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Abstract

With the widespread application of deep neural
networks, generative models, especially diffusion
models and flow matching models, for protein
design have experienced explosive growth. How-
ever, there remains a lack of comprehensive eval-
uation frameworks to systematically assess the
performance of these models. This study ad-
dresses this gap by focusing on the task of de-
signing unconditional protein structures, bench-
marking seven state-of-the-art (SOTA) models in
four distinct dimensions: structural validity, diver-
sity, novelty, and computational efficiency. This
work provides standardized metrics and baseline
benchmarks to guide future research and innova-
tion in protein design.

1. Introduction
Diffusion models (Ho et al., 2020) and flow matching mod-
els (Lipman et al., 2024) share a similar architecture, and
their application to protein generation is gaining attention.
However, which kinds of models are better for the genera-
tion of protein structure have not been systematically stud-
ied. This paper examines the performance of 6 diffusion
models and 1 flow matching model across unconditional
generation and structure prediction. This work provides
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valuable guidance to help researchers select the most appro-
priate models for specific tasks and requirements.

Contributions: We investigate the theoretical foundations
and empirical performance of recent diffusion-based and
flow-based generative models. We provide a comparison of
state-of-the-art approaches and propose insights for combin-
ing their strengths; in this work:

• We present the foundational theory of diffusion and
flow matching models and introduce 6 state-of-the-
art (SOTA) diffusion-based models and 1 SOTA flow-
based model.

• We propose 4 benchmarking dimensions to evaluate
the models and conduct a comprehensive evaluation
and ranking based on these criteria.

• We analyze the results of the evaluation to highlight
the strengths of the flow matching model and explore
a strategy to integrate diffusion and flow matching
approaches for improved performance.

2. Model introduction
There are 7 models discussed in this paper, 6 of them are
diffusion models, and 1 is flow matching. The two types of
models are very similar. They both involve the process of
adding noise and removing noise. In some cases, they are
even equivalent. The forward process of the diffusion model
which gradually destroys data over time can be described
by the following stochastic differential equations (SDE):

dzt = ftztdt+ gtdω

where dω is a Brownian motion, ft and gt decide the noise
schedule. The generative process is given by

dzt = (ftzt −
1 + η2t

2
g2t∇ log pt(zt))dt+ ηtgtdω,

where ∇ log pt is the score of the forward process. ηt con-
trols the amount of stochasticity at inference time. The inter-
polation between x and ϵ in flow matching can be described
by the following ordinary differential equation (ODE):

dzt = utdt,
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assuming the interpolant is zt = αtx + σϵ, then ut =
α̇tx+σ̇tϵ, where α̇t denotes the derivative of αt with respect
to t. The generative process can be generalized to SDE:

dzt = (ut −
1

2
ϵ2t∇ log pt(zt))dt+ ϵtdt,

where ϵt modulates the noise level at inference time.

We can deduce the equivalence by deriving on set of hyper-
parameters for the other. From diffusion to flow matching:

αt = exp(

∫
fsds), ϵt = ηtgt,

σt = (

∫ t

0

g2s exp(−2

∫ s

0

fudu))
1
2 .

(1)

From flow matching to diffusion:

ft = ∂t log(αt), g2t = 2αtσt∂t(
σt

αt
),

ηt = ϵt/(2αtσt∂t(
σt

αt
))

1
2 .

(2)

In summary, apart from training consideration and sampler
selection, diffusion and flow matching exhibit no funda-
mental differences. However, there are two new model
specifications (Gao et al., 2024) that flow matching brings
to the field:

• Network output: Flow matching proposes a vector
field parameterization of the network output that is
different from the ones used in diffusion literature. The
network output can make a difference when higher-
order samplers are used. It may also affect the training
dynamics.

• Sampling noise schedule: Flow matching leverages a
simple sampling noise schedule.

Here is a general introduction to the 7 models:

RFDiffusion (Watson et al., 2023) takes the classical
RoseTTAFold (Baek et al., 2021) as the reverse diffusion
denoiser step to design the protein structure. FrameDiff
(Yim et al., 2023b) uses the Invariant Point Attention (IPA)
(Jumper et al., 2021) module for keeping SE(3) invariance.

Genie (Lin & AlQuraishi, 2023) uses IPA to construct a
mechanism for computationally efficient SE(3) equivariant
diffusion denoiser to generate protein backbones. Genie2
(Lin et al., 2024) adds motif scaffolding capabilities via a
novel multi-motif framework that designs co-occurring mo-
tifs with unspecified inter-motif positions and orientations.

ProtDiff-SMCDiff (Trippe et al., 2023) is a diffusion model
for motif-scaffolding using sequential Monte Carlo (SMC).
FoldingDiff (Wu et al., 2024) predicts the angles between
the residues, but not the absolute location of the residues.

For flow matching model, FrameFlow (Yim et al., 2023a)
adapts FrameDiff to the flow-matching generative modeling
paradigm, keeps model SE(3) equivariance and achieves
twice the design capability compared to FrameDiff.

3. Unconditional structure generation
benchmarking

Unconditional structure generation is defined as a structure
generated by a pre-trained model without inputting any
sequence or structure. Using these 7 pre-trained models,
100 proteins were unconditionally generated with lengths of
50, 100, 200, 300, 400, and 500 residues, respectively.

A multimetric evaluation is created to assess the models’
performance on unconditional generation, encompassing 4
key dimensions: designability, novelty, diversity, and effi-
ciency. The metrics for evaluating them are listed in Table
1. In this section, the evaluation and the corresponding re-
sults are presented in different subsections, followed by a
comprehensive assessment of their performance.

3.1. Designability

The designability to design a structure reflects the ability
to identify an amino acid sequence that can fold into the
designed backbone structure. Following the protocol of
(Trippe et al., 2023), 100 structures were generated from the
models to be tested. For each generated structure, we input
it to ProteinMPNN (Dauparas et al., 2022) for inverse fold-
ing 10 sequences. The total of 1,000 generated sequences
was input into ESMFold (Manfredi et al., 2025) to refold
structures, see Fig. 2 in appendix. There are two methods
to evaluate the predictability of the different models:

• Calculating the scTM between the generated structure
and the refolded structure for evaluation.

• Calculating scRMSD (similar to scTM but using
RMSD) between generated and refolded structures for
evaluation.

3.2. Novelty

Novelty measures the rate at which the generated samples
differ significantly from the reference set. Taking into ac-
count the novelty raised by (Yim et al., 2023b), Foldseek
(van Kempen et al., 2022) used the maximum TM score
between the generated protein set and the PDB dataset
https://www.rcsb.org/, with the value recorded as
pdbTM to evaluate novelty.

3.3. Diversity

A large diversity (Yim et al., 2023b; Zheng et al., 2024)
means that dissimilar sequences and a large coverage of the
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Table 1. List of metrics used in this paper. The range related to TM-score are [0, 1], scRMSD ≥ 0, Max-Cluster ∈ [0, 1], runtime. ↑
means the higher the better, ↓ means the lower the better.

Dimension Metric Definition Range
Ideal
Direction

Designability scTM TM-score between generated and refolded structures [0,1] ↑
scRMSD Cα RMSD between generated and refolded structures ≥ 0 ↓

Novelty pdbTM Highest TM-score between generation structures and pdb dataset. [0,1] ↓

Diversity Pairwise TM Max TM-score across all generated structure pairs [0,1] ↓
Max-Cluster Proportion of clusters (TM-score threshold = 0.5) [0,1] ↑

Efficiency Run time The time spend for generating 100 proteins ≥ 0 ↓

sequence space can fold into a given structure. Diversity
is measured using two methods, both based on Pairwise
TM-score, which means the TM-score(p1, p2) for any p1,
p2 in the generated protein set:

• The maximum pairwise TM-score is used as a diver-
sity metric. In the topological space, the lower the TM-
score, the longer the distance between two proteins,
the more dissimilar they are, the higher the diversity.

• Clustering the generated protein backbones is a way
to assess the similarities between protein backbones.
Max-Cluster works by grouping similar protein struc-
tures into clusters based on their structural similarity,
which is measured using the TM-score. In this paper,
the clustering threshold is set as TM-score=0.5.

3.4. Efficiency

We run models on Nvidia L4 GPU×4, CUDA version 12.2,
to generate 100 proteins per length, record the time, and list
them in Table 2 to show their efficiency.

3.5. Structural Properties

In addition to the above 4 dimensions, some structural prop-
erties can also be extracted from the generated structures.
For example, secondary structure elements (SSE) repre-
senting the structural organization, and radius of gyration
measuring the size or compactness. Since there are no oxy-
gen atoms O in the PDB file generated from FoldingDiff,
Genie, Genie2 and ProtDiff-SMCDiff, it is impossible to
accurately calculate the SSE. This paper just analyses the
structural properties of FrameDiff, FrameFlow and RFDif-
fusion. DSSP (Touw et al., 2015) is a database of secondary
structure assignments for all protein entries in the Protein
Data Bank. Leveraging the DSSP (Sekihara et al., 2016)
of Python package Biotite (Kunzmann et al., 2023), we
compile statistics for the proportion of α-helix, β-strand,
random coil and turn. In addition, the average radius of
gyration is calculated according to the formula in (Xiang
et al., 2013). The result can be seen in Figure 1. These prop-
erties exhibit natural biological variations without absolute

optimal ranges, and therefore were not incorporated into
holistic performance assessment.

4. Results
Table 2 lists the results, and Fig. 4 in the appendix allows vi-
sualization. All the results are discussed in this section, and
then we give them a comprehensive evaluation and propose
directions for improving the model for protein generation.

For the 2 metrics and 6 different lengths, the best results
are highlighted in Table 2 in bold. Regarding designability,
6 numbers are highlighted for RFDiffusion, 4 numbers for
Frameflow, 1 for FrameDiff and 1 for Genie. RFdiffusion
shows the best designability among these 7 models. It can
also be observed that if the designability is good with re-
spect to scTM, it is also good for scRMSD. In fact, except
for these 2 metrics, there are some other metrics to show the
designability, such as PAE, pTM, and pLDDT, for compari-
son between the generated and refolded protein structures.
Using the results from FrameFlow as an example, Fig. 3 in
appendix shows the relation between the 5 metrics: scTM,
scRMSD, pTM, pLDDT and PAE. It can be seen that the
five metrics that describe designability show strong positive
or negative correlations with each other.

In generating proteins of 6 different lengths, ProtDiff-
SMCDiff achieved the best novelty results in five of these
cases, which can be attributed to the unique E(3)-invariant
framework inherent to the ProtDiff-SMCDiff model. While
Table 2 lists the average pdbTM values, we can further ex-
amine the distribution of pdbTM values in Fig. 4. The
distribution of pdbTM for ProtDiff-SMCDiff is far lower
than that of other models. Furthermore, a comparative anal-
ysis could be extended by substituting the reference dataset
PDB with alternative datasets such as AlphaFold DB (Varadi
et al., 2024) to validate the robustness of these findings.

As for diversity, Foldingdiff shows good performance when
generating 50 amino acids and 100 amino acids. However,
the test dataset in the original FoldingDiff paper has an upper
limitation of just 128, i.e., this model can only generate
proteins of less than 128 amino acids. See Fig. 4 (b) for a
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Table 2. Result of unconditional generation. scTM (↑) and scRMSD (↓) for designability evaluation, pdbTM (↑) for novelty evaluation,
Pairwise TM-score (↓) and Max cluster (↑) for diversity evaluation and runtime (↓) for efficiency evaluation. Performance score (↑)
calculated by TOPSIS for rank.

Model Designability Novelty Diversity Efficiency Perfor-
mance
score

Rank

scTM scRMSD pdbTM
Pair-
wise
TM

Max
Clust. Runtime

50

FrameDiff 0.781 0.568 0.715 0.870 0.490 1h-25m-41.52s 0.540 5
FrameFlow 0.807 0.476 0.727 0.925 0.320 6m-27.73s 0.587 3
Genie 0.841 6.079 0.699 0.848 0.590 3h-20m-26s 0.319 7
Genie2 0.400 5.602 0.743 0.864 0.370 2h-1m-55s 0.482 6
FoldingDiff 0.289 9.874 0.599 0.933 0.820 3m-30.26s 0.611 2
RFDiffusion 0.726 0.270 0.639 0.981 0.120 53m-45s 0.543 4
ProtDiff-SMCDiff 0.348 8.289 0.500 0.640 0.930 3m-28s 0.640 1

100

FrameDiff 0.799 0.786 0.683 0.932 0.460 1h-36m-49.11s 0.628 3
FrameFlow 0.862 0.605 0.678 0.729 0.400 5m-42.14s 0.737 1
Genie 0.836 10.899 0.595 0.749 0.830 3h-26m-25.11s 0.372 7
Genie2 0.354 9.354 0.644 0.631 0.560 1h-2m-39s 0.502 6
FoldingDiff 0.298 14.583 0.563 0.591 0.990 2m-26s 0.566 4
RFDiffusion 0.956 0.487 0.709 0.781 0.301 59m-45s 0.659 2
ProtDiff-SMCDiff 0.302 9.707 0.640 0.957 0.130 15m-31s 0.506 5

200

FrameDiff 0.694 0.666 0.676 0.743 0.390 3h-29m-59s 0.521 4
FrameFlow 0.989 0.745 0.532 0.677 0.610 11m-42s 0.818 1
Genie 0.280 16.265 0.586 0.606 0.670 3h-19m-18.08s 0.413 5
Genie2 0.267 16.535 0.580 0.567 0.780 6h-8m-53.81s 0.154 6
RFDiffusion 0.952 0.723 0.523 0.736 0.647 2h-0m-17s 0.731 2
ProtDiff-SMCDiff 0.314 18.719 0.391 0.329 0.950 60m-29s 0.624 3

300

FrameDiff 0.682 1.670 0.642 0.746 0.480 23h-58m-1s 0.291 5
FrameFlow 0.980 1.224 0.653 0.647 0.570 20m-31s 0.804 2
Genie2 0.277 20.639 0.579 0.350 0.880 7h-9m-42.13s 0.563 4
RFDiffusion 0.884 0.722 0.607 0.627 0.670 4h-25m-45s 0.821 1
ProtDiff-SMCDiff 0.294 21.137 0.350 0.643 0.900 2h-16m-21s 0.679 3

400

FrameDiff 0.500 8.795 0.606 0.597 0.550 24h-33m 0.294 5
FrameFlow 0.980 3.119 0.622 0.600 0.560 2h-8m-35s 0.772 1
Genie2 0.233 37.086 0.571 0.469 0.870 9h-13m-45.32s 0.514 4
RFDiffusion 0.992 2.2106 0.599 0.664 0.760 11h-48m-53s 0.653 2
ProtDiff-SMCDiff 0.230 41.613 0.363 0.698 0.990 4h-59m-57s 0.621 3

500

FrameDiff 0.448 14.578 0.586 0.589 0.590 37h-6m-11s 0.289 5
FrameFlow 0.946 2.696 0.627 0.595 0.540 2h-20m-52s 0.789 1
Genie2 0.205 52.059 0.566 0.456 0.920 13h-24m-35s 0.505 4
RFDiffusion 0.722 4.028 0.599 0.593 0.870 20h-4m-18s 0.593 2
ProtDiff-SMCDiff 0.150 63.080 0.264 0.642 0.610 11h-20m-41s 0.536 3
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Figure 1. Results of secondary structure elements and radius of gyration. Left: Mean secondary structure composition (α, β, coil, turn) in
100 generated proteins (each protein has 100 amino acids) per method. Right: Length-dependent radius of gyration patterns.

time chart showing changes in metrics over length; the line
changes of the 2 metrics have opposite trends.

For efficiency, in Fig. 4(c), the variation in runtime with
protein length is illustrated, with an exponential function
fitted to the data of each model. The form of the fitted
exponential function is provided, and the corresponding co-
efficients a, b, and c for each model are listed in Table 3 in
appendix. Since FrameFlow has the smallest exponential
function and the most gradual increase, it is the most effi-
cient model. It is worth noting that FoldingDiff is also a
highly efficient model although it is not possible to obtain
an exponential fitting for this model.

We employed the TOPSIS (Behzadian et al., 2012) method
to calculate comprehensive performance scores and estab-
lish model rankings. Four key dimensions - designabil-
ity, novelty, diversity, and efficiency - were assigned equal
weights of 1/4 each. Within the designability dimension, the
scTM and scRMSD metrics received sub-weights of 0.125
each, while in the diversity dimension, pairwise TM-score
and Max-cluster were similarly weighted at 0.125 each. The
calculation results (detailed in Table 2) show that Frame-
Flow achieved the highest comprehensive ranking (Rank 1)
under this evaluation framework.

As outlined in Section 2, the flow matching model based on
ODEs features a simplified sampling process. This funda-
mental characteristic explains why FrameFlow derived from
FrameDiff achieves a 5x faster sampling speed while main-
taining comparable performance. Future research directions
could explore the implementation of denoising implicit dif-
fusion models (Song et al., 2020) for protein generation
tasks. Notably, DDIM shares the same efficient sampling
paradigm as flow matching methods, making it potentially
more computationally efficient than traditional diffusion
approaches while preserving generation quality.
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A. Outline of Appendix
This appendix includes:

• Fig. 2: Workflow for designability evaluation.

• Fig. 3: Scatter plot to reveal the relation among different metrics for designability.

• Fig. 4: Visualization of the results, Violin plots for designability and novelty, line charts for diversity and efficiency.

• Table 3: Efficiency: Coefficients of exponential fitting for the runtime with respect to length.

• List of abbreviations.

Figure 2. Designability workflow: from the generated structure, inverse folding is done and then refolded, both are compared using
TM-score.

Figure 3. The relationship between scTM, scRMSD, plDDT, pTM, and PAE. The data come from FrameFlow for lengths 100, 300, and
500, respectively. They have high relevance in expressing the designability.
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B. More details about the results

Table 3. Efficiency. Coefficients for the exponential fitting.
Model a b c
FrameDiff 0.994 0.741 -1.09
FrameFlow 0.177 2.010 -0.241
Genie 37.1 -0.000435 -36.1
Genie2 1.41 0.510 -1.38
RFDiffusion 0.0521 3.02 -0.0505
ProtDiff-SMCDiff 0.021 3.88 -0.02

List of Abbreviations
SE(3) special euclidean 3D group

DDPM Denoising Diffusion Probabilistic Models

ODE Ordinary Differential Equation

PAE Predicted Alignment Error

pLDDT Predicted Local Distance Different Test

RFDiffusion RoseTTAFold Diffusion

RMSD Root Mean Square Deviation

scTM Self consistency Template Modeling score

SDE Stochastic Differential Equation

SGM Score-based Generative Models

SOTA State of the art
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Figure 4. Evaluation results on unconditional generation. (a) Results of designability ( upper and middle parts) and novelty (lower
part). Three violin plots are presented, showing the distribution of TM-score (↑, the higher the better), scRMSD (↓), and pdbTM (↓). (b)
Results of diversity. A line chart is used to illustrate the trend of pairwise TM (left), Max Cluster (right). (c) Results of efficiency. The
runtime (left) is fitted to an exponential function (right) with respect to sequence length.
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