Octo: An Open-Source Generalist Robot Policy
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Fig. 1: We introduce Octo, an open-source, generalist policy for robotic manipulation. Octo is a transformer-based policy pretrained on
800k diverse robot episodes from the Open X-Embodiment dataset [1]. It supports flexible task and observation definitions and can be

quickly finetuned to new observation and action spaces.

Abstract— Large policies pretrained on diverse robot datasets
have the potential to transform robotic learning: instead of
training new policies from scratch, such generalist robot policies
may be finetuned with only a little in-domain data, yet gener-
alize broadly. However, to be widely applicable across a range
of robotic learning scenarios, environments, and tasks, such
policies would need to handle diverse sensors and action spaces,
accommodate a variety of commonly used robotic platforms,
and finetune readily and efficiently to new domains.

Large policies pretrained on diverse robot datasets have
the potential to transform robotic learning: instead of training
new policies from scratch, such generalist robot policies may
be finetuned with only a little in-domain data, yet generalize
broadly. However, to be widely applicable across a range
of robotic learning scenarios, environments, and tasks, such
policies would need to handle diverse sensors and action spaces,
accommodate a variety of commonly used robotic platforms,
and finetune readily and efficiently to new domains. In this
work, we aim to lay the groundwork for developing open-source,
widely applicable, generalist policies for robotic manipulation.
As a first step, we introduce Octo, a large transformer-
based policy trained on 800k trajectories from the Open X-
Embodiment dataset, the largest robot manipulation dataset
to date. It can be instructed via language commands or goal
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images and can be effectively finetuned to robot setups with new
sensory inputs and action spaces within a few hours on standard
consumer GPUs. In experiments across 7 robotic platforms, we
demonstrate that Octo serves as a versatile policy initialization
that can be effectively finetuned to new observation and action
spaces. We also perform detailed ablations of design decisions
for the Octo model, from architecture to training data, to guide
future research on building generalist robot models.

[. INTRODUCTION

The common approach for robotic learning is to train
policies on datasets collected for the specific robot and task at
hand. Learning from scratch in this way requires significant
data collection effort for each task, and the resulting policies
usually exhibit only narrow generalization. In principle,
collected experience from other robots and tasks offers a
possible solution, exposing models to a diverse set of robotic
control problems that may improve generalization and per-
formance on downstream tasks. However, even as general-
purpose models become ubiquitous in natural language [2],
[3]) and computer vision [4], [5], it has proven challenging to
build the analogous “general-purpose robot model” that can
control many robots for many tasks. Training a unified con-
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Fig. 3: Model architecture. Left: Octo tokenizes task descriptions (green) and input observations (blue) using a pretrained
language model and a lightweight CNN, respectively. Top: The transformer backbone processes the sequence of task and
observation tokens and produces readout tokens (purple) that get passed to output heads to produce actions. Bottom: The
block-wise attention structure of the transformer allows us to add or remove inputs and outputs during finetuning: for
example, we can add new observations (blue, dashed) or action spaces (purple, dashed) without modifying any pretrained

parameters.

trol policy in robotics presents unique challenges, requiring
handling different robot embodiments, sensor setups, action
spaces, task specifications and environments.

Towards this direction, several works have proposed
robotic foundation models that directly map robot observa-
tions to actions and provide zero-shot or few-shot general-
ization to new domains and robots. We broadly refer to these
models as “generalist robot policies” (GRPs), emphasizing
their ability to perform low-level visuomotor control across
tasks, environments, and robotic systems [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16]. For example, the
GNM model [17] generalizes across different robotic nav-
igation scenarios, the RoboCat model [7] handles different
robot embodiments for goal-conditioned tasks, and the RT-
X model [1] performs language-conditioned manipulation
across five robot embodiments.

Although these models represent significant steps toward
a true “general-purpose robot model,” they have been limited
in multiple important aspects: they typically constrain down-
stream users to a pre-defined and often restrictive set of input
observations, e.g., a single camera stream; they lack support
for effective finetuning to new domains; and importantly, the
largest of these models are not available to the general public.

Our primary contribution is Octo, a transformer-based
policy pretrained on the largest robot manipulation dataset to
date: 800k robot trajectories from the Open X-Embodiment
dataset [1]. Octo is the first GRP that can be effectively
finetuned to new observations and action spaces and the first
generalist robot manipulation policy that is fully open-source,
including the training pipeline, model checkpoints, and data.
Finally, while the individual components that comprise Octo
— a transformer backbone, support for both language and
goal image specification, and a diffusion head to model
expressive action distributions — have been discussed in
prior work, the particular combination of these components
into a powerful generalist robot policy is unique and novel.

We demonstrate through extensive experiments on 7 robots
across 4 institutions that our combined system leads to
state-of-the-art performance for zero-shot multi-robot control
and that Octo can be used as an effective initialization for
finetuning to unseen robot setups with new observation and
action spaces.

II. THE OCTO MODEL

In this section, we describe the Octo model, our open-
source generalist robot policy that can be adapted to new
robots and tasks — including new sensory inputs and action
spaces — via finetuning. We discuss the key design deci-
sions, training objectives, training dataset, and infrastructure.
The design of the Octo model emphasizes flexibility and
scale: it supports a variety of commonly used robots, sensor
configurations, and actions while providing a generic and
scalable recipe that can be trained on large amounts of data.
It also supports natural language instructions, goal images,
observation histories, and multi-modal, chunked action pre-
diction via diffusion decoding [18]. Furthermore, we de-
signed Octo specifically to enable efficient finetuning to new
robot setups, including robots with different action spaces
and different combinations of cameras and proprioceptive
information. This design was selected to make Octo a flexible
and broadly applicable generalist robot policy that can be
utilized for a variety of downstream robotics applications
and research projects.

A. Architecture

At its core, Octo is a transformer-based policy =. It
consists of three key parts: input tokenizers that transform
language instructions ¢, goals g, and observation sequences
01,...,0pq into tokens [77,’7;,’7;} ( , left); a trans-
former backbone that processes the tokens and produces
embeddings ej,eq, e, = T(T;,74,75) ( , top); and
readout heads R(e) that produce the desired outputs, i.e.,
actions a.
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Fig. 4: Evaluation Tasks. We evaluate Octo on 7 real robot setups across 4 institutions. Our evaluations capture diverse
object interactions (e.g., “WidowX BridgeV2”), long task horizons (e.g., “Lab2 Coffee”) and precise manipulation (e.g.,
“Labl Insertion”). We evaluate Octo’s capabilities to control robots in environments from the pretraining data out-of-the-box
and to efficiently finetune to new tasks and environments with small target domain datasets. We also test finetuning with
new observations (force-torque inputs for “Franka Insertion”) and action spaces (joint position control in “Lab4 Pick-Up”).

Task and observation tokenizers: We convert task defi-
nitions (e.g., language instructions ¢ and goal images ¢) and
observations o (e.g., wrist and third-person camera streams)
into a common “tokenized” format using modality-specific
tokenizers (see , left):

o Language inputs are tokenized, then passed through
a pretrained transformer that produces a sequence of
language embedding tokens. We use the t5-base
(111M) model [19].

« Image observations and goals are passed through a
shallow convolution stack, then split into a sequence of
flattened patches [20].

We assemble the input sequence of the transformer
by adding learnable position embeddings p to task and
observation tokens and then arranging them sequentially
(T7, To1, To,25 - - |

Transformer backbone and readout heads: Once the
inputs have been cast to a unified token sequence, they
are processed by a transformer (see , top). This is
similar to prior works that train transformer-based poli-
cies on sequences of observations and actions [21], [22].
The attention pattern of the Octo transformer is block-
wise masked: observation tokens can only attend causally
to tokens from the same or earlier time steps 7, .+ as well
as task tokens 7 (green). Tokens corresponding to non-
existing observations are fully masked out (e.g., a dataset
without language instructions). This modular design enables
us to add and remove observations or tasks during finetuning
(see below). In addition to these input token blocks, we
insert learned readout tokens Tr; (purple). A readout token
at Tr, attends to observation and task tokens before it in
the sequence, but is not attended to by any observation
or task token — hence, they can only passively read and
process internal embeddings without influencing them. An
action head that implements the diffusion process is applied
to the embeddings for the readout tokens. This head predicts
a chunk of consecutive actions, similar to prior work [18].

Our design allows us to flexibly add new task and ob-
servation inputs or action output heads to the model during
downstream finetuning. When adding new tasks, observa-
tions, or loss functions downstream, we can wholly retain

the pretrained weights for the transformer, only adding new
positional embeddings, a new lightweight encoder, or the
parameters of the new head as necessitated by the change in
specification (see , bottom).

This flexibility is crucial to make Octo a truly “generalist”
model: since we cannot cover all possible robot sensor
and action configurations during pretraining, being able to
adapt Octo’s inputs and outputs during finetuning makes
it a versatile tool for the robotics community. Prior model
designs that use standard transformer backbones or fuse
visual encoders with MLP output heads lock in the type
and order of inputs expected by the model. In contrast,
switching the observation or task for Octo does not require
re-initializing most of the model.

B. Training data

We train Octo on a mixture of 25 datasets from the Open
X-Embodiment Dataset [1], a diverse collection of robot
learning datasets. Our training mixture includes data from
a variety of robot embodiments, scenes, and tasks. These
datasets are heterogeneous not just in terms of the robot type,
but also in the sensors (e.g., including or not including wrist
cameras) and labels (e.g., including or not including language
instructions). See Appendix C for the detailed mixture.

C. Training objective

We use a conditional diffusion decoding head to predict
continuous, multi-modal action distributions [23], [18]. Im-
portantly, only one forward pass of the transformer backbone
is performed per action prediction, after which the multi-
step denoising process is carried out entirely within the
small diffusion head. We found this policy parameterization
to outperform policies trained with MSE action heads or
discretized action distributions [10] in both zero-shot and
finetuning evaluations. To generate an action, we sample a
Gaussian noise vector € ~ A/ (0, 1 ) and apply K steps of
denoising with a learned denoising network g (z*, e, k) that
is conditioned on the output ¥ of the previous denoising
step, the step index k, and the output embedding e of the
transformer action readout:

it :a(ggk—’yeg(xk,e,k)—l-./\/(OJQI))- (D



Labl Insertion®  Lab2 Coffee  Lab3 Baking Lab4 Pick-Upf  Average
ResNet+Transformer Scratch 10% 45% 25% 0% 20%
VC-1 [24] 5% 0% 30% 0% 9%
Octo (Ours) 70 % 75 % 50% 60 % 64 %

TABLE I: Finetuning Evaluation. Octo enables data-efficient finetuning to new domains and out-performs training from
scratch as well as state-of-the-art pretrained visual representations. Each domain uses ~ 100 target demonstrations and
the same finetuning hyperparameters. In each domain, success rates are averaged over 20 trials. *: New observation input
(force-torque proprioception). 1: New action space (joint position control).

III. EXPERIMENTS

Our experiments provide an empirical analysis of Octo,
evaluating its ability to serve as a general robotic foundation
model across several axes:

1) Can Octo control multiple robot embodiments and
solve language and goal tasks out of the box?

2) Do Octo weights serve as a good initialization for data-
efficient finetuning to new tasks and robots, and does
it improve over training from scratch and commonly
used pretrained representations?

3) Which design decisions in Octo matter most for build-
ing generalist robot policies?

Evaluation setups: We evaluate Octo’s capabilities
across a representative spectrum of 7 robot learning se-
tups at 4 institutions (see ). We test Octo’s ability
to control different robots out-of-the-box (“zero-shot”) for
language and goal image tasks using robot setups that match
the pretraining data, where all robots are controlled with
delta end-effector control actions and the observation spaces
are RGB images. We also evaluate Octo for data-efficient
finetuning to new environments and tasks, including with
new observations (force-torque inputs in “Labl Insertion’)
and new action spaces (joint control in “Lab4 Pick-Up”).

Comparisons: We compare Octo’s ability to control
multiple robots out-of-the-box to the best openly available
generalist robot policy, RT-1-X [1], using the released check-
point. Similar to Octo, RT-1-X is pretrained on the Open
X-Embodiment robot dataset and aims to control multiple
robots zero-shot, thus providing a natural point of compari-
son. We also compare the zero-shot capabilities of Octo to
RT-2-X, a 55 billion parameter vision-language model fine-
tuned on the Open X-Embodiment dataset to produce robot
actions. We further compare Octo’s performance as a policy
initialization for data efficient finetuning to two common
approaches: (1) training on the target domain demonstrations
from scratch and (2) using pretrained visual representations.

A. Octo Controls Multiple Robots Out-of-the-Box

We compare the zero-shot manipulation capability of Octo,
RT-1-X, and RT-2-X in . We evaluated on a variety
of task types including picking and placing, wiping a table
with a cloth, and opening and closing drawers. For each
robot, we selected two language tasks and performed 10 trials
per task with varying initial conditions. While all methods
were able to solve a diverse range of tasks in the pretraining
environments, we found that on average Octo had a 29%
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Fig. 5: Zero-Shot Evaluation. Out-of-the-box, Octo can
control multiple robots in environments from the pretraining
data, outperforming RT-1-X [1], the current best openly
available generalist robot policy across three different robot
embodiments and setups.

higher success rate than RT-1-X (35M parameters). For the
WidowX and RT-1 Robot evaluations, we also compared
to RT-2-X (55 billion parameters) [9] and found that Octo
performed similarly.

B. Octo Enables Data-Efficient Learning in New Domains

We report data-efficient finetuning results to new domains
in . We find that finetuning Octo leads to better
policies than starting from scratch or with the pretrained
VC-1 weights. On average across the four evaluation setups
(detailed in Appendix [F), Octo outperforms the next best
baseline by 43%.

IV. DISCUSSION AND FUTURE WORK

We introduced Octo, a large transformer-based policy
pretrained on the largest robot manipulation dataset to date,
800k robot trajectories. We demonstrated that Octo can solve
a variety of tasks out-of-the-box and showed how Octo’s
compositional design enables finetuning to new inputs and
action spaces, making Octo a versatile initialization for a
wide range of robotic control problems. Apart from the
model itself, we have released our full training and finetuning
code, alongside tools that make it easier to train on large
robot datasets. While Octo represents a step towards building
generalist robot policies that work out-of-the-box on diverse
robot setups, there remains work to improve the model,
including better language conditioning, improved support
for wrist cameras, and incorporating data beyond optimal
demonstrations. We hope that Octo offers a simple launchpad
for researchers and practitioners to access larger robotic
datasets and leverage pretrained robotics models for efficient
learning of new tasks and broad generalization.
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APPENDIX
A. Related Work

Many works train policies using a large dataset of tra-
jectories collected from a robot, from early efforts using
autonomous data collection for scaling policy training [25],
[26], [27], [28], [29], [30] to more recent efforts that explore
the combination of modern transformer-based policies with
large demonstration datasets [10], [31], [32], [33], [34],
[35]. These works primarily focus on a single embodiment,
while Octo trains policies on robot datasets assembled across
multiple embodiments, increasing the effective size of the
training dataset and allowing finetuning to a range of robot
setups.

More recently, papers have focused on broadening the gen-
eralization abilities of robot policies. Multiple works leverage
diverse non-robot data or pretrained vision-language founda-
tion models to boost policy generalization to new scenes and
tasks [35], [9], [36], [37], [38], [39], [40], [41], [42], [43],
[44], [45], [46], [8]. More closely related to Octo are recent
works that train robot policies across data from multiple
robot embodiments: the GNM model [11], [17] generalizes
across robot navigation setups while RoboCat [7] and RT-
X [1] control multiple single-arm manipulation robots. While
these models deliver impressive policy learning results, a key
issue is their lack of flexibility: they typically require users
to stick to the sensory inputs and action space used during
pretraining and do not support adaptation to new observation
and action spaces. Furthermore, the largest models are not
publicly accessible. Octo differs from these works in multiple
aspects: it is trained on a larger and more diverse robot data
mix, it supports a wider range of downstream applications
via efficient finetuning to new robot setups, and it is fully
open source and reproducible.

Octo’s design is inspired by several recent advances in
robot imitation learning and scalable transformer training,
including the use of denoising diffusion objectives [23] for
action decoding [18], [47], [48], the prediction of “action
chunks”, i.e., sequences of future actions [32], [18], [33],
and model layouts and learning rate schedules inspired by
the literature on scalable vision transformer training [20],
[49]. Our work is the first to leverage these approaches in
the context of learning cross-embodied generalist policies
and we find that they can lead to substantial performance
improvements. In our evaluation, we present ablations to
assess the importance of these components, alongside a more
comprehensive list of what we found to be (un)important
in Appendix E; we hope our findings are useful for future
research on generalist policy learning.

A key ingredient for training generalist robot policies
is robot training data. In contrast to vision and language
data that can be scraped from the web, obtaining robot
data at scale is challenging and often involves significant
investments in hardware and human labor. There are multiple
large robot navigation and autonomous driving datasets [50],
[51], [52], [53], [17], [54], [55]. In recent years, there have
also been multiple efforts for building robot manipulation
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datasets of increasing scale and diversity, either collected
via scripted and autonomous policies [28], [27], [56], [57],
[25], [30] or human teleoperation [58], [59], [60], [61], [62],
[10], [63], [64], [65], [66], [67]. Octo is trained on the Open
X-Embodiment dataset [1], a recent effort that pooled many
of these aforementioned robot datasets. The Open-X dataset
contains approximately 1.5M robot episodes, of which we
curate 800k for Octo training. We note that the RT-X model
[1] used a more restricted subset of 350K episodes, so to the
best of our knowledge, Octo is trained on the largest robotics
manipulation demonstration dataset to date.

B. Octo Code Example

Loading a pretrained Octo model and performing inference
requires little code:

import jax
from octo.model.octo_model import OctoModel

model = OctoModel.load_pretrained("checkpoint")

print (model.get_pretty_spec()) # Print out the
input-output spec

observation = {"image_primary": img}

task = model.create_tasks (texts=["pick up the fork"
1)

action = model.sample_actions(
observation, task, rng=jax.random.PRNGKey (0))

Listing 1: Example Python code to perform inference with
a pretrained Octo model.

C. Data mixture
DATASET SAMPLING WEIGHTS

Fanuc
lamlab

Mutex

DLR Edan

Fractal

Austin Sirius

Kuka

Hydra

Language Table

Toto
Autolab

Viola Roboturk

NYU Door Cable Routing.

Jaco Play

Fig. 6: Training dataset composition. We curate a subset of
25 datasets from the Open X-Embodiment dataset that have
image observations, end-effector actions, and show diverse
behaviors. The pie chart visualizes the fractions that each
dataset contributes to every training batch on average. The
dataset weights are determined by the number of samples in
each dataset with small modifications to balance dataset size
and diversity (see Section [I-B for details).



We list the detailed training mixture used for training the
Octo models in Table II. The sampling weights are mostly
determined by the relative size of the datasets with a few
manual adjustments (see Section ).

Octo Pretraining Dataset Mixture

Fractal [10] 17.0%
Kuka [27] 17.0%
Bridge[60], [61] 17.0%
BC-Z [62] 9.1%
Stanford Hydra Dataset [68] 6.0%
Language Table [69] 5.9%
Taco Play [65], [66] 3.6%
Furniture Bench Dataset [70] 3.3%
UTAustin Mutex [71] 3.0%
Austin Sailor Dataset [72] 2.9%
Roboturk [73] 2.8%
Toto [74] 2.4%
Austin Sirius Dataset [75] 2.3%
Berkeley Autolab URS [76] 1.5%
IAMLab CMU Pickup Insert [77] 1.2%
Viola [78] 1.2%
Berkeley Fanuc Manipulation [79] 1.0%
NYU Franka Play Dataset [80] 0.9%
UCSD Kitchen Dataset [81] <0.1%
Jaco Play [82] 0.6%
Berkeley Cable Routing [83] 0.3%
Austin Buds Dataset [84] 0.3%
CMU Stretch [85] 0.2%
NYU Door Opening [86] 0.1%
DLR EDAN Shared Control [87] 0.1%

TABLE II: Octo pretraining data mixture using datasets from
the Open X-Embodiment dataset [1].

D. Training Hyperparameters

We mostly follow documented practices for training vision
transformers [49]. We use the AdamW optimizer [88] with
an inverse square root decay learning rate schedule [49] and
linear learning rate warm-up. We list hyperparamaters used
during training in Table and the model parameters for
the different sizes in Table I'V. We apply standard image
augmentations during training. Concretely, for the 3rd person
camera we apply stochastic crops followed be a resize to
256 x 256, followed by color jitter. Finally, we normalize
the input image to have pixels with float values between -1.0
and 1.0. For the wrist camera, we apply the same procedure
except without the random crop and resizing to 128 x 128
instead.

Hyperparameter Value
Learning Rate 3e-4
Warmup Steps 2000

LR Scheduler reciprocal square-root

Weight Decay 0.1
Gradient Clip Threshold 1
Batch Size 2048

TABLE III: Hyperparameters used during training.

The images are passed through a shallow convolution
stack, then split into a sequence of flattened patches [20]
of size 16 x 16. This results in 256 tokens for the 3rd

person camera images and 64 tokens for the wrist camera
images. For datasets containing language annotations, we use
a pretrained t5-base (111M) transformer model [19] that
produces a sequence of 16 language embedding tokens.

Model Layers Hidden size D MLP size Heads Params
Octo-Small 12 384 1536 6 27TM
Octo-Base 12 768 3072 12 93M

TABLE IV: Architecture details of Octo model variants.

The diffusion action head consists of a 3-layer MLP with
a hidden dimension of 256, residual connections, and layer
normalization. We use the standard DDPM objective as
introduced by [23] with a cosine noise schedule [89] and
20 diffusion steps.

E. Things that Worked and Did Not Work (Yet)
Things we found improved performance:

o Adding history during pretraining: Models with one
frame of history as context performed better in zero-
shot evals than models pretrained without history. We
did not observe benefits of increasing the history length
further on the few tasks we evaluated on, though other
tasks may benefit.

« Using action chunking: We found it helpful to use “ac-
tion chunking” [32], i.e., to predict multiple actions into
the future, for getting more coherent policy movements.
In our evaluations, we did not find temporal ensembling
of future actions to provide additional benefits beyond
receding horizon control.

« Decreasing patch size Tokenizing images into patches
of size 16 x 16 led to improved performance over
patches of size 32 x 32, particularly for grasping and
other fine-grained tasks. This does add compute com-
plexity (the number of tokens is 4x), so understanding
how to balance compute costs and resolution remains a
problem of interest.

o Increasing shuffle buffer size: Loading data from 25
datasets in parallel is a challenge. Specifically, we found
that achieving good shuffling of frames during training
was crucial — zero-shot performance with a small shuf-
fle buffer (20k) and trajectory-level interleaving suffered
significantly. We solved this issue by shuffling and
interleaving frames from different trajectories before
decoding the images, allowing us to fit a much larger
shuffle buffer (up to 500k). We also subsample at most
100 randomly chosen steps from each training trajectory
during data loading to avoid “over-crowding” the shuffle
buffer with single, very long episodes.

Things that did not work (yet)::

o MSE Action Heads: Replacing our diffusion decoding
head with a simple L2 loss led to “hedging” policies that
move very slowly and e.g., fail to rotate the gripper in
WidowX evaluations.

o Discrete Action Heads: Discretizing actions into 256
bins per dimension and training with cross-entropy loss



like in [10] led to more “decisive” policies, yet they
lacked precision and often missed the grasp.

e ResNet Encoders: did not scale as well to larger
datasets in our evaluations (see Table VI), though they
did outperform our ViT architecture when training from
scratch on a small dataset (around 100 demonstrations).

o Pretrained Encoders: ImageNet pretrained ResNet
encoders did not provide benefit on zero-shot evals,
though may be confounded with ResNet architectures
underperforming as mentioned above.

« Relative Gripper Action Representation: When align-
ing the gripper action representations of the different
datasets, we tried (A) absolute gripper actions, i.e.,
actions are +1 when the gripper is open and O if it
is closed, and (B) relative gripper actions, i.e., gripper
action is +1/0 only in the timestep when the gripper
opens/closes and 0.5 otherwise. We found that the latter
tends to open/close the gripper less often since most
of the training data represents “do not change gripper”
actions, leading to a slightly higher grasp success rate.
At the same time, the relative representation led to
less retrying behavior after a grasp failed, which was
ultimately worse. Thus, we chose the absolute gripper
action representation.

o Adding Proprioceptive Inputs: Policies trained with
propioceptive observations seemed generally worse, po-
tentially due to a strong correlation between states and
future actions. We hypothesize this might be due to a
causal confusion between the proprioceptive informa-
tion and the target actions [90].

o Finetuning Language Model: In order to improve the
visuo-lingual grounding of Octo we experimented with:
i) varying sizes of the TS5 encoder [19]: small (30M),
base (111M), and large (386M) as well as ii) fine-
tuning the last two layers of the encoder. Using the
frozen base model resulted in the best language-
conditioned policies. We did not find improvements
when using larger encoders or finetuning the encoder.
We hypothesize this might be due to the lack of rich,
diverse, free-form language annotations in most of the
datasets.

FE. Experimental Setups

Zero-Shot Evaluations:

WidowX BridgeV2: Uses the setup of [61], in which
a Trossen WidowX 250 6-DOF robot performs diverse ma-
nipulation tasks. The observation consists of a single third
person camera stream and the action space is end-effector
position deltas. We evaluated two language-conditioned tasks
in which a the robot needs to “place the carrot on plate”,
and “put the eggplant in the pot.”” While these tasks are in-
distribution, the policy must still generalize to novel object
positions. We performed 10 trials per task and varied objects
positions between trials.

URS5: Uses the setup of [76], in which a URS robot arm
performs multiple table top manipulation tasks. The obser-
vation consists of a single third person camera stream and

the action space is end-effector position deltas. We evaluated
twp language-conditioned tasks: picking a toy tiger from a
bowl and placing it into a different bowl as well as wiping
a table with a cloth. While these tasks are in-distribution,
the policy must still generalize to novel object positions,
distractor objects, and lighting. Since the training data was
collected months ago and the robot setup was taken down
and re-assembled, the policy must also generalize to other
miscellaneous changes in the environment like a slightly
different camera view and background. We performed 10
trials per task and varied objects positions between trials.

RT-1 Robot: Uses the setup of [10], in which a pro-
prietary robot performs multiple table top and furniture
manipulation tasks. The observation consists of a single third
person camera stream and the action space is end-effector
position deltas. We evaluated on the task of picking up a
7up can, apple, blue chip bag, or brown chip bag, as well as
the task of opening or closing drawers on a cabinet. While
these tasks are in-distribution, the policy must still generalize
to novel object positions. We performed 10 trials per task and
varied objects positions between trials.

G. Model Ablations

All of our model ablations were evaluated on the WidowX
setup. We present a more detailed breakdown of the success
rates per task in Table V. We evaluated on two language-
conditioned tasks (put carrot on plate and put eggplant in pot)
and two goal-conditioned tasks (put bread on plate and put
spoon on glove). The goal-conditioned tasks contain objects
not seen in the Bridge dataset.

Finetuning Evaluations:

Lab3 Baking: The robot must pick up the toy bread
object, place it in the toaster, and shut the toaster. This task
requires generalization across initial positions (of both the
toaster and object) and the shape of the target toy bread
object. We use an end-effector delta action space (Cartesian
position + rotation delta). Observations come from the 3rd-
person front-facing Zed camera. Actions are predicted at
15 Hz, and executed on the robot using the

. The finetuning dataset consists of 120 demos
collected via expert VR tele-operation, and every policy was
evaluated using 20 trials (4 novel test objects with 5 positions
each).

Lab2 Coffee: The robot is tasked with picking up one
of four different Keurig Coffee Pods and placing it inside
of a Keurig machine. This task requires both generalization
across initial positions and colors of the coffee pod, as well
as precise placement in the Keurig machine. We use an end
effector delta action space with an open source controller
running at 10 Hz based on Polymetis [91] (found ). We
use only a single 3rd-person wrist observation. Our training
dataset contained 118 expert demonstrations from varied
coffee pods and positions collected via VR tele-operation.
We evaluated policies for 20 episodes, five episodes for each
of four different color coffee pods.

Labl Peg Insertion: The task is to insert a pre-grasped
3D-printed peg into a matching slot on a 3D-printed board
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Fig. 7: Evaluation Tasks. Replicated from the main text for convenience. We evaluate Octo on 7 real robot setups across

4 institutions in zero-shot and finetuning scenarios.

Put carrot on plate  Put eggplant in pot  Put bread on plate  Put spoon on glove  Average

Octo-small (Ours) 80% 90% 70% 90% 83%
g RT-X dataset mix [1] 80% 80% 40% 40% 60%
é Single robot dataset (Bridge Data) 20% 70% 60% 20% 43%
S Discretized Action Prediction [1] 0% 20% 10% 40% 18%
§ Continuous Action Prediction (MSE) 70% 30% 0% 40% 35%
5 Resnet-50 + Transformer [1] 80% 60% 100% 40% 70%
I~
<

TABLE V: Model Ablations. We achieve best performance when using the ViT architecture, diffusion action head, and
wide training data mixture. All evaluations are performed on the WidowX setup. Success rates are averaged over 40 trials
across two language-conditioned tasks and two goal-conditioned tasks.

inside the bin. The matching tolerance between the peg and
the hole is 1.5mm; which makes it a contact-rich precise
part-mating task. The robot must learn an appropriate policy
to “search" for the matching opening through contact, which
necessitates the use of force/torque measurements. The ob-
servation space of the policy consists of a single side-view
camera image, the end-effector twist, and the end-effector
force/torque reading. The policy sends action commands as
the robot’s end-effector twists at 5 HZ, tracked at 1000 HZ
by a low-level impedance controller. Our finetuning dataset
is composed of 100 human demonstrations from the FMB
dataset [92]. We evaluated trained policies for 20 trials with
randomized board positions.

Lab4 Pick Up: We use the setup of [22]. The robot
needs to pick up a block from a table top surface after
being trained on a dataset of 100 pickups of various objects.
The robot uses joint position control with an underlying
Polymetis control stack [91] (here). It is conditioned on
a wrist camera input image as well as the proprioceptive
readings of the robot. We evaluted on the task of picking up
the yellow cube and used 20 trials.

Design Decisions for Generalist Robot Policy Training:
We have demonstrated the effectiveness of Octo as a zero-
shot multi-robot controller and as an initialization for policy
finetuning. We next analyze the effects of different design
decisions on the performance of the Octo policy. Concretely,
we focus on the following aspects: (1) model architecture,
(2) training data, (3) training objective, and (4) model scale.
Unless noted otherwise, we perform all ablations on the
Octo-Small model due to our compute budget.

Aggregate Performance

Octo-Small (Ours) 83%
é RT-X dataset mix [1] 60%
A Single robot dataset (Bridge Data) 43%
g Discretized Action Prediction [1] 18%
§ Continuous Action Prediction (MSE) 35%
) Resnet-50 + Transformer[1] 70%
&
<

TABLE VI: Model Ablations. We achieve best performance
when using the ViT architecture, diffusion action head, and
wide training data mixture. All evaluations are performed
on the WidowX setup. Success rates are averaged over 40
trials across two language-conditioned tasks and two goal-
conditioned tasks.

Model architecture: Prior transformer-based policy de-
signs typically encode input images with large ResNet-
style [93] encoders and fuse the resulting image features
with a comparatively small transformer [10], [1], [11], [18],
[32], [94], [34]. Instead, we opt for a “transformer-first”
architecture that uses very shallow CNN patch encoders
and concentrates most of the parameters and FLOPS in
the transformer backbone, similar to canonical vision trans-
former architectures [20]. In Table VI we show that this
scalable architecture leads to substantially improved perfor-
mance when training on the full Open X-Embodiment data
mix. Importantly, we found ResNet-based architectures to
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Fig. 8: Model Scaling. The performance of Octo improves
with larger model sizes on both URS and WidowX tasks.
Success rates are averaged over 10 trials on one language-
conditioned task per robot.

perform better than ViTs when training on small datasets,
e.g., in our “from scratch” comparisons, underlining that
large transformer policies are uniquely suited for scalable
training on diverse datasets.

Training data: Octo is trained on the most diverse cross-
embodied robot dataset to date, a mix of 25 datasets that we
manually curated from the Open X-Embodiment dataset [1]
(see ). We ablate the impact of this training
mix by comparing to Octo models trained on a smaller
mix of 11 datasets used in training the RT-X models [1]
and a baseline trained only on data from the target robot
domain. In Table we show that the performance of Octo
increases as we increase the number of training datasets. This
suggests that expanding the data mix to even more datasets
may further improve policy performance. We will leave this
for future work, along with a more thorough investigation of
best practices for data curation.

Training objective: We compare Octo’s diffusion de-
coding training objective (see ) to common
alternatives from prior work: simple MSE loss [95], [96]
and cross-entropy loss on discretized actions [10], [9]. In
Table VI we find that Octo’s diffusion training objective leads
to substantially improved performance. This improvement is
likely because the diffusion head can model multi-modal
action distributions (unlike the MSE head) while retaining
the precision of continuous actions (unlike the discrete head).
Qualitatively, the policy acts more decisively than MSE-
trained policies, and more precisely than those trained with
discretized actions.

Model scale: We compare Octo models of three dif-
ferent sizes following the ladder of common vision trans-
former models [49]: Octo-Tiny (10M), Octo-Small (27M),
and Octo-Base (93M). In Figure 8 we show that the zero-
shot performance of the policy scales with increasing model

size. We find that the Base model is more robust to initial
scene configuration than the Small model, and is less prone
to early grasp attempts, indicating the larger model has better
visual scene perception.
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