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ABSTRACT

While massage passing based Graph Neural Networks (GNNs) have become in-
creasingly popular architectures for learning with graphs, recent works have re-
vealed important shortcomings in their expressive power. In response, several
higher-order GNNs have been proposed, which substantially increase the expres-
sive power, but at a large computational cost. Motivated by this gap, we introduce
and analyze a new recursive pooling technique of local neighborhoods that allows
different tradeoffs of computational cost and expressive power. First, we show that
this model can count subgraphs of size k, and thereby overcomes a known limita-
tion of low-order GNNs. Second, we prove that, in several cases, RNP-GNNs can
greatly reduce computational complexity compared to the existing higher-order
k-GNN and Local Relational Pooling (LRP) networks.

1 INTRODUCTION

Graph Neural Networks (GNNs) are powerful tools for graph representation learning (Scarselli et al.,
2008; Kipf & Welling, 2017; Hamilton et al., 2017), and have been successfully used in applica-
tions such as encoding molecules, simulating physics, social network analysis, knowledge graphs,
and many others (Duvenaud et al., 2015; Defferrard et al., 2016; Battaglia et al., 2016; Jin et al.,
2018). An important class of GNNs is the set of Message Passing Graph Neural Networks (MPNNs)
(Gilmer et al., 2017; Kipf & Welling, 2017; Hamilton et al., 2017; Xu et al., 2019; Scarselli et al.,
2008), which follow an iterative message passing scheme to compute a graph representation.

Despite the empirical success of MPNNs, their expressive power has been shown to be limited. For
example, their discriminative power, at best, corresponds to the one-dimensional Weisfeiler-Leman
(1-WL) graph isomorphism test (Xu et al., 2019; Morris et al., 2019), so they cannot, e.g., distinguish
regular graphs. Moreover, they also cannot count any induced subgraph with at least three vertices
(Chen et al., 2020), or learn graph parameters such as clique information, diameter, or shortest cycle
(Garg et al., 2020). Still, in several applications, e.g. in computational chemistry, materials design
or pharmacy (Elton et al., 2019; Sun et al., 2020; Jin et al., 2018), we aim to learn functions that
depend on the presence or count of specific substructures.

To strengthen the expressive power of GNNs, higher-order representations such as k−GNNs (Morris
et al., 2019) and k−Invariant Graph Networks (k−IGNs) (Maron et al., 2019) have been proposed.
k−GNNs are inspired by the k-dimensional WL (k−WL) graph isomorphism test, a message pass-
ing algorithm on k−tuples of vertices, and k−IGNs are based on equivariant linear layers of a
feed-forward neural network applied to the input graph as a matrix, and are at least as powerful as
k−GNN. These models are provably more powerful than MPNNs and can, e.g., count any induced
substructure with at most k vertices. But, this power comes at the computational cost of at least
Ω(nk) operations for n vertices. The necessary tradeoffs between expressive power and computa-
tional complexity are still an open question.

The expressive power of a GNN is often measured in terms of a hierarchy of graph isomorphism
tests, i.e., by comparing it to a k−WL test. Yet, there is limited knowledge about how the expressive
power of higher-order graph isomorphism tests relates to various functions of interest (Arvind et al.,
2020). A different approach is to take the perspective of specific functions that are of practical
interest, and quantify a GNN’s expressive power via those. Here, we focus on counting induced
substructures to measure the power of a GNN, as proposed in (Chen et al., 2020). In particular, we
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study whether it is possible to count given substructures with a GNN whose complexity is between
that of MPNNs and the existing higher-order GNNs.

To this end, we study the scheme of many higher-order GNNs (Morris et al., 2019; Chen et al.,
2020): select a collection of subgraphs of the input graph, encode these, and (possibly iteratively)
compute a learned function on this collection. First, we propose a new such class of GNNs, Re-
cursive Neighborhood Pooling Graph Neural Networks (RNP-GNNs). Specifically, RNP-GNNs
represent each vertex by a representation of its neighborhood of a specific radius. Importantly, this
neighborhood representation is computed recursively from its subgraphs. As we show, RNP-GNNs
can count any induced substructure with at most k vertices. Moreover, for any set of substructures
with at most k vertices, there is a specifiable RNP-GNN that can count them. This flexibility allows
to design a GNN that is adapted to the power needed for the task of interest, in terms of counting
(induced) substructures.

The Local Relational Pooling (LRP) architecture too has been introduced with the goal of counting
substructures (Chen et al., 2020). While it can do so, it is polynomial-time only if the encoded neigh-
borhoods are of size o(log(n)). In contrast, RNP-GNNs use almost linear operations, i.e., n1+o(1),
if the size of each encoded neighborhood is no(1). This is an exponential theoretical improvement
in the tolerable size of neighborhoods, and a significant improvement over the complexity of O(nk)
in k−GNN and k−IGN.

Finally, we take a broader perspective and provide an information-theoretic lower bound on the
complexity of a general class of GNNs that can provably count substructures with at most k vertices.
This class includes GNNs that represent a given graph by aggregating a number of encoded graphs,
where the encoded graphs are related to the given graph with an arbitrary function.

In short, in this paper, we make the following contributions:
• We introduce Recursive Neighborhood Pooling Graph Neural Networks (RNP-GNNs), a

flexible class of higher-order graph neural networks, that provably allow to design graph
representation networks with any expressive power of interest, in terms of counting (in-
duced) substructures.

• We show that RNP-GNNs offer computational gains over existing models that count sub-
structures: an exponential improvement in terms of the “tolerable” size of the encoded
neighborhoods compared to LRP networks, and much less complexity in sparse graphs
compared to k−GNN and k−IGN.

• We provide an information-theoretic lower bound on the complexity of a general class of
GNN that can count (induced) substructures with at most k vertices.

2 BACKGROUND

Message Passing Graph Neural Networks. Let G = (V, E , X) be a labeled graph with |V| = n
vertices. Here, Xv ∈ X denotes the initial label of v ∈ V , where X ⊆ N is a (countable) domain.

A typical Message Passing Graph Neural Network (MPNN) first computes a representation of each
vertex, and then aggregates the vertex representations via a readout function into a representation
of the entire graph G. The representation h(i)

v of each vertex v ∈ V is computed iteratively by
aggregating the representations h(i−1)

u of the neighboring vertices u:

m(i)
v = AGGREGATE(i)

(
{{h(i−1)

u : u ∈ N (v)}}
)
, (1)

h(i)
v = COMBINE(i)

(
h(i−1)
v ,m(i)

v

)
, (2)

for any v ∈ V , for k iterations, and with h(0)
v = Xv . The AGGREGATE/COMBINE functions are

parametrized, learnable functions, and {{.}} denotes a multi-set, i.e., a set with (possibly) repeating
elements. A graph-level representation can be computed as

hG = READOUT
(
h(k)
v : v ∈ V

)
, (3)

where READOUT is a learnable function. For representational power, it is important that the learn-
able functions above are injective, which can be achieved, e.g., if the AGGREGATE function is a
summation and COMBINE is a weighted sum concatenated with an MLP (Xu et al. (2019)).
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Higher-Order GNNs. To increase the representational power of GNNs, several higher-order
GNNs have been proposed. In a k−GNN, a message passing algorithm is applied to the k−tuples
of vertices, in a similar fashion as GNNs do on vertices (Morris et al., 2019). At initialization,
each k−tuple is labeled with its type, that is, two k−tuples are labeled differently if their induced
subgraphs are not isomorphic. As a result, k−GNNs can count (induced) substructures with at
most k vertices even at initialization. Another class of higher-order networks are k−IGNs, which
are constructed with linear invariant/equivariant feed-forward layers, whose inputs consider graphs
via adjacency matrices (Maron et al., 2019). k−IGNs are at least as powerful as k−GNNs, and
hence they too can count substructures with at most k vertices. However, both methods need O(nk)
operations.

Specifically for counting substructures, Chen et al. (2020) propose Local Relational Pooling (LRP)
networks. LRPs apply Relational Pooling (RP) networks (Murphy et al., 2019b;a) on the neighbor-
hoods around each vertex. RP networks use permutation-variant functions and convert them to a
permutation-invariant function by summing over all permutations. This summation is computation-
ally expensive.

3 OTHER RELATED WORKS

Expressive power. Several other works have studied the expressive power of GNNs (Azizian &
Lelarge, 2020). Scarselli et al. (2009) extend universal approximation from feedforward networks
to GNNs, using the notion of unfolding equivalence. Chen et al. (2019) establish an equivalence
between the graph isomorphism problem and the power to approximate permutation invariant func-
tions on graphs. Maron et al. (2019) and Keriven & Peyré (2019) propose higher-order, tensor-based
GNN models that provably achieve universal approximation of permutation-invariant functions on
graphs, and Loukas (2019) studies expressive power under depth and width restrictions. Studying
GNNs from the perspective of local algorithms, Sato et al. (2019) show that GNNs can approximate
solutions to certain combinatorial optimization problems.

Subgraphs and GNNs. The idea of considering local neighborhoods to have better representations
than MPNNs is considered in several works (Liu et al., 2019; Monti et al., 2018; Liu et al., 2020;
Yu et al., 2020; Meng et al., 2018; Cotta et al., 2020; Alsentzer et al., 2020; Huang & Zitnik, 2020).
For example, in link prediction, one can use local neighborhoods around links and apply GNNs, as
suggested in (Zhang & Chen, 2018). A novel method based on combining GNNs and a clustering
algorithm is proposed in (Ying et al. (2018)). For graph comparison (i.e., testing whether a given
possibly large subgraph exists in the given model), Ying et al. (2020) compare the outputs of GNNs
for small subgraphs of the two graphs. To improve the expressive power of GNNs, Bouritsas et al.
(2020) use features that are counts of specific subgraphs of interest. Another related work is (Vignac
et al., 2020), where an MPNN is strengthened by learning local context matrices around vertices.

4 RECURSIVE NEIGHBORHOOD POOLING

Next, we construct Recursive Neighborhood Pooling Graph Neural Networks (RNP-GNNs), GNNs
that can count any set of induced substructures of interest, with lower complexity than previous
models. We represent each vertex by a representation of its radius r1-neighborhood, and then com-
bine these representations. The key question is how to encode these local neighborhoods in a vector
representation. To do so, we introduce a new idea: we view local neighborhoods as small subgraphs,
and recursively apply our model to encode these neighborhood subgraphs. When encoding the local
subgraphs, we use a different radius r2, and, recursively, a sequence of radii (r1, r2, . . . , rt) ∈ Nt to
obtain the final representation h(t)

v of vertices after t recursion steps.

While MPNNs also encode a representation of a local neighborhood of certain radius, the recursive
representations differ as they essentially take into account intersections of neighborhoods. As a
result, as we will see in Section 5.1, they retain more structural information and are more expressive.
Models such as k-GNN and LRP also compute encodings of subgraphs, and then update the resulting
representations via message passing. We can do the same with the neighborhood representations
computed by RNP-GNNs to encode more global information, although our representation results in
Section 5.1 hold even without that. In Section 6, we will compare the computational complexity of
RNP-GNN and these other models.
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Figure 1: Illustration of a Recursive Neighborhood Pooling GNN (RNP-GNN) with recursion pa-
rameters (2, 2, 1). To compute the representation of vertex v in the given input graph (depicted
in the top left of the figure), we first recurse on G(N2(v) \ {v}), depicted in the top right of
the figure). To do so, we find the representation of each vertex u ∈ G(N2(v) \ {v}). For in-
stance, to compute the representation of u1, we apply an RNP-GNN with recursion parameters
(2, 1) and aggregate G((N2(v) \ {v}) ∩ (N2(u1) \ {u1})), which is shown in the bottom left
of the figure. To do so, we recursively apply an RNP-GNN with recursion parameter (1) on
G((N2(v) \ {v}) ∩ (N2(u1) \ {u1}) ∩ (N1(u11) \ {u11})), in the bottom right of the figure.

Formally, an RNP-GNN is a parametrized learnable function f(.; θ) : Gn → Rd, where Gn is the
set of all labeled graphs on n vertices. Let G = (V, E , X) be a labeled graph with |V| = n vertices,
and let h(0)

v = Xv be the initial representation of each vertex v. LetNr(v) denote the neighborhood
of radius r of vertex v, and let G(t−1)

v

(
Nr1(v) \ {v})

)
denote the induced subgraph of G on the

set of vertices Nr1(v) \ {v}, with augmented vertex label X(t−1)
u = (h

(t−1)
u ,1[(u, v) ∈ E ]) for

any u ∈ Nr1(v) \ {v}. This means we add information about whether vertices are direct neighbors
(with distance one) of v. Given a recursion sequence (r1, r2, . . . , rt) or radii, the representations are
updated as

m(t)
v = RNP-GNN(t−1)

(
G(t−1)

v (Nr1(v) \ {v})
)
, (4)

h(t)
v = COMBINE(t)

(
h(t−1)
v ,m(t)

v

)
, (5)

for any v ∈ V , and

hG = READOUT
(
{{h(t)

v : v ∈ V}}
)
. (6)

Different from MPNNs, the recursive update (4) is in general applied to a subgraph, and not a
multi-set of vertex representations. RNP-GNN(t−1) is an RNP-GNN with recursion parameters
(r2, . . . , rt) ∈ Nt−1. The final READOUT is an injective, permutation-invariant learnable multi-set
function.

If t = 1, then

m(t)
v = AGGREGATE(t)

(
{{(h(t−1)

u ,1[(u, v) ∈ E ]) : u ∈ Nr1(v)}}
)

(7)

is a permutation-invariant aggregation function as used in MPNNs, only over a potentially larger
neighborhood. For r1 = 1 and t = 1, RNP-GNN reduces to MPNN.

In Figure 1, we illustrate an RNP-GNN with recursion parameters (2, 2, 1) as an example. We also
provide pseudocode for RNP-GNNs in Appendix C.
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Figure 2: MPNNs cannot count substructures with three vertices or more (Chen et al., 2020). For
example, the graph with black center vertex on the left cannot be counted, since the two graphs on
the left result in the same vertex representations as the graph on the right.

5 EXPRESSIVE POWER

In this section, we analyze the expressive power of RNP-GNNs.

5.1 COUNTING (INDUCED) SUBSTRUCTURES

In contrast to MPNNs, which, in general, cannot count substructures of three vertices or more, in
this section we prove that for any set of substructures, there is an RNP-GNN that provably counts
them. We begin with a few definitions.
Definition 1. LetG,H be arbitrary labeled simple graphs, where V is the set of vertices inG. Also,
for any S ⊆ V , let G(S) denote the subgraph of G induced by S. The induced subgraph count
function is defined as

C(G;H) :=
∑
S⊆V

1{G(S) ∼= H}, (8)

i.e., the number of subgraphs of G isomorphic to H . For unlabeled H , the function is defined
analogously.

We also need to define a notion of covering for graphs. Our definition uses distances on graphs.
Definition 2. Let H = (VH , EH) be a (possibly labeled) simple connected graph. For any S ⊆ VH
and v ∈ VH , define

d̄H(v;S) := max
u∈S

d(u, v), (9)

where d(., .) is the shortest-path distance in H .
Definition 3. Let H be a (possibly labeled) simple connected graph on t + 1 vertices. A permuta-
tion of vertices, such as (v1, v2, . . . , vt+1), is called a vertex covering sequence, with respect to a
sequence r = (r1, r2, . . . , rt) ∈ Nt called a covering sequence, if and only if

d̄H′i(vi;Si) ≤ ri, (10)

for any i ∈ [t + 1] = {1, 2, . . . , t + 1}, where Si = {vi, vi+1 . . . , vt+1} and H ′i = H(Si) is the
subgraph of H induced by the set of vertices Si. We also say that H admits the covering sequence
r = (r1, r2, . . . , rt) ∈ Nt if there is a vertex covering sequence for H with respect to r.

In particular, in a covering sequence we first consider the whole graph as a local neighborhood of
one of its vertices with radius r1. Then, we remove that vertex and compute the covering sequence of
the remaining graph. Figure 3 shows an example of a covering sequence computation. An important
property, which holds by definition, is that if r is a covering sequence for H , then any r′ ≥ r (in a
point-wise sense) is also a covering sequence for H .

Note that any connected graph on k vertices admits at least one covering sequence, which is (k −
1, k − 2, . . . , 1). To observe this fact, note that in a connected graph, there is at least one vertex that
can be removed and the remaining graph still remains connected. Therefore, we may take this vertex
as the first element of a vertex covering sequence, and inductively find the other elements. Since the
diameter of a connected graph with k vertices is always bounded by k − 1, we achieve the desired
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v2v1 v3

v5v4 v6v5v4 v6 v5v4 v6

v2v1 v3 v2v1 v3

Figure 3: Example of a covering sequence computed for the graph on the left. For this
graph, (v6, v1, v4, v5, v3, v2) is a vertex covering sequence with respect to the covering sequence
(3, 3, 3, 2, 1). The first two computations to obtain this covering sequence are depicted in the middle
and on the right.

result. However, we will see in the next section that, when using covering sequences to identify
sufficiently powerful RNP-GNNs, it is desirable to have covering sequences with low r1, since the
complexity of the resulting RNP-GNN depends on r1. We provide an algorithm in Appendix D to
find such covering sequences in polynomial time

More generally, if H1 and H2 are (possibly labeled) simple graphs on k vertices and H1 b H2, i.e.,
H1 is a subgraph of H2 (not necessarily induced-subgraph), then, it follows from the definition that
any covering sequence for H1 is also a covering sequence for H2. As a side remark, as illustrated in
Figure 4, covering sequences need not always to be decreasing.

Using covering sequences, we can show the following result.
Theorem 1. Consider a set of (labeled or unlabeled) graphs H on t + 1 vertices, such that any
H ∈ H admits the covering sequence (r1, r2, . . . , rt). Then, there is an RNP-GNN with recursion
parameters (r1, r2, . . . , rt) that can count any H ∈ H. In other words, if there exists H ∈ H
such that C(G1;H) 6= C(G2;H), then f(G1; θ) 6= f(G2; θ). The same result also holds for the
non-induced subgraph count function.

Theorem 1 states that, with appropriate recursion parameters, any set of (labeled or unlabeled) sub-
structures can be counted by an RNP-GNN. Interestingly, induced and non-induced subgraphs can
be both counted in RNP-GNNs1.

The theorem holds for any covering sequence that is valid for all graphs in H. For any graph, one
can compute a covering sequence by computing a spanning tree, and sequentially pruning the leaves
of the tree. The resulting sequence of nodes is a vertex covering sequence, and the corresponding
covering sequence can be obtained from the tree too (Appendix D). A valid covering sequence for
all the graphs inH is the coordinate-wise maximum of all these sequences.

For large substructures, the sequence (r1, r2, . . . , rt) can be long or include large numbers, and this
will affect the computational complexity of RNP-GNNs. For small, e.g., constant-size substructures,
the recursion parameters are also small (i.e., ri = O(1) for all i), raising the hope to count these
structures efficiently. In particular, r1 is an important parameter. In Section 6, we analyze the
complexity of RNP-GNNs in more detail.

5.2 A UNIVERSAL APPROXIMATION RESULT FOR LOCAL FUNCTIONS

Theorem 1 shows that RNP-GNNs can count substructures if their recursion parameters are chosen
carefully. Next, we provide a universal approximation result, which shows that they can learn any
function related to local neighborhoods or small subgraphs in a graph.

First, we recall that for a graph G, G(S) denotes the subgraph of G induced by the set of vertices S.
Definition 4. A function ` : Gn → Rd is called an r−local graph function if

`(G) = φ({{ψ(G(S)) : S ⊆ V, |S| ≤ r}}), (11)

where ψ : Gr → Rd′ is a function on graphs and φ is a multi-set function.
1For simplicity, we assume that H only contains t+ 1 vertex graphs. If H includes graphs with strictly less

than t + 1 vertices, we can simply add a sufficient number of zeros to the RHS of their covering sequences.
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In other words, a local function only depends on small substructures.

Theorem 2. For any r−local graph function `(.), there exists an RNP-GNN f(.; θ) with recursion
parameters (r − 1, r − 2, . . . , 1) such that f(G; θ) = `(G) for any G ∈ Gn.

As a result, we can provably learn all the local information in a graph with an appropriate RNP-
GNN. Note that we still need recursions, because the function ψ(.) may be an arbitrarily difficult
graph function. However, to achieve the full generality of such a universal approximation result, we
need to consider large recursion parameters (r1 = r−1) and injective aggregations in the RNP-GNN
network. For universal approximation, we may also need high dimensions if feedforward network
layers are used for aggregation (see the proof of the theorem for more details).

As a remark, for r = n, achieving universal approximation on graphs implies solving the graph
isomorphism problem. But, in this extreme case, the computational complexity of the model in
general is not a polynomial in n.

6 COMPUTATIONAL COMPLEXITY

The computational complexity of RNP-GNNs is graph-dependent. For instance, we need to compute
the set of local neighborhoods, which is cheaper for sparse graphs. A complexity measure existing
in the literature is the tensor order. For higher-order networks, e.g., k−IGNs, we need to consider
tensors in Rnk

. The space complexity is then O(nk) and the time complexity can be even more,
dependent on the algorithm used to process tensors. In general, for a message passing algorithm
on graphs, the complexity of the model depends linearly on the number of vertices (if the graph is
sparse). Therefore, to bound the complexity of a method, we need to bound the number of node
representation updates, which we do in the following theorem.

Theorem 3. Let f(.; θ) : Gn → Rd be an RNP-GNN with the recursion parameters (r1, r2, . . . , rt).
Assume that the observed graphs G1, G2, . . ., whose representations we compute, satisfy the follow-
ing property:

max
v∈[n]

|Nr1(v)| ≤ c, (12)

where c is a graph independent constant. Then, the number of node updates in the RNP-GNN is
O(nct).

In other words, if c = no(1) and t = O(1), then RNP-GNN requires relatively few updates (that is,
n1+o(1)), compared to the higher-order networks (O(nt+1)). Also, in this case, finding neighbor-
hoods is not difficult, since neighborhoods are small (no(1)). Note that if the maximum degree of
the given graphs is ∆, then c = O(r1∆r1). Therefore, similarly, if ∆ = no(1) then we can count
with at most n1+o(1) updates.

The above results show that when using RNP-GNNs with sparse graphs, we can learn functions of
substructures with k vertices without requiring k−order tensors. LRPs also encode neighborhoods
of distance r1 around nodes. In particular, all c! permutations of the nodes in a neighborhood of
size c are considered to obtain the representation. As a result, LRP networks only have polynomial
complexity if c = o(log(n)). Thus, RNP-GNNs can provide an exponential improvement in terms
of the tolerable size c of neighborhoods with distance r1 in the graph.

Moreover, theorem 3 suggests to aim for small r1. The other ri’s may be larger than r1, as shown in
Figure 4, but do not affect the upper bound on the complexity.

7 AN INFORMATION-THEORETIC LOWER BOUND

In this section, we provide a general information-theoretic lower bound for graph representations
that encode a given graph G by first encoding a number of (possibly small) graphs G1, G2, . . . , Gt

and then aggregating the resulting representations. The sequence of graphs G1, G2, . . . , Gt may be
obtained in an arbitrary way from G. For example, in an MPNN, Gi can be the computation tree
(rooted tree) at node i. As another example, in LRP, Gi is the local neighborhood around node i.
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v1

v2 v3 v4 v5 v6

Figure 4: For the above graph, (v1, v2, . . . , v6) is a vertex covering sequence. The corresponding
covering sequence (1, 4, 3, 2, 1) is not decreasing.

Formally, consider a graph representation f(.; θ) : Gn → Rd as

f(G; θ) = Φ({{ψ(Gi) : i ∈ [t]}}), [t] = {1, . . . , t} (13)

for any G ∈ Gn, where Φ is a multi-set function, (G1, G2, . . . , Gt) = Ξ(G) where Ξ(.) : Gn →(⋃∞
m=1 Gm

)t
is a function from one graph to t graphs, and ψ :

⋃∞
m=1 Gm → [s] is a function on

graphs taking s values. In short, we encode t graphs, and each encoding takes one of s values. We
call this graph representation function an (s, t)-good graph representation.

Theorem 4. Consider a parametrized class of (s, t)−good representations f(.; θ) : Gn → Rd

that is able to count any (not necessarily induced2) substructure with k vertices. More precisely,
for any graph H with k vertices, there exists f(.; θ) such that if C(G1;H) 6= C(G2;H), then
f(G1; θ) 6= f(G2; θ). Then3, t = Ω̃(n

k
s−1 ).

In particular, for any (s, t)−good graph representation with s = 2, i.e., binary encoding functions,
we need Ω̃(nk) encoded graphs. This implies that, for s = 2, enumerating all subgraphs and
deciding for each whether it equals H is near optimal. Moreover, if s ≤ k, then t = Ω(n) small
graphs would not suffice to enable counting.

More interestingly, if k, s = O(1), then it is impossible to perform the substructure counting task
with t = O(log(n)). As a result, in this case, considering n encoded graphs (as is done in GNNs or
LRP networks) cannot be exponentially improved.

The lower bound in this section is information-theoretic and hence applies to any algorithm. It may
be possible to strengthen it by considering computational complexity, too. For binary encodings, i.e.,
s = 2, however, we know that the bound cannot be improved since manual counting of subgraphs
matches the lower bound.

8 TIME COMPLEXITY LOWER BOUNDS FOR COUNTING SUBGRAPHS

In this section, we put our results in the context of known hardness results for subgraph counting.

In general, the subgraph isomorphism problem is known to be NP-complete. Going further, the
Exponential Time Hypothesis (ETH) is a conjecture in complexity theory (Impagliazzo & Paturi,
2001), and states that several NP-complete problems cannot be solved in sub-exponential time.
ETH, as a stronger version of the P 6= NP problem, is widely believed to hold. Assuming that
ETH holds, the k−clique detection problem requires at least nΩ(k) time (Chen et al., 2005). This
means that if a graph representation can count any subgraph H of size k, then computing it requires
at least nΩ(k) time.

Corollary 1. Assuming ETH conjecture holds, any graph representation that can count any sub-
structure H on k vertices with appropriate parametrization needs nΩ(k) time to compute.

The above bound matches the O(nk) complexity of the higher-order GNNs. Comparing with The-
orem 4 above, Corollary 1 is more general, while Theorem 4 has fewer assumptions and offers a
refined result for aggregation-based graph representations.

2The theorem also holds for induced-subgraphs, with/without vertex labels.
3Ω̃(m) is Ω(m) up to poly-logarithmic factors.
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Given that Corollary 1 is a worst-case bound, a natural question is whether we can do better for
subclasses of graphs. Regarding H , even if H is a random Erdös-Rényi graph, it can only be
counted in nΩ(k/ log k) time (Dalirrooyfard et al., 2019).

Regarding the input graph in which we count, consider two classes of sparse graphs: strongly sparse
graphs have maximum degree ∆ = O(1), and weakly sparse graphs have average degree ∆̄ = O(1).
We argued in Theorem 3 that RNP-GNNs achieve almost linear complexity for the class of strongly
sparse graphs. For weakly sparse graphs, in contrast, the complexity of RNP-GNNs is generally not
linear, but still polynomial, and can be much better than O(nk). One may ask whether it is possible
to achieve a learnable graph representation such that its complexity for weakly sparse graphs is still
linear. Recent results in complexity theory imply that this is impossible:
Corollary 2 (Gishboliner et al. (2020); Bera et al. (2019)). There is no graph representation algo-
rithm that runs in linear time on weakly sparse graphs and is able to count any substructure H on
k−vertices (with appropriate parametrization).

Hence, RNP-GNNs are close to optimal for several cases of counting substructures with
parametrized learnable functions.

9 CONCLUSION

In this paper, we studied the theoretical possibility of counting substructures (induced-subgraphs) by
a graph representation network. We proposed an architecture, called RNP-GNN, and we proved that
for reasonably sparse graphs we can efficiently count substructures. Characterizing the expressive
power of GNNs via the set of functions they can learn on substructures may be useful for developing
new architectures. In the end, we proved a general lower bound for any graph representation which
counts subgraphs and works by aggregating representations of a collection of graphs derived from
the graph.
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Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-leman
invariance: subgraph counts and related graph properties. Journal of Computer and System Sci-
ences, 2020.

Waı̈ss Azizian and Marc Lelarge. Characterizing the expressive power of invariant and equivariant
graph neural networks. arXiv preprint arXiv:2006.15646, 2020.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In Advances in neural information processing
systems, pp. 4502–4510, 2016.

Suman K Bera, Noujan Pashanasangi, and C Seshadhri. Linear time subgraph counting, graph
degeneracy, and the chasm at size six. arXiv preprint arXiv:1911.05896, 2019.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improv-
ing graph neural network expressivity via subgraph isomorphism counting. arXiv preprint
arXiv:2006.09252, 2020.

Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David Juedes, Iyad A Kanj, and Ge Xia.
Tight lower bounds for certain parameterized np-hard problems. Information and Computation,
201(2):216–231, 2005.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. In Advances in Neural Information
Processing Systems, pp. 15894–15902, 2019.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? arXiv preprint arXiv:2002.04025, 2020.

9



Under review as a conference paper at ICLR 2021

Leonardo Cotta, Carlos H. C. Teixeira, Ananthram Swami, and Bruno Ribeiro. Unsupervised
joint k-node graph representations with compositional energy-based models. arXiv preprint
arXiv:2010.04259, 2020.

Mina Dalirrooyfard, Thuy Duong Vuong, and Virginia Vassilevska Williams. Graph pattern detec-
tion: Hardness for all induced patterns and faster non-induced cycles. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, pp. 1167–1178, 2019.
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A PROOFS

A.1 PROOF OF THEOREM 1

A.1.1 PRELIMINARIES

Let us first state a few definitions about the graph functions. Note that for any graph function
f : Gn → Rd, we have f(G) = f(H) for any G ∼= H .
Definition 5. Given two graph functions f, g : Gn → Rd, we write f w g, if and only if for any
G1, G2 ∈ Gn,

∀G1, G2 ∈ Gn : g(G1) 6= g(G2) =⇒ f(G1) 6= f(G2), (14)

or, equivalently,

∀G1, G2 ∈ Gn : f(G1) = f(G2) =⇒ g(G1) = g(G2). (15)

Proposition 1. Consider graph functions f, g, h : Gn → Rd such that f w g and g w h. Then,
f w h. In other words, w is transitive.

Proof. The proposition holds by definition.

Proposition 2. Consider graph functions f, g : Gn → Rd such that f w g. Then, there is a function
ξ : Rd → Rd such that ξ ◦ f = g.

Proof. Let Gn = ti∈NFi be the partitioning induced by the equality relation with respect to the
function f on Gn. Similarly define Gi, i ∈ N for g. Note that due to the definition, {Fi : i ∈ N} is a
refinement for {Gi : i ∈ N}. Define ξ to be the unique mapping from {Fi : i ∈ N} to {Gi : i ∈ N}
which respects the equality relation. One can observe that such ξ satisfies the requirement in the
proposition.

Definition 6. An RNP-GNN is called maximally expressive, if and only if

• all the aggregate functions are injective as mappings from a multi-set on a countable
ground set to their codomain.

• all the combine functions are injective mappings.
Proposition 3. Consider two RNP-GNNs f, g with the same recursion parameters r =
(r1, r2, . . . , rt) where f is maximally expressive. Then, f w g.

Proof. The proposition holds by definition.

Proposition 4. Consider a sequence of graph functions f, g1, . . . , gk. If f w gi for all i ∈ [k], then

f w
k∑

i=1

cigi, (16)

for any ci ∈ R, i ∈ N.

Proof. Since f w gi, we have

∀G1, G2 ∈ Gn : f(G1) = f(G2) =⇒ gi(G1) = gi(G2), (17)

for all i ∈ [k]. This means that for any G1, G2 ∈ Gn if f(G1) = f(G2) then gi(G1) = gi(G2),
i ∈ [k], and consequently

∑k
i=1 cigi(G1) =

∑k
i=1 cigi(G2). Therefore, from the definition we

conclude f w∑k
i=1 cigi. Note that the same proof also holds in the case of countable summations

as long as the summation is bounded.
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Definition 7. Let H = (VH , EH , XH) be a labeled connected simple graph on k vertices. For any
labeled graph G = (VG, EG, XG) ∈ Gn, the induced subgraph count function C(G;H) is defined
as

C(G;H) :=
∑
S⊆[n]

1{G(S) ∼= H}. (18)

Also, let C̄(G;H) denote the number of non-induced subgraphs of G which are isomorphic to H . It
can be defined with the homomorphisms from H to G. Formally, if n > k define

C̄(G;H) :=
∑
S⊆[n]
|S|=k

C̄(G(S);H). (19)

Otherwise, n = k, and we define

C̄(G;H) :=
∑

H̃∈H̃(H)

cH̃,H × 1{G ∼= H̃}, (20)

where

H̃(H) := {H̃ ∈ Gk : H̃ c H
}
, (21)

is defined with respect to the graph isomorphism, and cH̃,H ∈ N denotes the number of subgraphs
in H identical to H̃ . Note that H̃(H) is a finite set and c denotes being a (not necessarily induced)
subgraph.

Proposition 5. Let H be a family of graphs. If for any H ∈ H, there is an RNP-GNN fH(.; θ)
with recursion parameters (r1, r2, . . . , rt) such that fH w C(G;H), then there exists an RNP-GNN
f(.; θ) with recursion parameters (r1, r2, . . . , rt) such that f w∑H∈H C(G;H).

Proof. Let f(.; θ) be a maximally expressive RNP-GNN. Note that by the definition f w fH for any
H ∈ H. Since w is transitive, f w C(G;H) for all H ∈ H, and using Proposition 4, we conclude
that f w∑H∈H C(G;H).

The following proposition shows that there is no difference between counting induced labeled graphs
and counting induced unlabeled graphs in RNP-GNNs.
Proposition 6. Let H0 be an unlabeled connected graph. Assume that for any labeled graph H ,
which is constructed by adding arbitrary labels to H0, there exists an RNP-GNN fH(.; θH) such
that fH w C(G;H), then for its unlabeled counterpart H0, there exists an RNP-GNN f(.; θ) with
the same recursion parameters as fH(.; θH) such that f w C(G;H0).

Proof. If there exists an RNP-GNN fH(.; θH) such that fH w C(G;H), then for a maximally ex-
pressive RNP-GNN f(.; θ) with the same recursion parameters as fH we also have fH w C(G;H).
Let H be the set of all labeled graphs H = (V, E , X) ∈ Gk up to graph isomorphism, where
X ∈ X k for a countable set X . Note thatH = {H1, H2, . . .} is a countable set. Now we write

C(G;H0) =
∑
S⊆[n]
|S|=k

1{G(S) ∼= H0} (22)

=
∑
S⊆[n]
|S|=k

∑
i∈N

1{G(S) ∼= Hi} (23)

=
∑
i∈N

∑
S⊆[n]
|S|=k

1{G(S) ∼= Hi} (24)

=
∑
i∈N

C(G;Hi). (25)

(26)

Now using Proposition 4 we conclude that f w C(G;H0) since C(G;H0) is always finite.

13
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Definition 8. Let H be a (possibly labeled) simple connected graph. For any S ⊆ VH and v ∈ VH ,
define

d̄H(v;S) := max
u∈S

d(u, v). (27)

Definition 9. Let H be a (possibly labeled) connected simple graph on k = t + 1 vertices. A
permutation of vertices, such as (v1, v2, . . . , vt+1), is called a vertex covering sequence, with respect
to a sequence r = (r1, r2, . . . , rt) ∈ Nt, called a covering sequence, if and only if

d̄H′i(vi;Si) ≤ ri, (28)

for i ∈ [t + 1], where H ′i = H(Si) and Si = {vi, vi+1, . . . , vt+1}. Let CH(r) denote the set of all
vertex covering sequences with respect to the covering sequence r for H .

Proposition 7. For any G,H ∈ Gk, if G c H (non-induced subgraph), then

CH(r) ⊆ CG(r), (29)

for any sequence r.

Proof. The proposition follows from the fact that the function d̄ is decreasing with introducing new
edges.

Proposition 8. Assume that Theorem 1 holds for induced-subgraph count functions. Then, it also
holds for the non-induced subgraph count functions.

Proof. Assume that for a connected (labeled or unlabeled) graph H , there exists an RNP-GNN with
appropriate recursion parameters fH(.; θH) such that fH w C(G;H), then we prove there exists an
RNP-GNN f(.; θ) with the same recursion parameters as fH such that f w C̄(G;H).

If there exists an RNP-GNN fH(.; θH) such that fH w C(G;H), then for a maximally expressive
RNP-GNN f(.; θ) with the same recursion parameters as fH we also have f w C(G;H). Note that

C̄(G,H) =
∑
S⊆[n]
|S|=k

C̄(G(S);H) (30)

=
∑
S⊆[n]
|S|=k

∑
H̃∈H̃(H)

cH̃,H × 1{G(S) ∼= H̃} (31)

=
∑

H̃∈H̃(H)

cH̃,H

∑
S⊆[n]
|S|=k

1{G(S) ∼= H̃} (32)

=
∑
i∈N

cHi,H × C(G,Hi), (33)

where H̃(H) = {H1, H2, . . .}.
Claim 1. f w C(G,Hi) for any i.

Using Proposition 4 and Claim 1 we conclude that f w C̄(G;H) since C̄(G;H) is finite and
f w C(G,Hi) for any i, and the proof is complete. The missing part which we must show here
is that for any Hi the sequence (r1, r2, . . . , rt) which covers H also covers Hi. This follows from
Proposition 7. We are done.

At the end of this part, let us introduce an important notation. For any labeled connected simple
graph on k vertices G = (V, E , X), let G∗v be the resulting induced graph obtained after removing
v ∈ V from G with the new labels defined as

X∗u := (Xu,1{(u, v) ∈ E}), (34)

for each u ∈ V \ {v}. We may also use X∗vu for more clarification.
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A.1.2 PROOF OF THEOREM 1

We utilize an inductive prove on t, which is the length of the covering sequence of H . Equivalently,
due to the definition, t = k − 1, where k is the number of vertices in H . First, we note that due
to Proposition 8, without loss of generality, we can assume that H is a simple connected labeled
graph and the goal is to achieve the induced-subgraph count function via an RNP-GNN with appro-
priate recursion parameters. We also consider only maximally expressive networks here to prove the
desired result.

Induction base. For the induction base, i.e., t = 1, H is a two-vertex graph. This means that we
only need to count the number of a specific (labeled) edge in the given graph G. Note that in this
case we apply an RNP-GNN with recursion parameter r1 ≥ 1. Denote the two labels of the vertices
in H by XH

1 , X
H
2 ∈ X . The output of an RNP-GNN f(.; θ) is

f(G; θ) = φ({{ψ(XG
v , ϕ({{X∗vu : u ∈ Nr1(v)}})) : v ∈ [n]}}), (35)

where f(.; θ) we assume that f(.; θ) is maximally expressive. The goal is to show that f w C(G;H).
Using the transitivity of w, we only need to choose appropriate φ, ψ, ϕ to achieve f̂ = C(G;H) as
the final representation. Let

φ({{zv : v ∈ [n]}}) :=
1

2 + 2× 1{XH
1 = XH

2 }

n∑
i=1

zi (36)

ψ(X, (z, z′)) := z × 1{X = XH
1 }+ z′ × 1{X = XH

2 } (37)

ϕ({{zu : u ∈ [n′]}}) :=
( n′∑

i=1

1{zu = (XH
2 , 1)},

n′∑
i=1

1{zu = (XH
1 , 1)

)
. (38)

Then, a simple computation shows that

f̂(G; θ) = φ({{ψ(XG
v , ϕ({{X∗vu : u ∈ Nr1(v)}})) : v ∈ [n]}}), (39)

= C(G;H). (40)

Since f̂(.; θ) is an RNP-GNN with recursion parameter r1 and for any maximally expressive RNP-
GNN f(.; θ) with the same recursion parameter as f̂ we have f w f̂ and f̂ w C(G;H), we conclude
that f w C(G;H) and this completes the proof.

Induction step. Assume that the desired result holds for t − 1 (t ≥ 2). We show that it also holds
for t. Let us first define

H∗ := {H∗v1 : ∃v2, . . . , vt ∈ [k] : (v1, v2, . . . , vt) ∈ CH(r)} (41)

c∗(H∗) := 1{H∗ ∈ H∗} ×#{v ∈ [k] : H∗v
∼= H∗}. (42)

Note thatH∗ 6= ∅ by the assumption. Let

‖H∗‖ :=
∑

H∗∈H∗
c∗(H∗). (43)

For all H∗ ∈ H∗, using the induction hypothesis, there is a (universal) RNP-GNN f̂(.; θ̂) with
recursion parameters (r2, r3, . . . , rt) such that f̂ w C(G;H∗). Using Proposition 4 we conclude

f̂ w
∑

u∈[k]:H∗u∈H∗
C(G;H∗u). (44)

Define a maximally expressive RNP-GNN with the recursion parameters (r1, r2, . . . , rt) as follows:

f(G; θ) = φ({{ψ(XG
v , f̂(G∗(Nr1(v)); θ̂)) : v ∈ [n]}}). (45)

Similar to the proof for t = 1, here we only need to propose a (not necessarily maximally expressive)
RNP-GNN which achieves the function C(G;H).

Let us define

fH∗u(G; θ) := φ({{ψH∗u
(XG

v , ξ ◦ f̂(G∗(Nr1(v)); θ̂)) : v ∈ [n]}}), (46)
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where

φ({{zv : v ∈ [n]}}) :=
1

‖H∗‖
n∑

i=1

zi (47)

ψH∗u
(X, z) := z × 1{X = XH

u }, (48)

(49)

and ξ ◦ f̂ = C(G;H∗u). Note that the existence of such function ξ is guaranteed due to Proposition
2. Now we write

‖H∗‖ × C(G;H) = ‖H∗‖
∑
S⊆[n]

1{G(S) ∼= H} (50)

=
∑
S⊆[n]

∑
v∈S

1{∃u ∈ [k] : (G(S \ {v}))∗v ∼= H∗u ∈ H∗ ∧XG
v = XH

u } (51)

=
∑
v∈[n]

∑
v∈S⊆[n]

1{∃u ∈ [k] : (G(S \ {v}))∗v ∼= H∗u ∈ H∗ ∧XG
v = XH

u } (52)

=
∑
v∈[n]

∑
v∈S⊆Nr1 (v)

1{∃u ∈ [k] : (G(S \ {v}))∗v ∼= H∗u ∈ H∗ ∧XG
v = XH

u }

(53)

=
∑
v∈[n]

∑
v∈S⊆Nr1

(v)

∑
u∈[k]:H∗u∈H∗

1{(G(S \ {v}))∗v ∼= H∗u}1{XG
v = XH

u } (54)

=
∑
v∈[n]

∑
u∈[k]:H∗u∈H∗

C(G∗(Nr1(v));H∗u)× 1{XG
v = XH

u }, (55)

which means that ∑
u∈[k]:H∗u∈H∗

fH∗u(G; θ) w C(G;H). (56)

However, for a maximally expressive RNP-GNN f(.; θ) we know that f w fH∗u for all H∗u ∈ H and
this means that f w C(G;H). The proof is thus complete.

A.2 PROOF OF THEOREM 2

For any labeled graph H on r vertices (not necessarily connected) we claim that RNP-GNNs can
count them.

Claim 2. Let f(.; θ) : Gn → Rd be a maximally expressive RNP-GNN with recursion parameters
(r − 1, r − 2, . . . , 1). Then, f w C(G;H).

Now consider the function

`(G) = φ({{ψ(G(S)) : S ⊆ V, |S| ≤ r}}). (57)

We claim that f w ` (f is defined in the previous claim) and this completes the proof according to
Proposition 2.

To prove the claim, assume that f(G1) = f(G2). Then, we conclude that C(G1;H) = C(G2;H)
for any labeled H (not necessarily connected) with r vertices. Now, we have

`(G) = φ({{ψ(G(S)) : S ⊆ V, |S| ≤ r}}) (58)
= φ({{ψ(H) : H ∈ Gr, the multiplicity of H is C(G;H)}}), (59)

which shows that `(G1) = `(G2).

Proof of Claim 2. To prove the claim, we use an induction on the number of connected components
cH of graph H . If H is connected, i.e., cH = 1, then according to Theorem 1, we know that
f w C(G;H).
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Now assume that the claim holds for cH = c − 1 ≥ 1. We show that it also holds for cH = c. Let
H1, H2, . . . ,Hc denote the connected components of H . Also assume that Hi 6∼= Hj for all i 6= j.
We will relax this assumption later. Let us define

AG := {(S1,S2, . . . ,Sc) : ∀i ∈ [c] : Si ⊆ [n];G(Si) ∼= Hi}. (60)

Note that we can write

|AG| =
c∏

i=1

C(G;Hi) (61)

= C(G;H) +

∞∑
j=1

c′jC(G;H ′j), (62)

where H ′1, H
′
2, . . . are all non-isomorphic graphs obtained by adding edges (at least one edge) be-

tween c graphs H1, H2, . . . ,Hc, or contracting a number of vertices of them. The constants c′j
are just used to remove the effect of multiple counting due to the symmetry. Now, since for any
Hi, H ′j the number of connected components is strictly less that c, using the induction, we have
f w C(G;Hi) and f w C(G;H ′j) for all j and all i ∈ [c]. According to Proposition 4, we
conclude that f w C(G;H) and this completes the proof. Also, if Hi, i ∈ [c], are not pairwise
non-isomorphic, then we can use αC(G;H) in above equation instead of C(G;H), where α > 0
removes the effect of multiple counting by symmetry. The proof is thus complete.

A.3 PROOF OF THEOREM 3

To prove Theorem 3, we need to bound the number of node updates required for an RNP-GNN with
recursion parameters (r1, r2, . . . , rt). First of all, we have n variables used for the final represen-
tations of vertices. For each vertex v1 ∈ V , we explore the local neighborhood Nr1(v1) and apply
a new RNP-GNN network to that neighborhood. In other words, for the second step we need to
update |Nr1(v1)| nodes. Similarly, for the ith step of the algorithm we have as most

λi := max
v1∈[n]

max
vj+1∈Nrj

(vj)

∀j∈[i−1]

|Nr1(v1) ∩Nr2(v2) ∩Nr3(v3) . . . ∩Nri(vi)|, (63)

updates. Therefore, we can bound the number of node updates as

n×
t∏

i=1

λi. (64)

Since λi is decreasing in i, we simply conclude the desired result.

A.4 PROOF OF THEOREM 4

Let Kk denote the complete graph on k vertices.
Claim 3. For any k, n ∈ N, such that n is sufficiently large,∣∣∣{C(G;Kk) : G ∈ Gn}

∣∣∣ ≥ (cn/k log(n/k)− k)k

k!
= Ω̃(nk), (65)

where c is a constant which does not depend on k, n.

In particular, we claim that the number of different values that C(G;Kk) can take is nk, up to
poly-logarithmic factors.

To prove the theorem, we use the above claim. Consider a class of (s, t)−good graph representations
f(.; θ) which can count any substructure on k vertices. As a result, f w C(G;Kk) for an appropriate
parametrization θ. By the definition, f(.) must take at least

∣∣∣{C(G;Kk) : G ∈ Gn}
∣∣∣ different

values, i.e., ∣∣∣{f(G; θ) : G ∈ Gn}
∣∣∣ ≥ ∣∣∣{C(G;Kk) : G ∈ Gn}

∣∣∣. (66)
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Also, ∣∣∣{f(G; θ) : G ∈ Gn}
∣∣∣ ≤ ∣∣∣{{{ψ(Gi) : i ∈ [t]}} : G ∈ Gn

}∣∣∣, (67)

where (G1, G2, . . . , Gt) = Ξ(G). But, ψ can take only s values. Therefore, we have∣∣∣{C(G;Kk) : G ∈ Gn}
∣∣∣ ≤ ∣∣∣{f(G; θ) : G ∈ Gn}

∣∣∣ (68)

≤
∣∣∣{{{ψ(Gi) : i ∈ [t]}} : G ∈ Gn

}∣∣∣ (69)

≤
∣∣∣{{{αi : i ∈ [t]}} : ∀i ∈ [t] : αi ∈ [s]}

∣∣∣ (70)

≤ (t+ 1)s−1. (71)

As a result, (t+ 1)s−1 = Ω̃(nk) or t = Ω̃(n
k

s−1 ). To complete the proof, we only need to prove the
claim.

Proof of Claim 3. Let p1, p2, . . . , pm be distinct prime numbers less than n/k. Using the prime
number theorem, we know that limn→∞

m
n/k log(n/k) = 1. In particular, we can choose n large

enough to ensure cn/k log(n/k) < m for any constant c < 1.

For any B = {b1, b2, . . . , bk} ⊆ [m], define GB as a graph on n vertices such that VGB = V0 t
(ti∈[k]Vi), and |Vi| = pbi . Also,

e = (u, v) ∈ GB ⇐⇒ ∃ i, j ∈ [m], i 6= j : u ∈ Vi & v ∈ Vj . (72)

The graph GB is well-defined since
∑k

i=1 pbi ≤ k × n/k = n. Note that C(GB;Kk) =
∏k

i=1 pbi .
Also, since pi, i ∈ [m], are prime numbers, there is a unique bijection

B ϕ←→ C(GB;Kk). (73)

Therefore, ∣∣∣{C(G;Kk) : G ∈ Gn}
∣∣∣ ≥ ∣∣∣{C(GB;Kk) : B ⊆ [m], |B| = k}

∣∣∣ (74)

=

(
m

k

)
(75)

≥ (m− k)k

k!
(76)

≥ (cn/k log(n/k)− k)k

k!
. (77)

B RELATIONSHIP TO THE RECONSTRUCTION CONJECTURE

Theorem 2 provides a universality result for RNP-GNNs. Here, we note that the proposed method is
closely related to the reconstruction conjecture, an old open problem in graph theory. This motivates
us to explain their relationship/differences. First, we need a definition for unlabeled graphs.
Definition 10. Let Fn ⊆ Gn be a set of graphs and let Gv = G(V \ {v}) for any finite simple
graph G = (V, E), and any v ∈ V . Then, we say the set F is reconstructible if and only if there is a
bijection

{{Gv : v ∈ V}} Φ←→ G, (78)

for any G ∈ Fn. In other words, Fn is reconstructible, if and only if the multi-set {{Gv : v ∈ V}}
fully identifies G for any G ∈ Fn.

It is known that the class of disconnected graphs, trees, regular graphs, are reconstructible (Kelly
et al., 1957; McKay, 1997). The general case is still open; however it is widely believed that it is
true.
Conjecture 1 (Kelly et al. (1957)). Gn is reconstructible.
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For RNP-GNNs, the reconstruction from the subgraphs G∗v , v ∈ [n] is possible, since we relabel
any subgraph (in the definition of X∗) and this preserves the critical information for the recursion
to the original graph. In the reconstruction conjecture, this part of information is missing, and this
makes the problem difficult. Nonetheless, since in RNP-GNNs we preserve the original node’s
information in the subgraphs with relabeling, the reconstruction conjecture is not required to hold to
show the universality results for RNP-GNNs, although that conjecture is a motivation for this paper.
Moreover, if it can be shown that the reconstruction conjecture it true, it may be also possible to find
a simple encoding of subgraphs to an original graph and this may lead to more powerful but less
complex new GNNs.

C THE RNP-GNN ALGORITHM

In this section, we provide pseudocode for RNP-GNNs. The algorithm below computes node rep-
resentations. For a graph representation, we can aggregate them with a common readout, e.g.,
hG ← MLP

(∑
v∈V h

(t)
v

)
. Following (Xu et al., 2019), we use sum pooling here, to ensure that we

can represent injective aggregation functions.

Algorithm 1 Recursive Neighborhood Pooling-GNN (RNP-GNN)

Input: G = (V, E , {xv}v∈V) where V = [n], recursion parameters r1, r2, . . . , rt ∈ N, ε(i) ∈ R,
i ∈ [t], node features {xv}v∈V .

Output: hv for all v ∈ V
hin
v ← xv for all v ∈ V

if t = 1 then

hv ← MLP(t)
(

(1 + ε(1))hin
v +

∑
u∈Nr1

(v)\{v}

(hin
u ,1(u, v) ∈ E)′

)
,

for all v ∈ V .
else

for all v ∈ V do
G′v ← G(Nr1(v) \ {v}) with node features {hin

u}
{ĥv,u}u∈G′v\{v} ← RNP-GNN(G′v, (r2, r3, . . . , rt), (ε

(2), . . . , ε(t)))

hv ← MLP(t)
(

(1 + ε(t))hin
v +

∑
u∈Nr1

(v)\{v} ĥu,v

)
.

end for
end if
return {hv}v∈V

With this algorithm, one can achieve the expressive power of RNP-GNNs if high dimensional MLPs
are allowed (Xu et al., 2019; Hornik et al., 1989; Hornik, 1991). That said, in practice, smaller
MLPs may be acceptable (Xu et al., 2019).

D COMPUTING A COVERING SEQUENCE

As we explained in the context of Theorem 1, we need a covering sequence (or an upper bound to
that) to design an RNP-GNN network that can count a given substructure. A covering sequence can
be constructed from a spanning tree of the graph.

For reducing complexity, it is desirable to have a covering sequence with minimum r1 (Theorem
3). Here, we suggest an algorithm for obtaining such a covering sequence, shown in Algorithm 2.
For obtaining merely an aribtrary covering sequence, one can compute any minimum spanning tree
(MST), and then proceed as with the MST in Algorithm 2.

Given an MST, we build a vertex covering sequence by iteratively removing a leave vi from the tree
and adding the respective node vi to the sequence. This ensures that, at any point, the remaining
graph is connected. At position i corresponding to vi, the covering sequence contains the maximum
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distance ri of vi to any node in the remaining graph, or an upper bound on that. For efficiency, an
upper bound on the distance can be computed in the tree.

To minimize r1 = maxu∈V d(u, v1), we need to ensure that a node in arg minv∈V maxu∈V d(u, v)
is a leaf in the spanning tree. Hence, we first compute maxu∈V d(u, v) for all nodes v, e.g., by
running All-Pairs-Shortest-Paths (APSP) (Kleinberg & Tardos, 2006), and sort them in increasing
order by this distance. Going down this list, we try whether it is possible to use the respective node
as v1, and stop when we find one.

Say v∗ is the current node in the list. To compute a spanning tree where v∗ is a leaf, we assign a
large weight to all the edges adjacent to v∗, and a very low weight to all other edges. If there exists
such a tree, running an MST with the assigned weights will find one. Then, we use v∗ as v1 in the
vertex covering sequence. This algorithm runs in polynomial time.

Algorithm 2 Computing a covering sequence with minimum r1

Input: H = (V, E , X) where V = [t+ 1]
Output: A minimal covering sequence (r1, r2 . . . , rt), and its corresponding vertex covering se-

quence (v1, v2, . . . , vt+1)
For any u, v ∈ V , compute d(u, v) using APSP
(u1, u2, . . . , ut+1)← all the vertices sorted increasingly in s(v) := maxu∈V d(u, v)
for i = 1 to t+ 1 do

Set edge weights w(u, v) = 1 + t× 1{u = ui ∨ v = ui} for all (u, v) ∈ E
HT ← the MST of H with weights w
if ui is a leaf in HT then
v1 ← ui
r1 ← s(ui)
break

end if
end for
for i = 2 to t+ 1 do
vi ← one of the leaves of HT

ri ← maxu∈VHT
d(u, vi)

HT ← HT after removing vi
end for
return (r1, r2, . . . , rt) and (v1, v2, . . . , vt+1)
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