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Abstract

Multimodal Large Language Models (MLLMs) hold im-
mense promise as assistive technologies for the blind and
visually impaired (BVI) community. However, we identify
a critical failure mode that undermines their trustworthi-
ness in real-world applications. We introduce the Esca-
lator Problem—the inability of state-of-the-art models to
perceive an escalator’s direction of travel—as a canoni-
cal example of a deeper limitation we term Implicit Mo-
tion Blindness. This blindness stems from the dominant
frame-sampling paradigm in video understanding, which,
by treating videos as discrete sequences of static images,
Sfundamentally struggles to perceive continuous, low-signal
motion. As a position paper, our contribution is not a new
model but rather to: (I) formally articulate this blind spot,
(Il) analyze its implications for user trust, and (I1l) issue
a call to action. We advocate for a paradigm shift from
purely semantic recognition towards robust physical per-
ception and urge the development of new, human-centered
benchmarks that prioritize safety, reliability, and the gen-
uine needs of users in dynamic environments.

1. Introduction

Vision foundation models (VFMs) and Multimodal Large
Language Models (MLLMs) have ushered in an era of un-
precedented progress in artificial intelligence, with the po-
tential to revolutionize assistive technologies. For the blind
and visually impaired (BVI) community, these advance-
ments promise a future where Al can act as a “visual in-
terpreter,” describing complex scenes, identifying objects,
and empowering greater independence in daily life. This
vision aligns perfectly with the core mission of the accessi-
bility research community: to harness cutting-edge technol-
ogy to dismantle barriers and foster a more inclusive world.
The prospect of MLLMs acting as real-time, conversational
“visual interpreters” via live video is no longer science fic-
tion but a rapidly commercializing reality, as exemplified by
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Figure 1. The Escalator Problem: A Real-World Failure of Mo-
tion Perception. An interaction with the MLLM demonstrates a
critical failure. While the model correctly identifies the object as
an escalator, it is unable to determine its direction of motion, a
vital piece of information for a BVI user’s safe navigation. This
highlights the concept of Implicit Motion Blindness.

models like GPT-40 [14] and Qwen2.5-Omni [23]. These
systems, capable of fluid dialogue about a user’s live sur-
roundings, represent an exciting frontier.

However, despite this encouraging progress, a critical
gap persists between current model capabilities and the de-
mands of real-world navigation. In this paper, we identify
a fundamental failure mode using the Escalator Problem as
a canonical, illustrative case: determining the direction of a
moving escalator from a first-person video. To demonstrate
this blind spot, we presented video footage of a standard
escalator to leading MLLMs. Their responses were con-
sistently alarming; as illustrated in Figure 1, even top-tier
models often fail this seemingly trivial task. They tend to
default to describing a static scene or explicitly state their
inability to perceive motion. This simple observation forms
the crux of our investigation.

This paper posits that this failure is not an isolated
glitch but rather a symptom of a deeper, systemic issue
we term Implicit Motion Blindness. We argue that the
dominant frame-sampling paradigm in video understand-
ing—which processes videos as a sequence of discrete,
static images—is ill-equipped to perceive low-signal, con-
tinuous motion. The crucial directional information in the



escalator video does not reside within any single frame, but
exists implicitly between them, in the subtle, continuous
flow that is effortlessly perceived by the human visual sys-
tem. The models’ inability to capture this flow reveals a
critical blind spot for tasks vital for safe and independent
navigation.

As a position paper, our contribution is not a new model
or dataset but rather the identification and articulation of this
critical blind spot to steer the community’s focus. We make
the following three contributions:

I We identify and formally articulate the Escalator
Problem as a canonical, real-world failure case that
highlights the limitations of current MLLMs in per-
ceiving continuous, low-signal motion.

II We analyze the broader implications of this Implicit
Motion Blindness for the BVI community, arguing
that it represents a significant barrier to building trust-
worthy assistive technologies and can erode user trust
in real-world deployments.

IIT We issue a call to action for the research commu-
nity to shift its focus from purely semantic recogni-
tion towards robust physical perception, and call for
the co-development of new, human-centric evaluation
paradigms that prioritize safety, reliability, and trust in
assistive Al

2. Background and Related Work
2.1. Video Perception in MLLMs

The primary method for MLLMs to process video is
through sparse frame sampling. This technique involves
selecting a small, discrete subset of frames to represent the
entire video sequence, drastically reducing the number of
visual tokens for the model to process. Common meth-
ods include uniform sampling and frames-per-second (FPS)
sampling [1, 10, 20-22].

While computationally efficient, this approach is funda-
mentally lossy. By discarding most frames, sparse sampling
severs the continuous dynamic information that constitutes
motion and temporal progression. Consequently, models
can miss crucial events and struggle with tasks requiring
fine-grained spatiotemporal understanding [16]. For a typ-
ical 5-minute video, a model limited to 64 frames would
sample at a rate of one frame every five seconds, making de-
tailed motion analysis nearly impossible [8]. This method
treats a video as an unordered “bag of frames,” sacrificing
temporal integrity for manageable data size.

2.2. Video Understanding Benchmarks

Leading video understanding benchmarks, such as Kinetics
[9] and ActivityNet [6], have been pivotal in advancing re-
search. These datasets primarily focus on explicit action

recognition, where models are tasked with classifying ac-
tivities like “running” or “playing guitar.”

However, these benchmarks often have a “static appear-
ance bias” [15]. Many actions can be identified from a sin-
gle frame, such as classifying diving by seeing a pool, of-
ten making temporal information redundant [24]. This is
confirmed by experiments where models perform well even
with shuffled frames, showing that true temporal under-
standing is not always being evaluated [5]. Consequently,
these benchmarks test for high-level action classification
where visual clues are often in a few keyframes, rather than
assessing a model’s ability to reason about events over time.

2.3. Al for Accessibility

Al has significantly advanced assistive technology for the
visually impaired, with a global population of over 2.2 bil-
lion [13]. Applications like Microsoft’s Seeing Al [12] and
Google Lookout [7] excel at static perception tasks, includ-
ing optical character recognition (OCR), product identifica-
tion, and scene description. Wearable devices such as Envi-
sion Glasses [4] and the NOA vest [2] offer more continu-
ous navigation support by providing obstacle detection and
GPS navigation.

Despite these advances, a critical gap remains in han-
dling dynamic, unpredictable environments [17]. Most as-
sistive technologies focus on obstacle detection and static
scene description, falling short of the nuanced understand-
ing required for safe mobility [13]. They can identify an
“escalator” but struggle to interpret its dynamic context,
such as whether it is broken and must be walked on. This
disconnect between low-level perception and high-level sit-
uational awareness is a major barrier to true navigational
independence and safety.

3. Why Models Can’t See What’s Moving

The failure of sophisticated MLLMs on the Escalator Test is
not a matter of insufficient parameters or inadequate train-
ing data in the conventional sense. Rather, it exposes a fun-
damental misalignment between the strategy models use to
“see” and the nature of visual information in the physical
world. To understand the failure, we must first appreciate
the profound difference between how humans and current
Al models perceive continuous motion.

3.1. The Human Advantage: Perceiving the Flow

For a human observer, determining the escalator’s direction
is a pre-attentive, almost instantaneous process. We do not
analyze the scene as a series of static photographs. Instead,
our visual system is exquisitely tuned to perceive optical
Jflow—the pattern of apparent motion of objects, surfaces,
and edges in a visual scene caused by the relative motion
between an observer and the scene. We perceive a continu-
ous stream of information. Our brain effortlessly detects the
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The elevator on the left is going down,

and the elevator on the right is going Up. The video shows the escalator moving upwards.

Both escalators on either side are going up. :

@ The video does not show the elevator going down. :

Figure 2. An Illustrative Example of Implicit Motion Blindness. When presented with a video of two adjacent escalators, current MLLMs
fail to correctly describe the motion. The Ground Truth (GT) indicates opposite directions, but model outputs are incorrect, either guessing
the wrong direction or denying the presence of motion altogether. This empirically validates the limitations of the current frame-sampling

paradigm for tasks requiring fine-grained temporal understanding.

subtle relative movements: the handrail gliding smoothly
past a stationary pillar, the seamless cascade of the steps,
which creates a waterfall effect, and the gentle parallax shift
of background elements relative to the foreground.

This perception is holistic and relational. The directional
signal is not contained in the metallic texture of a single step
but in the collective, coherent movement of all steps relative
to the static surroundings. It is this perception of flow, not
the recognition of objects, that allows for immediate and
confident judgment. This holistic, physics-aware process
stands in stark contrast to the frame-by-frame object identi-
fication paradigm of MLLMs. The visual evidence is clear
and unambiguous precisely because our brains are built to
process temporal dynamics as a primary source of informa-
tion about the world.

3.2. The Model’s Blind Spot: Frame-Level Myopia

In stark contrast, an MLLM processing the same video op-
erates with a form of frame-level myopia. The dominant
video understanding paradigm involves sampling discrete
frames from the video at a certain rate and feeding these
static images into the model for analysis. As illustrated in
Figure 3, when viewed in isolation, these frames are nearly
indistinguishable. The subtle displacement of the escalator
steps from one frame to the next is often smaller than the
visual noise or may be entirely lost if the sampling rate is
too low.

To illustrate this limitation, consider the stark contrast
between this Escalator Problem and a high-signal motion
event, such as a person walking across a room. In the lat-
ter case, even with sparse frame sampling, the significant
change in the subject’s silhouette, position, and the occlu-
sion of background elements between frames provides a

strong, unambiguous motion signal. The model can eas-
ily detect this change. The escalator, however, represents
a near-worst-case scenario for this paradigm: its motion is
characterized by uniform, continuous, and texturally repet-
itive flow. The visual evidence of motion is low-signal and
distributed evenly across the entire object, rather than being
concentrated in a distinct, moving entity. It is this specific
failure to perceive motion in the absence of a high-signal,
discrete moving object that defines the core of Implicit Mo-
tion Blindness.

The model, therefore, is presented with a series of snap-
shots that essentially say: “This is an escalator,” “This is
the same escalator,” “This is still the same escalator.” Its
training on vast datasets like ImageNet [3], COCO [11], or
even large-scale video datasets has optimized it for semantic
recognition—identifying objects, scenes, and discrete ac-
tions. However, it has not been sufficiently trained to un-
derstand the fine-grained physical processes that generate
the visual data. The model excels at answering “What is
this?” but falters when asked, “How is it behaving?”’. The
critical directional signal, which is encoded in the temporal
relationship between frames, is lost in the sampling process.
This architectural blind spot is the root cause of its failure on
the Escalator Test, as empirically demonstrated in Figure 2,
where state-of-the-art models fail to correctly describe the
motion of two adjacent escalators.

3.3. The Frame-Sampling Paradigm

To deconstruct the “frame-level myopia” with technical pre-
cision, we can formalize the general paradigm through
which modern MLLMs process video. The core objective
of such a model is to learn a conditional probability distri-
bution P(Y'|V,T), which is the probability of generating a
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Figure 3. The Frame-Sampling Paradigm as the Source of Motion Blindness. This diagram illustrates how MLLMs process video by
sampling a sparse sequence of frames (V;) from the original video (V). For high-level semantic descriptions, this is often sufficient.
However, for continuous, low-signal motion like an escalator, the subtle displacement between any two sampled frames (fs,, fi,, fiz) is
often lost, leading the model to perceive a series of static, nearly identical images rather than a continuous flow.

target text sequence Y given an input video V and a text
prompt T'. This process involves four stages.

Symbol Definitions.

V The raw input video, represented as a tensor V &
RTvxHXWXC \where T, is the total number of frames,
H, W are the frame dimensions, and C' is the number
of color channels.

T The input text prompt, a sequence of M tokens T' =
(w1, wa, ..., wWar).

Y The generated output text, a sequence of L tokens ¥ =
(yla Yz, ... 7yL)-

d The model’s internal feature dimensionality.

Stage 1: Video Representation. This initial stage con-
verts the continuous video signal into a discrete, ordered
sequence of image patches. This is where the critical infor-
mation loss occurs.

Frame Sampling. A sampling function, Sample(-), ex-
tracts N frames from the full video V' to form a frame se-
quence V5.

Vi = Sample(V, N) = (f1, f2, ..., [n) 9]

where each frame f; € RT*WX*C Crucially, N < T},.
Patchification. A patching function, Patch(-), divides each
frame f; into K smaller image patches.

Patch(f;) = (i1, Di2s - - DiK) 2)

where each patch p; ; € RP*FPXC ‘and P is the patch size.

Stage 2: Feature Encoding. This stage maps the discrete
visual and textual data into a unified, high-dimensional con-
tinuous vector space.

Visual Encoding. A visual encoder E, (e.g., a Vision
Transformer, ViT) transforms the sequence of all patches
from all sampled frames into a sequence of d-dimensional
visual features Z,,.

Zv:EU(‘/S)eR(NXK)Xd (3)

Text Encoding. A language encoder E; (e.g., a Trans-
former Encoder) converts the prompt 7" into a sequence of
d-dimensional text features Z;.

Z) = Ey(T) e RM*d “4)

Stage 3: Multimodal Fusion. This core stage aligns and
integrates information from the different modalities to form
a unified, cross-modal understanding.

We define a generic fusion module F;,, that takes the inde-
pendent visual and text feature sequences, Z, and Z;, as
input and outputs a fused hidden state sequence, Hyyged-

Hfused = Fm<Zv; Zl) (5)

Functionally, F;,, “anchors” textual concepts to visual evi-
dence within a shared semantic space by modeling complex
intra-modal and inter-modal relationships. This can be im-
plemented via co-attention mechanisms, dedicated fusion
layers, or by concatenating and passing features through a
deep Transformer. For our purposes, we abstract away the
specific implementation. The final output, Hyq € R5*4,
is a context-aware representation ready for downstream
tasks, where S is the length of the fused sequence.

Stage 4: Autoregressive Generation. Based on the fused
representation Hyyeq, an autoregressive decoder generates
the final output text Y token by token. Following the chain
rule of probability, the generation process is formalized as:

PY|V.T) = H P(yily<t, Hiusea) (6)

t=1



At each timestep ¢, the probability distribution for the next
token is determined by a function G (typically a linear layer
followed a Softmax function):

P(yt‘y<t7 Hfused) = G(Hfusedv y<t> (7)

The model samples a token y; from this distribution, ap-
pends it to the input for the next step, and repeats the process
until an end-of-sequence token is generated or a maximum
length is reached.

This formalization makes the root of the Implicit Motion
Blindness explicit: the irreversible loss of temporal con-
tinuity occurs at the very first step, in the Sample(V, N)
operation. No matter how sophisticated the subsequent fu-
sion and generation stages are, they cannot recover the fine-
grained motion information that was discarded before they
ever saw the data.

4. The Ripple Effect: Beyond Escalators, A
Crisis of Trust

The inability of advanced Al to pass the Escalator Test
would be an academic curiosity if it were an isolated phe-
nomenon. However, its true significance lies in what it rep-
resents: a crack in the foundation of our approach to build-
ing assistive technologies for the real world. This Implicit
Motion Blindness is a systemic vulnerability that manifests
across a wide spectrum of everyday scenarios. The ultimate
consequence of this vulnerability is not just functional fail-
ure, but the erosion of the single most critical element for
any assistive tool: user trust.

4.1. A Spectrum of Implicit Motion Challenges

The Escalator Problem is a stand-in for a broader class of
environmental interactions where perceiving subtle, contin-
uous motion is not merely helpful, but essential for safety
and social integration. In each case, the core challenge re-
mains the same: the critical information is encoded in the
dynamic flow of the environment, not in the static identity of
its components. Consider the scenarios outlined in Table 1.
Navigating a public space like an airport or a busy street re-
quires constant, implicit interpretation of motion cues that
current MLLMs are ill-equipped to handle.

For a BVI user, an Al assistant that cannot distinguish
the direction of a baggage carousel, the subtle sway of a re-
volving door, or the dominant flow of a crowd is not just in-
convenient; it is functionally deficient. It fails to provide the
very layer of situational awareness that such a tool is meant
to deliver. The model might correctly identify a crowd of
people, but it fails to provide the actionable insight: “the
crowd is moving towards your left.” It might see a revolv-
ing door, but cannot answer the crucial question: “is it safe
to enter now?”. This gap between semantic description and

perceptual understanding transforms the Al from a poten-
tial navigator into a mere commentator, narrating a scene
without providing the means to act within it.

4.2. The Consequence: A Crisis of Trust

This leads to the most profound implication of our findings:
a crisis of trust. An assistive tool that is predictably unreli-
able in common, everyday situations is worse than no tool
at all. Trust in an assistive device is not built on its excep-
tional performance on benchmark tasks; it is forged through
consistent, reliable behavior in the mundane, messy reality
of daily life. When a user discovers their Al assistant can-
not solve a problem as fundamental as the Escalator Test,
their confidence in the system’s ability to handle more com-
plex or higher-stakes situations—Ilike identifying a safe gap
in traffic to cross a street—is fundamentally undermined.

This issue speaks directly to the core challenges of
human-centered evaluation and the real-world deploy-
ment of Al-powered assistive systems. A system that is
99% accurate on a dataset of discrete object labels but fails
on 100% of implicit motion tasks is, from a human-centered
perspective, a brittle and therefore untrustworthy system.

This brittleness creates more than just functional unreli-
ability; it imposes a significant cognitive load [18] on the
BVI user. In human-computer interaction, a primary goal
of assistive technology is to reduce this load. However, a
predictably unpredictable system forces the user into a con-
stant state of vigilance, compelling them to second-guess
the AD’s output and determine which perceptions are reli-
able. This directly contradicts the technology’s core pur-
pose. This transforms the interaction from a seamless as-
sistive experience into a stressful cognitive puzzle, where
the user must constantly deduce: “Is this an object the Al is
good at, or a motion it’s blind to?”

Furthermore, we must distinguish between trust, a user’s
general belief in the system’s competence and integrity, and
reliance, the decision to depend on the system in a specific
context. The Escalator Problem erodes fundamental trust at
a systemic level. Consequently, even if the model performs
perfectly on 99% of static object recognition tasks, a ratio-
nal user cannot rely on it for any task involving dynamic
situational awareness. This transforms the Al from a po-
tential partner into a mere “situational commentator,” one
whose observations require constant, stressful verification,
and whose failures risk not only physical safety but also so-
cial awkwardness and a diminished sense of independence.

Therefore, Implicit Motion Blindness is not simply a
technical limitation to be incrementally improved. It is a
fundamental barrier to establishing the user trust necessary
for adoption and effective use. Without addressing this core
perceptual deficit, we risk developing technologies that look
impressive in demonstrations but fail silently and danger-
ously in the hands of the very people we aim to empower.



Scenario

Challenge for AI (Implicit Motion)

Potential Consequence for BVI User

Escalator / Travelator

Revolving Door

Perceiving direction of linear motion from a
first-person perspective.
Distinguishing between moving, stationary,

Wasted time, disorientation, social awkward-
ness, risk of falling.
Attempting to enter a static or blocked door,

or blocked states.

Crowd Flow Determining the dominant direction and
speed of a moving crowd.
Flowing Water / Puddles  Detecting subtle surface movement indicat-

ing flow or disturbance.
Automatic Sliding Doors
cating the doors are opening.
Baggage Carousel
veyor belt.

Perceiving the subtle initial movement indi-

Identifying direction and speed of the con-

risk of collision.

Inability to navigate efficiently,
against the flow, social friction.
Risk of stepping into moving water (e.g., gut-
ter, drain runoff), wet feet, potential slips.
Hesitation, walking into a closed door, awk-
ward waiting.

Difficulty in positioning oneself to retrieve
luggage, increased stress.

moving

Table 1. A Spectrum of Implicit Motion Challenges for Assistive Al. The Escalator Problem is representative of a broader class of real-
world scenarios where understanding implicit, continuous motion is critical for safe and effective navigation for BVI users. This table
outlines several common situations where current Al approaches are likely to fail, highlighting the systemic nature of the issue.

The path forward requires us to acknowledge this crisis and
re-evaluate the foundational principles upon which our as-
sistive systems are built.

5. A Call for a New Direction: From Recogni-
tion to Perception

The discovery of motion blindness necessitates more than
an incremental fix; it demands a fundamental re-evaluation
of our research trajectory in Al for accessibility. Continuing
to scale models on ever-larger datasets of labeled objects
and discrete actions will not solve the Escalator Problem.
The solution lies in a paradigm shift: we must guide our
models to evolve from engines of recognition to systems
of perception. A system of recognition asks, “What is this
object?”’; a system of perception asks, “How is this scene
behaving, and what does that mean for me?”. For an assis-
tive Al, the latter is immeasurably more important.

5.1. Move Beyond Frame-Based Semantics

This paper’s central position is that the computer vision
community, particularly in its pursuit of assistive technolo-
gies, must consciously move beyond the limitations of se-
mantic frame description and prioritize the development
of true motion perception. The frame-sampling approach,
while powerful for cataloging the contents of a video, is
an abstraction that breaks the continuity of reality. It treats
time as a slideshow, not a stream. This is a critical flaw
when building tools designed to help a user navigate a dy-
namic, physical world.

We argue that Implicit Motion Blindness is a direct and
inevitable consequence of this flawed abstraction. To build
systems that are robust, trustworthy, and genuinely use-
ful in real-world settings, we must treat motion not as an

afterthought derived from comparing static frames, but as
a primary and fundamental source of information. This
requires a shift in architectural priorities, data collection
philosophies, and the very definition of what it means for
a model to understand a video.

5.2. A Call for Human-Centered Benchmarks

The emergence of real-time, conversational MLLMs makes
the development of new evaluation paradigms not just
an academic exercise, but a pressing safety imperative.
The current landscape of benchmarks, while valuable for
gauging progress in classification, detection, and semantic
question-answering, is insufficient for evaluating real-world
assistive performance.

Therefore, we issue a call for a community-wide effort to
rethink evaluation itself. Table 2 provides a comparison that
highlights the key differences between current benchmarks
and our proposed human-centered approach. We advocate
for the development of a new class of evaluation protocols,
co-designed with the BVI community, HCI experts, and ac-
cessibility professionals. These new benchmarks should:

* Prioritize Real-World Tasks: Move beyond abstract
VQA and incorporate tasks directly relevant to naviga-
tion and safety, such as those characterized by Implicit
Motion Blindness, including determining escalator direc-
tion, crowd flow, and door state.

* Measure Trustworthiness, Not Just Accuracy: De-
velop metrics that capture system reliability and pre-
dictability. A model that correctly identifies an escala-
tor’s direction 100% of the time is more valuable than a
model that can name 10,000 objects but is unreliable on
this critical task. This may involve measuring not just the
correctness of an answer, but also its confidence, consis-
tency, and its ability to signal uncertainty (i.e., to “know



what it doesn’t know”).

* Embrace Egocentric and Continuous Evaluation:
Shift from evaluating performance on curated, third-
person video clips to assessing continuous performance
in unstructured, egocentric first-person video streams,
which more accurately reflect the input of a wearable as-
sistive device.

5.3. Promising Avenues for Exploration

Solving this challenge will require innovation and an open-
ness to exploring architectures and modalities beyond cur-
rent MLLMs. While we do not claim to have the solution,
we encourage researchers to investigate several promising
avenues that prioritize the physics of motion over the se-
mantics of objects.

Hybrid Approaches Before the deep learning era, clas-
sical computer vision techniques like optical flow were
purpose-built to estimate motion fields between frames.
Their efficacy for the Escalator Problem stems from a fun-
damentally different paradigm: instead of recognizing se-
mantic objects, they directly compute pixel-level displace-
ment vectors between frames, a process that is agnostic to
what the object is. This makes them inherently robust to
challenges where MLLMs are confounded by the repeti-
tive, semantically-identical appearance of the steps from
one frame to the next. We propose reintegrating these robust
and efficient algorithms into modern architectures. Instead
of being replaced by end-to-end models, optical flow could
serve as a strong motion prior, a parallel processing stream,
or a verification mechanism that grounds an MLLM’s ab-
stract understanding in the physical reality of pixel move-
ment.

A potential implementation could be a two-stream fusion
architecture. One stream would consist of the conventional
MLLM, processing sparsely sampled frames to excel at se-
mantic understanding—answering “What is this object?”.
In parallel, a second, lightweight stream dedicated to mo-
tion analysis, perhaps using a modern optical flow network
like RAFT [19], would process denser frame pairs to gen-
erate a robust motion vector field, answering “How is this
scene behaving?”’. The outputs could be fused, where the
motion stream acts as an attentional mechanism, guiding
the MLLM to focus on dynamic regions, or as a verifier
that fact-checks the MLLM’s generated descriptions against
physical motion evidence.

New Sensing Modalities The very sensor we use—the
conventional frame-based camera—contributes to the prob-
lem. We should explore alternative sensors like event cam-
eras. Unlike traditional cameras that capture frames at a
fixed rate, event cameras are bio-inspired sensors that asyn-
chronously report pixel-level brightness changes. They are

inherently motion-detectors. Their data is sparse, has high
temporal resolution, and requires low power consumption,
making them nearly ideal sensors for detecting subtle mo-
tion in a wearable, real-time assistive device.

Adopting these sensors, however, presents its own fun-
damental research challenges that the community must ad-
dress. Event data, a sparse stream of asynchronous events,
is incompatible with the dense, grid-based input expected
by architectures like Vision Transformers. This necessi-
tates a new line of inquiry: should we develop novel, non-
Transformer architectures natively suited to processing such
sparse event streams, or should we focus on creating sophis-
ticated methods to “render” or “tokenize” event data into
a dense, frame-like representation that existing MLLMs
can comprehend without losing the crucial high-temporal-
resolution information?

Physics-Informed Learning A more ambitious, long-
term direction is to develop models with an innate, intu-
itive understanding of physics. This involves creating learn-
ing frameworks where models are not just trained on vi-
sual data, but are constrained or guided by the fundamental
laws of motion, gravity, and continuity. A physics-informed
model wouldn’t need to have seen a million escalators; it
would “understand” that a rigid set of stairs in continuous
motion must be moving in a coherent direction.

6. Limitations and Future Discourse

In advocating for this paradigm shift, we acknowledge sev-
eral important considerations and potential counterargu-
ments.

First, one might argue that advanced prompt engineer-
ing could mitigate this issue. While a carefully crafted
prompt (e.g., “Describe the motion of the steps relative to
the stationary handrail”) might yield better results in iso-
lated cases, we contend it is not a fundamental solution.
This approach shifts the cognitive burden to the BVI user,
requiring them to diagnose the AI’s failure mode and for-
mulate a precise query mid-navigation, which runs counter
to the goal of a seamless assistive experience. More im-
portantly, if the essential motion information is already lost
in the initial Sample(V, N) operation, no amount of clever
prompting can fully recover it.

A second counterargument might point to alternative
temporal processing pipelines, such as employing denser or
adaptive frame sampling. While these methods may offer
marginal improvements, they do not fundamentally resolve
the Escalator Problem. For one, they often introduce sig-
nificant computational overhead, a critical barrier for real-
time applications on power-constrained wearable devices.
More fundamentally, for textures as repetitive and uniform
as escalator steps, even denser sampling can fail to provide
a clear directional signal to a model optimized for semantic



Feature Current Benchmarks Proposed Human-Centered Benchmarks
Primary Task Semantic Action Recognition Fine-grained Physical Perception

Motion Type High-Signal / Discrete Actions Low-Signal / Continuous Motion

Static Bias High (Keyframe-based) Low (Requires Temporal Reasoning)

Evaluation Metric
Data Source

Classification Accuracy
Curated Third-Person Video

Trust, Reliability, Safety
Egocentric First-Person Streams

Table 2. A Comparison Between Current and Proposed Human-Centered Benchmarks. This table contrasts the focus of existing video
understanding benchmarks with the proposed new paradigm. The shift moves from high-level action classification in curated videos
towards evaluating trustworthiness and safety on continuous, first-person video streams, directly addressing the shortcomings that lead to

Implicit Motion Blindness.

recognition. This suggests the issue is less about the quan-
tity of temporal data and more about the quality and nature
of its representation. The problem lies not just in sampling,
but in a paradigm that prioritizes what an object is over how
it is behaving.

Furthermore, the call to prioritize physical perception
should not be misinterpreted as a call to abandon seman-
tic richness. The ideal future system is not one that sac-
rifices the MLLM’s powerful descriptive abilities but one
that gracefully integrates physical and semantic understand-
ing. The key challenge for future research will be to resolve
the potential trade-off between these two modes of percep-
tion, creating a model that both understands the physics of
a scene and can describe it with human-like nuance.

Finally, while our position is that this problem is not
merely a matter of scale, we acknowledge that the interplay
between model size and emergent abilities is complex. Fu-
ture work should critically examine whether simply scaling
models further on undifferentiated data exacerbates this is-
sue by reinforcing static biases, or if specific, physics-aware
training regimes at scale can lead to a genuine, generaliz-
able understanding of motion.

7. Conclusion

In this paper, we have illuminated a critical gap between
the capabilities of modern Al and the demands of real-
world assistive navigation. Through the simple, yet pro-
found, Escalator Problem, we demonstrated that state-of-
the-art MLLMs suffer from Implicit Motion Blindness—a
fundamental inability to perceive low-signal, continuous
motion. We have argued that this is not an isolated flaw, but
an inevitable consequence of the dominant frame-sampling
paradigm, which sacrifices the essence of temporal dynam-
ics for computational efficiency. This limitation poses a sig-
nificant barrier to building assistive tools that BVI users can
truly trust with their safety and independence.

As a position paper, our primary objective was to diag-
nose this foundational issue and chart a new course for the
community. We have formally identified and articulated the
problem, analyzed how this technical deficit metastasizes

into a crisis of user trust across a spectrum of everyday sce-
narios, and we have issued a clear call to action. We contend
that true progress in Al for accessibility cannot be measured
by performance on static benchmarks alone. It requires a
paradigm shift: from semantic recognition to holistic phys-
ical perception.

The path forward demands that we rethink our foun-
dational assumptions. We must develop human-centered
benchmarks co-designed with the BVI community, explore
hybrid architectures that integrate classical motion-aware
techniques, and investigate novel sensing modalities such as
event cameras. By redirecting our focus towards the physics
of motion and the unwavering standard of user trust, we can
begin to build the next generation of assistive Al—systems
that do not just describe the world, but empower users to
navigate it safely and confidently.
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