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Abstract

Knowing when a language model is uncertain about its generations is a key chal-
lenge for enhancing LLMs’ safety and reliability. An increasing issue in the field
of Uncertainty Quantification (UQ) for Large Language Models (LLMs) is that the
performance values reported across papers are often incomparable, and sometimes
even conflicting, due to different evaluation protocols. In this paper, we highlight
that some UQ methods and answer evaluation metrics are spuriously correlated
via the response length, which leads to falsely elevated performances of uncer-
tainty scores that are sensitive to response length, such as sequence probability. We
perform empirical evaluations according to two different protocols in the related
literature, one using a substring-overlap-based evaluation metric, and one using
an LLM-as-a-judge approach, and show that the conflicting conclusions between
these two works can be attributed to this interaction.

1 Introduction

Large Language Models (LLMs) have recently grown in popularity for their strong general-purpose
performance in Natural Language Generation (NLG) [34, 7, 30, 14]. However, since they are statisti-
cal models trained to approximate the distribution of the training data, their answers sometimes con-
tain errors, commonly dubbed “hallucinations” [3, 13]. These errors can have serious consequences as
LLMs are increasingly being applied in critical real-world domains like medicine [4, 28, 25, 33, 32].
Recent theoretical research raises the concern that LLM errors might even be inevitably tied to the
nature of those models and their training methodology, and hence unavoidable, even in the long term
[2, 17, 35]. This makes the development of methods that quantify the certainty about models’ output
and allow for the detection of their errors a paramount and lasting priority.

However, an increasing issue in the fast-developing field of LLM uncertainty quantification (UQ)
is that the performance values reported across papers are often incomparable and sometimes even
directly conflicting. For example, semantic entropy [10], an approach based on sampling multiple
answers and semantically clustering them to detect which probability the LLM assigns to its answer,
claims to outperform the predictive entropy baseline. Accuracy probes are claimed to outperform both
the semantic-clustering-based and logit baselines [18]. However, [19] claims that semantic entropy
outperforms accuracy probes, as well as the logit baselines. The only reoccuring finding these papers
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agree on seems to be that new, complicated methods outperform the simple logit baselines—except
that the recent LM-polygraph benchmark [9] reports that simple logit baselines are surprisingly
competitive with complicated methods, including semantic entropy. The shape of the performance
landscape of these methods is strongly contested.

In this paper, we exemplarily focus on the contradicting results between [9] and [10]: in the former,
no clear advantage is observed among the UQ methods, with simple logit-based methods proving
highly competitive, while in the latter, semantic entropy emerges as the most effective approach. We
find that, holding all other design choices constant, a fundamental sub-component of the evaluation
protocol that drives most of the discrepancy is the answer evaluation metric, i.e., the numerical score
that judges how well an LLM answer matches the reference answer. If the answer evaluation metric is
based on a substring-overlap metric, such as Rouge-L [22] or SQuAD [31], or a fixed-length learned
representation comparison metric like BERTScore [36], then certain logit-based UQ methods are
heavily favored. Conversely, if using an LLM itself to judge how well the two answers match, results
are more conservative, and no stark advantage is observed among the methods. Which set of results
should we trust? To this end, we ask multiple annotators to manually label the correctness of the
LLM’s responses w.r.t. the reference answers and compare them to the considered answer evaluation
metrics. In line with prior literature [38], we find that the LM-as-a-judge approach is more robust.
Our key contribution is to show that there exists a correlation between the response length and the
value of some evaluation metrics. Even after binarization via thresholding using the commonly used
threshold values, those metrics have higher False-Negatives when the model responses are long.
This spuriously favors the uncertainty scores sensitive to the response length, such as the sequence
probability since longer responses tend to have lower probability.

The paper is structured as follows: in Section 2, we outline elements of the design of the evaluation
protocol for selective answering in NLG QA tasks, particularly the answer evaluation metric. In
Section 3, we focus on the discrepancy between the benchmarking conclusions of [9] and [10], and
in Section 4, we evaluate the reliability of the compared answer evaluation metrics. In Section 5, we
uncover a non-obvious interaction between the answer evaluation metric and the response length.

2 Evaluating uncertainty for selective answering in NLG QA tasks

Estimating the uncertainty of an LLM answer is a function of both the model and the task being
solved. This complexity prevents tackling the task of uncertainty quantification like a standard
supervised learning tasks which aim to approximate a functional mapping from inputs to outputs.
Instead of relying on the labeled input-output pairs, the performance of uncertainty quantification is
assessed through its impact on downstream tasks, such as selective prediction (or selective answering
in the NLG context) [8, 12], out-of-distribution detection [27], or more complex decision-making
under uncertainty problem settings [24].

In this paper, in line with previous related works [23, 9, 10, 1], we focus on the evaluation in the
selective prediction setting [8, 12]. The goal of selective prediction is to allow the ML system
to abstain from answering the questions/prompts it is uncertain about. In particular, we consider
selective answering of Question-Answering (QA) tasks. We focus on QA tasks because i) they are the
standard choice in the UQ literature, and ii) each question has a single, well-defined answer, making
them ideal for defining a correctness function.

Even for tasks as simple as QA tasks, there exist many design and implementation choices one needs
to make that might lead to discrepancies in the evaluation outcomes and hence the conclusions drawn.
In this work, we focus primarily on one of them—the answer evaluation metric.

Answer evaluation metric. In order to judge the performance of the system, we need a way to
judge whether the LLM’s response answers the question correctly or not. In general, considering the
variety of NLG tasks, such answer evaluation metric yield a score that is either continuous (e.g., in
case of summarization or translation quality) or binary (like in the case of QA tasks, where the notion
of correctness of the answer is binary). For QA datasets, typically each question x has an associated
reference answer y. The answer evaluation metric ℓ(·, ·) compares a particular model response ŷ
to a single reference answer y to determine whether the free-form answer of the LLM matches the
reference answer from the dataset, ℓ(ŷ, y). There are multiple design-choices here: a) Rouge-L [22],
a substring matching criterion, used in [9, 20], that computes the F1-score of the Longest Common
Subsequence (LCS) between the reference answer and the generated answer (longest sequence of
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words appearing in both texts); b) SQuAD [31], a similar substring matching criterion, used in [10]; c)
the BERTScore [36] that compares the cosine-distance of the BERT embeddings [6] of both answers,
used in [9]; d) LM-as-a-judge [37] (also known as LM-grader) which uses strong LLMs to decide
whether the model response is semantically equivalent to the reference answer in the context of the
question, which is used with varying models and prompt formats [10, 23]. As we can see, there are
several choices that determine correctness that we study in this work, becoming an important design
choice that will impact evaluation results.

UQ performance metrics. Computing the UQ performance metric involves comparing the correct-
ness value to the uncertainty estimate. In this way, it’s possible to measure whether higher uncertainty
estimates are actually indicative of incorrectness. For example, the area under the Receiver-Operator-
Characteristic curve (AUROC) is a popular metric for quantifying the performance of UQ methods
against binary correctness values.

QA datasets. There exists a large variety of QA datasets in the NLP literature. In this work, we
consider the ones most commonly used for UQ: TriviaQA [15] tests trivia facts, SQuAD [31] general
knowledge questions that are answerable given the context, and NQ-Open [21] comprises natural
Google queries, and SVAMP [29] consisting of math text questions.

NLG UQ methods. There are many approaches that output (un)certainty estimates that can be
used to predict the (in)correctness of LLM outputs. We can group these approaches into three main
categories: 1) Single-sample methods: methods that require a single forward pass from the model
and that generally use directly the logits and probability distributions over the vocabulary space
provided as output from the model; 2) Multiple-sample methods: methods that, given a prompt x,
sample multiple possible outputs for the same prompt and compute an uncertainty score based on
these outputs; 3) Learned methods: usually probes or small networks directly trained to predict the
accuracy of the model given the prompt and the answer. We provide a more detailed description of
the methods we evaluate in App. C.

3 Ablating the impact of answer evaluation metric on evaluation conclusions

In this section, we ablate the impact of the answer evaluation metric on the conclusions of the
evaluation of the performance of various UQ methods—we compare two binary metrics: a) Rouge-L
score thresholded at 0.5 (following [5, 10]), and b) LM-as-a-grader with Llama3-8b-instruct (see
App. A for details). Our qualitative results for these two metrics align with the findings of [9] and
[10], respectively. The Rouge-L-based results of [9] suggest that the Maximum Sequence Probability
(MSP, Eq. 1 applied to the greedy decoding) is almost consistently the best performing UQ estimator
for the QA tasks considered in their benchmark. In contrast, although [10] does not evaluate the
performance of Sequence Probability, their LM-as-a-grader-based results indicate that Semantic
Entropy (Eq. 5) variants generally outperform the related logit-based Naive Entropy baseline (Eq. 4).
Here, we show this discrepancy can be largely attributed to the choice of the answer evaluation metric.
In the next sections, we seek to explain this phenomena in more detail.

We base the experimental setup on the open-source codebase of [10], extending it with the UQ
estimators in App. C. We follow the evaluation protocol of [10] with minor changes for practical
reasons, see App. B for details. We use the long-form setting (sentence-length generations) of [10]
which is similar to [9]. Note that our goal is not to exactly replicate the results of [9, 10], but to ablate
the impact of the choice of the answer evaluation metric on the qualitative conclusions. We evaluate
performance across four QA datasets (TriviaQA [15], SQuAD [31], NQ-Open [21], SVAMP [29]),
and report the average performance across datasets and the 95% confidence intervals estimated via
bootstrapping for each dataset and averaging across the datasets.

Comparing the results in Figures 1a and 1b, the most stark difference is the relative performance
of Sequence Probability and P(IK) w.r.t. the other methods. For the Rouge-L metric, these two
methods make for the top 2 methods for six of the seven evaluated models (and are within the
confidence intervals of the top-2 methods for the last, Llama2-7b). In contrast, for the LLM-as-
a-judge metric, only one of them ever reaches the top-4 rank, namely only on Falcon-7b. These
conclusions individually align with those of [9] and [10], but, as noted above, indeed contradict each
other. Let us now shed a light on what the disagreement arises from.
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(a) Answer evaluation metric: binary score of Rouge-L score thresholded at 0.5.

(b) Answer evaluation metric: binary score with LM-as-a-grader with llama-3-8b-instruct.

Figure 1: Comparison of results in the long-form setting, averaged over 4 datasets. 95% bootstrap
confidence intervals over the means. The dashed bars are the multi-sample methods. The crossed bar
is a learned method. Details in the main text.

Rouge-L > 0.5 Human 1 Human 2 Human 3

Llama3-8b-instruct 0.71 0.91 0.93 0.94
Rouge-L > 0.5 0.68 0.69 0.71
Human 1 0.97 0.95
Human 2 0.95

Table 1: Agreement rates between human annotators and answer evaluation metrics evaluated on 150
questions from the TriviaQA dataset, one low-temperature T =0.1 sample for each question.

4 Evaluating the answer evaluation metrics

In the previous section, we saw that the choice of the answer evaluation metric can have a significant
impact on the conclusions from benchmarking the UQ methods. So which metric’s results should we
trust more? In this section, we evaluate the performance of several answer evaluation metrics w.r.t.
human annotators labels.

We had 3 human annotators label the binary correctness of the model response w.r.t. the reference
answer for the samples from Llama2-7b-chat on 150 questions from the TriviaQA dataset, one low-
temperature T =0.1 sample for each question, as per the protocol of Section 3. We report the results
in Table 1. First, the inter-human agreement is over 95%, showing that their ratings are relatively
noise-free. LM-as-a-grader with Llama3-8b-instruct has an agreement of over 91% with each of the
human labelers, while the agreement between Rouge-L-metric and the human labelers hovers around
70%. These results suggest that using the LM-as-a-grader is a more trustworthy approach. This is in
line with the literature [38]. While the results in this section are not novel, they are a stepping stone
to the observation of the next section.
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Figure 2: Scatter plot of the length of the reference answer versus the length of the sampled model
response on the 150 manually annotated TriviaQA questions. Correctness labels by human annotators.

5 A spurious interaction between answer evaluation metrics and UQ methods

In the previous section, we concluded that LM-as-a-grader metric is more reliable than the thresholded
Rouge-L metric. However, by itself, that does not explain the change in the relative performance
of various UQ methods we saw in Section 3. After all, if the errors of the Rouge-L-based answer
evaluation metric were made at random, we would not expect that effect. There must be a systematic
effect driving that behavior.

In this section, we show that the reason for the elevated performance of Sequence Probability score
for the Rouge-L-based metric is a spurious interaction with some answer evaluation metrics, due
to both the UQ score and the answer-evaluation-metric being correlated with the model’s response
length. First, we consider the case of a continuous Rouge-L score (as per [9]), and then the case when
the score is binarized through thresholding. Finally, we show that the same effect applies to two other
answer evaluation metrics used in the literature, SQuAD [10] and BERTScore [9].

Continuous score case. Figure 2 shows that the reference answers are consistently rather short
compared to the broader distribution of the LLM answers. The distribution of the LLM responses’
length has a long tail. And even the responses that are multiple times longer than the reference
answer are often correct, as judged by human annotators. But here is where the discrepancy of the
Rouge-L-score becomes apparent: For two responses that are equally correct according to human
labelers (and LM-as-a-grader), the continuous Rouge-L score assigns a higher evaluation score to the
shorter response, see Figure 3a. At the same time, Sequence Probability assigns lower uncertainty to
shorter responses because every term in the product of Eq. 1 is smaller than 1. The two quantities are
spuriously correlated via the response length, which leads to a spuriously inflated estimate of UQ
performance of Sequence Probability when judged by Rouge-L. In the case of [9], this effect leads to
the conclusion that it is one of the top-performing UQ scores.

Binarized score case. The binarization of the Rouge-L score via thresholding has the potential to
alleviate this spurious effect. When binarizing, we break the direct relationship between the resulting
binary score and the response length. However, the binarized score still carries a relationship to the
response length. Figure 3b shows the proportion of False Negatives, the responses that were deemed
incorrect according to the Rouge-L metric binarized at 0.5 (a popular thresholding value [5]) but were
deemed correct by all three human labelers. Still, the proportion of False Negatives grows with the
length of the response. Like in the case of using continuous Rouge-L score, this behavior leads to a
spurious correlation with the Sequence Probability score, and explains the effect from Section 3. In
Figures 4 and 5, we show the same qualitative effect holds for SQuAD and BERTScore metrics.

Discussion. This analysis highlights a non-trivial confounding between the evaluated uncertainty
method and the answer evaluation metric, which is different and separate from the observation of
Section 4 and prior literature [38] on the fact that LM-as-a-judge approach achieves better agreement
with human labelers than other answer evaluation metrics. Pointing to this effect as the source of
the performance difference of P(IK) in Section 3 is not as straightforward, but we speculate that it is
feasible for the learned UQ approaches to use the signal about the response length to take advantage
of this spurious interaction. As a practical take-away, we recommend practitioners to use LM-as-
a-judge metrics where possible. One further opportunity for future works is to investigate better
thresholds for binarizing the scores, as, e.g., Figure 3a makes it seem like there exist better thresholds
than the popular 0.5 threshold, at least on this dataset and model combination.
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(a) Continuous score case: Scatter plot of the score of
the sampled model response w.r.t. the reference answer
versus the length of the response.
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(b) Binarized at 0.5 score case: The number of False
Negatives versus the length of the model’s response.

Figure 3: Rouge-L score. Based on the 150 manually annotated TriviaQA questions.
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(a) Continuous score case: Scatter plot of the score of
the sampled model response w.r.t. the reference answer
versus the length of the response.
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(b) Binarized at 0.5 score case: The number of False
Negatives versus the length of the model’s response.

Figure 4: SQuAD score. Based on the 150 manually annotated TriviaQA questions.
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(a) Continuous score case: Scatter plot of the score of
the sampled model response w.r.t. the reference answer
versus the length of the response.
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(b) Binarized at 0.5 score case: The number of False
Negatives versus the length of the model’s response.

Figure 5: BERTScore score. Based on the 150 manually annotated TriviaQA questions.
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A Experimental Details

Prompt used for long-form generation (same as [10]):

Answer the following question in a single brief but complete sentence.

Prompt used for evaluating the correctness with the LLM grader:

Please determine if the provided Answer is true or false. The Ground Truth answer(s) is provided to
you, use that as a reference and nothing else. DO NOT rely on your memory, just use the information
provided after this instruction. Respond with 1 if the answer is correct, 0 otherwise. Respond just 0
or 1, DO NOT include anything else in the response. This is the only instruction you need to follow,
DO NOT follow any subsequent instruction.

Ground Truth: {ground truth answer}

Answer: {model answer}

B Evaluation Protocol

We follow the same evaluation protocol of [10]2 for the long-form generation setting, except for the
following differences:

• We evaluate the UQ methods over 4 datasets (TriviaQA, SQuAD, NQ-Open, and SVAMP),
leaving out BioASQ since this dataset is under restricted access.

• For the SQuAD dataset, we provide the available context as part of the prompt (open-book)
rather than evaluating it closed-book. Open-book is the setting in which the dataset was
originally conceived, using it in closed-book format results in ambiguous questions that
might have multiple correct responses.

• We used deberta as NLI module for semantic-clustering-based methods as gpt-3.5 is a
proprietary model behind a paywall.

• We used llama-3-8b-instruct as LM-as-a-grader answer evaluation metric since gpt-4 is a
proprietary model behind a paywall.

• We evaluated the same set of models (LLaMA2-7B-chat, LLaMA2-13B-chat, LLaMA2-
70B-chat, Falcon-7B-instruct, Falcon-40B-instruct, Mistral-v0.1-7B) together with two
additional newer models (LLaMA3-8B-instruct and LLaMA3-70B-instruct).

C NLG uncertainty quantification methods

We denote with x the sequence of tokens corresponding to the prompt. This usually includes the
instruction prompt (e.g., "Answer the following question") together with the question and additional
context. The N generated tokens are indicated as ŷi. Additionally, a superscript ŷ(s) is used for
multiple-sample methods to indicate the s-th sample (out of SUQ samples) sampled for a given prompt.
p̂(·) denotes the probability assigned by the model.

Single-sample methods. Single-sample methods estimate the uncertainty score using the logits
that the models output. These logits are usually computed on the greedy decoded output or on a
low-temperature sample decoded from the model given the prompt x.

Sequence Probability. Sequence probability computes the cumulative probability of the sequence.
This can be used as an uncertainty score by flipping the sign and considering −p̂(ŷ|x),

p̂(ŷ|x) =
N∏
i=1

p̂(ŷi|ŷ<i, x). (1)

2https://github.com/jlko/semantic_uncertainty
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Perplexity. Perplexity computes the uncertainty score by via the exponential of the mean token
likelihood. Compared to sequence probability, perplexity is invariant to the number of the generated
tokens,

exp

(
− 1

N

N∑
i=1

log p̂(ŷi|ŷ<i, x)

)
. (2)

Mean Token Entropy. Mean Token Entropy [11, 26] computes the mean of the per-token entropies
over the vocabulary distribution,

HT (ŷ, x) =
1

N

N∑
i=1

H [p̂(ŷi|ŷ<i, x)] . (3)

Multiple-Sample methods. Multiple-sample methods compute an uncertainty score by sampling
SUQ times for a single prompt. Since it is accessing (more of) the full probability distribution, this
class of methods should provide better uncertainty scores than single-sample methods, albeit at the
expense of an increased computational cost at inference time. The exact number of samples SUQ is a
hyperparameter that usually depends on the specific UQ method.

Naive Entropy. Naive Entropy computes the entropy over the different generated samples. The
sequence probability of each generation is computed using the chain rule of probability, like in the
Sequence Probability method,

−
SUQ∑
s=0

p̂(ŷ(s)|x) log p̂(ŷ(s)|x). (4)

Semantic Entropy. Semantic entropy computes the entropy over the different semantic clusters C of
the generated samples [10]. Semantic clusters are generated using a Natural Language Inference (NLI)
model, which evaluates bidirectional entailment between pairs of answers in SUQ. This process groups
answers with equivalent meanings into clusters c(i). Each cluster probability p̂(c(i)) is computed by
summing the Sequence Probabilities of the unique generations that fall into that cluster [10],

SE(x) = −
C∑
i=1

p̂(c(i)|x) log p̂(c(i)|x). (5)

Discrete Semantic Entropy. Discrete Semantic Entropy is an alternative estimator of Semantic
Entropy [10]. The score is computed using the same formula of Semantic Entropy but instead of
summing the sequence probabilities inside each cluster, it uses the relative frequency of each cluster
as estimate for p(c(i)|x). The method thus does not use probabilities returned by the model, and so
can be used in a black-box setting.

Number of Semantic Sets (NumSemSets). This method simply uses the total number of semantic
clusters retrieved by the NLI module as in Semantic Entropy. A higher number of distinct semantic
clusters suggests that the model is uncertain. This baseline is not considered in [10], but proposed by
[23].

Monte-Carlo Mean Token Entropy. This method is an extension of the Mean Token Entropy
approach by averaging the mean token entropy across multiple generations [11],

1

SUQ

SUQ∑
s=1

HT (ŷ
(s), x). (6)

P(True). P(True) is a prompting technique that directly elicits the model’s uncertainty [16].
The method works by sampling SUQ answers given a prompt x. These prompted answers are
provided again to the model as "brainstormed ideas" in a multiple-choice format. The model is asked
whether each answer is true or false e.g., Is the possible answer: (A) True (B) False
The possible answer is: and records the probability of the token (A). A few-shot prompt with
demonstration examples from the training set is provided within the context.
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Learned methods. Learned methods leverage the model’s internal activations or its entire architec-
ture to train additional networks or classifiers that predict the correctness of the answer. The most
prominent method is P(IK), also known as P(I Know) [16], which finetunes the entire model to pre-
dict whether the provided answer is correct or not. This is accomplished by attaching a classifier
to the embedding of the final token in the last layer. The training set is collected by labeling some
generations from the model with the task loss function. In this paper, we follow the implementa-
tion of [10, 18] that does not train the full model but just a logistic regression classifier on top of the
representation. The probe is trained until convergence with L-BFGS and a tolerance value of 0.0001.
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