix_cls = E(xi,yi)∈Dbmix

lce(F(G(xi)), yi), Lmix = Lmix_cls + Lmix_dom (4)

where Db
mix = Db

inter_mix ∪Db
intra_mix_s ∪Db

intra_mix_t. Lmix_dom and Lmix_cls represent loss for domain
discriminator and classifier respectively.
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Optimization. Besides the above three modules that are tailored for PDA, we use standard supervised
loss on the labeled source data and domain adversarial loss as follows:

Lsup = E(xi,yi)∈Dbsel
lce(F(G(xi)), yi)

Ladv = Exs∼Dbsel
ws log(D(G(xs))) + Ext∼Dbtargetw

t log(1−D(G(xt))) (5)

where Ladv is entropy-conditioned domain adversarial loss with weights ws and wt for source and
target domain respectively [17]. We integrate all the modules into one framework, as shown in
Figure 1 and minimize all losses together to train the networks jointly for partial domain adaptation.

3 Experiments
Datasets and Settings. We use Office31 [22], and VisDA-2017 [20] for experiments. We follow [14]
and select target categories for each transfer task under PDA setting. We use ResNet-50 [10] as feature
extractor and ResNet-18 as selector network, initialized with ImageNet [21] pretrained weights. In
Eqn. 2 we set λs, λreg1 and λreg2 as 0.01, 10.0 and 0.1, respectively, and a margin value of 100.0.
We set τ = 1.0 in Eqn. 1, α = 0.1 in Eqn. 3 and are annealed down to 0 during training. We report
average classification accuracy and standard deviation over 3 random trials.

Table 1: Performance on Office31 and VisDA-2017. We highlight the best
and second best method on each transfer task under PDA setting.

Office31 VisDA-2017
Method A→W D→W W→ D A→ D D→ A W→ A Average R→ S S→ R Average
ResNet-50 [10] 76.5±0.3 99.2±0.2 97.7±0.1 87.5±0.2 87.2±0.1 84.1±0.3 88.7 64.3 45.3 54.8
DAN [16] 53.6±0.7 62.7±0.5 57.8±0.6 47.7±0.5 61.2±0.6 69.7±0.5 58.8 68.4 47.6 58.0
DANN [9] 62.8±0.6 71.6±0.4 65.6±0.5 65.1±0.7 78.9±0.3 79.2±0.4 70.5 73.8 51.0 62.4
ADDA [23] 75.7±0.2 95.4±0.2 99.9±0.1 83.4±0.2 83.6±0.1 84.3±0.1 87.0 − − −
RTN [18] 75.3 97.1 98.3 66.9 85.6 85.7 84.8 72.9 50.0 61.5
CDAN+E [17] 80.5±1.2 99.0±0.0 98.1±0.0 77.1±0.9 93.6±0.1 91.7±0.0 90.0 − − −
JDDA [5] 73.5±0.6 93.1±0.3 89.3±0.2 76.4±0.4 77.6±0.1 82.8±0.2 82.1 − − −
CAN [13] 84.4±0.0 92.0±1.4 94.7±1.7 84.9±0.9 85.6±1.0 86.4±0.8 88.0 − − −
PADA [3] 86.3±0.4 99.3±0.1 100.0±0.0 90.4±0.1 91.3±0.2 92.6±0.1 93.3 76.5 53.5 65.0
SAN [2] 93.9±0.5 99.3±0.5 99.4±0.1 94.3±0.3 94.2±0.4 88.7±0.4 95.0 69.7 49.9 59.8
IWAN [27] 89.2±0.4 99.3±0.3 99.4±0.2 90.5±0.4 95.6±0.3 94.3±0.3 94.7 71.3 48.6 60.0
ETN [4] 93.4±0.3 99.3±0.1 99.2±0.2 95.5±0.4 95.4±0.1 91.7±0.2 95.8 − − −
DRCN [14] 88.1 100.0 100.0 86.0 95.6 95.8 94.3 73.2 58.2 65.7
RTNet [7] 95.1±0.3 100.0±0.0 100.0±0.0 97.8±0.1 93.9±0.1 94.1±0.1 96.8 − − −
RTNetadv [7] 96.2±0.3 100.0±0.0 100.0±0.0 97.6±0.1 92.3±0.1 95.4±0.1 96.9 − − −
BA3US [15] 99.0±0.3 100.0±0.0 98.7±0.0 99.4±0.0 94.8±0.1 95.0±0.1 97.8 − − −
SLM (Ours) 99.8±0.2 100.0±0.0 99.8±0.3 98.7±0.0 96.1±0.1 95.9±0.0 98.4 77.5±0.8 91.7±0.8 84.6

Results and Analysis. Ta-
ble 1 shows the results.
On Office31, as expected,
the popular UDA meth-
ods including the recent
CAN [13], fail to outper-
form the simple no adap-
tation model (ResNet-50),
which implies that they suf-
fer from negative transfer
(see upper section in Ta-
ble 1). Overall, our SLM
framework outperforms all
the existing PDA methods
by achieving the best results
on 4 out of 6 transfer tasks. Among PDA methods, BA3US [15] is the most competitive. However,
SLM still outperforms it (97.8% vs 98.4%) due to our two novel components working in concert with
the removal of outliers: enhancing discriminability of the latent space via iterative pseudo-labeling of
target domain samples and learning domain-invariance through mixup regularizations. On VisDA-
2017 dataset, our approach achieves new state-of-the-art result, outperforming the next competitive
method by a large margin of about 18.9%. Our approach is able to distill more positive knowledge
from the synthetic to the real domain despite significant domain gap across them.

Effectiveness of Individual Modules. On Office-31, we find that the Select only module improves
the vanilla performance by 5.6%, while addition of Label and Mix modules progressively improves
the result to obtain the best performance of 98.4% (89.3 S−→ 94.9

S+L−−→ 96.0
S+L+M−−−−→ 98.4). This

corroborates the fact that both discriminability and invariance of the latent space plays a crucial role
in partial domain adaptation in addition to the removal of source domain outlier samples.

Distance between Domains. We compute the Wasserstein distance between the probability distri-
bution of the target samples (T) with that of the selected (Ssel) and discarded samples (Sdis) by
the selector network [7]. Assuming dist(Sall,T) to be equal to 1.000, we find that dist(Ssel,T)
is smaller than dist(Sall,T) (0.999 & 0.893), while dist(Sdis,T) is greater than dist(Sall,T)
(1.013 & 1.144) on two randomly sampled adaptation tasks from Office31 (A→ D & W→ A). This
results indicate that the samples selected by our selector network are closer to the target domain while
the discarded samples are very dissimilar to the target domain.

4 Conclusion
In this paper, we propose an end-to-end framework for learning discriminative invariant feature
representation while preventing negative transfer in partial domain adaptation. While our “select”
module facilitates the identification of relevant source samples for adaptation, “label” module
enhances discriminability of the latent space utilizing pseudo-labels, with “mix” module using mixup
regularizations jointly with the former two strategies to enforce domain invariance in latent space.
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