
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STRUCTURED RAG FOR ANSWERING AGGREGATIVE
QUESTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-Augmented Generation (RAG) has become the dominant approach for
answering questions over large corpora. However, current datasets and methods
are highly focused on cases where only a small part of the corpus (usually a few
paragraphs) is relevant per query, and fail to capture the rich world of aggrega-
tive queries. These require gathering information from a large set of documents
and reasoning over them. To address this gap, we propose S-RAG, an approach
specifically designed for such queries. At ingestion time, S-RAG constructs a
structured representation of the corpus; at inference time, it translates natural-
language queries into formal queries over said representation. To validate our ap-
proach and promote further research in this area, we introduce two new datasets of
aggregative queries: HOTELS and WORLD CUP. Experiments with S-RAG on
the newly introduced datasets, as well as on a public benchmark, demonstrate that
it substantially outperforms both common RAG systems and long-context LLMs.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) has emerged as a leading approach for the task of Open
Book Question Answering (OBQA), attracting significant attention both in the research community
and in real-world applications (Lewis et al., 2020; Guu et al., 2020; Yoran et al., 2023; Ram et al.,
2023; Izacard et al., 2023; Gao et al., 2023; Siriwardhana et al., 2023; Fan et al., 2024). Most prior
work has focused on simple queries, where the answer to a given question is explicitly mentioned
within a short text segment in the corpus, and on multi-hop queries, which can be decomposed into
smaller steps, each requiring only a few pieces of evidence.

While RAG systems made substantial progress for the aforementioned query types, the task of an-
swering aggregative queries still lags behind. Such queries require retrieving a large set of evidence
units from many documents and performing reasoning over the retrieved information. Consider the
real-world scenario of a financial analyst tasked with answering a question such as, ‘What is the
average ARR for South American companies with more than 1,000 employees?’. While such a
query could be easily answered given a structured database, it becomes significantly harder when
the corpus is private and unstructured. In this setting, RAG systems cannot rely on the LLM’s para-
metric knowledge; instead, they must digest the unstructured corpus and reason over it to generate
an answer, introducing several key challenges: Information about the ARR of different companies
is likely to be distributed across many documents, and even if the full set of relevant evidence is
retrieved, the LLM must still perform an aggregative operation across them. Moreover, aggregative
queries often involve complex filtering constraints (e.g., ‘before 2020’, ‘greater than 200 kg’), which
vector-based retrieval systems often struggle to handle effectively (Malaviya et al., 2023).

Current RAG systems handle aggregative questions by supplying the LLM with a textual context that
is supposed to contain the information required to formulate an answer. This context is constructed
either by retrieving relevant text units using vector-based representations, or by providing the entire
corpus as input, leveraging the extended context windows of LLMs. Both strategies, however, face
substantial limitations in practice. Vector-based retrieval often struggles to capture domain-specific
terminology, depends on document chunking and therefore limits long-range contextualization, and
requires predefining the number of chunks to retrieve as a hyperparameter (Weller et al., 2025).
Conversely, full-context approaches are restricted by the LLM’s context size and its limited long-
range reasoning capabilities (Xu et al., 2023).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: S-RAG overview. Ingestion phase (upper): given a a small set of questions and documents,
the system predicts a schema. Then it predicts a record for each document in the corpus, populating
a structured DB. Inference phase (lower): A user query is translated into an SQL query that is run
on the database to return an answer.

In this work, we introduce Structured Retrieval-Augmented Generation (S-RAG), a system designed
to address the limitations of existing techniques in answering aggregative queries over a private cor-
pus. Our approach relies on the assumption that each document in the corpus represents an instance
of a common entity, and thus documents share recurring content attributes. During the ingestion
phase, S-RAG exploits those commonalities. Given a small set of documents and representative
questions, a schema that captures these attributes is induced. For example, in a corpus where each
document corresponds to a hotel, the predicted schema might include attributes such as hotel name,
city, and guest rating. Given the prediction, each document is mapped into an instance of the schema,
and all resulting records are stored in a database. At inference time, the user query is translated into
a formal language query (e.g., SQL), which is run over the ingested database. Figure 1 illustrates
the ingestion phase (in the upper part) and inference phase (in the lower part).

To facilitate future research in this area, we introduce two new datasets of aggregative question
answering: (1) HOTELS: a fully synthetic dataset composed of generated booking-like hotel pages,
alongside aggregative queries (e.g., ‘What is the availability status of the hotel page with the highest
number of reviews?’); and (2) WORLD CUP: a partially synthetic dataset, with Wikipedia pages of
FIFA world cup tournaments as the corpus, alongside generated aggregative questions. Both datasets
contain exclusively aggregative questions that require reasoning across dozens of text units.1

We evaluate the proposed approach on the two newly introduced datasets, as well as on Fi-
nanceBench (Islam et al., 2023), a public benchmark designed to resemble queries posed by fi-
nancial analysts. Experimental results demonstrate the superiority of our approach compared to
vector-based retrieval, full-corpus methods, and real world deployed services.

To conclude, our main contributions are as follows:

1. We highlight the importance of aggregative queries over a private corpus for real-world sce-
narios and demonstrate the limitations of existing benchmarks and methods in addressing
this challenge.

2. We introduce two new datasets, HOTELS and WORLD CUP, specifically designed to sup-
port future research in this direction.

3. We propose a novel approach, S-RAG, for handling aggregative queries, and show that it
significantly outperforms existing methods.

1The datasets are publicly available at: https://www.anonymous.com

2

https://www.anonymous.com


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 AGGREGATIVE QUESTIONS OVER UNSTRUCTURED CORPUS

Retrieval-augmented generation (RAG) has become the prevailing paradigm for addressing the
Open-Book Question Answering (OBQA) task in recent research (Gao et al., 2023; Asai et al.,
2024; Wolfson et al., 2025), and it is now widely adopted in industrial applications as well. Substan-
tial progress has been made in answering simple queries, for which the answer is explicitly provided
within a single document. In addition, considerable effort has focused on improving performance
for multi-hop questions, which require retrieval of only a few evidence units per hop (Yang et al.,
2018; Trivedi et al., 2022; Tang & Yang, 2024). Despite this progress, aggregative questions, where
answering a question requires retrieval and reasoning over a large collection of evidence spread
across a large set of documents, remain relatively unexplored.

Yet aggregative questions are highly relevant in practical settings, especially for organizations work-
ing with large, often unstructured, private collections of documents. For instance, an HR specialist
might query a collection of CVs with a question such as ‘What is the average number of years of
education for candidates outside the US?’. Although the documents in such a corpus are written
independently and lack a rigid structure, we can assume that all documents share some information
attributes, like the candidate’s name, years of education, previous experience, and others.

Standard RAG systems address the OBQA task by providing an LLM with a context composed of
retrieved evidence units relevant to the query (Lewis et al., 2020; Ram et al., 2023). The retrieval
part is typically performed using dense or sparse text embeddings. Such an approach would face
several challenges when dealing with aggregative queries:

1. Completeness: Failing to retrieve a single required piece of evidence might lead to an
incorrect or incomplete answer. For example, consider the question ‘Who is the youngest
candidate?’ – all of the CVs in the corpus must be retrieved to answer correctly.

2. Bounded context size: Since the LLM context has a fixed token budget, typical RAG
systems define a hyper-parameter K for the number of chunks to retrieve. Any question
that requires integrating information from more than K sources cannot be fully addressed.
Furthermore, the resulting context might be longer than the LLM’s context window.

3. Long-range contextualization: Analyst queries often target documents with complex
structures containing deeply nested sections and subsections (e.g., financial reports). Con-
sequently, methods that rely on naive chunking are likely to fail to capture the full semantic
meaning of such text units (Antropic, 2024).

4. Embedders limitation: As shown by (Weller et al., 2025), there are inherent representa-
tional limitations to dense embedding models. Furthermore, sparse and dense embedders
are likely to struggle to capture the full semantic meaning of filters (Malaviya et al., 2023),
especially when handling named entities to which they were not exposed at training time.

3 S-RAG: STRUCTURED RETRIEVAL AUGMENTED GENERATION

This section describes S-RAG, our proposed approach for answering aggregative questions over a
domain specific corpus. Similarly to vector-based retrieval, we suggest a pipeline consisting of an
offline Ingestion phase (§3.2) and an online Inference phase (§3.3). See Figure 1 for an illustration.

3.1 PRELIMINARIES

Consider a corpus D = {d1, d2, . . . , dn} of n documents, where each document di corresponds to
an instance of an entity, described by a schema S = {a1, a2, . . . , am}, where each aj denotes a
primitive attribute with a predefined type. For example, in a corpus of CVs, the entity type is a CV,
and the underlying schema may include attributes such as an integer attribute ‘years of education’
and a string attribute ‘email’. For each document di, we define a mapping to its record r:

r(di) = {(aj , vij) | aj ∈ S}, (1)

where vij is the value of attribute aj expressed in document di. Importantly, the value vi,j may be
empty in a document di. An aggregative question typically involves examining aj and the corre-
sponding set {v1,j , v2,j . . . vn,j}, optionally combining a reasoning step. This formulation can be
naturally extended to multiple attributes. Figure 2 illustrates our settings.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Illustration of a naive CVs corpus, schema and a single record. An example of an aggregate
query on such a corpus could be: ‘Which candidates has more than two years of experience?’

3.2 INGESTION

The ingestion phase of S-RAG aims to derive a structured representation for each document in the
corpus, capturing the key information most likely to be queried. This process consists of two steps:

3.2.1 SCHEMA PREDICTION

In this step, S-RAG predicts a schema S = {a1, a2 . . . am} that specifies the entity represented
by each document in the corpus. The schema is designed to capture recurring attributes across
documents, i.e. attributes that are likely to be queried at inference time. We implement this stage
using an iterative algorithm in which an LLM is instructed to create and refine a JSON schema
given a small set of documents and questions. The LLM is prompted to predict a set of attributes,
and to provide for each attribute not only its name but also its type, description, and several example
values. The full prompts used for schema generation are provided in Appendix B.2 We do zero-shot
prompting with 12 documents and 10 questions, quantities tailored for real-world use cases, where
a customer is typically expected to provide only a small set of example documents and queries.

3.2.2 RECORD PREDICTION

Given a document di and a schema S, we prompt an LLM to predict the corresponding record ri,
which contains a value for each attribute aj ∈ S. The LLM is provided with the list of attribute
names, types, and descriptions, and generates the output set {vi,1, vi,2, . . . , vi,m}. Each predicted
value vi,j is then validated by post-processing code to ensure it matches the expected type of aj .

Since the meaning of a value vi,j can be expressed in multiple ways (e.g., the number one million
may appear as 1,000,000, 1M, or simply 1), attribute descriptions and examples are crucial for
guiding the LLM in lexicalizing vi,j consistently (e.g., capitalization, units of measure). Because
the same descriptions and examples are shared across the prediction of different records, this process
enables cross-document standardization.

After applying this prediction process to all documents in the corpus D, we store the resulting
set of records {r1, r2, . . . , rn} in an SQL table. Finally, we perform post-prediction processing to
compute attribute-level statistics based on their types (more details are provided in Appendix D).
These statistics are used at inference time, as detailed next.

3.3 INFERENCE

At inference time, given a free-text query q, an LLM is instructed to translate it into a formal query
over the aforementioned SQL table. To enhance the quality of the generated query and avoid am-
biguity, the LLM receives as input the query q, the schema S and statistics for every column in the
DB. These statistics guide the LLM in mapping the semantic meaning of q to the appropriate lexical
filters or values in the formal query. The resulting query is executed against the SQL table, and the
output is stringified and supplied to the LLM as context.

2For simplicity at inference time, we exclude list and nested attributes, since these would require reasoning
over multiple tables.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Hybrid mode In situations where the inferred schema does not capture all attributes, particularly
rare ones, the answer to a free-text query cannot be derived directly from the records. In such
scenarios, we view our system as an effective way to reduce a large corpus to a smaller set of
documents in which the answer can be found. To support this use case, we experimented with
HYBRID-SRAG, which operates in two inference steps: (i) translating q into a formal query whose
execution returns a set of documents (rather than a direct answer), and (ii) applying classical RAG
on the retrieved documents.

4 AGGREGATIVE QUESTION ANSWERING DATASETS

While numerous OBQA datasets have been proposed in the literature, most of them consist of simple
or multi-hop questions (Abujabal et al., 2018; Malaviya et al., 2023; Tang & Yang, 2024; Cohen
et al., 2025). To support research in this area, we introduce two new aggregative queries OBQA
datasets: HOTELS and WORLD CUP. The former is fully synthetic, containing synthetic documents
and questions, while the latter contains synthetic questions over natural documents.

4.1 AGGREGATIVE DATASETS CREATION METHOD

To create a dataset of aggregative questions, we start by constructing a schema S that describes an
entity (e.g., hotel). S consists of m attributes (e.g. city, country, manager name, etc.), each defined
by a name, data type, and textual description. We then generate n records of S by employing an
LLM or code-based randomization. Each generated record corresponds to a distinct entity (e.g.,
Hilton Paris, Marriott Prague). We then apply LLMs in two steps: (1) given a structured record ri,
verbalize its attributes into a natural language html document di (see C); and (2) given a random
subset of records, formulate an aggregative query over them and verbalize it in natural language.

4.2 HOTELS AND WORLD CUP DATASETS

Hotels. This dataset is constructed around hotel description pages, where each entity e corresponds
to a single hotel. Each page contains basic properties such as the hotel name, rating, and number
of stars, as well as information about available facilities (e.g., swimming pool, airport shuttle).
An example document is provided in Appendix C. Using our fully automatic dataset generation
pipeline, we produced both the documents and the associated question-answer pairs. Our document
generation process ensures that some of these properties are embedded naturally within regular
sentences, unlike other unstructured benchmarks, which often present properties in a table or within
a dedicated section of the document (Arora et al., 2023). The resulting dataset consists of 350
documents and 193 questions. We consider this dataset to be more challenging, as public LLMs
have not been exposed to either the document contents or the questions.

World Cup. This dataset targets questions commonly posed within the popular domain of inter-
national soccer. The corpus consists of 22 Wikipedia pages, each corresponding to one of the FIFA
World Cup tournaments held between 1930 and 2022. To increase the difficulty of the corpus, we
removed the main summary table from each document, as it contains structured information about
many key attributes. Based on this corpus, we manually curated 22 structured records and used the
automatic method described in Section 4.1 to generate 83 aggregative questions. Although LLMs
are likely to possess prior knowledge of this corpus, evaluating RAG systems on these aggregative
questions provides an interesting and challenging benchmark.

Table 1 summarizes the statistics of the introduced datasets. It also compares them to FI-
NANCEBENCH (Islam et al., 2023), a public benchmark designed to resemble queries posed by
financial analysts. In contrast to our new datasets, questions in FinanceBench typically require up
to a single document to answer correctly (usually a single page).

5 EXPERIMENTAL SETTINGS

5.1 BASELINES

We implement VECTORRAG, a classic embedder based approach. It performs chunking and dense
embedding at ingestion time, followed by chunk retrieval using a dense embedder at inference time

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Statistics and characteristics of datasets used in our experiments.
Dataset # Documents Avg. Tokens / Doc # Queries Aggregative LLM leak?
Hotels 350 592 193 High ×
World Cup 22 18881 88 High ✓
FinanceBench 360 109592 150 Low ✓

(see Appendix A). We note that VECTORRAG is on-par with the best performing method reported
by Wang et al. (2025) on FINANCEBENCH, and therefore we consider it as a well performing system.

In addition, we provide results of FULLCORPUS pipeline, in which each document is truncated to
a maximum length of 20,000 tokens. The context is then constructed by concatenating as many of
these document prefixes as can fit within the LLM’s context window.

We also report the performance of a real-world deployed system, OPENAI-RESPONSES by OpenAI
(OpenAI, 2025). This agentic framework supports tool use, including the FileSearch API. Although
it is a broader LLM-based system with capabilities extending beyond RAG, we include it in our eval-
uation for completeness. Unlike the baselines we implemented, OPENAI-RESPONSES is a closed
system that directly outputs the answer, limiting our control on its internal implementation.

5.2 S-RAG VARIANTS

S-RAG is evaluated in three settings: (i) S-RAG-GoldSchema: skip the Schema Prediction phase,
and provide an oracle schema to S-RAG. This schema contains all the relevant attributes to an-
swer all of the queries in all aggregative benchmarks, (ii) S-RAG-InferredSchema: predict schema
based on a small set of documents and queries which are later discarded from the dataset, and, (iii)
HYBRID-S-RAG: as explained in 3.3, we use S-RAG to narrow down the corpus and perform
VECTORRAG over the resulting sub-corpus.

5.3 ANSWER GENERATOR

Every RAG system includes an answer generation step, in which an LLM generates an answer given
the retrieved context and the input question. For S-RAG, we employ GPT-4o for this step. In con-
trast, for the baselines VECTORRAG and FULLCORPUS, we use GPT-o3 with stronger reasoning
capabilities. This ensures fairness, since in our setting the reasoning steps are handled in SQL, while
in the baselines the LLM must perform them. In addition, to minimize the influence of the model’s
prior knowledge, we explicitly instructed the LLM in all experiments to generate answers solely on
the basis of the provided context, disregarding any external knowledge.

5.4 EVALUATION DATASETS

We evaluate S-RAG on the two newly introduced datasets, HOTELS and WORLD CUP, as well as
on the publicly available evaluation set of FINANCEBENCH. Since the FINANCEBENCH test set
includes both aggregative and non-aggregative queries, we report results on the full test set as well
as on the subset of 50 queries identified by the original authors as aggregative3.

In order to estimate the familiarity of existing LLMs with our evaluation sets, we build a context-less
question answering pipeline, where a strong reasoning model was asked to answer the question with-
out any provided context. Table 2 shows the performance of GPT-o3 in this setting. As expected,
GPT-o3 fails on HOTELS as it includes newly generated documents, but surprisingly achieves an
AnswerComparison score of 0.71 on WORLD CUP. We consider the results on HOTELS as evidence
that only a robust pipeline can succeed on this dataset, while the strong performance on WORLD
CUP likely reflects the familiarity of modern LLMs with Wikipedia content.

3Referred to as the “metrics-generated queries”

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Zero-shot performance of o3 without any provided context.
Dataset Answer Recall Answer Comparison
FinanceBench 0.443 0.505
Hotels 0.047 0.049
WorldCup 0.798 0.712

5.5 METRICS

Following prior work on evaluating question answering systems, we adopt the LLM-as-a-judge
paradigm (Zheng et al., 2023). Specifically, to compare the expected answer with the system gen-
erated answer, we define two evaluation metrics: (1) Answer Comparison, where the LLM is
instructed to provide a binary judgment on whether the generated answer is correct given the query
and the expected answer (the prompt is provided in Appendix E); and (2) Answer Recall, where
an LLM-based system decomposes the expected answer into individual claims and computes the
percentage of those claims that are covered in the generated answer.

6 RESULTS

Table 3 summarizes the results of S-RAG and the baselines when evaluated on the aggregative ques-
tions evaluation sets. Across all datasets, S-RAG consistently outperforms the baselines, although
those systems employ a strong reasoning model when possible.

FULLCORPUS: All datasets exceed GPT-o3’s context window, and therefore it can’t process the
full corpus directly (which is a major difference compared with Wolfson et al. (2025)). As expected,
this baseline fails to achieve strong results on any dataset. HOTELS is relatively smaller, leading to
reasonable performance, but a real-world use cases involve much larger corpora.

VECTORRAG & OAI-RESPONSES: Results for both VECTORRAG and OAI-RESPONSES
are reasonable (∼10-20% behind S-RAG-GoldSchema) when parametric knowledge is available
(FINANCEBENCH, WORLD CUP), however, it falls short on HOTELS (∼50-60% behind S-RAG-
GoldSchema). As discussed in Section 2, vector-based retrieval suffers from inherent limitations
when considering aggregative questions. This is most prominent with HOTELS, where the generat-
ing model is unable to compensate suboptimal retrieval with parametric knowledge. This also holds
for OAI-RESPONSES, even though it is able to execute multiple retrieval calls, which exemplifies
the completeness issue (the backbone model cannot tell when to stop the retrieval).

S-RAG-InferredSchema: For simpler documents, like the generated HOTELS, or Wikipedia
pages of WORLDCUP tournaments, our system is solid, which leads to overall strong performance.
There is a degradation in performance compared with GoldSchema. This stems from failures in the
schema prediction phase, specifically: (i) missing attributes; (ii) incomplete descriptions which lead
to standardization issues in the DB. This problem intensifies with complex documents such as in
FINANCEBENCH, leading to poor performance. For example, we saw that the CapitalExpenditure
attribute was described as ”The capital expenditure of the company”. Thus, in the record prediction
phase (3.2.2) two values were recorded as 1, but one of them stands for 1M and the other for 1B
which makes it unusable at inference time. However, given that manually building the gold schema
via prompting required only a few hours, we regard this as a practical and feasible approach for
real-world applications.

S-RAG-GoldSchema: Best results are achieved across datasets when providing the gold schema.
The imperfect scores can be attributed to imperfect text-to-sql conversion, standardization issues in
the ingestion phase, and wrong records prediction.

Finally, Table 4 shows the performance of HYBRID-S-RAG with gold schema on the full
FINANCEBENCH, including aggregative and non-aggregative queries. The superior results of
HYBRID-S-RAG demonstrate that S-RAG can perform well also on general purpose datasets.

Qualitative Examples. Table 5 presents the answers generated by different systems for the natural
aggregative query, ‘What is the average number of total goals scored across all World Cups in
this dataset?’, from the WORLD CUP dataset. Both VECTORRAG and FULLCORPUS produce the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Results of different systems on the aggregative evaluation sets.
Dataset System Ingestion Type Answer Recall Answer Comparison

H
ot

el
s

VectorRAG — 0.352 0.331
FullCorpus — 0.478 0.473
OAI-Responses — 0.253 0.184
S-RAG InferredSchema 0.500 0.518
S-RAG GoldSchema 0.845 0.899

W
or

ld
C

up

VectorRAG — 0.735 0.676
FullCorpus — 0.516 0.441
OAI-Responses — 0.715 0.566
S-RAG InferredSchema 0.766 0.769
S-RAG GoldSchema 0.909 0.856

FB
-A

gg

VectorRAG — 0.650 0.598
FullCorpus — 0.100 0.040
OAI-Responses — 0.670 0.593
S-RAG InferredSchema 0.230 0.234
S-RAG GoldSchema 0.750 0.725

Table 4: Performance on the full FinanceBench evaluation set.
System Answer Recall Answer Comparison
VECTORRAG 0.598 0.677
OAI-RESPONSES 0.529 0.553
HYBRID-S-RAG 0.667 0.702

Table 5: An example from WORLD CUP dataset with answers generated by different systems.
Question: What is the average number of total goals scored across all World Cups in this dataset?
Gold Answer: The average number total goals scored across all World Cups is approx. 123.64.

System Generated Answer Explanation
VECTORRAG Adding the total-goal for every World

Cup the context lists: 1950 – 88, . . .
,2022 – 172; Total goals = 1,739
tournaments = 13 Average = 1,739 ÷
13 ≈ 133.8

The context includes information on
only 13 tournaments; the 1954 World
Cup, for instance, is missing.

FULLCORPUS Across the eight World Cup tourna-
ments cited:•1934: 70 goals . . . • To-
tal goals = 70 + 126 + . . . + 171 =
954 Average = 954 ÷ 8 ≈ 119.25

The context includes only eight tour-
nament documents, as context length
of the LLM is limited.

S-RAG Average = 123.64 S-RAG produces a short and correct
answer based on the information from
the twenty two tournaments.

wrong answer: despite the reasonable reasoning chain, the incomplete context results in an incorrect
answer. In contrast, S-RAG delivers a concise and accurate answer, demonstrating its performance
on aggregative queries that require reasoning over a large set of evidence across multiple documents.

7 RELATED WORK

7.1 RAG SYSTEMS

Modern RAG systems typically address the Open-Book Question-Answering task by retrieving the
text units from the corpus that are most relevant for answering the query according to some rel-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

evance score (Lewis et al., 2020; Ram et al., 2023). At the ingestion phase, a standard system
splits each document independently into a set of chunks and computes a vector representation for
each chunk. These representations are obtained either through sparse embeddings (Robertson et al.,
2009), which represent text as high-dimensional and interpretable vectors based on explicit lexi-
cal features, or dense embeddings (Muennighoff et al., 2022; Wang et al., 2022), which encode text
into low-dimensional continuous vectors that capture semantic similarity, enabling effective retrieval
even when queries and documents share little lexical overlap. The retrieval phase is typically carried
out by scoring the relevance of each chunk to the query, using their vector representations, and op-
tionally applying post-retrieval re-ranking on the top scoring chunks, utilizing a model that jointly
encodes the chunk and the query.

In addition to domain-agnostic approaches, corpus-specific training has also been explored, for ex-
ample by Wang et al. (2025), though such methods suffer from limited scalability. Among structure-
based methods, Edge et al. (2024) propose constructing a knowledge graph at ingestion time to cap-
ture information essential for answering queries. However, their approach is primarily designed for
global sense-making questions and is not built to handle aggregative queries (as it does not enforce a
recurring structure in the graph which is the cornerstone of such queries). Another noteworthy con-
tribution is by Arora et al. (2023), who propose building structured representation of an unstructured
corpus. Nevertheless, their system was not evaluated in the context of RAG performance.

7.2 OPEN-BOOK QA DATASETS

Most existing OBQA datasets include simple questions for which the answers are explicitly con-
tained within an individual text segment of the corpus, or require reasoning over no more than a
handful of such evidence pieces (Nguyen et al., 2016; Abujabal et al., 2018; Yang et al., 2018;
Trivedi et al., 2022; Malaviya et al., 2023; Tang & Yang, 2024; Cohen et al., 2025). This ten-
dency arises as annotating questions and answers is considerably easier when focusing on small
number of text units. Others construct questions that require the integration of a larger number of
evidence units (Wolfson et al., 2025; Amouyal et al., 2023); however, these datasets do not focus on
large-scale retrieval, and are based on Wikipedia, a source which LLMs are well exposed to during
pretraining. This underscores the need for new datasets that require multi-document retrieval over
unseen corpora, while also involving diverse reasoning skills such as numerical aggregation.

8 CONCLUSIONS

In this work, we highlight the importance of aggregative questions, which require retrieving and
reasoning over information distributed across a large set of documents. To foster further research on
this problem, we introduce two new aggregative questions datasets: WORLD CUP and HOTELS. To
address the challenges such datasets pose, we propose S-RAG, a system that transforms unstruc-
tured corpora into a structured representation at ingestion time and translates questions into formal
queries at inference time. This design addresses the limitations of classic RAG systems when an-
swering aggregative queries, enabling effective reasoning over dispersed evidence.

Our work has a few limitations: First, our approach is limited to corpora that can be represented by
a single schema, whereas in the real world a corpus may contain documents derived from multiple
schemas. In addition, the schemas underlying the datasets we experiment with include only simple
attributes, and we encourage future research on corpora that incorporate more complex structures.

In our experiments, S-RAG achieves strong results on the newly introduced datasets and on the
public FINANCEBENCH benchmark, even compared to top-performing RAG methods and advanced
reasoning models. We further show that the schema prediction step plays a critical role in end-to-end
performance, highlighting an important direction for future research.

To conclude, our work puts emphasis on aggregative queries, a crucial, realistic blindspot of current
RAG systems, and argues that unstructured, classical methods alone are ill-suited to address them.
By introducing new datasets tailored to evaluate such queries, and designing a structured solution,
we hope to pave the way to next generation RAG systems.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Abdalghani Abujabal, Rishiraj Saha Roy, Mohamed Yahya, and Gerhard Weikum. Comqa: A
community-sourced dataset for complex factoid question answering with paraphrase clusters.
arXiv preprint arXiv:1809.09528, 2018.

Samuel Amouyal, Tomer Wolfson, Ohad Rubin, Ori Yoran, Jonathan Herzig, and Jonathan Berant.
Qampari: A benchmark for open-domain questions with many answers. In Proceedings of the
Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM), pp. 97–110,
2023.

Antropic. Contextual retrieval, 2024. URL https://www.anthropic.com/news/
contextual-retrieval.

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel, Immanuel Trum-
mer, and Christopher Ré. Language models enable simple systems for generating structured views
of heterogeneous data lakes. arXiv preprint arXiv:2304.09433, 2023.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. 2024.

Dvir Cohen, Lin Burg, Sviatoslav Pykhnivskyi, Hagit Gur, Stanislav Kovynov, Olga Atzmon, and
Gilad Barkan. Wixqa: A multi-dataset benchmark for enterprise retrieval-augmented generation.
arXiv preprint arXiv:2505.08643, 2025.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
graph rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130, 2024.

Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and
Qing Li. A survey on rag meeting llms: Towards retrieval-augmented large language models. In
Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data mining, pp.
6491–6501, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1), 2023.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training. ArXiv, abs/2002.08909, 2020. URL https://api.
semanticscholar.org/CorpusID:211204736.

Pranab Islam, Anand Kannappan, Douwe Kiela, Rebecca Qian, Nino Scherrer, and Bertie Vid-
gen. Financebench: A new benchmark for financial question answering. arXiv preprint
arXiv:2311.11944, 2023.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
with retrieval augmented language models. Journal of Machine Learning Research, 24(251):
1–43, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Chaitanya Malaviya, Peter Shaw, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Quest:
A retrieval dataset of entity-seeking queries with implicit set operations. arXiv preprint
arXiv:2305.11694, 2023.

Niklas Muennighoff, Nouamane Tazi, Loı̈c Magne, and Nils Reimers. Mteb: Massive text embed-
ding benchmark. arXiv preprint arXiv:2210.07316, 2022.

10

https://www.anthropic.com/news/contextual-retrieval
https://www.anthropic.com/news/contextual-retrieval
https://api.semanticscholar.org/CorpusID:211204736
https://api.semanticscholar.org/CorpusID:211204736


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. Ms marco: A human-generated machine reading comprehension dataset. 2016.

OpenAI. Oai response, 2025. URL https://openai.com/index/
new-tools-for-building-agents/.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
Yoav Shoham. In-context retrieval-augmented language models. Transactions of the Association
for Computational Linguistics, 11:1316–1331, 2023.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Shamane Siriwardhana, Rivindu Weerasekera, Elliott Wen, Tharindu Kaluarachchi, Rajib Rana, and
Suranga Nanayakkara. Improving the domain adaptation of retrieval augmented generation (rag)
models for open domain question answering. Transactions of the Association for Computational
Linguistics, 11:1–17, 2023.

Yixuan Tang and Yi Yang. Multihop-rag: Benchmarking retrieval-augmented generation for multi-
hop queries. arXiv preprint arXiv:2401.15391, 2024.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Xinyu Wang, Jijun Chi, Zhenghan Tai, Tung Sum Thomas Kwok, Muzhi Li, Zhuhong Li,
Hailin He, Yuchen Hua, Peng Lu, Suyuchen Wang, Yihong Wu, Jerry Huang, Jingrui Tian,
and Ling Zhou. Finsage: A multi-aspect rag system for financial filings question answer-
ing. ArXiv, abs/2504.14493, 2025. URL https://api.semanticscholar.org/
CorpusID:277955764.

Orion Weller, Michael Boratko, Iftekhar Naim, and Jinhyuk Lee. On the theoretical limitations of
embedding-based retrieval. arXiv preprint arXiv:2508.21038, 2025.

Tomer Wolfson, Harsh Trivedi, Mor Geva, Yoav Goldberg, Dan Roth, Tushar Khot, Ashish Sab-
harwal, and Reut Tsarfaty. Monaco: More natural and complex questions for reasoning across
dozens of documents. arXiv preprint arXiv:2508.11133, 2025.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu, Sandeep Subramanian,
Evelina Bakhturina, Mohammad Shoeybi, and Bryan Catanzaro. Retrieval meets long context
large language models. arXiv preprint arXiv:2310.03025, 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Berant. Making retrieval-augmented language
models robust to irrelevant context. arXiv preprint arXiv:2310.01558, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.

11

https://openai.com/index/new-tools-for-building-agents/
https://openai.com/index/new-tools-for-building-agents/
https://api.semanticscholar.org/CorpusID:277955764
https://api.semanticscholar.org/CorpusID:277955764


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A VECTORRAG IMPLEMENTATION DETAILS

The VECTORRAG implementation is as follows:

At ingestion time, each document is split into non-overlapping chunks of 500 tokens, and the
Qwen2-7B-instruct embedder4 is applied to obtain dense representations for each chunk. We
store each chunk along with its embedded representation in an Elasticsearch index.

At inference time, given a query q, we use the same embedder to encode the query and retrieve the
top 40 chunks with the highest similarity scores. The retrieved chunks are concatenated into a single
context, with each chunk separated by a special delimiter token. We do not incorporate a sparse
retriever (e.g., BM25) or re-ranking modules, as preliminary experiments showed that they did not
yield performance improvements across datasets.

B SCHEMA GENERATION PROMPTS

We use GPT-4o (with zero-shot prompting) as the underlying LLM. The prompts we used in the
schema generation phase are:

Schema generation prompt - first iteration

Task: Extract a single JSON schema from the provided
documents. I’ll provide you with a set of documents.
Your task is to analyze these documents and identify recurring
concepts. Then, build a single JSON schema that exhaustively
captures *all* these concepts across all documents.

Focus specifically on identifying patterns that
appear consistently across multiple documents.

Present your response as a complete JSON schema with the
following structure:

‘‘‘json
{
"title": "YourSchemaName",
"type": "object",
"properties": {
"fieldName": {
"type": "string",
"description": "Detailed description of the field,
at least two sentences.",
"examples": ["example1", "example2"]

}
},
"required": ["fieldName"]

}
When building the schema:
- Avoid object-type fields with additional nested properties
when possible.
- Avoid list. Instead use boolean attribute for each of the
potential value.
- Make sure to capture all recurring concepts
- Relevant concepts may include locations, dates, numbers,
strings, etc.
- Relevant concepts should not be lengthy strings (e.g. a
"description" field is not a good choice), you should rather
decompose into separate fields if possible.

4https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Schema generation prompt - second iteration and on

Task: Refine an existing JSON schema based on set of questions
and documents analysis

I’ll provide you with an existing JSON schema, set of questions,
and a set of documents. The JSON schemas of different documents
will be converted into an SQL table, that will be used as knowledge
source to answer questions that are similar to the provided questions.
Your task is to analyze what attributes from the documents can
provide answers to questions similar to the provided questions,
and refine the existing schema.
Make sure that the attribute value can be extracted (and not
inferred) from each of the documents.

Provide the final refined JSON schema implementation:
‘‘‘json
{
"title": "RefinedSchemaName",
"type": "object",
"properties": {
"propertyName": {
"type": "string",
"description": "Detailed description of the property,
at least two sentences.",
"examples": ["example1", "example2"]

}
},
"required": ["propertyName"]

}

In addition for each attribute and document provide the value
of the attribute in the document.

When evaluating the existing schema:
- Make sure that every property can be extracted from each
of the documents
- Modify properties where the name, type, or definition could
be improved
- Add new properties for concepts that can help answer the
questions. E.g.: if a question is about "the most common
location", you should add a property for "location" if it
doesn’t exist. Make sure that the property value can be
extracted from each of the documents.
- Add new properties for recurring concepts not captured in the
existing schema
- Add new properties for trivial concepts that are missing in
the existing schema. E.g: If the schema represents a house for
sale, it must include the seller’s name.
- Use appropriate JSON Schema types (string, number, integer,
boolean, array, etc.)
- Provide descriptions and examples for each property
- Avoid nested object properties
- Fields should not be lengthy strings (e.g. a "description"
field is not a good choice), you should rather decompose into
separate fields if possible.
- Avoid assigning values to the attributes in the schema. You
should only provide the schema itself, without any values.
For each property decision, provide a clear rationale based on
related question or patterns observed in the documents. Your
goal is to create a refined schema that better captures the
recurring patterns that can be used to answer the questions
while minimizing unnecessary changes to the existing structure.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C EXAMPLE HOTELS DOCUMENT

Example document from the HOTELS dataset:

Figure 3: A randomly selected document from the HOTELS dataset

D ATTRIBUTE STATISTICS

After applying record prediction to all documents in the corpus, we compute attribute-level statis-
tics. For numeric attributes, we calculate the mean, maximum, and minimum values; for string and
boolean attributes, we include the set of unique values predicted by the LLM. For all attributes,
regardless of type, we also include the number of non-zero and non-null values.

E JLM PROMPT

For both metrics, we employ GPT-4o as the underlying judging model.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Answer Comparison

<instructions>
You are given a query, a gold answer, and a judged answer.
Decide if the judged answer is a correct answer for the query, based
on the gold answer.
Do not use any external or prior knowledge. Only use the gold answer.
Answer Yes if the judged answer is a correct answer
for the query, and No otherwise.
<query>
{query}
</query>
<gold_answer>
{gold_answer}
</gold_answer>
<judged_answer>
{judged_answer}
</judged_answer>
</instructions>

F LLM USE

In addition to the uses of LLMs described throughout the paper—for dataset creation, ingestion, and
inference—we also employed ChatGPT to help identify mistakes (such as grammar and typos) and
to improve the phrasing of paragraphs we wrote.

15


	Introduction
	Aggregative Questions over Unstructured Corpus
	S-RAG: Structured Retrieval Augmented Generation
	Preliminaries
	Ingestion
	Schema prediction
	Record prediction

	Inference

	Aggregative Question Answering Datasets
	aggregative Datasets Creation Method
	Hotels and World Cup datasets

	Experimental Settings
	Baselines
	S-RAG Variants
	Answer Generator
	Evaluation Datasets
	Metrics

	Results
	Related Work
	RAG systems
	Open-Book QA datasets

	Conclusions
	VectorRAG Implementation Details
	Schema Generation Prompts
	Example Hotels Document
	Attribute Statistics
	JLM prompt
	LLM Use

