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ABSTRACT

Offloading model training and inference to a service provider is a common practice
but raises concerns about data misuse when the provider is untrusted. Collaborative
learning and model partitioning aim to address this issue by having clients share a
representation of their data instead of the raw data itself. To prevent unintended
information leakage, the feature mappings that produce such representations should
follow the least-privilege principle, i.e., output representations that are relevant for
the intended task, and nothing else. In this work, we provide the first formalisation
of the least-privilege principle for machine learning. We first observe that every
task comes with fundamental leakage: at the very least, a representation shared
for a particular task must reveal the information that can be inferred from the task
label itself. Considering this, we formalise the least-privilege principle as a bound
on the inference gain about the data behind the representation over what is already
revealed through the task’s fundamental leakage. We prove that, under realistic
assumptions on the data distribution, there is an inherent trade-off between the
utility of representations output by a feature mapping and the leakage of information
beyond the intended task. In experiments on image classification, we confirm that
any data representation that has good utility for a given prediction task also always
leaks more information about the original data than the task label itself. We show
that this implies that censoring techniques that hide specific data attributes cannot
achieve the desired goal of least-privilege learning.

1 INTRODUCTION AND RELATED WORK

The need to reveal data to untrusted service providers to obtain value from machine learning as a
service (MLaaS) puts individuals at risk of data misuse and harmful inferences. The service provider
observes raw data records at training or inference time and might abuse them for purposes other
than the intended learning task. For instance, an image shared with a provider for the purpose of
face verification might be misused to infer an individual’s race and lead to discrimination (Citron
& Solove, 2022). Thus, the traditional MLaaS setup could be in conflict with the data protection
principles of data minimisation and purpose limitation which demand that “data should only be
collected for specified, explicit, and legitimate purposes and not further processed in a manner that is
incompatible with those purposes” (European Parliament and Council of the European Union, 2016).

Sharing Representations to Prevent Data Misuse. Collaborative learning or model partitioning
claim to prevent such misuse in model training and inference settings, respectively. In both cases,
individuals share a feature representation of their raw data with the service provider, in the form of
model updates in the collaborative-learning setting (McMahan & Ramage, 2017; Hao, 2019) and of
feature encodings in the model-partitioning setting (Osia et al., 2018; Chi et al., 2018; Wang et al.,
2018; Brown et al., 2022). Proponents of both techniques argue that, because individuals only share
a representation of their data, and not the data itself, the service provider no longer has access to
information that might be abused for purposes other than the intended task.

Unintended Feature Leakage and Least-Privilege Learning. Previous research shows that a
passive adversary can infer data attributes that are unrelated to the learning task, or even reconstruct
data records (Boenisch et al., 2023; Ganju et al., 2018; Melis et al., 2019; Song & Shmatikov, 2019).
For instance, Song & Shmatikov (2019) show that features extracted from a gender classification
model also reveal an individual’s race. Even higher layer features, that are assumed to be more
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learning-task specific, might lead to unexpected inferences (Mo et al., 2021). These examples show
that limiting data access to feature representations does not necessarily prevent information leakage
and thus does not fully mitigate the risk of data misuse associated with attributes other than the
learning task.

Some works suggest that the solution to this issue is to train models under the least-privilege principle.
That is, to enforce that the representations shared with the service provider, e.g., gradients at model
training time, or feature activations at inference time, only contain information relevant to the learning
task, and nothing else (Melis et al., 2019; Brown et al., 2022). The concept of such least-privilege
learning, however, has been only described informally, and lacks a precise definition. As a result, it is
unclear how to evaluate whether a given representation fulfils this principle.

Contributions. In this paper, we make the following contributions towards understanding the limits
of the least-privilege principle in machine learning:

i. We provide the first formalisation of the least-privilege principle for machine learning as a
variant of the generalized Conditional Entropy Bottleneck problem (Fischer, 2020).

ii. We observe that any predictive model always reveals information that can be inferred from
the prediction task label itself. We show experimentally that such fundamental leakage can
reveal information that is not intuitively related to the prediction task. This could be misused
for harmful inferences in a breach of data subject’s expectations.

iii. We formally prove a fundamental trade-off: under realistic assumptions on the data distribu-
tion (e.g., label noise), whenever the learned representations have any utility, we must allow
unintended leakage beyond the fundamental one.

iv. We experimentally demonstrate this trade-off. We show that so long as the representations
have utility, there exist attributes different from the intended task label that can be inferred
from the representations, even if we apply attribute censoring techniques.

2 PROBLEM SETUP

In this section, we motivate the least-privilege learning problem and formalise our setup. For ease
of presentation, we focus on the model partitioning, which aims to prevent unintended information
sharing at the inference stage (Osia et al., 2018; Chi et al., 2018; Mo et al., 2021). However, we note
that all of our formal results apply to any setting in which feature representations are used as a means
to limit the data revealed to untrusted third parties, such as the collaborative learning setting where
individuals share gradients in place of raw data records.

Notation. Let X,Y, S ∼ PX,Y,S be a set of random variables distributed according to PX,Y,S where
X ∈ X, and Y ∈ Y are, respectively, an example and its learning task label, and S ∈ S is a sensitive
attribute. In contrast to related works on attribute obfuscation, we do not assume S to be fixed (Melis
et al., 2019; Song & Shmatikov, 2019; Zhao et al., 2020; Brown et al., 2022). Instead, we suppose
that inference of any data attribute, other than the learning task, might result in harm and must be
prevented. For any three random variables X,Y,W , we denote by Y −X −W a Markov chain,
which is equivalent to stating that: Y ⊥⊥W | X .

Assumptions on the Data Distribution. To make our formal analyses tractable, we assume that the
spaces X,Y,S are discrete and finite; and that the data domain is non-trivial: |X| > 1 and |Y| > 1.
We also assume that the space of inputs is a subset of the space of sensitive attributes, X ⊂ S. In the
worst case the sensitive “attribute” S could be the input in its entirety. We also make the following
assumption about the data distribution:
Assumption A (Strictly positive posterior). We say that the posterior distribution, PY |X , is strictly
positive if for any x ∈ X, y ∈ Y we have PY |X(y | x) > 0.

This assumption is realistic in settings where there exists inherent uncertainty about the ground truth
label of a given example. Examples include the presence of label noise introduced by the labelling
process (Song et al., 2022), and, under the Bayesian interpretation of probability, task labels that are
subjective. This is the case, for instance, in many prediction tasks where model partitioning is used,
such as emotion recognition or prediction of face attributes (e.g., smiling) which come with inherent
uncertainty and labelling unreliability (Raji et al., 2021).
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Model Partitioning. In the model partitioning setting, individual users hold a set of unlabelled
examples xi for i = 1, . . . , N and would like to obtain predictions on these examples for their
learning task label yi while hiding the value of their sensitive attribute si. To do so, users want to
make use of a prediction service run by an untrusted third party, the service provider. This provider
uses a predictive model f(X) = Ŷ which, given an example X , outputs a label Y . The key question
is how users can share enough information about X with the service provider to obtain a correct
prediction on Y but prevent inference of any S that may result in harm to the user.

During the training stage, depicted in Fig. 1 (left), the service provider runs a supervised training
algorithm M(DT ) = f on a train set DT ∼ PTX,Y,S which outputs a trained model f . DT is an i.i.d.
sample of size T . We assume that a model f = fE ◦ fC can be decomposed into a feature mapping
fE , and a classifier fC . The feature mapping fE(X) = Z maps example X to a model-specific
representation Z ∈ Z. We say that the feature mapping fE is non-trivial if it is neither constant
nor completely random. The classifier fC(Z) = Ŷ produces a prediction Ŷ based on an example’s
representation Z.

The goal of the learning process is to find a feature mapping fE that maximises the utility of the rep-
resentations Z = fE(X) for the classifier fC(Z) = Ŷ . One way to formalise this objective is the mu-
tual information between the learned representations and the label I(Y ;Z) = I(Y ; fE(X)) (Alemi
et al., 2016). The higher the mutual information between Z and Y , the more useful the representation
will be for the prediction task.

During the inference stage, users submit examples xi to the trained model f for prediction. Under
model partitioning, the model is split into a client-side feature mapping and a server-side classification
part. For each example xi, users locally extract its representation as zi = fE(xi), and then send this
representation to the service provider. The service provider returns fC(zi) = ŷi.

User Service Provider

Raw record
Feature

Extraction Prediction

Task label
Model

Service Provider

Train Set
Feature

Extraction PredictionTraining 
Algorithm

Fe
at

ur
e 

R
ep

re
se

nt
at

io
n

Fe
at

ur
e 

R
ep

re
se

nt
at

io
n

Figure 1: Overview over training (left) and inference (right) stages of model partitioning

The goal of model partitioning is to reduce the risk of data misuse and its potential harms. The
assumption is that feature representations that are optimized to perform well on a specific task do not
contain any information that could be re-purposed to predict information other than the task (Osia
et al., 2018; Chi et al., 2018; Mo et al., 2021). It has been shown, however, that model partitioning
is not enough to achieve this goal. Previous works thus suggest to learn representations under a
“least-privilege principle” (Melis et al., 2019; Brown et al., 2022), but so far this idea has not been
formalised. Our goal is to formalise this principle and characterize its feasibility.

3 THE LEAST-PRIVILEGE PRINCIPLE IN MACHINE LEARNING

In the following, we introduce the first formalisation of the least-privilege principle (LPP) for the
machine learning domain. Due to space constraints, we defer all proofs to Appendix B.

The Least-Privilege Principle. The LPP is a design principle for building secure information
systems introduced by Saltzer & Schroeder (1975). Its initial definition demands that “Every program
and every user of the system should operate using the least set of privileges necessary to complete the
job.” In secure-systems engineering, a privilege is a clearly defined action that an actor in the system
is authorised to carry out. Transferring this concept to the machine learning domain is not trivial. To
do so, we have to first quantise the learning process into a set of smaller privileges and then define
what is the minimum set of privileges needed to carry out a learning task.
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Attribute Inference. We approach this problem through the lens of attribute inference: we assume
that inference of any data attribute, other than the learning task, might result in harm. We hence
define a privilege as the ability to learn the value of a particular attribute and formalise the LPP in
terms of inference gain about data attributes other than the learning task.

In line with the standard practices in security and privacy, we analyse worst-case inference risks. To
capture such worst-case risk of inferring S from information W , we use Bayes-optimal adversaries
that achieve optimal inference accuracy:

Ŝ(W ) , arg max
g: W→S

Pr[S = g(W )]. (1)

We use Ŝ without the argument to denote the baseline guess: Ŝ , arg maxs∈S Pr[S = s], repre-
senting the choice of the majority attribute value.

To measure the risk, we use multiplicative gain of an adversary Ŝ(W ) who has access to information
W over the baseline guess:

I∞(S;W ) , log
Pr[S = Ŝ(W )]

Pr[S = Ŝ]
. (2)

We also denote the gain of the adversary Ŝ(W,W ′) with access to two sources of information W and
W ′ over the the guess with only one source of information W ′ as:

I∞(S;W |W ′) , log
Pr[S = Ŝ(W,W ′)]

Pr[S = Ŝ(W ′)]
. (3)

In both cases, log(·) is the base-2 logarithm. Such multiplicative gain has also been called multi-
plicative leakage (Braun et al., 2009), and shown (Liao et al., 2019) to be a special case of Arimoto’s
α-mutual information (Arimoto, 1977) of order α = ∞, hence the notation. Note that I∞(S;W ),
unlike Shannon’s information, is asymmetric.

3.1 STRAWMAN APPROACH: UNCONDITIONAL LEAST-PRIVILEGE PRINCIPLE

We start by formalising a strict interpretation of the LPP. In this interpretation, sharing the model-
generated features instead of the raw data prevents any leakage for any attribute S 6= Y . Formally:
Definition 1 (Unconditional LPP). Given a data distribution PX,Y , a feature map Z = fE(X)
satisfies the unconditional LPP with parameter γ if for any attribute S 6= Y which follows the
Markov chain S −X − Z, the attribute inference gain is bounded:

Pr[S = Ŝ(Z)]

Pr[S = Ŝ]
≤ 2γ (4)

Equivalently:
sup

S 6=Y : S−X−Z
I∞(S;Z) ≤ γ (5)

Previous work assumes that it is possible to find a feature map fE : X → Z that fulfils the
unconditional LPP, and at the same time produces representations with high utility for the learning
task (Pittaluga et al., 2019; Brown et al., 2022). Next, we formally characterize this trade-off: Can
we achieve high utility, in the sense of I(Y ;Z), while simultaneously satisfying unconditional LPP?
Theorem 1 (Unconditional LPP and Utility Trade-Off). Suppose that PY |X is strictly positive
(Assumption A). Then, the following two properties cannot hold at the same time:

(1) Z = fE(X) satisfies the unconditional LPP with parameter γ (2) I(Y ;Z) > γ (6)

We provide a full proof in Appendix B. This result implies that, whenever a representation has a
certain utility for the learning task with I(Y,Z) > γ, there exists a sensitive attribute for which
an adversary’s inference gain is at least as large I∞(S,Z) ≥ γ. In fact, it is easy to construct this
attribute to be infinitesemally close to the task label Y but not quite match it. In the next section, we
provide an alternative, less literal, formalisation of the LPP that captures the requirement S 6= Y yet
precludes such cases.
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3.2 FORMALISATION OF THE LEAST-PRIVILEGE PRINCIPLE

We observe that, although it is impossible to hide all information about X , it is also an unnecessarily
restrictive goal. To use the prediction service, users must be willing to reveal to the service provider
at least the intended result of the computation Y = f(X). As a consequence, they cannot conceal
from the service provider any information that can be inferred from Y itself. This information hence
defines the least privilege that can be given to the service provider, i.e., the minimum access to data
attributes that must be granted to carry out a task. We call this information the fundamental leakage
of the task. For a given attribute S, the fundamental leakage equals Pr[S = Ŝ(Y )].

We propose a formalisation of the LPP that only demands that sharing a record’s feature representation
Z = fE(X) does not reveal more information about a sensitive attribute S than publishing Y itself:
Definition 2 (LPP). Given a data distribution PX,Y , a feature map Z = fE(X) satisfies the LPP
with parameter γ if for any attribute S which follows the Markov chain S− (X,Y )−Z, the attribute
inference gain from observing (Z, Y ) over the fundamental leakage is bounded:

Pr[S = Ŝ(Z, Y )]

Pr[S = Ŝ(Y )]
≤ 2γ (7)

Equivalently:
sup

S: S−(X,Y )−Z
I∞(S;Z | Y ) ≤ γ (8)

Notably, the quantity constrained by the LPP is known as maximal leakage (Issa et al., 2019):

L(X → Z | Y ) , sup
S: S−(X,Y )−Z

I∞(S;Z | Y ). (9)

In comparison to the unconditional variant, this formalisation does not require S 6= Y . Therefore, it
does not restrict the adversary’s absolute gain from observing Z, but only restricts the leakage about
sensitive attribute S to its fundamental limit, i.e., the leakage caused by the learning task label itself.

Interpretation. A feature map that satisfies the LPP in Definition 2 with a value of γ ≈ 0 restricts
the information available to the service provider to what is necessary for the intended purpose of the
system: produce an accurate prediction of the task label Y . Hence, this formalisation supports the
data protection principle of purpose limitation (see Section 1).

We must stress that, despite minimizing the information available to the service provider, this
definition does not imply that a feature map that satisfies the LPP will necessarily prevent any
harmful inferences. It only demands that access to Z does not increase the risk over the risk already
incurred by revealing Y . In Section 4.1, we show that even the fundamental leakage caused by
correlations between the learning task and potentially sensitive data attributes, can violate users’
expectations about what information they are willing to reveal, e.g., through a violation of contextual
integrity Nissenbaum (2004), and lead to substantial harms Citron & Solove (2022).

The Trade-Off. We now study whether we can find a feature map that achieves the LPP in Def-
inition 2, and simultaneously has good utility for the intended learning task in terms of mutual
information I(Z, Y ). This question is a variant of the generalised conditional entropy bottleneck
(CEB) problem (Fischer, 2020), which, in turn is a variant of the standard information bottleneck
problem (Asoodeh & Calmon, 2020; Tishby et al., 2000). The original formulation of the CEB
problem constrains the conditional mutual information between the input and the representation
I(X,Z | Y ) rather than the maximal leakage L(X → Z | Y ). For our purpose, we require a leakage
measure that captures the original claim from prior work that it is possible to learn representations
that protect against any harmful inferences, i.e., protect even against worst-case inference adversaries.
We hence consider maximal leakage. A different, but related, problem are Privacy Funnels (PFs); as
Asoodeh & Calmon (2020) point out, these problems (PF and bottleneck-type problems like CEB)
are“duals” of each other. PFs only consider a single fixed sensitive attribute. Here, to adequately
model the least-privilege claim that a representation leaks nothing else other than the fundamental
leakage, we have to treat any attribute other than the task as sensitive.
Theorem 2 (LPP and Utility Trade-Off). Suppose that PY |X is strictly positive (Assumption A).
Then, the following two properties cannot hold at the same time:

(1) Z = fE(X) satisfies the LPP with parameter γ (2) I(Y ;Z) > γ (10)
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Pr[S=Ŝ(Y )]

Ta
sk

ut
ili

ty
,I
(Y

;Z
)

Figure 2: γ-LPP limits maximum utility I(Y ;Z) of a representation Z to the greyed-out region.

See Fig. 2 for an illustration, and Appendix A for an interpretation of the trade-off in terms of task
accuracy instead of mutual information.

The trade-off only exists because the LPP restricts the adversary’s gain in terms of maximal leakage.
Under weaker notions of leakage, such as in the standard CEB problem, there is no known trade-
off (Fischer, 2020). Weaker leakage measures are not adequate, however, to formalise and assess the
LPP which demands that the representations Z leak nothing else other than the fundamental leakage.

One way to see why the trade-off holds is that there exists a set of attributes that reveal maximum
possible information about X from Z (see Appendix B for a formal description). Intuitively, we
would expect that by allowing for fundamental leakage, i.e., by conditioning on Y , we might reduce
maximal leakage in those cases where Y is one of these maximally revealing attributes. However, as
we show in Appendix B, strict positivity of the posterior distribution (Assumption A) prevents the
task label Y to be such a maximally revealing attribute and the least-privilege and utility trade-off
thus remains the same as under unconditional LPP (Theorem 1).

An important implication of Theorem 2 is that perfect LPP with γ = 0, where the feature repre-
sentations do not allow for any inference gain over fundamental leakage, is only possible when the
representations are constant or completely random:
Corollary 1. Under Assumption A, a feature map Z = fE(X) can achieve perfect LPP with γ = 0
if and only if it is trivial: Z ⊥⊥ X .

Theorem 2 implies that in many realistic applications (see Assumption A) of least-privilege learning
we have a stringent trade-off between the representation’s utility and the LPP. Notably, this trade-off
holds for any feature representation regardless of the way the feature representations are obtained.

4 EMPIRICAL EVALUATION

In this section, we empirically validate our theoretical results. Our experiments confirm that if the
feature representation learned by a model are useful for the intended learning task, there always exists
a sensitive attribute which an adversary can infer with high accuracy. We demonstrate that this is a
fundamental trade-off that applies to any feature representation regardless of the model architecture
or the feature learning technique. Due to space constraints, we only present results for an image
dataset under two different learning techniques for a single model architecture. In Appendix C, we
show additional results that confirm that our theoretical results indeed hold on a much wider range of
datasets, models, and learning techniques.

Data. We use the LFWA+ image dataset which has multiple binary attribute labels for each im-
age (Huang et al., 2008). The full dataset contains 13, 143 examples which we split in the following
way: 20% of records are given to the adversary as an auxiliary dataset DA. The remaining 10, 514
records are split 80/20% across a train DT and evaluation set DE .

Model. We choose a simple Convolutional NN (CNN256) with three spatial convolution layers with
32, 64, and 128 filters, kernel size set to (3, 3), max pooling layers with pooling size set to 2, followed
by two fully connected layers of size 256 and 2. We use ReLU as the activation function for all layers.
CNN256 mimics the model architecture used by Melis et al. (2019), the first work to propose feature
learning under a least-privilege principle. We use the network’s last layer representation as feature
map ZfE(X).

Adversaries. To evaluate leakage of a given attribute, we instantiate Bayes-optimal adver-
saries with access to the auxiliary set DA of labelled examples ri = (xi, yi, si) for i =
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1, . . . , A. The label-only adversary Ŝ(Y ) computes the relative frequency counts over DA

to estimate P̃r[S = s | Y = y] =
∑A

i=1 1[si=s,yi=y]/
∑A

i=1 1[yi=y] and outputs a guess according to
Ŝ(Y = y) = arg maxs P̃r[S = s | Y = y]. The features adversary Ŝ(Z, Y ) is given black-box ac-
cess to the trained model f = fE ◦ fC . To collect a train set, the features adversary submits
each example Xi in DA to the model and receives back its model-generated feature representation
zi = fE(xi). The adversary then trains a Random Forest (RF) classifier with 50 decision trees on
the collected samples (zi, yi, si) to estimate P̃r[S = s | Z = z, Y = y]. We opt for RFs as an attack
model based on its superior performance over other classifiers we tested.

Experimental Setup. In each experiment, we select one out of 12 attributes from the LFWA+ dataset
as the model’s learning task Y and a second attribute as the sensitive attribute S targeted by the
adversary. We select attributes for which we expect the distribution PY |X to be strictly positive due
to their subjective nature (see A). We repeat each experiment 5 times to capture randomness of our
measurements for both the model and adversary, and show average results across all 5 repetitions.
At the start of the experiment, we split the data into the three sets DT , DE , and DA. We train
the model CNN256 on the train set DT for the chosen learning task and then estimate its utility
on the evaluation set DE . Because Y is a (binary) discrete variable and Z a high-dimensional,
continuous variable, directly estimating I(Y ;Z) is not feasible. We instead measure utility by
estimating the multiplicative gain Ĩ∞(Y ;Z) = log P̃r(Y=Ŷ (Z))/P̃r(Y=Ŷ ), where Ŷ (Z) denotes the
model’s prediction for a record’s task label Y and Ŷ without the argument the majority class baseline
guess. After model training and evaluation, we train both the label-only and features adversary
on the auxiliary data DA. For a given sensitive attribute S, we estimate the adversary’s gain as
Ĩ∞(S,Z | Y ) = log P̃r[S=Ŝ(Z,Y )]/P̃r[S=Ŝ(Y )].

Learning Techniques. We implement two learning techniques: (1) standard ERM with SGD and (2)
attribute censoring to learn representations that hide a given sensitive attribute. For censoring, we
use the gradient reversal strategy (GRAD) introduced by Raff & Sylvester (2018) with a censoring
parameter of 100. We choose GRAD because it provides stable performance (it effectively hides
the chosen sensitive attribute without large drops in model performance (Zhao et al., 2020)) and, in
comparison to other censoring techniques, can be applied to any model architecture.

4.1 THE POTENTIAL HARMS OF FUNDAMENTAL LEAKAGE

To evaluate the potential harms of fundamental leakage, we measure it across 12 prediction tasks in
the LFWA+ dataset.
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Figure 3: Fundamental leakage: the task label reveals information about other data attributes;
which might not be obvious to data subjects. Attribute inference gain of the label-only adversary
(left) and pairwise Pearson’s correlation between attributes (right). In the LFWA+ dataset, the
‘Attractive’ label is highly correlated with the perceived gender. Thus, predicting the ‘Attractive’ label
will reveal information about gender.
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Figure 4: If the model-generated representations have utility for the task (right), there exists a
sensitive attribute with an even higher inference gain for the adversary (left, red means more
leakage). This holds for both standard ERM (top) and attribute censoring (bottom) where we censor
the attribute with highest leakage in the respective ERM model (marked as Y). Censoring has a
‘whack-a-mole’ effect: as we censor one attribute, leakage of another attribute increases.

Fig. 3 (left) shows the adversary’s gain Ĩ∞(S, Y ) = log P̂r[S=Ŝ(Y )]/P̂r[S=Ŝ] in predicting sensitive
attribute S from Y for a combination of 12 learning tasks and sensitive attributes. It represents the
fundamental leakage of a system that fulfils its intended purpose, i.e., that produces accurate class
labels for the chosen learning task. The matrix in Fig. 3 (right) shows the absolute pairwise Pearson’s
correlation coefficient between attribute labels. The graph shows that, as expected, a strong linear
relationship between the learning task and the sensitive attribute targeted by the adversary leads to
a large fundamental leakage. For instance, ‘Attractive’ and ‘Male’ are mildly correlated negatively
(−0.3094 correlation coefficient), but this already increases the adversary’s gain in inferring sensitive
attribute ‘Male’ when the learning task is ‘Attractive’. Although the increase is small in this case, it
illustrates how inferences due to a task’s fundamental leakage can not only be counterintuitive, but
also reveal information that could lead to harm (in this case, discrimination due to gender).

The fundamental leakage for some pairs of tasks and sensitive attributes is highly concerning. It
implies that users of the prediction service reveal to the service provider not only their task label but
also any attribute that is correlated with the chosen task. This consequence is rarely made explicit to
users when they are informed about the data collection and processing, and might lead to unexpected
harms beyond those associated with revealing the task label itself. In the example above, a user
expecting to only reveal ‘attractiveness’ might not expect that their gender is revealed, with the
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ensuing risks of discrimination. To better inform users about their risk, providers would have to list
all sensitive attributes that might be leaked through a task’s fundamental leakage. Knowing all such
attributes is likely infeasible. To address this problem, service providers could empirically evaluate
whether attributes considered particularly sensitive are part of the fundamental leakage and inform
data subjects about the result.

4.2 THE LEAST-PRIVILEGE AND UTILITY TRADE-OFF

One way to interpret Theorem 2 is that whenever the features learned by a model are useful for a given
prediction task, there always exists a sensitive attribute for which an adversary gains an advantage
from observing a target record’s feature representation. We experimentally show this fundamental
limit of least-privilege learning.

Fig. 4 compares the trade-off between utility and attribute leakage of models trained with standard
SGD (top) and with GRAD to censor the representation of a single sensitive attribute (bottom).
The blue horizontal bars in Fig. 4 (right) show the model’s utility for learning task Y measured as
Ĩ∞(Y,Z). The heatmaps in Fig. 4 (left) show the difference between the adversary’s inference gain
and the model’s utility ∆PUT , Ĩ∞(S,Z | Y ) − Ĩ∞(Y,Z). Each row corresponds to a different
learning task Y , each column represents a different sensitive attribute targeted by the adversary.
In Fig. 4 (top), we see that in the LFWA+ dataset, for example, the features learned by a model
that predicts attribute ‘Smiling’ increase the adversary’s inference accuracy for attribute ‘White’.
Different tasks result in a high leakage for different attributes, e.g., ‘OvalFace’ reveals a lot of
additional information about gender, while ‘HeavyMakeup’ is indicative of ‘PaleSkin’ and ‘Attractive’
but does not have much influence on the inference power of other attributes. Importantly, however,
for every task, there is at least one sensitive attribute for which ∆PUT > 0. These results confirm that
the features learned by a model trained to perform well on its learning task reveal more information
than a task’s fundamental leakage, violating the least-privilege principle.

In Fig. 4 (bottom), we show results for models trained under attribute censoring, a common technique
used to address unintended information leakage (Song & Shmatikov, 2019; Brown et al., 2022;
Zhao et al., 2020). For each task, we censor the attribute with the highest leakage under standard
training. First, as expected, censoring limits the leakage of the censored attribute, and decreases
the utility of the model (Song & Shmatikov, 2019; Zhao et al., 2020). However, we observe the
inherent trade-off from Theorem 2: In all our experiments, an adversary can find another data attribute
for which ∆PUT > 0 and that thus violates the least-privilege principle. In Appendix C, we show
equivalent results for other learning techniques, such as, differentially private training and adversarial
representation learning that aim to hide sensitive information about the original data X .

Takeaways. Our experiments provide evidence for the fundamental trade-off we derive in Theorem 2:
the representations generated by models that perform well on their intended task fail to fulfil the LPP.
Censoring techniques can be used to limit the adversary’s inference gain on a particular attribute but
cannot avoid the inherent trade-off. There always exists an attribute, other than the learning task, that
violates the LPP. This ‘whack-a-mole’ effect is a phenomenon observed in related scenarios, such as,
privacy-preserving data publishing (Narayanan & Shmatikov, 2019).

5 CONCLUSIONS

The promise of least-privilege learning – to learn feature representations that are relevant for a given
task but avoid leakage of any information that might be misused and cause harm – is extremely
appealing. In this paper, we show that in many realistic tasks where there exists inherent uncertainty
about the task labels, any representation that provides utility for its intended task must always leak
information about attributes other than the task. Even when the representations fulfil the least-privilege
principle, it is not possible to provide technical guarantees that sharing those representations will not
result in harms due a task’s fundamental leakage. This is because the task predictions themselves
are correlated with data attributes that are possibly sensitive. This issue applies to any settings in
which users share representations instead of raw data records to limit data access, including model
partitioning and collaborative learning. The issue cannot be addressed through censoring (Song &
Shmatikov, 2019), which can only limit the inference of specific attributes, but cannot prevent leakage
of all sensitive attributes.
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Figure 5: Bound on the highest achievable task classification accuracy from maximum attribute
inference accuracy. We provide the bound for illustrative purposes but, as it is loose, caution against
using it to make decisions about acceptable leakage. In particular, for perfect LPP at the point x = 0.5
by Corollary 1, we must have trivial task accuracy 0.5, whereas this bound gives ≈ 0.8.

A INTERPRET TRADE-OFFS THROUGH TASK ACCURACY

Our results on the fundamental trade-off in Theorem 2 relate maximum gain in attribute inference
to mutual information I(Y ;Z). Next, we provide an interpretation of the trade-off in terms of task
classification accuracy instead of mutual information. Specifically, we provide a trade-off between γ
and task accuracy when the representations are used by a classifier fC of a binary task label with
uniform prior.
Corollary 2. Suppose that the following hold:

• We have binary classification (Y = {0, 1}) with uniform prior (P (y) = 1/2).

• The features fE satisfy γ-LPR with such γ that no binary attribute S with uniform prior
(P (s) = 1/2) and trivial fundamental leakage (Pr[S = Ŝ(Y )] = 1/2) can be inferred with
accuracy higher than β (Pr[S = Ŝ(Z, Y )] ≤ β)

Then, no classifier fC can achieve the task accuracy higher than the following:

max
fC : Z→Y

Pr[fC ◦ fE(X) = Y ] ≤ 1 +
log(β)

2 log(−6/log(β))
. (11)

See Fig. 5 for an illustration. At β = 1/2 we have perfect LPP with γ = 0, thus by by Corollary 1 the
task accuracy can be at most 1/2. In Eq. (11), in this case the bound on task accuracy is only ≈ 0.8,
thus the bound is loose. This is because the convertion between mutual information and classification
accuracy is loose.

Proof. First, observe that to achieve the condition on γ, we need to have:

log
Pr[S = Ŝ(Z, Y )]

1/2
≤ log(2β) = γ (12)

By Theorem 2, we therefore have I(Y ;Z) ≤ log(2β).

From I(Y ;Z), we can obtain a bound on classification error of Y from Z by Fano’s inequality (see,
e.g. Cover & Thomas, 2006, Eqn.(2.140)), noting that Y is binary and follows a uniform distribution,
hence H(Y ) = log(2):

min
fC : Z→Y

Pr[fC(Z) 6= Y ] ≥ H−12 (log(2)− I(Y ;Z)), (13)

whereH2(p) = −p log(p)−(1−p) log(1−p), is the binary entropy function. To have an easy-to-use
expression, we use a bound due to Calabro (2009) (in (Zhao et al., 2020)):

H−12 (t) ≥ t

2 log(6/t)
(14)

Thus, we have:

max
fC : Z→Y

Pr[fC(Z) = Y ] ≤ 1− t

2 log(6/t)
, (15)

where t = log(2)− I(Y ;Z) ≥ log(2)− log(2β) = − log(β).
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B FORMAL DETAILS

Maximal Leakage. First, let us provide some useful properties of maximal leakage.

Maximal leakage and conditional maximal leakage are defined (Issa et al., 2019) as follows:

L(X → Z) , sup
S: S−X−Z

I∞(S;Z) L(X → Z | Y ) , sup
S: S−(X,Y )−Z

I∞(S;Z | Y ). (16)

Lemma 1 (Issa et al. (2019)). Maximal leakage has the following properties:

• Maximal leakage bounds mutual information: L(X → Z) ≥ I(X;Z)

• Maximal leakage and conditional maximal leakage have the following closed forms:

L(X → Z) = log

(∑
z∈Z

max
x∈supp(X)

P (z | x)

)

L(X → Z | Y ) = log

(
max

y∈supp(Y )

∑
z∈Z

max
x∈supp(X|Y=y)

P (z | x, y)

)

Maximally Revealing Attributes. We demonstrate that a certain family of attributes is maximally
revealing, i.e., achieves the supremum supS: S−X−Z I∞(S;Z).

Definition 3. A family of maximally revealing attributes S∗(X) is a subset of probability distributions
over S, defined as follows. Any attribute S ∈ S∗(X) is such that for any x ∈ X there exists a map
US(x) : X→ 2S, and S = s ∈ US(x) if and only if X = x.

Lemma 2. The class of maximally revealing attributes leads to the highest inference gain:

sup
S: S−X−Z

I∞(S;Z) = sup
S∈S∗(X)

I∞(S;Z) (17)

Proof. Denoting by PX̃ � PX the relation supp(PX̃) ⊆ supp(PX), observe that any distribution
PX̃ � PX can be represented as follows:

PX̃(x) =

∑
s∈US∗ (x) PS∗(s)∑

x∈X
∑
s∈US∗ (x) PS∗(s)

, (18)

for some S∗ ∈ S∗(X).

Liao et al. (2019, Eq. 106–109) show that for PX̃ and S∗ ∈ S∗(X) defined as in Eq. (18), we have:

I∞(S∗;Z) = sup
S: S−X̃−Z

I∞(S;Z) (19)

Moreover, Liao et al. (2019, Theorem 2) show that the following property holds:

sup
S: S−X−Z

I∞(S;Z) = sup
X̃: PX̃�PX

sup
S: S−X̃−Z

I∞(S;Z) (20)

Using the fact that for any X̃ : PX̃ � PX there exists S∗ ∈ S∗(X) such that Eq. (18) holds, we
combine Eq. (19) and Eq. (20) to get the sought result.

Lemma 3. Suppose that |X| > 1. If an attribute is maximally revealing, S ∈ S∗(X), then the
conditional distribution PS|X is non-positive: there exist a s ∈ S and x ∈ X such that P (s | x) = 0.

Proof. By contradiction. Suppose that for all x ∈ X, we have P (s | x) > 0. But then, there exist
x′ 6= x′′ ∈ X such that s ∈ US(x′) and s ∈ US(x′′), which contradicts the definition of S∗(X).

Omitted Proofs. Next, we provide the proofs of the formal statements in the main body of the paper.
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Proof of Theorem 1. By construction, we have a Markov chain Y − X − Z. By data processing
inequality, we thus have a bound on utility: I(Y ;Z) ≤ I(X;Z). Next, observe that Y 6∈ S∗(X) by
Lemma 3 and strict positivity (Assumption A). Therefore,

sup
S: S−X−Z, S 6=Y

I∞(S;Z) = sup
S∈S∗(X)

I∞(S;Z) = sup
S: S−X−Z

I∞(S;Z) = L(X → Z) (21)

by Lemma 2 and the definition of maximal leakage. Finally, applying a property of maximal leakage,
we have I(Y ;Z) ≤ I(X;Z) ≤ L(X → Z) = supS: S−X−Z, S 6=Y I∞(S;Z) ≤ γ.

Remark 1. Theorem 1 only requires that Y 6∈ S∗(X). This holds under weaker assumptions than
the strict positivity of the posterior (Assumption A). For instance, it is sufficient that there exist any
x, x′, y such that both PX|Y (x | y) > 0 and PX|Y (x′ | y) > 0.

Proof of Theorem 2. First, we show that in our Markov chain and under the strictly positive posterior
assumption, we have a surprising result that L(X → Z | Y ) = L(X → Z).

To see this, observe that maximal leakage has the following closed form by Lemma 1:

L(X → Z | Y ) = log

(
max

y∈supp(Y )

∑
z∈Z

max
x∈supp(X|Y=y)

P (z | x, y)

)
(22)

= log

(
max

y∈supp(Y )

∑
z∈Z

max
x∈supp(X|Y=y)

P (z | x)

)
, (23)

where the second equality is by the Markov chain Y −X − Z.

Next, observe that we have P (x | y) ∝ P (y | x) · P (x) which, by assumption, is positive so long
as x ∈ supp(X). As a consequence, the support of X is independent of Y : supp(X | Y = y) =
supp(X), for any y ∈ Y. Therefore, we can simplify the last form:

L(X → Z | Y ) = log

(
max

y∈supp(Y )

∑
z∈Z

max
x∈supp(X|Y=y)

P (z | x)

)
(24)

= log

(∑
z∈Z

max
x∈supp(X)

P (z | x)

)
, (25)

which is an equivalent form of L(X → Z).

Finally, to obtain the trade-off, it suffices to observe that I(Y ;Z) ≤ I(X;Z) ≤ L(X → Z) ≤ γ,
where the second inequality is by data processing in the Markov chain Y −X − Z, and the third is a
property of maximal leakage: L(X → Z) ≥ I(X;Z).

One way to interpret this result is that the family of maximally revealing attributes S∗(X) is not
sensitive to conditioning on Y so long as Y 6∈ S∗(X), which we have by Lemma 3 and strict
positivity (Assumption A).

C ADDITIONAL EXPERIMENTS

C.1 VARYING MODEL ARCHITECTURE

To demonstrate that, as predicted by Theorem 2, the strict trade-off between features’ utility for a
downstream prediction task and the LPP applies regardless of a model’s architecture or the structure
of the feature encoder Z = fE(X), we conduct an additional experiment on the LFWA+ image
dataset (see Section 4) using a different model architecture. We use the ResNet-18 architecture from
He et al. (2015) implemented by PyTorch. Training batch size is 32, SGD learning rate is 0.01.

Fig. 6 compares the trade-off between utility and attribute leakage of a CNN256 (top) and a
RESNET18 (bottom) models, both trained with standard SGD. The blue horizontal bars in Fig. 6
(right) show the model’s utility for learning task Y measured as Ĩ∞(Y,Z). The heatmaps in
Fig. 6 (left) show the difference between the adversary’s inference gain and the model’s utility
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Figure 6: If the model-generated representations have utility for the task (right), there exists a
sensitive attribute with an even higher inference gain for the adversary (left, red means more
leakage). This holds for both a CNN256 (top) and a RESNET18 model (bottom), i.e., regardless of
the model architecture.
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Ĩ∞(S,Z)− Ĩ∞(Y, Z). Each row corresponds to a different learning task Y , each column represents
a different sensitive attribute targeted by the adversary. We observe that regardless of the model
architecture, for any learning task there always exists a sensitive attribute for which Ĩ∞(S,Z) >
Ĩ∞(Y,Z) and thus violates the LPP.

C.2 VARYING LEARNING TECHNIQUES

Theorem 2 implies that the strict trade-off between a representation’s utility for its intended task and
the LPP holds regardless of the learning technique used to obtain the feature map fE(X) = Z. In
Section 4.2, we show that indeed even with attribute censoring through gradient reversal, an adversary
can always find a data attribute for which ∆PUT > 0 and that thus violates the LPP. In this section,
we experimentally demonstrate that the same applies to other learning techniques that aim to hide
sensitive information about the original data X , such as differentially private training or adversarial
representation learning.

C.2.1 DIFFERENTIALLY PRIVATE TRAINING

We train a CNN256 model on the LFWA+ dataset (see Section 4) under differential privacy (Dwork
et al., 2014). We use the Opacus library (Yousefpour et al., 2021) to implement simple differentially
private stochastic gradient descent with gradient clipping. We test for optimal α in a range of [2, 32]
and obtain a final privacy parameter of ε = 1.1.

In Fig. 7, we show that differentially private training limits the worst-case inference gain for any
attribute S for records in the training data, but does not prevent test-time attribute inference that LPP
aims to prevent. Differentially private training leads to a drop in model performance on the intended
task (Fig. 7 (bottom, right)) but does not prevent a worst-case adversary that gains an advantage from
observing a target record’s feature representation.

C.2.2 ADVERSARIAL REPRESENTATION LEARNING

Zhao et al. (2020) empirically compare the trade-off between hiding sensitive information and task
accuracy of various attribute obfuscation algorithms. They find that together with gradient reversal,
Maximum Entropy Adversarial Representation Learning (MAX-ENT) provides the best trade-off.
We run a simple experiment on the Adult dataset (Kohavi & Becker, 2013) that shows that the
trade-off predicted by Theorem 2 also applies to the representations learned by a model trained under
MAX-ENT.

Experiment Setup. We use the exact same model architecture and data as Zhao et al. (2020). We
train the model to predict attribute ‘income’ and adversaries for four sensitive attributes (‘age’,
‘education’, ‘race’, and ‘sex’). We then calculate the utility and inference gain as described in
Section 4.

Fig. 8 shows that, as expected, even for a model trained under attribute obfuscation with MAX-ENT,
the adversary’s inference gain exceeds the model’s utility gain for two out of the four sensitive
attributes tested. This further supports our theoretical finding that the trade-off between LPP and
utility for a prediction task of a representation applies regardless of how these representations are
learned.

C.3 VARYING DATASET

We ran an additional experiment to demonstrate that the strict trade-off between model utility and the
LPP also holds on a very different type of dataset and model. As for tabular data, together with image
data, sharing feature encodings instead of raw data is often suggested as a solution to limit harmful
inferences, we choose the Texas Hospital dataset (Texas Department of State Health Services, Austin,
Texas, 2013) and the TabNet model architecture (Arik & Pfister, 2021) for these experiments.

Data. The Texas Hospital Discharge dataset (Texas Department of State Health Services, Austin,
Texas, 2013) is a large public use data file provided by the Texas Department of State Health Services.
The dataset we use consists of 5,202,376 records uniformly sampled from a pre-processed data
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Figure 7: The least-privilege and utility trade-off holds even under differentially private model
training. The adversary’s inference gain (left) always exceeds the utility gain (right) for at least on
sensitive attribute. This hold for both a CNN256 model trained under standard learning techniques
(top) and under differential privacy (bottom).

file that contains patient records from the year 2013. We retain 18 data attributes of which 11 are
categorical and 7 continuous.

Experiment Setup. In each experiment, we select one attribute as the model’s learning task Y and a
second attribute as the sensitive attribute S targeted by the adversary. We repeat each experiment
5 times to capture randomness of our measurements for both the model and adversary, and show
average results across all 5 repetitions. At the start of the experiment, we split the data into the
three sets DT , DE , and DA. We train a TabNet model on the train set DT for the chosen learning
task and then estimate the model’s utility on the evaluation set DE . We measure the model’s utility
by estimating the multiplicative gain Ĩ∞(Y ;Z) = log P̃r(Y=Ŷ (Z))/P̃r(Y=Ŷ ), where Ŷ (Z) denotes
the trained model’s prediction for a record’s task label Y and Ŷ without the argument the majority
class baseline guess. After model training and evaluation, we train both the label-only and features
adversary on the auxiliary dataDA. The features adversary is given access to a record’s representation
at the last encoding layer of the TabNet encoder (see Arik & Pfister (2021) for details of the model
architecture). For a given sensitive attribute S, we estimate the adversary’s gain as Ĩ∞(S,Z | Y ) =
log P̃r[S=Ŝ(Z,Y )]/P̃r[S=Ŝ(Y )].
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Figure 8: For two out of four sensitive attributes tested, the adversary’s inference gain exceeds
the model’s utility gain. We show the delta between the adversary’s inference gain and model utility
for a model trained under MAX-ENT for learning task ‘income’ on the Adult dataset.
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Figure 9: Attribute leakage (left) and model utility (right) for a TabNet model trained on the Texas
Hospital dataset
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As above, the bar chart in Fig. 9 (right) shows the model’s utility for learning task Y indicated in each
row measured as Ĩ∞(Y,Z). The heatmaps in Fig. 9 (left) show the difference between the adversary’s
inference gain and the model’s utility Ĩ∞(S,Z) − Ĩ∞(Y, Z). As on the LFWA+ dataset, for any
learning task there always exists a sensitive attribute for which an adversary gains an advantage
from observing a target record’s feature representation and ∆PUT > 0. This demonstrates the strict
trade-off between utility and the LPP as predicted by Theorem 2.
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