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ABSTRACT

While numerous methods have been proposed for computing distances between
probability distributions in Euclidean space, relatively little attention has been
given to computing such distances for distributions on graphs. However, there
has been a marked increase in data that either lies on graph (such as protein inter-
action networks) or can be modeled as a graph (single cell data), particularly in
the biomedical sciences. Thus, it becomes important to find ways to compare sig-
nals defined on such graphs. Here, we propose Graph Fourier MMD (GFMMD), a
novel a distance between distributions and signals on graphs. GFMMD is defined
via an optimal witness function that is both smooth on the graph and maximizes
difference in expectation between the pair of distributions on the graph. We find
an analytical solution to this optimization problem as well as an embedding of dis-
tributions that results from this method. We also prove several properties of this
method including scale invariance and applicability to disconnected graphs. We
showcase it on graph benchmark datasets as well on single cell RNA-sequencing
data analysis. In the latter, we use the GFMMD-based gene embeddings to find
meaningful gene clusters. We also propose a novel type of score for gene selec-
tion called gene localization score which helps select genes for cellular state space
characterization.

1 INTRODUCTION

With the advent of high dimensional, high throughput data in fields ranging from biology, to finance,
to physics, it becomes important to develop methods to perform high dimensional statistics in this
sphere. In particular, the analysis of signals (or features in the data) and their pattern of spread
through the landscape of data poses a challenge. If the signals act as functions on a low dimensional
space like R2 or R3, it is possible to visualize them to gain a sense of the data. But what if these
signals act on higher dimensional space like R9000? This could easily be the case in practice when a
set of observations carries many variables, such as single-cell data. In order to handle data like this,
one useful assumption has been that the data lies intrinsically in a lower-dimensional manifoldM,
i.e., the Manifold hypothesis. This hypothesis has motivated low-dimensional embedding algorithms
such as spectral clustering (Ng et al., 2001), tSNE (van der Maaten & Hinton, 2008), diffusion maps
(Coifman & Lafon, 2006), and PHATE (Moon et al., 2019). In such algorithms, the data is first
converted to an affinity graph, found by first computing distances between data points, and then
affinities using a kernel function on the distances. This allows us to represent high dimensional data
in a simpler form. Here, we use this representation to propose a distance between distributions or
signals on such high dimensional data graphs called Graph Fourier Maximum Mean Discrepancy
(GFMMD). Note, that GFMMD can also work on signals that naturally arise from graph or network
structures, i.e., features of people in social interaction graphs.

Thus far while GNNs and other methods have focused on organizing and classifying nodes, there
has been little focus on organizing the variables / signals themselves on these abstract spaces. For
instance, in many measurements or sensors whose structure can be modelled as a graph, there is a
need to understand the relationship between measured features. One example that arises in biology
is that of single cell data. Here the cellular manifold can be modelled as a nearest neighbors graph,
and each cell has measurements of thousands of genes, and there is a great deal of interest in under-
standing the relationships between genes and how and whether their expression is localized to parts
of the cellular manifold.
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Here we address the question of how to organize and compare signals on graphs in such a way
that accounts for geometric structure on their underlying space. In particular, given a weighted
graph G = (V, E , w) and a set of functions {fi}i on the vertices: fi : V → R, how can we
structure and analyze these signals? We will first consider the case when fi is a probability mass
function and extend the framework to arbitrary signals. This has a very natural applications to many
modern datasets. To illustrate this, we focus on the application of embedding a set of genes on a
graph of cells, as created from single cell RNA-sequencing data, and also in measuring whether
the expression of a gene is localized (i.e., characteristic of a subpopulation of cells) or global like a
house-keeping gene.

We present a new distance that belongs to the family of integral probability metrics (Sriperumbudur
et al., 2012). Integral Probability Metrics (IPM) are distances between probability distributions
that are characterized by a witness function that maximizes the discrepancy between distributions
in expectation. The Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) distances are a
popular class of IPMs, they assume further structure in the space of witness functions, requiring that
they come from a reproducing kernel Hilbert space.

Our notion of MMD, that we call Graph Fourier MMD (GFMMD), is a distance between signals
on a data graph that is found by analytically solving for an optimal witness function. Furthermore,
through the use of Chebyshev polynomials (Mason & Handscomb, 2002), GFMMD can be com-
puted rapidly, and has a closed-form solution. We demonstrate its potential on toy datasets as well
as single cell data, where we use it to identify gene modules.

Our main contributions are as follows: 1) We define Graph Fourier MMD as a distance between
signals on arbitrary graphs, and prove that it is both an integrable probability metric and maximum
mean discrepancy. 2) We derive an exact analytical solution for GFMMD which can be approxi-
mated in O(n(log n+m2)) time to calculate all pairwise-distances between distributions, where n
is the number of vertices of the graph and m is the number of signals. 3) We derive feature map
for GFMMD that allows for efficient embeddings and dimensionality reduction. 4) We provide an
efficient Chebyshev approximation method for computing GFMMD among a set of signals. 5) We
showcase application of GFMMD to single cell RNA-sequencing data.

1.1 RELATED WORK

Spectral methods, such as (Coifman & Lafon, 2006; Belkin & Niyogi, 2003; Bronstein & Bronstein,
2010), define an embedding of the nodes of a graph using the eigendecomposition of a graph operator
(Laplacian or diffusion operator). Similar to these methods, we use the graph’s spectral properties
to define an embedding of signals on the graph, and we show that this embedding preserve an MMD
distance between signals.

The closest related work is that of Diffusion EMD Tong et al. (2021), which involves diffusion
graph signals to different scales using a diffusion operator (similar to that of a diffusion map Coif-
man & Lafon (2006)) to create multiscale density estimates of the data. Then Diffusion EMD
computes weighted L1 distance between the multiscale density estimates of different signals. While
this method is faster than most primal methods for EMD computation, it can be inaccurate unless
the graph is significantly large.

Earlier methods that have been proposed for empirical estimations of high dimensional EMD include
the Sinkhorn method Cuturi (2013), which involves Sinkhorn iterations (repeated normalization) of
a joint probability distribution to converge at a distribution that describes a valid transport plan, i.e.
whose marginals agree with the two empirical distributions. The authors of (Solomon et al., 2015;
Huguet et al., 2022) extent the Sinkhorn algorithm to graphs with a heat-geodesic ground distance.
Their algorithm can be computed efficiently for two signals on a sparse graphs, but does not provide
an embedding of signals.

In (Le et al., 2022; 2019; Essid & Solomon, 2018), the authors consider the EMD between distribu-
tions defined on a distance graph, that is the edge weights define the cost of moving mass from one
node to another. The authors in (Le et al., 2022; 2019) provide a closed-form solution that relies on
a graph shortest path distance. In this setting, there is no sparse approximation to diffusion distances
in terms of graph shortest path. We consider a different problem where the edges of the graph are
affinities.
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Among methods for MMD, the most common method has been a sampling based method that also
forms a 2-sample Kernel test based on defining a kernel between empirical observations Gretton
et al. (2012). Note that semantically this takes distances between point clouds themselves by mod-
eling them as a data graph with vertices as points. We define a method of taking signals which
generalizes to an arbitrary graph, on a point cloud or otherwise, and demonstrate its effectiveness
both when the graph lies in a metric space and when adjacencies are binary. We compare our method
GFMMD to all three of these methods.

2 PRELIMINARIES

Integral probability metrics IPMs (Müller, 1997; Sriperumbudur et al., 2012) constitute a fam-
ily of distances between probability distributions. They are often used when dealing with em-
pirical samples (datasets) sampled from a continuous space. In contrast, the alternative class of
ϕ-divergences (such as KL-divergence) is often less useful as a measure between empirical sam-
ples with poor behavior when the domains do not overlap. In contrast to ϕ-divergences, integral
probability metrics are defined over a metric space, this allows for a reasonable distance between
distributions with non-overlapping support.

Definition 1. Given a metric space (X , d), a family F of measurable, bounded functions on X , and
two measures P and Q on X , the IPM between P and Q is defined as

γF (P,Q) ≜ sup
f∈F

EP (f)− EQ(f).

Here, F is a family of “witness function” since it emphasizes the differences between P and Q,
choosing a certain F determines the IPMs.

Maximum Mean Discrepancy IfH is a Reproducing Kernel Hilbert Space (RKHS) of functions
on X (equipped with norm ∥(·)∥H), then the IPM corresponding to F = {f : ∥f∥H ≤ 1} is a kernel
Maximum Mean Discrepancy (Gretton et al., 2012). Numerous distances between distributions are
IPMs, given a suitable choice of F . For example, the Wasserstein distance is an IPM where F
corresponds to the family of Lipschitz functions.

Computing MMDs in practice could be difficult. Algorithms like Kernel MMD rely on the fact that
kernels induce such a RKHS, and vice-versa. It can be shown that, for a given positive definite
kernel k : X × X → R, there exists a RKHS H in which, ∀f ∈ H, f(x) = ⟨f, k(x, ·)⟩H. So in
particular, ⟨k(y, ·), k(x, ·)⟩H = k(x, y).

Definition 2. Let k(·, ·) be a positive definite kernel and H is the Hilbert space in which
⟨f, k(x, ·)⟩H = f(x) for all f ∈ H . The mean embedding of a probability distribution P is de-
fined as EX∼P [k(X, ·)], and the Maximum Mean Discrepancy between P and Q is defined to be
MMD(P,Q) = sup∥f∥H≤1 EP (f)− EQ(f).

As a consequence of the Cauchy-Schwarz inequality, it can be shown that MMD(P,Q) = ∥µP −
µQ∥H. Kernel MMD (Gretton et al., 2012) works by estimating the norm in the RKHS with the
empirical mean embeddings defined by the kernel k(·, ·)

∥µP − µQ∥2H = E
X,X′∼P

k(X,X ′) + E
Y,Y ′∼Q

k(Y, Y ′)− 2 E
X∼P,Y∼Q

k(X,Y ).

Example 2.1. If X ∼ P and Y ∼ Q are two point clouds of size m and n, we can approximate the
distance MMD(P,Q) by approximating the expectations with empirical means

≈ 1

m(m− 1)

m∑
i=1

m∑
j=1,j ̸=i

k(xi, xj) +
1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

k(yi, yj)− 2
1

mn

m∑
i=1

n∑
j=1

k(xi, yj).

Note that, in practice, this quantity is often computed by random sampling with replacement from
the point clouds X and Y .
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Wasserstein Distance The Earth Mover’s Distance (EMD), also known as the 1-Wasserstein dis-
tance, is a distance between probability distributions designed to measure the least amount of ”work”
it takes to move mass from one distribution to another. Formally, we are given two distributions P
and Q on a measure space (Ω,F , µ) and a distance d : X ×X → R. Most commonly, Ω might be a
Riemann manifold, Rd, or in our case, a finite graph. We define the space of couplings of P and Q,
denoted Π(P,Q) to be the set of joint probability distributions whose marginals are equal to P and
Q.

Definition 3. The 1-Wasserstein Distance between P and Q is defined to be:

W (P,Q) ≜ min
π∈Π(P,Q)

∫
X×X

d(x, y)π(x, y).

The supremizing joint distribution π would then be called the optimal transport plan. In the case
that Ω is finite (say of size n), Π(P,Q) could be thought of as the set of n× n matrices π for which
π1 = P,1Tπ = Q. Then we could represent distances in a n× n matrix D, and the EMD is given
by minπ π ·D. Typical solutions to EMD in its primal form are found using linear programming. A
well known theorem in the study of optimal transport is the Kantorovich-Rubinstein Duality, which
provides an equivalent expression for the Wasserstein Distance based on the dual optimization. Let-
ting ∥f∥≤1 symbolize the condition that f obeys a 1-Lipschitz constraint: in other words, that for
all x, y ∈ X , |f(x)− f(y)| ≤ d(x, y).
Theorem 1. (Kantorovich-Rubinstein) The EMD is an IPM withF the space of 1-Lipschitz functions

W (P,Q) = sup
∥f∥≤1

EP (f)− EQ(f).

We refer to Dudley (2018) for a proof of the previous theorem. Intuitively, we can think of suitable
functions f as being varying slowly over X . The 1-Lipschitz constraint prevents witness functions
from behaving too erratically over the space. Then calculating the Wasserstein distance is equivalent
to solving the above linear program. In the discrete case, we are trying to maximize ⟨f, P ⟩ − ⟨f,Q⟩
subject to |f(a)− f(b)| ≤ d(a, b) for all a, b ∈ V .

The Graph Laplacian For a weighted graph G = (V, E , w) on n vertices, we have a number of
associated matrices. The first of which is an adjacency / affinity matrix A for which, given vertices
a and b, A(a, b) = w(a, b); for our purposes, we assume w(a, b) ≥ 0. In the case when V belongs
to a metric space (X , d), we have an associated distance matrix M for which M(a, b) = d(a, b)
for all a, b ∈ V . Oftentimes, the affinity matrix A is generated by a nonlinear kernel function k(·)
so that A(a, b) = k(M(a, b)). For our purposes, if A is generated in this way, we will call G a
affinity graph. There is also a diagonal degree matrix for which D(a, a) =

∑
b∈V w(a, b). Finally,

we define the combinatorial Laplacian L = D − A. It can be shown that for any function on the
vertices f , fTLf =

∑
(a,b)∈E w(a, b)(f(a)− f(b))2. From this identity, it’s clear that L is positive

semi-definite, with spectrum {λi, ψi}n−1
i=0 (such that λi is nondecreasing in i). In fact, the dimension

of L’s kernel is equal to the number of connected components of G. In particular, L1 = 0, where 1
is the all 1’s vector. If G is fully connected, then 1 spans the kernel of L. Since L is positive semi-
definite, it is diagonalizable with an orthonormal set of eigenvectors, so we may write L = ΨΛΨT

where Λ = diag(λ0 λ1 . . . λn−1) and Ψ = (ψ0 ψ1 . . . ψn−1). Then the Graph Fourier Transform
of a function f : V → R is defined as f̂ = ΨT f . Similarly, for any function h : {λi}i → R, we
can define the graph filter H : f 7→

∑n−1
i=0 h(λi)f̂(i)ψi = Ψh(Λ)ΨT f . As a matter of notation, the

L− refers to the Moore-Penrose inverse of L and L−1/2 is defined as ΨΛ−1/2ΨT , where Λ−1/2 is
obtained by taking the elementwise reciprocal square roots of positive entries of Λ, and leaving the
zeros as is.

3 METHODS

In the following, with present definitions and theorems for arbitrary probability distributions P and
Q, but our theory can be extended to any real bounded signals, the expectations would be replaced
by the integrals w.r.t. a finite (signed) measure.
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3.1 GRAPH FOURIER MMD AS AN OPTIMIZATION

For Graph Fourier MMD in a metric space, we are given a finite affinity graph G = (V, E , d) on a
metric space (X , d). We are also given two probability distributions P,Q : V → R (where each
node comes with a given probability). If we were to take the 1-Wasserstein distance between P and
Q, the dual form would yield:

W (P,Q) = max
f
⟨f, P −Q⟩ subject to

1

d(a, b)2
(f(a)− f(b))2 ≤ 1 ∀a, b ∈ V

Now, we will augment the above constraint. Instead, we impose the new relaxed constraint that∑
(a,b)∈E

1
d(a,b)2 (f(a) − f(b))2 ≤ T for some threshold T . Note that if w(a, b) = 1/d(a, b)2,

then this condition is equivalent to fTLf ≤ T . The constraint fTLf ≤ T is valid for any way of
calculating the affinity and result in a closed-form solution. It as a similar interpretation than the
1-Lipschitz as it quantifies the smoothness of a signal on a graph with respect to the affinities. For
example, if we assume that our data lies on a manifold, we can choose a different level of affinity,
such as w(a, b) = exp(−d(a, b)2/2σ2) to penalize transport over larger global distances. Thus, we
define our distance between P and Q only in terms of L. In the following, we only assume that the
affinities are nonnegative.
Definition 4. Let G = (V, E , w) be a finite graph with Laplacian L and P,Q be two bounded
probability distributions on V . For T ∈ R+, the Graph Fourier MMD between P and Q is

GFMMD(P,Q) ≜ max
f :fTLf≤T

EP (f)− EQ(f).

Note that this definition holds for any construction of a positive semi-definite Laplacian matrix L
and chosen T .
Theorem 2. Let G,L, T be as defined in Definition 4 and let G be fully connected. Then, for any two
bounded probability distributions P and Q defined on V , GFMMD(P,Q) =

√
T∥L− 1

2 (P − Q)∥,
where ∥ · ∥ is the ℓ2 norm in Rn.

Proof. P and Q can be viewed as vectors indexed over V so that, for any function f : V →
R,EP (f) − EQ(f) = ⟨P − Q, f⟩. Additionally, note that for any function f , we can write
f = f1 + f2, where f1 is orthogonal to the 1 vector (so f1 ∈ C(L)) and f2 ∈ ker(L) the
kernel of L. Since ker(L) is 1, we have f2 = c1 for some c ∈ R. Then, EP (f) − EQ(f) =
EP (f1) − EQ(f1) + EP (f2) − EQ(f1) = EP (f1) − EQ(f1) + EP (c1) + EQ(c1) = EP (f1) −
EQ(f1) + c1 − c1 = EP (f1) − EQ(f1). Thus, for any such f , it can be assumed, without loss of
generality, that f ⊥ 1. If G is disconnected, we can still assume that f ⊥ ker(L), but this is more
technical and will be omitted for now (see Theorem A.1.1). In particular, it can be assumed that
LL−f = f where L− is the pseudo-inverse of L. Note fTLf ≤ T if and only if |L 1

2 f | ≤
√
T .

Thus, we can rewrite the optimization as max⟨P −Q,
√
TL− 1

2 · 1√
T
·L 1

2 f⟩ where the maximum is

over {f : | 1√
T
L

1
2 f | ≤ 1}. Doing a change of variables of L

1
2 f to x, then from the Cauchy Schwarz

Inequality, we have GFMMD(P,Q) =
√
T sup∥x∥≤1⟨L− 1

2 (P − Q), x⟩ =
√
T∥L− 1

2 (P − Q)∥, as
desired.

Note that the assumption that G is connected was key to this proof. These concerns are addressed in
Theorems A.1.1 and Corollary A.1.2. Since P−Q ̸∈ C(L) if and only if ⟨(P−Q), I{Ck}⟩ = 0 for
all connected components k, this condition can be easily checked in practice. GFMMD possesses
a set of convenient properties. Namely, we have a representation in terms of an explicit feature
map L− 1

2 . So to compute pairwise distances, it is sufficient to apply the feature map and then take
Euclidean distances. Also, the distance value is a bona fide distance (particularly an MMD), and it
is also preserved under certain graph manipulations. These are the results of Lemmas 3 and 4.
Lemma 3. (i) GFMMD(·, ·) defines a valid distance on the probability distributions acting on
V . Furthermoe, (ii) GFMMDG(P,Q) is a Maximum Mean Discrepancy with explicit feature map√
TL− 1

2 .

Proof. For (i), note that L−1/2(P − Q) is linear. By the usual nonnegativity of lengths,
GFMMD(P,Q) =

√
T∥L− 1

2P − L− 1
2Q∥ ≥ 0, so GFMMD(·, ·) is nonnegative. Furthermore,
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note that GFMMD(P,Q) = 0 if and only if L− 1
2P = L− 1

2Q. But since P and Q sum to 1, L− 1
2 as

injectively on the set of functions orthogonal to its kernel, so P = Q. Thus, GFMMD(P,Q) ≥ 0,
with equality if and only if P = Q. Finally, the triangle inequality holds, since for arbitrary prob-
ability densities P,Q,R, GFMMD(P,Q) =

√
T∥L− 1

2P − L− 1
2Q∥ ≤

√
T∥L− 1

2P − L− 1
2R∥ +√

T∥L− 1
2Q − L− 1

2R∥ = GFMMD(P,R) + GFMMD(Q,R) follows from the usual triangle in-
equality in ℓ2. Thus, GFMMD is a valid distance acting on probability distributions. For (ii), by
definition, an MMD γ between P and Q takes the form γ(P,Q) = sup∥f∥H≤1 EP (f) − EQ(f),
where H is some Hilbert Space and {f : ∥f∥H ≤ 1} corresponds to the unit ball. If we define a
Hilbert space on ℓ2 with ⟨x, y⟩H = 1

T xL
−y, it follows that ∥f∥H ≤ 1 corresponds to fTLf ≤ T .

Thus, GFMMD(·, ·) possesses the form of a valid MMD. Therefore, this distance is also an IPM.

Note that if we choose our parameter T in such a way that it is proportional to the total degree of
the graph, we may rescale our affinities however we like without affecting the underlying distance.
This is the claim of Lemma 4.

Lemma 4. If G = (V, E , w) and G′ = (V, E , cw) are finite, fully connected graphs with c ∈
R and T is chosen to be proportional to the total degree of the graph, then GFMMDG(P,Q) =
GFMMDG′(P,Q). In other words, Graph Fourier MMD is scale invariant.

Proof. This follows from the fact that a matrix scales inversely with its pseudo-inverse. If T is
proportional to the total graph degree T ∝

∑
a D(a, a), then we define T = k ·

∑
a D(a, a). In

particular, if L,L′ are the Laplacians of G and G′, then all of the following hold: L′ = cL, T =
kTrL, T ′ = kTrL′ = kTr cL = cT . Also note (L′)−(cL)− = 1

cL
−, so

√
T ′∥(L′)−(P −

Q)∥ =
√
cT∥ 1cL

−(P − Q)∥ =
√
T∥(L)−(P − Q)∥. And we conclude GFMMDG′(P,Q) =

GFMMDG(P,Q)

A nice corollary of Lemma 4 is that if our affinities satisfy w(a, b)/d(a, b) = g(c) for some function
g of c, then GFMMD is invariant under rescaling of distances as well. For instance, by doubling
all points in V , the GFMMD between two distributions remains the same. Moreover, if we were to
choose to encode each vertex a of G as the Kronecker delta δa, then the corresponding embeddings
for each vertex would be familiar. In fact, the best k-dimensional representation (by multidimen-
sional scaling) of the vertices will coincide almost exactly with Hall’s Spectral Graph Drawing (Hall,
1970), which uses the first k nontrivial eigenvectors to represent vertices using coordinates in Rk.
This is made formal by Theorem 5, which proof is presented in the Appendix.

Theorem 5. If X = {δi}i∈V is a family of Kronecker-delta functions centered at each vertex of
G, then the k-dimensional embedding which best preserves the distances between signals in X is
equivalent up to rescaling to Hall’s Spectral Graph Drawing of the Graph G in k-dimensions.

3.2 COMPUTATIONAL COMPLEXITY AND SPEEDUP

Computation of exact GFMMD is O(n3) as it requires computing the pseudo-inverse of L. The
space complexity is O(n2) for since it requires representation of the full distance matrix. However,
with some minor modifications we can greatly reduce the time and memory requirements in the
particular case where the graph G is sparse i.e. |E| = O(n log n). In such cases, we present an
O(n log n) algorithm for the computation of GFMMD which is substantially faster than naive im-
plementations based on a Chebyshev polynomial approximation of the filter in Algorithm 1 as well
as a KNN kernel. The steps for an arbitrary graph are the same, but with W provided.
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Algorithm 1 GFMMD in Metric Space
Input: A set of n points X ⊆ Rd, m probability distributions fi : X → R in an n ×m matrix
F , and a kernel function k : X ×X → R
Output: An m × n embedding matrix E in which ∥Ei − Ej∥ = GFMMD(fi, fj). M and a
distance matrix in which Mij = GFMMD(fi, fj)

Create a thresholded K-Nearest Neighbor graph G over X with O(n log n) edges
Wij ← k(Xi, Xj) for all (i, j) ∈ E
L← D−W, where D is the matrix whose diagonal is the row sums of W.
Ei ← L− 1

2 fi either by Chebyshev approximation of the filter h(λ) = λ−
1
2

Mij ← ∥Ei −Ej∥ for all i, j ∈ [n]
return M ,E

This gives a total fine grained time complexity ofO((k1+t)n log n+k2nm logm) and a space com-
plexity ofO(n log n+mn) space. Here, t is the order of the Chebyshev polynomial, k1 is the thresh-
old for number of nearest-neighbors in constructing G, and k2 is the number of nearest-distributions
we’d like to calculate. More simply, for fixed Chebyshev order, and number of neighbors, the time
to estimate distances between all distributions is O(n log n+ nm2).

4 EMPIRICAL RESULTS & APPLICATIONS

In our experiments, signals are always nonnegative and normalized to be interpreted as probability
distributions. However, while Graph Fourier MMD is developed in the case in which P and Q are
regarded as signals representing probability distributions, we may take distances between any two
bounded signals P and Q on a shared graph via GFMMD(P,Q) = ∥L−1/2(P −Q)∥2.

4.1 IDENTIFYING DISTRIBUTIONS ON THE SWISS ROLL

In this experiment, we generate random point clouds centered at points on the swiss roll. More
specifically, we sample n = 100 points on the swiss roll x1, x2, . . . , xn and rotate the coordinates
into 10-dimensional space. Then, around each of these points, we generate a point cloud di of size
m = 100 points from a multivariate normal distribution centered at xi. The result is nm points
in R10. For each i, j ∈ [n], we have a known geodesic distance between xi and xj . Across the
different measures, we can see how well the distance between the point clouds di and dj compares
to the geodesic distance between their corresponding centers xi and xj . We generate a common data
graph with nm vertices and consider a family of n probability distributions pi(x) = 1

m1{x ∈ di}
We compare the distributions using: 1) computation of earth Mover’s Distance between point clouds
in ambient space, 2) Sinkhorn algorithm (Cuturi, 2013), 3) Diffusion EMD (Tong et al., 2021), 4)
Kernel MMD (Gretton et al., 2012) between all pairs pi, pj via random sampling (20 points from
each distribution with replacement), 5) Graph Fourier MMD between pi, pj , using both the exact
calculation and approximation via Chebyshev polynomials. Results are shown in Table 1.

Figure 1: Left: first two PCs of the embeddings E from Algorithm 1., colored by the coordinate
of the corresponding center along the curved direction of the swiss roll. Right: Geodesic distance
between centers vs. corresponding distance between distributions
By plotting true geodesic distance between centers against distance by each of these methods, we
can assess the corresponding method accuracy. On the left of Figure 1 is EMD, where the oscillatory
pattern illustrates its ineffectiveness at calculating distances between distributions on graphs, since
Euclidean distance between points on the swiss roll has periodic behavior in curvature. Diffusion
EMD and Kernel MMD are effective at taking distances between points initially, but fail to discern
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Method Spearman-ρ 10-NN time (s) All-pairs time(s)

DiffusionEMD 0.584 ± 0.017 2.171 ± 0.265 3.341 ± 0.333
Exact 0.253 ± 0.022 26.881 ± 1.104 26.881 ± 1.104
Sinkhorn 0.250 ± 0.022 54.346 ± 17.576 54.346 ± 17.576
rbf-kernel-MMD 0.509 ± 0.021 5.016 ± 0.237 5.016 ± 0.237
Graph MMD (Exact) 0.613 ± 0.019 139.453 ± 16.790 139.468 ± 16.794
Graph MMD (Chebyshev, 8) 0.606 ± 0.024 0.619 ± 0.057 0.641 ± 0.056
Graph MMD (Chebyshev, 64) 0.593 ± 0.021 1.155 ± 0.035 1.163 ± 0.035
Graph MMD (Chebyshev, 512) 0.612 ± 0.018 6.249 ± 2.896 6.258 ± 2.895
Graph MMD (Chebyshev, 4096) 0.612 ± 0.018 48.138 ± 1.184 48.159 ± 1.182

Table 1: Comparison of runtime and Spearman-ρ correlation to ground truth manifold distances
between distributions with mean ± standard deviation over 10 seeds for 100 distributions of 100
points each on a swiss roll manifold. The exact Graph MMD is most performant but requires a
eigen-decomposition. The Chebyshev approximated Graph MMD (Chebyshev, t) is extremely fast
and almost as performant at even lower orders t.

between higher and higher distances. Graph Fourier MMD, on the other hand, has a far more
clear linear correlation, which levels off much slower. If instead of taking the distances in the
embedded space between distributions, we could take the embeddings and project them to a low
dimensional space by running PCA on the matrix

√
TL−1/2X , where X = [d1 d2 . . . dn]. We

would therefore obtain the best lower dimensional linear embedding in which distances between
distributions approximates their distance according to Graph Fourier MMD. By taking the first two
PCs of the embedding and coloring by the curvature coordinate of corresponding distribution center,
we find that we are highly effective at capturing geometry of the underlying manifold.

4.2 SINGLE CELL ANALYSIS WITH GFMMD

To demonstrate the utility of Graph Fourier MMD for biological analysis, we leverage publicly
available single-cell RNA sequencing dataset of CD8-positive T cells (Zheng et al., 2017). CD8-
positive T cells are adaptive immune cells known to be critical for mediating immune response in
infection, cancer, and other diseases. This dataset consists of 9,167 cells with 1,991 highly variable
genes on each cell. Then we apply Algorithm 1 with the adaptive Gaussian Kernel (Moon et al.,
2019) between datapoints, to compute GFMMD between genes, resulting in an 1991× 1991 matrix
of distances. Here we viewed each gene as a distribution nearest neighbor cell graph. We also obtain
E which is an 1991× 9167 matrix containing an explicit feature map or embedding of the genes. In
Figure 2A, we visualize the gene embedding using both PCA and PHATE (Moon et al., 2019). We
find that clusters 0 − 9 in from the gene embedding, show characteristic expression on the cellular
embedding in Figure 2B. In other words, the subplots in Figure 2B represent a PHATE map of the
cells in this dataset, and when we highlight the expression of gene clusters on the cells we see that
these clusters have localized expression on the cellular manifold.

To interpret these gene clusters for biological significance, we analyzed the gene set enrichment of
clusters 6 and 7 with Enrichr (Chen et al., 2013), which show high expression in opposite ends of the
cellular manifold (see Figure 2. Enrichr shows that cluster 7 has strong enrichment for signatures
of a naive T cell becoming activatied with mitosis and T cell activation signatures being significant.
On the other hand, cluster 6 shows strong enrichment for an effector CD8 T cell, with signatures of
cytotoxic activity and inflammatory signaling (interferon gamma). Thus, these genes can be used to
characterize the cellular manifold as following a trajectory from naive to effector CD8 T cells. We
compare these to gene clusters derived from DiffusionEMD, as well as to a more standard method
of gene selection in biology: differential expression of genes in different areas of cellular state space
based on a Wilcoxon rank sum test between the two manually curated cell clusters from Zheng et al.
(2017). The gene clusters 4 and 8 from DiffusionEMD that were most enriched on the opposite ends
of the manifold consisted of 6 genes and 11 genes, which resulted in no enrichment for the above
signatures. These genes upregulated based on the Wilcoxon rank sum test give a much less clear
picture of the cellular state space, with the same annotations scoring much lower.
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Figure 2: A. Embeddings of genes of the dataset from Zheng et al. (2017) computed by the GFMMD Al-
gorithm, visualized with PCA and PHATE (Moon et al., 2019), colored by results of K-means clustering. B.
Embeddings of cells from Zheng et al. (2017) visualized with PHATE. Each plot is colored by the average
expression of genes in the marked cluster over cells. C. Comparison of enrichment scores from Enrichr (Chen
et al., 2013) on T-cell relevant annotations, between GFMMD-based gene sets from clusters 7, 6 and differential
expression-based gene sets.

Figure 3: We visualize the 1st, 10th, 100th, and
1500th most local genes on the cell graph. In-
deed, we find the expected behavior. Density plots
for localization scores, comparing housekeeping
genes and naive CD8+ T cell signature. The naive
gene signatures are given by the red curve and
Housekeeping gene signatures by the gray.

Local Genes A novel type of analysis en-
abled by GFMMD is a search for localized sig-
nals. Often, researchers in the single cell field
search highly variable genes, but we posit that
genes that have localized expression on cellu-
lar manifolds can be used to characterize salient
cellular subtypes. We propose a measure of
gene locality by GFMMD between the gene
signal and a uniform distribution on the graph.

Definition 5. The gene localization score, s of
gene p, described by distribution P on the cel-
lular data graph as: s(p) = GFMMD(P,U).
Here, U = 1

n1 on the same vertex set.

Theorem 6. The localization score s can be
computed as: s(p) = GFMMD(P,U) =

∥L− 1
2P∥.

Proof. Since 1 is in the kernel of L (and thus L−), we have GFMMD(P,U) = ∥L− 1
2P −L− 1

21∥ =
∥L− 1

2P∥.

Based on this score, in Figure 3, we visualize first most local gene, 10th most local gene, and
20th most local. Here, we compare localization scores between housekeeping genes and the gene
signature for naive CD8+ T cells. Housekeeping genes are expressed highly in many systems, but
are not known to have a function that contributes strongly to cell-cell variation for T cells Eisenberg
& Levanon (2003); Wang et al. (2021); de Jonge et al. (2007). By contrast, cells enriched for the
naive CD8+ T cell signature are a subset of T cells along the T cell differentiation axis. We show
that the localization score is an order of magnitude higher for the naive gene signature versus the
housekeeping signature Figure 3, validating our intuition about localized genes.

5 CONCLUSION

In this paper we have introduced Graph Fourier MMD, a framework for taking distances between
signals on graphs and generating embeddings in which these distances hold. We have shown its
intuitive performance in both the Riemannian and abstract graphical setting for known distributions,
as well as its advantage in speed, and ability to capture global properties of the underlying data
manifold compared to alternative methods like Earth Mover’s Distance and Diffusion EMD. Its
rapidity makes it particularly useful for high dimensional datasets, such as single cell data, where
we have showed its ability to capture the natural trajectories of gene expression.
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6 REPRODUCIBILITY

In the experiments, the main libraries which were used were pygsp to generate, store, and manipulate
graphs. This includes key functions such as filter, which we use for both the exact and Chebyshev ap-
proximated version of Graph Fourier MMD. This library includes the toy datasets which were used,
including the grid graph (section 4), Minnesota graph, and Bunny graph. Source code for imple-
mentation of Graph Fourier MMD and the swiss roll experiment (section 4.1) is located on GitHub
at https://anonymous.4open.science/r/Graph-Fourier-MMD-5C10/. For the biological experiments,
cell-cell affinities were calculated using k-nearest neighbors upon centering and normalizing the
data matrix of gene expression in each cell.
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A APPENDIX

A.1 PROOF OF STATED RESULTS

A.1.1 PROOF OF THEOREM A.1.1

Theorem Let C(L) be the column space of L. Then P − Q ̸∈ C(L) if and only if there exists a
connected component C of G such that

∑
i∈C P ̸=

∑
i∈C Q. Furthermore, if d is a distance acting

on V and L is constructed so that w(a, b) = 0 when d(a, b) = ∞, then W (P,Q) = ∞ when
P −Q ̸∈ C(L).

Proof. Note that if C1 . . . Cm are the connected components of G, then the kernel of L is spanned
by the mutually orthogonal vectors I{C1} . . . I{C2}. First, if there exists a connected component
Ck such that

∑
a∈Ck

P (a) ̸=
∑

a∈Ck
Q(a), then,

⟨I{Ck}, P −Q⟩ ≠ 0

And we are done: P −Q has nonzero component in the kernel of L. On the other hand, if L has a
nonzero projection in the kernel of L, this will be witnessed by some function in the basis. Thus, one
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of our basis functions I{Ck} (for some k) will satisfy ⟨P−Q, ⟩ ≠ 0, so looking at the corresponding
connected component Ck, ∑

a∈Ck

P (a) ̸=
∑
a∈Ck

Q(a)

Giving us the other direction.

For the second part of the proof, assume V lie in some metric space with distance d between vertices,
and we define the Wasserstein metric W (P,Q) by this distance. Also let Π be the set of matrices π
which satisfy π1 = P,1Tπ = Q and D be the distance matrix defined by D over V . I now claim
that, supposing L is generated by an affinity w such that w(a, b) = 0 if and only if d(a, b) =∞, that
if P and Q possess the above property, then W (P,Q) = ∞. Indeed, note that the set of transport
plans is enclosed in a finite-dimensional polytope and is thus a compact set. So we may consider
the transport plan γ. Suppose that W (P,Q) is finite. Then for all a, b such that a and b belong to
different connected components of the graph, γ(a, b) = 0, or else W (P,Q) ≥ γ(a, b)d(a, b) = ∞.
Additionally, without loss of generality, there exists a Ck for which

∑
a∈Ck

P (a) >
∑

a∈Ck
Q(a).

But since γ’s marginals are P and Q, it should be that,

∑
a∈Ck

P (a) =
∑
a∈Ck

∑
b∈V

γ(a, b) =
∑
a∈Ck

∑
b∈Ck

γ(a, b).

Likewise,

∑
a∈Ck

Q(a) =
∑
a∈Ck

∑
b∈Ck

γ(a, b)

But
∑

a∈Ck
P (a) ̸=

∑
a∈Ck

Q(a), which contradicts our assumption that W (P,Q) <∞.

A.1.2 PROOF OF COROLLARY A.1.2

Corollary For a possibly disconnected graph G as defined,

GFMMD(P,Q) =

{√
T∥L− 1

2 (P −Q)∥ if P −Q ∈ C(L)
∞ otherwise.

Proof. We repeat the same argument as before. First, if P −Q is not in the column space of L, it has
nonzero component in the kernel of L. Then, we conclude by Theorem A.1.1 that P and Q have
different amounts of mass is a connected component Ck. Then let f = αI{Ck}. We then have that,
EP (I{Ck})−EQ(I{Ck}) ̸= 0. So in particular, EP (f)−EQ(f) = α ·C for some nonzero number
C. And since αI{Ck} is in the kernel of L, fTLf = 0. Therefore, GFMMD(P,Q) ≥ α ·C. Letting
α → ∞, we know GFMMD(P,Q) = ∞. For the other direction, if f ∈ C(L), then LL−f = f ,
and the remainder of the proof is the same as that of Theorem 2.

A.1.3 PROOF OF THEOREM 5

Theorem 5 If X = {δi}i∈V is a family of Kronecker-delta functions centered at each vertex of
G, then the k-dimensional embedding which best preserves the distances between signals in X is
equivalent up to rescaling to Hall’s Spectral Graph Drawing of the Graph G in k-dimensions.

Proof. Note that X , the data matrix of Kronecker Deltas, is equal to I, the n-dimensional iden-
tity. So

√
TL− 1

2X =
√
TL− 1

2 , hence the best k-dimensional embedding of
√
TL− 1

2 (respect-
ing the L2 norm between columns) will be equivalent to Principal Component Analysis (P.C.A.).
Since L− 1

21 = 0, L− 1
2 ’s columns are mean-centered, so its covariance matrix of

√
TL− 1

2 is
T
nL

− 1
2
T

L− 1
2 = T

nL
−.
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Since its columns and rows are already mean centered. And thus P.C.A. will select the eigenvectors
of L− corresponding to the kth largest eigenvalues. Note that these are precisely given by ψ1, ψ2..ψk

with associated eigenvalues in L− given by λ−1
1 . . . λ−1

k . Letting Λk = diag(λ−1/2
1 . . . λ

−1/2
k ) and

Ψk = (ψ1 . . . ψk), P.C.A. would embed
√
TL− 1

2 as,

ΨT
kL

− 1
2 = ΨT

kΨΛ− 1
2ΨT = (Ik 0n−k) Λ

− 1
2ΨT = (IkΛk 0n−k)Ψ

T = ΛkΨ
T
k .

So our embedding of distributions would be given by ΛkΨ
T
k . On the other hand, Hall’s Spectral

Graph Drawing would embed the graph G simply as ΨT
k , since it chooses the first k nontrivial

eigenvectors of L. Thus, coordinates in each embedding are the same up to the rescaling by eigen-
values.

A.2 GRID GRAPH

Grid Graph First, we consider a 16 × 16 grid graph (vertices given by {(i, j)}1≤i,j≤16. We can
construct a signal P by placing a Dirac δ(8,4) on the vertex (8,4) and then diffusing it with a heat
filter (using time τ = 16). Q is generated likewise, but by applying a heat filter to δ(8,4+2j) and
diffusing for each j = 0, 1, 2, 3. The result are two modes: P on the left, and Q moving along the
right. The distributions are visualized in the top row, and the witness function to their difference in
the bottom row of figure 4.

And of course, the corresponding distances between P and the Q’s (per the order presented above)
are increasing in the distances between the appropriate centers.

Figure 4: Top row: the distributions P and Q, where the signal P stays fixed but the vertex at which
Q is centered shifts to the right. Corresponding distances between distributions appear in the title,
and the relevant centers of P and Q are highlighted. Bottom row: corresponding witness functions
f to the difference between P and Q.

A.3 DIFFUSING SIGNALS ON THE BUNNY GRAPH

One very simple sanity check of a measure of spread is to verify that the more we diffuse a Dirac,
the lower the distance to the uniform. Indeed, if we begin with the Bunny graph (from pygsp’s built
in library) and diffuse the Dirac δ1400 (1400 was chosen for visual appeal) for scales τ = 20, 24, 28,
and 212 (using a heat filter), we find that the corresponding measures of spread are 40.5, 26.9, 21.5,
and 9.76. The signals are visualized below:

Figure 5: The signal δ1400 diffused to levels 1,61, 62, and 63 using a heat filter.
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A.4 BIMODAL SIGNALS

We can take the earlier signals from the grid graph (each pair of P and Q for translations of Q) and
combine them into a new signal 1

2 (P + Q). This forms a family of bimodal signals for which the
two modes spread. Accordingly, in the example above, the distance to the uniform is given by 11.14,
8.66, 6.13, and 6.09.

A.5 LOCALIZATION ON THE MINNESOTA GRAPH

A.5.1 EXAMPLE: MINNESOTA GRAPH (BINARIZED)

A final sanity check for a measure of closeness to the uniform would be to begin with a density
which puts all its mass on one vertex. Then, put equal mass on that vertex and its neighbors, then
the neighbors of neighbors, etc. More specifically, let Nk(i, j) = {∃k′ ∈ [k] : Ak′

> 0}, or
Nk(i, j) = 1{there is a path of length ≤ k from i to j}. Then we can consider multiplying this by
a Dirac, say δ0 to get a family of signals. Using k = 1, 41, 42, 43, we have a family of distributions
proportional to N1δ0, N2δ0, N3δ0, and N4δ0. Again, we can visualize the activated vertices in
yellow:

Figure 6: The zeroth vertex’s neighbors, then neighbors of neighbors, etc. for order 1, 4, 16, and 64
neighbors. The corresponding distances to the uniform are given in the title.

A.6 EXAMPLE: MINNESOTA GRAPH (SMOOTH WAVES)

A similar example we can consider is a similar class of signals which ”spread” across the graph,
but rather than activating neighbors, simply diffusing the signal from a given start vertex. Here, we
choose the same start vertex, and run heat diffusion at times τ = 20, 24, 28, and 212.

Figure 7: Visualization of the diffusions of the signal δ0 at times 20, 24, 28, and 212. The corre-
sponding distances to the uniform are given above.
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