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ABSTRACT

In environments with sparse rewards, finding a good inductive bias for exploration
is crucial to the agent’s success. However, there are two competing goals: novelty
search and systematic exploration. While existing approaches such as curiosity-
driven exploration find novelty, they sometimes do not systematically explore
the whole state space, akin to depth-first-search vs breadth-first-search. In this
paper, we propose a new intrinsic reward that is cyclophobic, i.e. it does not
reward novelty, but punishes redundancy by avoiding cycles. Augmenting the
cyclophobic intrinsic reward with a sequence of hierarchical representations based
on the agent’s cropped observations we are able to achieve excellent results in
the MiniGrid and MiniHack environments. Both are particularly hard, as they
require complex interactions with different objects in order to be solved. Detailed
comparisons with previous approaches and thorough ablation studies show that our
newly proposed cyclophobic reinforcement learning is vastly more efficient than
other state of the art methods.

1 INTRODUCTION

Exploration is one of reinforcement learning’s most important problems. Learning success largely
depends on whether an agent is able to explore its environment efficiently. Random exploration is
explores all possibilities but at great costs, since it possibly revisits states very often. More efficient
approaches use intrinsic rewards based on curiosity to enforce focusing on novelty, which often leads
to great results, but at the price of possibly not exploring all corners of the environment systematically.
Ideally, we would pursue both goals: novelty search and systematical exploration.
How can we favor novelty while ensuring that the whole environment is systematically explored?
To achieve this, we propose cyclophobic reinforcement learning which is based on the simple idea
of avoiding cycles during exploration. More precisely, we define a negative intrinsic reward that
penalizes redundancy in the exploration history. This idea is further enhanced by applying it to several
hierarchical views of the environment. The notion of redundancy can be defined relative to cropped
views of the agent: while cycles in the global view induces cycles in the corresponding narrow view,
the converse is not the case. E.g., a MiniGrid agent turning four times to the left produces a cycle
in state space that we would like to avoid everywhere. This cycle is visible in the global view, but
penalizing it does not avoid it in other locations. However, with a hierarchy of views, we record a
cycle also in some smaller view, which allows us to transfer this knowledge to any location in the
global view and hereby to avoid never experienced cycles. Similarly, an interesting object such as a
key, produces less cycles in a smaller view than some other object (since the key can be interacted
with). Thus the probability of picking up the key increases, since other less interesting observations
produce more cycles (e.g a wall). Thus, we are defining cycles relative to a hierarchy of view to get a
transferable definition of redundancy.

Contributions:
1. We introduce cyclophobic reinforcement learning as a new paradigm for efficient exploration in
hard environments (e.g. with sparse rewards). It is based on a new cyclophobic intrinsic reward
for systematic exploration applied to a hierarchy of views. Instead of rewarding novelty, we are
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avoiding redundancy by penalizing cycles, i.e. repeated state/action pairs in the exploration history.
Our approach can be applied to any MDP for which a hierarchy of views can be defined.
2. In the sparse-reward settings of the MiniGrid and MiniHack environments we thoroughly evaluate
cyclophobic reinforcement learning and can show that it achieves excellent results compared to
existing methods, both for tabula-rasa and transfer learning. Preliminary results show cyclophobia
works for both tabular and neural agents.
3. In an ablation study we provide deeper insights into the interplay of the cyclophobic intrinsic
reward and the hierarchical state representations.

Notation: We define an MDP as a tuple (S,A,P,R, γ), where the agent and the environment
interact continuously at discrete time steps t = 0, 1, 2, 3, . . . We define the state an agent receives
from the environment as a random variable St ∈ S, where St = s is some representation of the
state from the set of states S at timestep t. From that state, we define a random variable for the
agent selecting an action At ∈ A where At = a is some action in the possible set of actions A
for the agent at timestep t. This action is selected according to a policy π(a | s) or π(s) if the
policy is deterministic. One time step later as a consequence of its action, the agent receives a
numerical reward which is a random variable Rt+1 ∈ R, where Rt+1 = r is some numerical reward
at timestep t+1. Finally, the agent finds itself in a new state St+1. Furthermore we define a POMDP
(S,A,O,P,R,Z, γ) as a generalization of an MDP in the case the true state space S is unknown.
That is, the agent sees the state s ∈ S through an observation o ∈ O, where an observation function
Z : S → O maps the true state to the agent’s observation.

2 BUILDING BLOCKS

We begin by first defining the cyclophobic intrinsic reward and hierarchical state representations as
they are the building blocks of our method. Finally, we define a policy which combines the intrinsic
and extrinsic rewards together with the hierarchical state representations to form a global policy
which the agent acts upon.

2.1 CYCLOPHOBIC INTRINSIC REWARD

For efficient exploration, redundancy must be avoided. A sign for redundancy is when states are
repeatedly explored, with other words, when the agent encounters cycles in the state space instead
of focusing on novel areas. To guide the exploration, we will penalize cycles using a cycle penalty,
which we call cyclophobic intrinsic reward (a negative intrinsic reward). This avoids redundancy
such that uninteresting parts of the state-action space are discarded quickly. For instance, if an agents
gets stuck in some area, typically, it is facing numerous cycles. In such a situation we would like the
agent to assign penalties to the repeating state-action pairs in order to focus on more promising parts
of the state space that do not cause immediate repetition.
Formally, let us assume that we have per episode a history of previous state-action pairsHepisodic =
{(s1, a1), (s2, a2), . . . , (st, at)} and we are currently at the state-action pair (st+1, at+1). We say
that we have encountered a cycle if the current state-action pair appeared already in the history,
i.e. (st+1, at+1) ∈ Hepisodic. For its first repeated occurrence, we will penalize the state-action pair
(st, at) (just before the cycle) by negative one,

rcycle(s, a) = −1. (1)
If a cycle is encountered multiple times, e.g. l times, the cycle penalty is −l. That is, during
exploration the propagated cycle penalty can penalize indefinitely. For pairs (s, a) that have not
created a cycle, rcycle(s, a) = 0.

Learning the cycle penalties. In principle, the cycle penalty can be combined with any reinforce-
ment learning algorithm. However, we explain how it can be built into the SARSA update rule, since
the latter will propagate the penalty across the trajectory. To learn the Q-function, we are employing
the standard SARSA update rule,

Q(s, a)← (1− η) Q(s, a) + η
[
r(s, a) + γ Q(s′, a′)

]
(2)

with (s, a, rex, s
′, a′) being a transition, η being step size and where the total reward r(s, a) for the

state-action pair (s, a) is the weighted sum of the extrinsic reward from the environment rex and the
cyclophobic intrinsic reward rcycle(s, a) defined above,

r(s, a) = rex + ρ rcycle(s, a). (3)
where ρ trades off extrinsic and intrinsic rewards.
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2.2 HIERARCHICAL STATE REPRESENTATIONS

Besides penalizing cycles, the second key idea of this paper is to consider a hierarchy of state
representations. For this, we repeatedly crop the agent’s observations to induce additional partially
observable Markov decision processes (POMDPs). In general, restricting the view leads to ignoring
information about the environment. Surprisingly, in combination with the cyclophobic intrinsic
reward, we gain additional information about the structure of the environment as we get different
Q-functions for different POMDP’s. The relevant insight is that on limited views lower down the
hierarchy, trajectories can contain cycles that have not been experienced on views higher up the
hierarchy. These cycles in smaller views represent transferable knowledge about the structure of the
environment. E.g. in the MiniGrid environment (see Section B.1) encountering a wall in the smallest
view will cause a cycle, capturing that running into a wall is counterproductive. On larger views
this knowledge is only available directly, if we tried all walls everywhere. So, the the smaller views
capture relevant invariances that also apply to the larger views. In general MDPs it might not be
obvious how to define hierarchical state representations. Ideally, the agent has some sort of “location”
to allow “cropped” views. Additionally, local properties of the state space that result in cycles are
transferable to the whole state space, so that learning to avoid cycles helps for efficient exploration.
For grid world-like environments, the hierarchical state representations are easily definable, since the
agent has a defined location that can be used to define smaller neighborhoods typically corresponding
to limited views of the agent.

(a) (b)

Figure 1: Hierarchical views allow us to transfer relevant invariances about the environment. (a)
The three different representations are obtained by cropping the observation for each state-action pair
(s, a). V1 is the full view where the agent sees the whole environment or the largest portion of it. V2 is
an intermediate cropped representation of the agent’s view that helps the agent generalize by reusing
familiar observations . V3 is the most restricted view where the agent only sees what is immediately
in front of it. (b) Through the views V1 to Vk the amount of cycles continuously increases as the
observations in the higher views can be mapped multiple times to the same observation in the lower
view. This naturally leads to each view being a separate POMDP describing the true MDP.

To discuss the roles of the different views more precisely, let’s consider three such cropped views
which consist of the global view V1, the intermediate view V2 and the smallest possible detail view
V3 (see Figure 1a). Each view gives a new, typically more limited, perspective of the true state. As
shown in Figure 1b, each view induces a different set of cycles, for instance a sequence of actions
which do not lead to a cycle in the full view V1, might lead to a cycle in a smaller view V3, because in
the latter, more states are mapped to the same observation. Thus, the different views provide different
types of information which are useful for learning and allow the agent to focus on different properties
of the environment.
In general, we can have an arbitrary number of views. Each view Vi induces a POMDP

Vi = (S,A,OVi ,P,R,ZVi , γ) (4)

each having their own set of observations OVi and observation function ZVi : S → OVi . All
POMDP’s V1,V2, . . . operate on the same state space S, however they have different sets of ob-
servations O and corresponding observation functions. General POMDPs can have a probabilistic
observation function. In our case, the observations are deterministic functions of the full view, e.g.
the observations for the ith POMDP of state s is

oVi = ZVi(s) (5)
which corresponds to the cropping for the view Vi. Hereby we create partial representations of the
state space that allow us to identify invariances in the environment by looking at the same true state s
through different perspectives.
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Note that, POMDPs are normally used to model uncertain observations. That is, they are a generaliza-
tion of MDPs where the true state is not observable. Here, the POMDP idea is used to model different
views of a fully observable state space. Therefore, we do not seek to solve a POMDP problem, but
rather we extend a regular MDP to get redundant hierarchical representations.

2.3 A CYCLOPHOBIC POLICY FOR HIERARCHICAL STATE REPRESENTATIONS

In the following, we describe how the cyclophobic intrinsic reward and the hierarchical state repre-
sentations can be combined into a policy that exploits the cyclophobic inductive bias. For this, we
define several Q-functions along the views, and combine them as a weighted sum. The weights are
determined by counts of the observations in each observation set OVi which we explain next.

Mixing coefficients. Many strategies for defining mixing coefficients are possible. For concreteness,
we follow in this paper a simple schema, where we determine the weights from the observation
counts, which are obtained from the history of states visited throughout training,

Hall = {s1, s2, . . . , sT }. (6)

Note thatHall contains all states that have been visited in the training so far, which is different from
the states in the episodic history Hepisodic that was used in Sec. 2.1 to define cycles. Denoting the
corresponding views of the history as oVi

t = ZVi(st), the counts for view Vi are

N(oVi
1 ), N(oVi

2 ), . . . , N(oVi

T ). (7)

where N counts the number of times the observation oVi
t has been encountered. The raw counts are

normalized by their maximum (maximum for simplicity, other normalizations are possible), because
the smaller views have higher counts than the bigger views. The weights should be large for states
that have been seen less often, so we subtract the normalized counts from one,

αVi
∗ (oVi

t ) = 1− N(oVi
t )

max(N(oVi
1 ), N(oVi

2 ), . . . , N(oVi

T ))
. (8)

The previous formula allows us to compute the weights for each respective view Vi for a single state
st,

α∗(st) = [αV1
∗ (ZV1(st)), . . . , α

Vk
∗ (ZVk(st))] = [αV1

∗ (oV1
t ), . . . , αVk

∗ (oVk
t )] (9)

where α∗(st) is a vector. Finally, the softmax operator turns these weights into a vector of probabili-
ties,

α(st) = softmax(α∗(st)) = [α1(st), . . . , αk(st)]. (10)

The entries of this vector are denoted by αi(st) and are used to define the cyclophobic Q-function in
the next section. The definition of α can be extended to all state s by setting it to zero for unseen
states, i.e. α(s) = 0 (zero-vector) for s 6∈ Hall.
In general, larger views in the hierarchy will have bigger entries in α(st) as the observations repeat
less often than in the smaller views. Thus α(st) gives more weight to the larger views than the smaller
ones. However, this is compensated by the cyclophobic intrinsic reward since it is triggered far more
in the smaller views than the larger views.

Cyclophobic Q-function. To combine all views into a single global policy we define a mixture
over the different Q-functions learned with the cyclophobic intrinsic reward as defined in Section 2.1.
For view Vi, we define Q-function as

Q(oVi , a)← (1− η) Q(oVi , a) + η
[
r(oVi , a) + γQ(o′Vi , a′)

]
. (11)

This follows from our argumentation in Section 2.2, where we replace the state s in Equation 2 by
the observations oVi in their respective views. Then we can define cyclophobic Q-function as the
mixture of the Q-functions of each view,

Qcycle
(
s, a
)
=
∑
i

αi(s)Q(ZVi(s), a) =
∑
i

αi(s)Q(oVi , a). (12)

Note that the mixing coefficients αi(st) are only non-zero for states st that appeared in the global
historyHall. Thus the cyclophobic Q-function is zero for states s 6∈ Hall not encountered.
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Cyclophobic policy. Finally, the cyclophobic policy is defined to the greedy action for the cyclo-
phobic Q-function, i.e.

π(s) = argmax
a

Qcycle
(
s, a
)
= argmax

a

∑
i

αi(s)Q(oVi , a). (13)

Having normalized the counts within each view ensures comparability of the counts. This ensures
that Q-values from rare observations i.e. more salient have a larger effect on deciding the action for
the policy π. In an ablation study in Section 3 we show that the combination of the cyclophobic
intrinsic reward and hierarchical state representations is crucial to the methods success.

3 EXPERIMENTS

Our experiments are inspired by Parisi et al. (2021) and Samvelyan et al. (2021). We test in
environments where the causal structure is complex and the binding problem (Greff et al., 2020),
(van Steenkiste et al., 2019) arises. That is, where some form of disentangled representation of the
environments plays an important role for efficiently finding solutions.

Environments: We test our method on the MiniGrid and MiniHack environments:
• The MiniGrid environment (Chevalier-Boisvert et al., 2018) consists of a series of procedu-

rally generated environments where the agent has to interact with several objects to reach a
specific goal. The MiniGrid environments pose currently a benchmark for the sparse reward
problem, since a reward is only given when reaching the final goal state.

• The MiniHack environment (Samvelyan et al., 2021) is a graphical version of the NetHack
environment (Küttler et al., 2020). We select environments from the Navigation and Skill
tasks. The MiniHack environment has a richer observation space by containing more symbols
than the MiniGrid environments and a richer action space with up to 75 different actions.
While not necessarily tailored to the sparse reward problem as the MiniGrid environment, the
high state-action complexity makes it one of the most difficult environments for exploration.

State encoding: For both environments we choose five croppings of the original full view. The
views V1, V2, V3, V4, V5 are of grid size 9× 9, 7× 7, 5× 5, 3× 3 and 2× 1. In principle we could
also include the full view. However, in the experiments the performance was much better when we
limit ourselves to the partial views. Furthermore, every part of the grid that is behind of the wall
from the agent’s perspective is occluded (note that this is not the case in Figure 1a for visualization
purposes). Intuitively, limiting the views allows the agent to ignore irrelevant details that are far away.
Next, the views are mapped to hashcodes (we use the open source xxhash library). That is, we have
a hash function g that maps observation oVi

t to a hashcode hVi
t = g(oVi

t ). This helps us to quickly
check for cycles as we only need to check whether two hashcodes are equal.
For the MiniHack environment, a text prompt is an integral part of the current state. So, for MiniHack,
the hashcode for a state is the concatenation of the hashcodes of the observation oVi

t and the text
prompt mt, where mt ∈ Rk is an encoding of a string of length k, i.e.

ht = g(ot) + g(mt). ("+" denoting concatenation) (14)

Training setup and baselines: We train each agent for three runs using different seeds for every run.
For transfer learning we use “DoorKey” and MultiEnv(“MultiRoom-N4-S5”, “KeyCorridorS3R3”,
“BlockedUnlockPickup”) for pretraining. For transfer learning, during pretraining we save the
extrinsic rewards in a second separate Q-table in addition to the main Q-table which contains values
of equation 2. These extrinsic rewards in the second Q-table are then used at the beginning of transfer
learning for each environment, while we continue to use the cyclophobic intrinsic reward when doing
transfer learning.The baselines for the MiniGrid experiments are provided by Parisi et al. (2021)
and allow us to compare our method to C-BET (Parisi et al., 2021), Random Network Distillation
(Ostrovski et al., 2017), RIDE (Raileanu & Rocktäschel, 2020) and ICM (Pathak et al., 2017). For
the MiniHack environment we compare our results to the baselines presented by Samvelyan et al.
(2021) which include IMPALA (Espeholt et al., 2018), RIDE (Raileanu & Rocktäschel, 2020) and
Random Network Distillation (Burda et al., 2018). For the skill tasks the only available baseline is
IMPALA (Espeholt et al., 2018).

Evaluation metric: While during learning the intrinsic reward based on cyclophobia plays the
essential role, the ultimate goal is to maximize the extrinsic reward that is provided by the environment.
Thus for comparison, we have to plot the extrinsic reward the agent receives for each episode. The
reward ranges from 0 to 1.
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3.1 MINIGRID
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Figure 2: MiniGrid: We converge faster than C-BET (Parisi et al., 2021) in many MiniGrid
environments with and w/o pretraining. The hierarchical state representations and cyclophobic
intrinsic reward is extremely quick to converge which shows efficient exploration and the usefulness
of the cropped representations. Furthermore we are also able to transfer knowledge by pretraining on
other environments.

To test our method in the MiniGrid environment we choose the same training setup of Parisi et al.
(2021). That is, we determine the performance of the agent with no pretraining and when pretraining
from other environments as explained in the previous section. Figure 2 shows the agent’s performance
when training from scratch (rows three and six) and when transferring knowledge from pretrained
environments (bottom three rows).

• Learning from scratch (rows three and six): In three out of six environments, our pro-
posed method converges much faster than the competitors, including C-BET (Parisi et al.,
2021). Note that for some environments our x-axis is shorter than in Parisi et al. (2021),
since our method converges much faster. Only “KeyCorridorS3R3”, “MultiRoom" and
“ObstructedMaze-2Dlhb” pose significant challenges to our approach, because our method
is tabular and thus cannot deal with too many object variations in the environment (e.g.
random color changes). Furthermore, the “MultiRoom” environment proves challenging
for all environments with only C-BET managing to reach convergence, while we are able
to fetch some rewards. This is due to the large amount of observations the different corri-
dors produce. In the Appendix A.2 our approach also excels in the “KeyCorridorS3R3’,
“ObstructedMaze-2Dlhb” and more difficult environments once we remove the colors, e.g.
“KeyCorridorS4R3”, “KeyCorridorS5R3”, “KeyCorridorS6R3”, “ObstructedMaze-1Q”.

• Transferring knowledge (rows one, two, four and five): Having trained on one environment
can we transfer knowledge to a different one? In some environments the transfer even im-
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proved the results from the “no transfer” setup (see “Unlock”, “Doorkey”, “UnlockPickup”,
“BlockedUnlockPickup”, “ObstructedMaze-1Dlh”) and never deteriorated performance.

3.2 MINIHACK
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Figure 3: MiniHack Navigation: The agent converges quicker in the Navigation task than the
intrinsic curiosity baselines such as RIDE (Raileanu & Rocktäschel, 2020) and Random Network
Distillation (Burda et al., 2018). This corroborates our hypothesis, that avoiding cycles is essential
for quick exploration.
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Figure 4: MiniHack Skill: We converge quicker than IMPALA (Espeholt et al., 2018) in the Skill
task. The Skill task defines over 75 different actions the agent must learn to use making it one of the
most difficult sets of environments of the MiniHack suite.

To push our approach to its limits, we also tackle some of the MiniHack environments which requires
the agent to learn a large skill set.

• Navigation task: For the simpler navigation tasks shown in Figure 3, our method converges
quicker than intrinsic curiosity driven methods such as RIDE and RND. Especially, in
the “River” environment, only our cyclophobic agent is able to converge and solve the
environment. However, of course there are environments such as “RoomUltimate” where
our approach fails due to its tabular style, which limits the complexity of the environment.

• Skill task: For the Skill task the only available baseline is IMPALA which is not based on
intrinsic curiosity. Here we are also vastly superior, even collecting extrinsic rewards when
the baseline can not (“Wear” and “LockedDoor-Fixed”).

3.3 LIMITATIONS

In some environments with a big number of different objects our method struggles to converge. The
tabular agent does not have the observational invariances that methods based on function approxima-
tion learn and exploit (e.g. with CNNs). For instance, for these environments learned invariances
allow them to handle differently colored objects. While the tabular agent does cope with avoiding
redundancy through the cyclophobic intrinsic reward and the hierarchical state representations, it does
not learn the kind of observational invariances neural networks do, which are sometimes necessary.
However, note that we can show that reducing the number of colors for the “KeyCorridor” environ-
ment improves our performance dramatically (see Appendix A.2). Color reduction can also be seen
as a cropped view of the real situation, and hence this experiment falls into our setup. Furthermore,
preliminary results with a PPO agent (see Appendix A.1) solves “KeyCorridor”, further supporting
our theory.
Nonetheless, we argue that the above limitation does not lessen the impact of our work, since the
tabular agent is able to compete with neural network based methods showing that exploration does
not seem to rely solely on representation learning, but also on clever avoidance of repetition. Thus,
when the number of different objects increases, better performance can be attributed to the learned
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invariances in a neural network reducing observational complexity, rather than to more efficient
exploration.

3.4 ABLATION STUDY
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Figure 5: MiniGrid ablation study (visitation counts for “DoorKey-16x16”): The cyclophobic
Q-function explores the environment more efficiently than the optmistic initialization, count and
epsilon-greedy based counterparts. We record visitation counts for several variations of intrinsic
reward and hierarchical state representations. Hierarchical state representations together with the
cyclophobic intrinsic reward are the most efficient.

To show the effectiveness of the cyclophobic intrinsic reward and the hierarchical state representations,
we perform an ablation study. Figure 5 shows state counts as a heat map after 10,000 steps of training.
We distinguish four cases: (i) epsilon-greedy: Plain epsilon greedy exploration fails to find the
goal in the bottom right. (ii) hierarchical & counts: We replace the cyclophobic intrinsic reward
in equation (3) with a count-based intrinsic reward similar to Strehl & Littman (2008) defined by
N(oVi

T )−
1
2 , for view Vi. This improves the results but still fails. (iii) hierarchical & optimistic

initialization: We use optimistic initialization to let the agent try all possible actions. We initialize
the q-table with a value of two. Optimistic initialization manages to enter the second room but just
fails at getting a reward within 10,000 steps. (iv) cyclophobic: Having a cyclophobic intrinsic reward
calculated only on the largest view finds the goal. (v) cyclophobic & hierarchical: The combination
of hierarchical views and cyclophobic intrinsic rewards (as explained in Sec. 2.3) explores even more
efficiently as can be seen in the left room where fewer steps are needed to leave it.
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Figure 6: MiniGrid ablation study (extrinsic reward): Hierarchical state representations are crucial
to performance in some environments. We see that the cyclophobic intrinsic reward is the only
method that can solve the environments. Optmistic initialization finds succesful trajectories, but is
not as consistent.

In Figure 6 we analyze the impact of the hierarchical state representations on the agent’s performance.
The training setup is described in section C.3. The “UnlockPickup” environment can only be solved if
hierarchical state representations and the cyclophobic intrinsic reward are used. Due to the complexity
of the environment and the large number of object variations, the different views allow for knowledge
reuse and thus lead to better performance. Similarly, for the MiniHack “Room-Random” environment
the cyclophobic intrinsic reward performs well and adding hierarchical state representations leads
to the environment being solved. Optimistic Initialization is able to collect some rewards in both
environments and the hierarchical state representation improve performance. However, performance
still falls short to cyclophobic reinforcement learning.
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4 RELATED WORK

Systematic exploration and loop closure: Systematic exploration similar to that of the cyclophobic
intrinsic reward has been previously explored in the form of optimistic initialization. The idea of
optimistic initialization is to initialize the value function by a value larger than the expected reward.
As the agent performs updates on the value function it will be forced to choose the next unexplored
action since the update for the current state-action pair will decrease the current value. Machado et al.
(2014) suggest normalizing the reward by the first encountered extrinsic reward and then subtracting
one. In this way the value function can be initialized with zero and all further updates provide
a negative value, leading the agent to explorative behaviour as in regular optimistic initialization.
Mirowski et al. (2016) define loop closure as an auxiliary loss for exploration in 3D mazes in addition
to a depth measure. The authors detect loop closure by checking whether the agent has been near a
previously visited position. To get position information the authors integrate velocity information
over time.

Exploration by counting changes in observations: Instead of relying on the prediction error
to measure state transition change, the changes in the observation space can be counted. Zhang
et al. (2020) define an intrinsic reward for a count based approach by calculating the difference of
visitation counts between subsequent states. This intrinsic reward pushes the exploration boundary as
it provides a positive reward when reaching unexplored states for the first time or no reward otherwise.
This mechanism to check novelty is extended through NovelD(Zhang et al., 2021). Interesting Object,
Curious Agent by Parisi et al. (2021) is an intrinsic motivation method that splits up learning into a
pretraining and transfer stage. It defines a count-based intrinsic reward called C-BET that is based on
counting the state transition changes N(c(s, s′)). In contrast, we use state counts to measure novelty
in the respective hierarchical views.

Encoding observations to augment intrinsic reward: Encoding observations to either augment
the intrinsic reward or to define goals has lead to great improvements in exploration. Language in the
form of text prompts that define goals has been used by Mu et al. (2022) to augment the intrinsic
reward. Singh Chaplot et al. (2020) build representations that reflect the structure, i.e. geometry
of the environment. More generally, Ye et al. (2020) train an A2C (Mnih et al., 2016) agent on
different croppings in a grid environment, without an intrinsic reward, with mixed results. Parisi
et al. (2021) also augment the input by training on a 360° panoramic to learn task-agnostic changes.
Our hierarchical state representations similarly augment the intrinsic reward and reveal structural
invariances about the environment which aid exploration.

Generalization and transfer learning: Learning representations of the environment that are
reusable and can be transferred has been explored previously. Learning successor representations
(Barreto et al., 2016) requires learning local environment dynamics that can be reused when the
environment, i.e. the original distribution, is changed. (Schaul et al., 2015) use Singular Value
Decomposition on the learned action-value function to obtain a canonical representation of the
environment which can be transferred to other situations. More recently, Parisi et al. (2021) learn an
exploratory policy which is then combined with a task specific policy at transfer time. Our method
likewise contains a task-agnostic component given by the hierarchical state representations and a
task-specific component given by the cyclophobic intrinsic reward.

5 CONCLUSION

Avoiding cycles allows the agent to quickly and systematically discard uninteresting state/action pairs
which are repeated often. This makes our cyclophobic intrinsic reward a good inductive bias towards
novelty that simultaneously encourages systematic exploration. The ablation studies show that the
cyclophobic intrinsic reward just for a single view is already powerful enough to solve complex
environments. Adding hierarchical state representations leads to even better performance, as can be
seen in the MiniGrid experiments. Moreover, the experiments in MiniGrid confirm the transferability
of the learned bias to new environments. Here the hierarchical state representations are crucial, as
otherwise in a tabular approach transferability could not be achieved. Due to the tabular approach,
environments with large object variation lead to convergence problems in our method. The more
objects are present in a single view, the larger the state space becomes in a tabular setting. Neural
networks, on the other hand, learn invariances that reduce the complexity of the state space. To
address the convergence problems, future work will therefore focus on incorporating the hierarchical
state representations into a neural network based architecture.
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A FURTHER ABLATION STUDIES

For all plots in the ablation studies we use the same setup as in the main experiments. We refer to
section C.3 for this.

A.1 PRELIMINARY RESULTS WITH PPO
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Figure 7: Using PPO together with only the cyclophobic intrinsic reward also converges far quicker
than C-BET. Moreover, we are able to converge in KeyCorridorS3R3 confirming our theory in Section
3.3.

We train a PPO agent using only the cyclophobic intrinsic reward. Figure 7 shows that for the
given environments the PPO agent also explores more efficiently than C-BET. Furthermore, our
theory about observation complexity from 3.3 is supported as the PPO agent is able to solve the
“KeyCorridor” environment. Note that these are preliminary results. In future work we seek to
implement the hierarchical state representations for the neural agent.

A.2 OBSERVATIONAL COMPLEXITY - REMOVING COLOR FROM OBSERVATIONS

To test our theory of observational complexity affecting our performance in some environments such
as “KeyCorridor” and “ObstructedMaze-2Dlhb”, we remove color from objects in the environment
such that the underlying task is not affected. In case of “KeyCorridor” and “MultiRoom” colors can
be removed from all objects, while in the “ObstructedMaze” environments we only remove color of
the key and door. We show the results in figures 8, 9 and 10.
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Figure 8: When extracting color from the hierarchical state representations we are able to converge
very quickly in the “KeyCorridorS3R3” and “ObstructedMaze-2Dlhb” environments. Doing this
for the MultiRoom-N6 environment does not have such a large effect as here the large variation in
observation is due to the many different corridors, which our tabular method cannot find observational
invariances for as a neural network could.

Figure 8 shows that this has an immediate impact on the performance where the “KeyCorridorS3R3”
environment converges instantly while the “ObstructedMaze-2Dlhb” environment needs very few
steps to converge in comparison to C-BET. For the MultiRoom-N6 environment, the observational
complexity comes from the different types of corridors present throughout training, thus removing
color only mitigates the observational complexity to some extent.This corroborates our theory that
while our method is very good at exploration, its tabular nature cannot capture the observational
invariances that neural networks naturally do.
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Figure 9: Our agent can even gather rewards successfully in much larger KeyCorridor environments
when removing colors, showing that the exploration mechanism is very strong.

In Figure 9 we test more difficult “KeyCorridor” environments. We can see that the cyclophobic
reinforcement learning is also able to explore efficiently in these harder environments when colors
are removed.
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Figure 10: For the more difficult “ObstructedMaze” environments the agent is able to solve the “1Q”
version. The other more larger variants prove too complex even when removing colors.

Finally, we test more complex “ObstructedMaze” environments in Figure 10. While we achieve good
performance in the “1Q” variant, the other larger variants remain too complex for the cyclophobic
agent.
Note that when training the other methods without colors their performance may improve. However,
this ablation study simply illustrates that our method is very good at exploring and is only held back
by its tabular nature. In future work we want to find the best way to learn observational invariances
with the hierarchical state representations and the cyclophobic intrinsic reward.

B ENVIRONMENT DETAILS

B.1 MINIGRID EXPERIMENTS

Unlock DoorKey KeyCorridor UnlockPickup BlockedUnlockPickup MultiRoom-Nx-Sy

ObstructedMaze-1Dlh ObstructedMaze-2Dlh ObstructedMaze-2Dlhb

Figure 11: An overview of the MiniGrid environments used in this paper.
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We test on some of the same environments as Parisi et al. (2021). In the following we describe the
environments as Parisi et al. (2021) and add our own comments where relevant.

• Unlock: pick up the key and unlock the door. (288 steps per episode)
• DoorKey-8x8: pick up the key, unlock the door, and go to green goal (640 steps per episode)
• KeyCorridorS3R3: pick up the key, unlock the door, and pick up the ball (only the door

before the ball is locked) (270 steps per episode).
• UnlockPickup: pick up the key, unlock the door, and open the box (288 steps per episode).
• BlockedUnlockPickup: pick up the ball in front of the door, drop it somewhere else, pick

up the key, unlock the door, and open the box (576 steps per episode).
• ObstructedMaze-1Dlh: open the box to reveal the key, pick it up, unlock the door, and

pick up the ball (288 steps per episode).
• ObstructedMaze-2Dlh: same as above, but with two doors to unlock (576 steps per

episode).
• ObstructedMaze-2Dlhb: same as above, but with two balls in front of the doors (like in

BlockedUnblockPickup) (576 steps per episode).
• MultiRoom-N6: navigate through six rooms of maximum size ten and go to the green goal

(all doors are already unlocked) (120 steps per episode).
• MultiRoom-N12-S10: navigate through twelve rooms of maximum size ten and go to the

green goal (all doors are already unlocked) (120 steps per episode).

B.2 MINIHACK EXPERIMENTS

Room-Random Room-Dark KeyRoom-S5 River

Eat Pray Wear LockedDoor

Wand of Death
Easy

Figure 12: An overview of the Minihack environments tested in this paper. The top row shows the
Navigation tasks, while the bottom row shows the Skill tasks.

We perform experiments inspired by the baselines from Samvelyan et al. (2021). Here, Samvelyan
et al. (2021) define a set of navigation and skill acquisition tasks. The navigation tasks range from
requiring the agent to navigate an empty room or maze, up to navigating environments with monsters
and hazards. The skill acquisition tasks require the agent to perform a certain set of skills to be able
to solve the environments.

B.2.1 NAVIGATION TASKS

In the following we describe the environments used from the navigation task.
• Room-Random-15x15: This task is set in a single square room, where the goal is to reach

the staircase down. In the random version of this task, the start and goal positions are
randomized.

• Room-Dark-15x15: Same as Room-Random, but the agent only sees parts of the environ-
ment it has already discovered.
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• KeyRoom-S5: These tasks require an agent to pick up a key, navigate to a door, and use the
key to unlock the door, reaching the staircase down within the locked room. The locations
of the door, key and starting position are randomized.

• River: The river environment requires the agent to cross a river using boulders. When
pushed into the water, they create a dry land to walk on, allowing the agent to cross it.

B.2.2 SKILL TASKS

The nature of commands in NetHack requires the agent to perform a sequence of actions so that the
initial action, which is meant for interaction with an object, has an effect. The exact sequence of
subsequent can be inferred by the in-game message bar prompts. Overall, in each of the following
tasks the agent has to perform a sequence of actions that allow the agent to perform the required skill.

• Eat: The agent has to navigate and eat an apple. Doing so requires a sequence of actions
and confirming a prompt to eat the appe.

• Pray: The agent has to pray on an altar. This is more complex than eating an apple as
praying requires the agent to confirm more prompts.

• Wear: The agent has to wear armor. This is a more difficult task than the previous tasks.
• LockedDoor-Fixed:The agent has to kick a locked door.
• Wand of Death-Easy: The agent starts with a wand of deatch in its inventory and has to

zap it towards a sleeping monster. That is, the agent needs to equip the wand of death walk
to the monster and zap it.

In all of these environments the positions of the agent and of the object that has to be interacted with
are randomised. Furthermore, the complexity is also increased by the confirmation prompts the agent
has to answer in order to perform a certain action.

C EXPERIMENTAL DETAILS

C.1 HYPERPARAMETERS

Common hyperparameters: In the following we present a table with all hyperparameters used for
training the environments. In general, our method has very few hyperparameters. In this case the
only really tunable hyperparameters are the step size η, the random action selection coefficient ε for
epsilon-greedy exploration and the discount γ:

η γ Num. views
0.2 0.99 5

In our case we determined experimentally that 5 views is a good number of views for training an
agent.

Epsilon-greedy parameter ε: While learning with the cyclophobic intrinsic reward we still perform
random action from time to time by having an epsilon-greedy action selection. That is, the agent
samples a value n from a uniform distribution and selects a random action if this n < ε. These are
the settings for ε for the respective environments:

Environments ε
Unlock 0.1
DoorKey 0.1
KeyCorridor 0.1
UnlockPickup 0.3
MultiRoom-N6 0.1
MultiRoom-N12-S10 0.1
BlockedUnlockPickup 0.3
ObstructedMaze-1Dlh 0.3
ObstructedMaze-2Dlh 0.1
ObstructedMaze-2Dlhb 0.3

Intrinsic reward tradeoff ρ: For the “ObstructedMaze-2Dlh” and “BlockedUnlockPickup” envi-
ronments we set intrinsic reward tradeoff ρ = 0.2. This has as effect that the extrinsic reward gets
propagated more when the agent encounters it, which is necessary for more complex environments.
For all other tested environments we set ρ = 1, thus not weighting the intrinsic reward at all.
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C.2 PPO HYPERPARAMETERS

Intrinsic reward tradeoff ρ 0.01
GAE-lambda 0.95
γ 0.99
Batch size 256
Learning rate 0.001
Entropy coefficient 0.01
Value loss coefficient 0.5
Max Grad Normt 0.5
Clipping-ε 0.2
RMSProp-ε 1e-8
RMSProp-α 0.99

C.3 PLOT SMOOTHING

For all 3 runs we show the mean reward and standard deviation smoothed over a sliding window.
For our and Samvelyan et al. (2021)’s experiments we use a sliding window of 50000 steps. For the
experiments in Parisi et al. (2021) we use a sliding window of 96000 steps as per their experimental
setup. The shaded areas are the standard deviation of the mean for 3 runs.
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