
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

M4OLGEN: MULTI-AGENT, MULTI-STAGE MOLECU-
LAR GENERATION UNDER PRECISE MULTI-PROPERTY
CONSTRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generating molecules that satisfy precise numeric constraints over multiple
physicochemical properties is critical and challenging. Although large language
models (LLMs) are expressive, they struggle with precise multi-objective con-
trol and numeric reasoning without external structure and feedback. We intro-
duce M4olGen, a fragment-level, retrieval-augmented, two-stage framework for
molecule generation under multi-property constraints. Stage I: Prototype gen-
eration: a multi-agent reasoner performs retrieval-anchored, fragment-level ed-
its to produce a candidate near the feasible region. Stage II: RL-based fine-
grained optimization: a fragment-level optimizer trained with Group Relative
Policy Optimization (GRPO) applies one- or multi-hop refinements to explicitly
minimize the property errors toward our target while regulating edit complexity
and deviation from the prototype. A large, automatically curated dataset with
reasoning chain of fragment edits and measured property deltas underpins both
stages, enabling deterministic, reproducible supervision and controllable multi-
hop reasoning. Unlike prior work, our framework better reasons about molecules
by leveraging fragments and supports controllable refinement toward numeric tar-
gets. Experiments on generation under three property constraints (QED, LogP,
and molecular weight) show consistent gains in validity and precise satisfaction of
multi-property targets, outperforming strong LLMs and graph-based algorithms.

1 INTRODUCTION

Generating molecules that satisfy precise numeric constraints is a fundamental and critical task
in scientific discovery, with applications in drug development, materials design, de novo design
and molecular property optimization (Sanchez-Lengeling & Aspuru-Guzik, 2018; Fromer & Coley,
2023). Optimizing compounds to meet numeric multi-property targets improves real development
outcomes with desired attributes (Wager et al., 2016). Much of the molecular generation literature
treats molecular discovery as maximizing one or a few surrogate properties, rather than matching
user-specified numerical targets; approaches that offer precise, simultaneous control over multiple
properties remain scarce. Recent generative models condition on desired magnetic density, bandgap,
and bulk modulus along with chemistry and symmetry, demonstrating the feasibility of property-
conditioned generation (Zeni et al., 2025; Ding et al., 2024). We focus on small-molecule discovery,
where practical constraints are drug-centric and include drug-likeness (QED), lipophilicity (logP),
and molecular weight (MW)—properties that shape permeability, exposure, and overall developa-
bility (Bickerton et al., 2012; Giaginis et al., 2018). While these are simplified surrogates, they are
(i) fast and reproducible to evaluate (enabling large-scale training and ablations), (ii) continuous
and numeric, which is essential for testing precise multi-objective control, and (iii) standardized
across open benchmarks, supporting fair comparison. Our goal in this paper is to validate a multi-
agent, numerically conditioned generation framework under verifiable, compute-efficient proxies;
in principle the same machinery can swap in richer oracles as we scale to more realistic discovery
settings. We aim to introduce a new solution handling molecular generation with specific property
requirements by enabling precise, multi-property control at specified numeric targets.

Large language models (LLMs) have shown promise and have become more and more popular in
molecular generation (Ramos et al., 2025; Wang et al., 2025), but struggle to reason over multiple
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numeric targets simultaneously (Li et al., 2025). This difficulty stems from LLMs’ limited numeri-
cal target reasoning and insufficient domain-grounded reasoning. To bridge this gap, reinforcement
learning (RL) is increasingly used alongside to inject explicit, objective-driven feedback that guides
editing actions during molecular generation. However, RL methods such as REINVENT (Loeffler
et al., 2024), while capable of handling multi-property objectives, typically require fine-tuning for
each target vector, making them time- and compute-intensive at scale.

To address these challenges, we introduce M4olGen, a Multi-stage, Multi-agent framework for
Multi-property-constrained Molecular Generation. Our core idea is a unified formulation that casts
numeric targets as a verifiable error-to-target objective over an actionable fragment-edit space, so
progress is measurable at every step and complexity is controllable. Our framework consists of
two stages. Stage I performs retrieval-augmented, fragment-level prototyping: a local reasoning
agent iteratively edits fragments, guided by in-distribution exemplars and numeric feedback from
chemistry tools (RDKit (Landrum)), to place the candidate near the feasible region. Here fragments
are defined as building blocks by breaking molecules along synthetically accessible bonds through
RDkit. Stage II delivers fine-grained, multi-hop refinement with a fragment-level optimizer trained
via Group Relative Policy Optimization (GRPO) (Shao et al., 2024); it explicitly minimizes the
error-to-target across properties, and crucially lets us control structural complexity and deviation
from the original candidate, not merely meeting requirements. By grounding updates in verifiable
property oracles and reward signals, this optimizer overcomes the limitations of LLMs operating
solely on domain knowledge stored in LLM weights, enabling reliable numerical control.

To fine-tune the optimizer, we construct a large dataset of more than 2 million molecules decom-
posed into BRICS (Degen et al., 2008) fragments along with their corresponding properties. From
this dataset, we derive a neighbor relational dataset of 1.17 million pairs for controllable reason-
ing automatically. Each molecule in this dataset is paired with an explicit one-hop neighbor list:
molecules that differ by exactly one fragment (add, remove, or replace) and that pass the RDKit va-
lidity and edit sanity checks. By chaining these one-hop moves, we gradually grow neighbor forests
from any starting molecule. These structures enable long, controllable reasoning chains: we can
choose the depth and branching to regulate structural complexity and deviation from the original,
build curricula that move from coarse adjustments to fine tuning, sample forward and reverse paths
to supervise multi-hop optimization, error-to-target feedback at every step. We demonstrate that this
architecture markedly improves adherence to numeric multi-property constraints and surpasses prior
LLM-based methods by large margins.

In summary, we contribute (i) M4olGen, a molecular generation framework that couples retrieval-
augmented prototyping with GRPO-based fragment-level optimization to achieve exact numeric
control over multiple properties; (ii) a scalable multi-hop refinement mechanism that boosts output
quality while explicitly regulating edit complexity and deviation from the starting structure; (iii)
a public dataset of ∼2.95M molecules with BRICS fragment annotations and a neighbor set of
∼1.17M single-edit pairs that enable fragment-level learning and controllable reasoning; and (iv)
comprehensive experiments and ablations demonstrating state-of-the-art normalized total error with
clear additive gains from each component.

2 RELATED WORK

Molecular Generation with Property Control. Deep generative models have been widely ap-
plied to molecular design, leveraging graph or sequence-based representations such as SMILES.
Early works include VAEs (Gómez-Bombarelli et al., 2016) and GANs such as MolGAN (Cao
& Kipf, 2018), followed by graph-based models like GCPN (You et al., 2018), GraphAF (Shi
et al., 2020), and MoFlow (Zang & Wang, 2020).STGG+ (Jolicoeur-Martineau et al., 2025), which
is extended from Spanning Treebased Graph Generation, shows promising performance in multi-
objective optimization. Reinforcement learning approaches (e.g., MolDQN (Zhou et al., 2018))
enable property-driven optimization, often with multi-objective extensions for QED, LogP, and SA.
However, these single-agent methods struggle to exactly satisfy multiple numeric constraints, re-
flecting exploration–exploitation trade-offs.

LLMs for Molecular Design and Reasoning. Large language models (LLMs) such as ChemGPT
(Frey et al., 2023), ChemBERTa (Chithrananda et al., 2020), MolT5 (Edwards et al., 2022), and
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Chemformer (Irwin et al., 2021) capture chemical syntax and semantics, enabling general-purpose
molecular generation. While expressive, they remain limited in precise numerical reasoning and
property control. Chain-of-Thought prompting (Wei et al., 2022) improves interpretability and
multi-step reasoning in LLMs, and analogous strategies have been suggested for molecules (Jin
et al., 2024; Jang et al., 2024; Zheng et al., 2024), aligning with human-in-the-loop frameworks. Yet,
exact satisfaction of multiple physicochemical constraints remains challenging. Recent work such
as Instruction Multi-Constraint Molecular Generation (Zhou et al., 2025) demonstrates that LLMs
can satisfy multiple property constraints through teacher–student supervised training and interval-
based conditioning. However, these methods primarily operate within bounded property ranges and
are not based on reinforcement learning for multi-objective optimization.

Multi-Agent Planning and Reasoning in Molecule Design. Agent-based systems have long been
studied in robotics, distributed AI, and resource allocation (Wooldridge, 2009; Weiss, 1999). In
molecule design, however, most AI-driven approaches remain single-agent, where a single genera-
tive model is guided by property predictors. Recent work has begun to explore multi-agent systems
that decompose the design process into specialized roles, such as generation, property evaluation,
and refinement, by enabling cooperation or hierarchical coordination, these systems can improve
exploration efficiency and controllability. For example, recent works like Prompt-to-Pill (Vichenti-
jevikj et al., 2025), ROBIN (Ghareeb et al., 2025), DrugAgent (Liu et al., 2024), Honeycomb(Zhang
et al., 2024) and ChemCrow (M. Bran et al., 2024) have demonstrated the power of this multi-agent
paradigm. Building on this line of research, we introduce a retrieval-augmented multi-agent reasoner
that iteratively constructs locally optimal prototypes before refinement. This allows our system to
combine in-distribution retrieval with domain knowledge to improve controllability under numeric
property constraints.

Policy Optimization for Multi-Property Objectives. Reinforcement learning provides a founda-
tion for molecular optimization. Classical policy-gradient methods such as REINFORCE (Williams,
2004) and proximal policy optimization (PPO) (Schulman et al., 2017) have been adapted to
molecule design. MolDQN (Zhou et al., 2018), for example, leverages Q-learning for multi-
objective optimization. However, these approaches face difficulties in balancing multiple numeric
objectives precisely. Group Relative Policy Optimization (GRPO) (Shao et al., 2024; Zhang et al.,
2025), originally introduced for preference-based learning and RLHF, optimizes policies via group-
relative advantages that reward candidates outperforming their peers. While GRPO and its mod-
ified versions are well known for strengthening LLM reasoning (DeepSeek-AI et al., 2025), we
are the first to adapt it to numerically conditioned generation, integrating fragment-level refine-
ment and controllable multi-hop optimization within the generation loop. This yields a principled
reinforcement-learning framework for satisfying numeric multi-property targets.

3 METHODOLOGY

We propose M4olGen, shown in Figure 1, a multi-stage, goal-conditioned framework for constrained
molecular generation that casts numeric targets (QED, LogP, MW) as a verifiable distance-to-target
objective over an actionable fragment-edit space. Stage I performs retrieval-augmented prototyp-
ing: a local reasoner edits fragments using in-distribution exemplars and RDKit feedback to place
a candidate near the feasible region. Stage II applies a GRPO-trained fragment-level optimizer in
a multi-hop manner to minimize the distance-to-target while regulating edit complexity and devia-
tion from the starting structure. Trained on a large, property-annotated neighbor dataset, M4olGen
generalizes across target tuples and delivers precise, simultaneous control of QED, LogP, and MW
(Molecular Weight) and shows capabilities that prompt-only LLMs struggle to achieve due to limited
numerical reasoning.

3.1 STAGE I: PROTOTYPE GENERATION WITH RETRIEVE-AUGMENTED MULTI-AGENT
REASONING

The objective of Stage I is to generate a chemically valid prototype mlocal that serves as a high-
quality starting point for numeric optimization. This is accomplished via a collaborative multi-agent
framework that decomposes the input query, retrieves similar molecules from a large database, and
incrementally proposes fragment-level edits based on domain knowledge.
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Please help me 
generate a new valid 
molecule with 
qed=0.75, logp =2.7, 
molecular weight=330.

1-hop

n-hop

Retrieved 
Results

Retrieved Molecule Analysis

Edit Plan

Feedback

Start by analyzing the retrieved molecules to 
identify common fragments and potential 
starting points.

Select the scaffold “C1CC1”, which appears 
in several retrieved structures,Add an amide 
group "NC(=O)" Add a trifluoromethyl group 
"C(F)(F)F" to increase the LogP and molecular 
weight. Attach the trifluoromethyl group "C(F)
(F)F" Add a phenyl group "c1ccccc1"

The generated molecule's QED is 0.747, 
0.002 lower than the constraint, LogP is 
2.945, 0.245 higher than the constraint. 
Molecular Weight 243.228 is 86.772 less than 
the constraint.

…

Query

Stage I: Prototype Generation Stage II: Multi-hop Optimization

…

Reference Retrieval

Prototype

Final Result

Figure 1: The flow chart of M4olGen. The first two blocks involve Retrieval and Prototyping,
where molecular candidates are first retrieved based on the given constraints (QED, LogP, MW) and
then analyzed by a local reasoner to extract constraints, analyze retrieved molecules, and propose
an editing plan based on evaluator’s feedback to generate prototypes iteratively. The third block
describes Multi-Hop Optimization, where the prototypes are optimized through one-hop and n-
hop controllable editing steps by the molecule optimizer trained by GRPO.

Query interpretation. Given a natural-language request q (e.g., “Generate a molecule with
QED=0.72, LogP=−1.8, MW=310”), this module extracts the exact numeric targets for each prop-
erty and returns a target property vector

ptgt =
(
pQED, pLogP, pMW

)
, pQED∈ [0, 1], pLogP∈ R, pMW>0. (1)

We use p for “properties” and the subscript “tgt” to denote targets. A rule-based parser identifies
numeric constraints and synonyms (e.g., “molecular weight”, “MW”).

Reference retrieval. Given the target property vector ptgt, we query a large molecule corpus Ω to
obtain a set of reference molecules that lie close to the targets under per–property tolerances:

M =
{
m ∈ Ω : | pi(m)− pi,tgt | ≤ ϵi ∀ i ∈ {QED,LogP,MW}

}
. (2)

Here pi(m) denotes the i-th property of molecule m (computed via RDKit), and ϵi are small,
property-specific tolerant ranges (e.g., ±0.05 for QED (0–1 scale), ±0.5 for LogP (small medic-
inally meaningful shift), and ±25Da for MW.). They are chosen to be tight enough to keep the
references in-distribution yet broad enough to ensure sufficient references. The retrieved references
are then used to anchor Stage I: they provide in-distribution exemplars that guide fragment-level ed-
its, constrain the search toward the feasible region, and seed candidate/neighbor structures consumed
by the multi-hop optimizer in Stage II.

Prototype reasoner. This LLM-driven module proposes stepwise, fragment-level edits to turn
an initial seed (either “start from scratch” or molecules sampled from the reference set M)
into a high-quality prototype close to the target. At iteration t, the reasoner selects an action
at ∈ {replace,add,remove} and applies it to obtain a new intermediate molecule along with
previous trajectory

mt = Edit(mt−1; at) , mt ∈Mvalid, (3)

whereMvalid denotes RDKit-parseable structures that pass basic valence and sanity checks. Deci-
sions are guided by three information sources: (i) reference moleculesM retrieved near the target,
(ii) an experience pool of prior edits (neighbor pairs/trees) summarizing successful local transfor-
mations, and (iii) property feedback (QED/LogP/MW) computed by RDKit on every candidate.
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The reasoner stops early when the distance-to-target falls below a threshold τ or when a maximum
number of steps Tmax is reached.

Validity and error estimation. Given the current prototype mlocal, we compute per–property
deviations from the targets

∆i(m) =
∣∣ pi(mlocal)− pi,tgt

∣∣, i ∈ {QED, LogP, MW} (4)

and aggregate them into a distance-to-target objective E(m) =
∑

i wi ∆i(m) with property-specific
weights. These errors are fed into the Stage II optimizer prompt to enable targeted refinement.

Stage I objective. Formally, Stage I seeks a valid prototype along the reasoning trajectory G =
{m0, . . . ,mT } that minimizes the distance-to-target:

mlocal = arg min
m∈G∩Mvalid

∑
i∈{QED,LogP,MW}

wi

∣∣ pi(m)− pi,tgt
∣∣. (5)

The algorithm is stated in Appendix A.1. This stage reliably moves the candidate into the feasible
region by leveraging relevant molecules, past experience, and tool feedback. However, a multi-
agent reasoner that is not further trained has a performance limitation on fine-grained, precise multi-
property control. Stage II addresses this by applying a GRPO-trained, fragment-level optimizer in a
controlled multi-hop fashion to further reduce the total error E(m) while regulating edit complexity
and deviation from the starting structure.

3.2 STAGE II: FRAGMENT-LEVEL OPTIMIZATION VIA GRPO (MULTI-HOP EXTENSION)

While Stage I reliably moves a candidate near the feasible region, precise control of multiple nu-
meric properties (e.g., QED, LogP, MW) remains difficult for text-only planning because LLMs
have difficulty dealing with numeric-related design and lack a mechanism to explicitly minimize
the distance to target values. Our insight is to treat refinement as an optimization problem over
an actionable fragment-edit space with fast, verifiable feedback from chemistry oracles. We there-
fore train an optimization policy with GRPO (Group Relative Policy Optimization) (DeepSeek-AI
et al., 2025) because its group-wise, rank-based updates are stable and sample-efficient without
ground-truth demonstrations, and because it can directly optimize a reward that faithfully encodes
the numeric targets. RDKit oracles provide the property feedback at each step, making the reward
precise and inexpensive to evaluate.

Fragmentization and action space. Let m0 := mlocal be the prototype from Stage I. We decom-
pose molecules into chemically meaningful building blocks using BRICS (Break Retrosynthetically
Interesting Chemical Substructures) (Degen et al., 2008), a rule-based scheme that cuts retrosyn-
thetically plausible bonds formed or broken during synthetic processes, leading to fragments that
are synthetically accessible and chemically meaningful. This yields fragments that support local-
ized edits, preserve validity, and keep the search space tractable where Φ(m) is the fragment set for
molecule m and f are the fragments:

Φ(m) = { f1, . . . , fk }. (6)

At hop h ∈ {1, . . . ,H}, the optimizer selects one fragment-level action ah ∈
{add,remove,replace} and applies it to obtain a new candidate

mh = Edit(mh−1; ah), mh ∈Mvalid, (7)

whereMvalid denotes RDKit-parseable structures that pass basic valence and sanity checks. A hop
budget H controls structural complexity and deviation from the starting structure.

Optimizer and input representation. Our optimizer Oϕ is a sequence model (an LLM policy)
fine-tuned with GRPO on our neighbor-pair corpus of single-fragment edits. Following Guevorguian
et al. (2024), we extend the tokenizer with <SMILES>, </SMILES>, <QED>, </QED>, <LogP>,
</LogP>, <MW>, </MW> so that molecules and targets are explicit in the prompt. At each hop, the
policy conditions on (mh−1,Φ(mh−1),ptgt) and proposes one edited molecule; after H hops we
return m∗ := mH .

5
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Reward and GRPO objective. We define a distance-to-target objective and convert it to a scalar
reward using fast RDKit oracles:

E(m) =
∑

i∈{QED,LogP,MW}

wi

∣∣ pi(m)− pi,tgt
∣∣, Rprop(m) = 1− E(m). (8)

The full reward combines format, property, diversity, and validity terms:
R(m) = rformat(m)︸ ︷︷ ︸

valid SMILES / instruction

+ Rprop(m)︸ ︷︷ ︸
scaled property match

− rrepeat(m)︸ ︷︷ ︸
repetition penalty

− rinvalid(m)︸ ︷︷ ︸
RDKit parse / valence penalty

. (9)

Here wi are weights that balance units and priorities; EditCost optionally regularizes complexity
(e.g., hop count or similarity). GRPO samples a group of candidates, ranks them by R(m), converts
ranks to normalized rewards, and updates the policy to increase the likelihood of higher-ranked
edits while discouraging weaker ones. This group-relative signal is robust under noisy rewards and
directly steers the policy toward exact numeric targets without lossy surrogate models.

Multi-hop refinement and control. Applying the optimizer in a controlled multi-hop manner
enables gradual, interpretable refinement: small, local edits accumulate to tighten requirement satis-
faction, while the hop budget and regularizers bound complexity and deviation from the prototype.
In practice, a modest H suffices to reliably reduce E(m) thanks to fragment locality and fast RD-
Kit evaluation, and the same mechanism supports adaptive planning and curriculum-style difficulty
scaling during training and evaluation.

3.3 AUTOMATED SYNTHESIS OF REASONING DATASET

To train an optimizer that not only generates strings, but reasons about edits, we require a corpus
that (i) couples each molecule with reliable physicochemical properties, (ii) exposes an actionable
fragment space (fragments and how they connect), and (iii) provides neighbor relations so we can
supervise single-step edits and assemble multi-hop reasoning chains. This enables reward-driven
refinement under exact numeric targets.

We merge all the molecules from ZINC (Irwin & Shoichet, 2005), CHEMBL (Gaulton et al., 2012)
and MOSES (Polykovskiy et al., 2020) together, filter and delete the duplicates. From each molecule
we obtain its SMILES, molecular formula, QED, logP, logS, and molecular weight computed with
RDKit. We further derive a fragment decomposition and an inter-fragment connectivity map (iden-
tifying the bonds between fragments). The final dataset contains 2,945,596 molecules and, to the
best of our knowledge, is the largest resource coupling molecular properties with fragment-based
structural annotations.

Starting from our unified corpus, we build a reasoning-ready resource through an automated
pipeline: (i) standardize & deduplicate molecules via RDKit canonical SMILES, neutralize, and
enforce valence/aromaticity sanity checks; (ii) annotate properties (QED, LogP, LogS, MW) with
RDKit; (iii) fragmentize each molecule with BRICS to obtain a fragment multiset Φ(m) and an
inter-fragment connectivity map (which fragments are joined and at which bonds), yielding an ac-
tionable edit space; (iv) construct neighbor pairs by scanning for molecules that differ by exactly
one fragment-level edit (add/remove/replace), while enforcing edit sanity (e.g., element-count
conservation for replace) and RDKit validity for the edited product; and (v) label supervision
by recording the edit type, edited fragments, and signed property deltas (∆QED,∆LogP,∆MW),
plus the distance-to-target objective used by our optimizer. This process yields a neighbor-pair cor-
pus of∼1,171,193 single-edit pairs. For each molecule we also materialize its 1-hop neighbor list
based on fragment multiset edit distance, from which we grow neighbor trees/forests. These struc-
tures serve two roles: they seed retrieval-anchored prototyping in Stage I and provide experience-
based, reward-compatible supervision for GRPO in Stage II, enabling controllable multi-hop re-
finement under exact numeric targets. Each entry is formatted as a natural language prompt with a
one-step edit answer, e.g.:

Given the intermediate molecule SMILES <SMILES>O=C(NCc1nccc2ccccc12)c1c
cc[nH]c1=O</SMILES>, which is composed of fragments [’C()=O’, ’N’, ’C’,
’c1nccc2ccccc12’, ’c1ccc[nH]c1=O’]. Propose a single replace, add or remove
step on fragment level that makes the new molecule’s QED <QED>0.146</QED> lower,
LogP <LogP>0.366</LogP> higher, and Molecular Weight <MW>53.068</MW>
lower.
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Replace c1ccc[nH]c1=O with c1nc2nc(C)cc(C)n2n1 to form
<SMILES>Cc1cc(C)n2nc(C(=O)NCc3nccc4ccccc34)nc2n1</SMILES>.

GRPO itself does not need any ground truth for editing, but all property changes are still derived
from real data to preserve distribution realism.

4 EXPERIMENT

Our studies are designed to validate the four core claims from the introduction and to do so with min-
imal assumptions. (C1) Precise multi-property control: we benchmark M4olGen against strong
LLMs and graph methods under identical compute budgets, reporting per–property MAE and a nor-
malized total error to demonstrate simultaneous control of QED/LogP/MW. (C2) Necessity and
effectiveness of the two-stage design: we perform ablations that toggle retrieval in Stage I and
vary the GRPO optimizer hops (1/2/3), to show that retrieval-augmented prototyping plus multi-hop
refinement is required for tight numeric alignment. (C3) Generalization without per-target re-
training & controllable edit complexity: we uniformly sample 100 target tuples across admissible
ranges, run 10 trials per tuple/baseline (best-of-10 under a fixed budget), and analyze performance
as a function of hop budget, establishing broad generalization and explicit control of deviation from
the prototype.

4.1 EXPERIMENTAL SETUP

Training Details In Stage I, we employ GPT-4o(OpenAI, 2024b) as the prototype-reasoning
LLM, given its strong instruction-following performance and broad commercial adoption; other
capable LLMs can be substituted without changing the framework. For the stage-2 training, we
select ChemDFM-v1.5-8B (Zhao et al., 2025) as the base model, which achieves overall great per-
formance among chemical generation tasks. We first train ChemDFM-v1.5-8B for 5000 steps with
supervised fine-tuning for cold start. This can accelerate the convergence speed for the following
GRPO training since the reward function can get effective feedback sooner than randomly exploring
the format first. Then the model is trained for 37,500 steps with GRPO. The scalars we choose for
the reward function are αq=1, αl=6, αw=100, as we consider error values 1 in QED, 6 in LogP and
100 in MW as the maximum thresholds. These scalars are flexible to tune depending on personal
usage. The invalidity penalty and wrong format penalty are both -10 while the repetition penalty is
accumulated by 0.1 for each time. At each step, we sample 8 candidates using stochastic decoding
(temperature T = 1.0, top-p = 0.9, top-k = 50). The model was trained to convergence on a single
NVIDIA A100 (40 GB).

Baselines We aim to investigate the power of LLMs for generating new molecules under pre-
cise constraints. Thus, most of the baselines we choose are LLMs. In the LLM-based solutions,
we have gpt-4.1 (OpenAI, 2025), Gemini-Flash (Google, 2025), claude-haiku (Anthropic, 2024),
gpt-4o-2024-05-13(latest version) (OpenAI, 2024a), SmileyLlama-8B (Cavanagh et al., 2025) and
DrugAssist-7B (Ye et al., 2023). They cover most commonly used comerical models and generation-
oriented fine-tuned chemical LLMs including SFT(Supervised Fine-Tuning) and DPO(Direct Pref-
erence Optimization) technique. In addition to LLM baselines, we also try commonly used graph-
based and mixed algorithms. STGG+ (Jolicoeur-Martineau et al., 2025), which is an autoregressive
generative model that uses spanning tree-based graph generation to perform multi-property condi-
tional generation and claim to be the state-of-art for multi-objective conditional generation. We also
include a graph genetic algorithm (Graph GA) (Jensen, 2019), which requires target-specific opti-
mization; for each target tuple we run it from scratch with oracle calls of 500 and 1000(denoted
GA-500 and GA-1000).

Metrics We compute the QED, LogP and Molecular Weight and compare them with the target
to get the MAE (mean absolute error) for each property. It is commonly used among molecular
generation and design benchmarks (Wu et al., 2018). However, for multi-objective optimization
task like what we aim to address, it is necessary to have a normalized total error so that we can di-
rectly determine which candidate is better. Different properties have different ranges, and individual
properties need to be normalized to the same range for multi-objective molecule design (Luukko-
nen et al., 2023). Therefore, we normalize the error by dividing QED error by 1, LogP error by
10 and MW error by 700 since QED range is from 0 to 1, LogP range is from -10 to 10 and most
in-distribution MW range is from 100 to 800. Note that the normalizer for each error can be tuned
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when dealing with custom distribution or specific-property-preferred generation. Besides the whole
range normalization, we also add the scalars we used for the optimizer’s GRPO training(1 for QED,
6 for LogP and 100 for MW). Beyond accuracy, we assess set quality. Uniqueness is the fraction of
distinct molecules among the outputs (measured via canonical SMILES), indicating the absence of
duplicates. Diversity measures how dissimilar the set is on average, computed from ECFP4 finger-
prints (Rogers & Hahn, 2010) with Tanimoto similarity (higher diversity means broader exploration
of chemical space).
Table 1: Error metrics across methods (lower is better). Best per column in bold; second best
underlined.

Method QED err logP err MW err Scaled total err Norm. total err Diversity Uniqueness

LLMs
gpt-4.1 0.115 0.697 49.182 0.723 0.255 0.823 1.0
gpt-4o-2024-05-13 0.115 0.847 60.203 0.858 0.285 0.868 1.0
Gemini-2.5-Flash 0.078 0.974 86.174 1.102 0.299 0.842 0.97
Claude-3.7-Sonnet 0.104 1.025 39.583 0.671 0.263 0.868 1.0
Claude-3.5-haiku 0.117 1.174 46.904 0.782 0.301 0.791 1.0
SmileyLlama-8B 0.374 2.385 196.235 2.734 0.893 0.853 1.0
DrugAssist-7B 0.176 2.44 165.047 2.233 0.656 0.845 0.38

Graph algorithms
STGG-50times 0.050 0.566 63.917 0.784 0.198 0.876 1.0
STGG-10times 0.100 0.754 52.760 0.753 0.306 0.879 1.0
Graph GA-500 0.131 0.806 15.016 0.415 0.233 0.884 1.0
Graph GA-1000 0.123 0.529 7.95 0.291 0.187 0.886 1.0

Our methods
1-hop 0.130 0.423 10.404 0.305 0.187 0.879 1.0
2-hop 0.111 0.339 10.489 0.272 0.160 0.883 1.0
3-hop 0.103 0.284 9.799 0.249 0.146 0.884 1.0

4.2 RESULTS AND ANALYSIS

Protocol. GRPO is ground-truth–free and reward-based, so performance is not tied to a par-
ticular training distribution. To test generalization, we uniformly sample 100 target tuples
(QED, logP,MW) across admissible ranges. For each tuple and each baseline we run 10 inde-
pendent trials under the same compute budget and report the best-of-10. For STGG+ we consider
two sampling budgets (10× and 50×). Across settings, our normalized total error (NTE) decreases
monotonically with hop count.

Main results. Table 1 compares LLMs, graph baselines, and our method. Our best configuration
(3-hop) attains the lowest NTE (normalized total error) of 0.146, improving over the strongest com-
mercial model (GPT-4.1, 0.255) by 42.7% and over the best non-ours baseline (Graph GA-1000,
0.187) by 21.9%. Per metric, we obtain the best logP error (0.284) and the second-best MW er-
ror (9.799; GA-1000 is 7.95). Relative to STGG-50×, our 3-hop reduces logP from 0.566 to 0.284
(49.8%) and MW from 63.917 to 9.799 (84.7%); STGG-50× achieves the best QED (0.050), while
ours remains competitive (0.103). Diversity and uniqueness are high (Div≈ 0.884, Uniq = 1.0), on
par with the best graph baseline (GA-1000, Div = 0.886).

Table 2: Ablation study on retrieval and fragment-level optimizer (lower is better).

Method QED err logP err MW err Norm. total err

Stage1 (no retrieval) 0.111 0.970 68.555 0.307
Stage1 + retrieval 0.098 0.769 63.240 0.265
Stage1 + retrieval + 1-hop 0.130 0.423 10.404 0.187
Stage1 + retrieval + 2-hop 0.111 0.339 10.489 0.160
Stage1 + retrieval + 3-hop 0.103 0.284 9.799 0.146

4.3 ABLATION STUDY

Interpretation. Most LLMs show reasonable QED but large logP/MW errors (e.g., GPT-4.1
logP 0.697, MW 39.583), highlighting limited numeric control and multi-objection optimization.
DrugAssist-7B even shows great repetition with uniqueness only 0.38. Graph search exhibits the
opposite trade-off: STGG excels on QED but struggles on logP/MW; GA improves MW and diver-
sity but retains higher logP (e.g., 0.529 for GA-1000). Our multi-hop refinement strikes the right
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Figure 2: Ablation curves showing the drop percentage (higher is better) of each error metric rel-
ative to the no-retrieval baseline across methods. Curves are shown for QED, logP, MW, and the
normalized total error.

balance, with NTE dropping from 0.187 (1-hop) to 0.160 (2-hop) to 0.146 (3-hop), demonstrating
controlled fragment-level edits that steadily minimize distance-to-target across properties.

We ablate three design choices on a held-out set: (i) Stage I without retrieval (baseline), (ii) Stage 1
with retrieval, and (iii) Stage I with retrieval followed by a fragment-level optimizer using 1/2/3
hops. We report per-property errors (QED, logP, MW) and the normalized total error (enorm =
|∆QED|+ |∆ logP |/10+ |∆MW|/700) in Table 2. For visualization, we plot the drop percentage
relative to the no-retrieval baseline,

drop(m) =
ebase − em

ebase
× 100%,

for each metric and method (Figure 2).

Effect of retrieval Adding retrieval already yields consistent gains: the normalized total error drops
by 13.7% (0.307 → 0.265), driven primarily by improvements in logP (20.7% drop) and MW
(7.8% drop). Retrieval also gives the best stand-alone QED error among non-optimized variants
(0.098, 11.7% drop).

Effect of the fragment-level optimizer Introducing the optimizer produces the largest improve-
ments, especially on MW. Moving from retrieval-only to 1/2/3 hops reduces MW error from∼ 63 to
∼ 10 (84.9% drop vs. baseline), and steadily improves logP (drops of 56.4%, 65.1%, and 70.7%).
The overall normalized error decreases monotonically with more hops: 0.187 (1-hop, 39.1% drop),
0.160 (2-hop, 47.9% drop), and 0.146 (3-hop, 52.4% drop). QED exhibits a small regression at
1-hop (as expected when trading off multi-objective targets), but recovers by 3-hop to a 7.0% drop
versus baseline.

Takeaway Retrieval is a strong enabler, and the fragment-level optimizer is essential for precise
multi-property alignment, culminating in the best overall performance with the 3-hop setting.

5 CONCLUSION AND LIMITATION

We introduced M4olGen, a two-stage, fragment-level framework for precise, property-constrained
molecular generation. Stage I performs retrieval-augmented prototype construction; Stage II applies
a GRPO-trained, multi-hop optimizer that explicitly minimizes distance-to-target while controlling
edit complexity. A large, reasoning-ready dataset (BRICS fragments with neighbor pairs and mea-
sured property deltas) underpins both stages. Across QED, logP , and MW targets, M4olGen attains
the lowest normalized total error among strong LLM and graph baselines, with monotonic gains as
hop count increases, and maintains high validity, uniqueness, and diversity. Taken together, these
results validate our design choices and demonstrate the method’s potential to scale to richer objec-
tives.

While promising, our study is limited by its reliance on computed properties (e.g., RDKit estimators)
and by the narrow property set evaluated (QED, Log P, MW). Going forward, we will broaden the
objective space, support interval and Pareto objectives with uncertainty-aware rewards. We will also
explore different reference models rather than RDkit.
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A APPENDIX

A.1 STAGE I ALGORITHM

Algorithm 1 Stage I: Local Optimal Candidate Generation via Multi-Agent Planning

Require: User query q, molecule databaseM, thresholds ϵi, max iterations T
1: P∗ ← Decomposer(q)
2: N ← Retriever(P∗,M, ϵi)
3: m0 ← InitialGeneration(q,N ,P∗)
4: Initialize reasoning historyH ← [ ]
5: for t = 1 to T do
6: at ← Reasoner(q,N ,H,P∗)
7: mt ← Edit(mt−1, at)
8: H ← H∪ {at}
9: if is valid(mt,P

∗, ϵi) then
10: return mt

11: end if
12: end for
13: return valid mT if any

A.2 END-TO-END DEMO: FROM LOCAL REASONER TO GRPO REFINEMENT

Target. We aim for QED ≈ 0.70, LogP ≈ 1.50, and MW ≈ 300.

Stage 1 — Iterative construction (LLM planner). The planner begins from scratch and proposes
fragment-level edits while reading back numeric feedback at each step.

Step 1. It proposes CCN(CC)C(=O)C(C1CC1)S(=O)=O based on relevant molecules, reasoning
that a compact sulfonamide with small rings could balance QED and LogP. Feedback shows QED
= 0.674 (below by 0.026), LogP = 0.245 (below by 1.255), MW = 219.306 (below by 80.694).
The model decides to raise both LogP and MW.

Step 2. To add hydrophobic mass, it benzylates the amide nitrogen, yielding CCN(Cc1ccccc1)C
(=O)C(C1CC1)S(=O)=O. Feedback: QED = 0.803 (above by 0.103), LogP = 1.425 (just 0.075
low), MW = 281.377 (still 18.623 low). The ring helped; MW needs a modest push upward.

Step 3. It enlarges the small ring to a cyclohexyl to push MW/LogP: CCN(Cc1ccccc1)C(=O)C(
C1CCCCC1)S(=O)=O. Feedback: QED = 0.819 (high by 0.119), LogP = 2.595 (high by 1.095),
MW = 323.458 (high by 23.458). Overshot both LogP and MW.
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Step 4. It trims to cyclopentyl: CCN(Cc1ccccc1)C(=O)C(C1CCCC1)S(=O)=O. Feedback:
QED = 0.820 (high by 0.120), LogP = 2.205 (high by 0.705), MW = 309.431 (high by 9.431).
Still too heavy and too lipophilic.

Step 5. To temper LogP/MW while retaining aromaticity, it swaps phenyl→ pyridine: CCN(Cc1nc
ccc1)C(=O)C(C1CCCC1)S(=O)=O. Feedback: QED = 0.811 (high by 0.111), LogP = 1.600
(high by 0.100), MW = 310.419 (high by 10.419). Closer on LogP, MW still a bit high.

Step 6 (seed for Stage 2). It reduces the ring to a butyl chain to lower MW/LogP: CCN(Cc1nccc
c1)C(=O)C(CCC)S(=O)=O. Feedback: QED = 0.764 (high by 0.064), LogP = 1.210 (low by
0.290), MW = 284.381 (low by 15.619). This is the best Stage-1 candidate (normalized total error
= 0.116) and becomes the seed for Stage 2.

Stage 2 — GRPO refinement (accepted path with reasoning). We now switch to the optimizer
trained with GRPO. At each hop, we ask for a single fragment edit that moves QED/LogP/MW by
specified deltas in the right directions, then accept only moves that improve the objective.

Hop 1. From the seed CCN(Cc1ncccc1)C(=O)C(CCC)S(=O)=O, we request: decrease QED
by 0.064, increase LogP by 0.290, and increase MW by 15.619. Reasoning. The model replaces the
sulfone side chain with a bicyclic, more drug-like fragment to add hydrophobic mass while modulat-
ing polarity. Edit. Replace C(=O)C(CCC)[SH](=O)=O→ C1=CNC(N)C(O)C=C(C)CC1=C,
producing CCN(Cc1ncccc1)C1=CNC(N)C(O)C=C(C)CC1=C. The move improves the objec-
tive and is accepted.

Hop 2. From that intermediate, we request: further decrease QED by 0.040, decrease LogP
by 0.386, and decrease MW by 14.433. Reasoning. The optimizer softens hydrophobicity
and trims mass while preserving the newly introduced scaffold connectivity. Edit. Replace
N()C1=CNC(N)C(O)C=C(C)CC1=C → NC1=CNNC=CC(O)CC(C)C1, yielding CCNC1=CN
NC=CC(O)CC(C)C1Cc1ncccc1. This further reduces the objective and is accepted.

Final outcome. The best molecule along this path is CCNC1=CNNC=CC(O)CC(C)C1Cc1ncc
cc1 with QED = 0.681, LogP = 1.700, MW = 302.422, and a normalized total error of 0.042.
In summary, Stage 1 quickly assembled a plausible prototype with sensible fragment choices, and
Stage 2 applied two targeted, GRPO-guided edits that traded off hydrophobic mass and polarity to
tighten alignment with all three numeric targets.

A.3 USE OF LLMS

Large Language Models (LLMs) were used solely for writing refinement such as grammar and
syntax improvements.
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