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Abstract

Sequential deep learning models excel in domains with temporal or sequential de-
pendencies, but their complexity necessitates post-hoc feature attribution methods
for understanding their predictions. While existing techniques quantify feature
importance, they inherently assume fixed feature ordering — conflating the effects
of (1) feature values and (2) their positions within input sequences. To address
this gap, we introduce OrdShap, a novel attribution method that disentangles these
effects by quantifying how a model’s predictions change in response to permut-
ing feature position. We establish a game-theoretic connection between OrdShap
and Sanchez-Bergantifios values, providing a theoretically grounded approach to
position-sensitive attribution. Empirical results from health, natural language, and
synthetic datasets highlight OrdShap’s effectiveness in capturing feature value and

feature position attributions, and provide deeper insight into model behavior.

1 Introduction

As complex and opaque deep learning mod-
els are increasingly used in high-stakes ap-
plications, it is important to understand the
factors that contribute to their predictions.
Feature attribution methods are a widely
used approach that seeks to quantify the sen-
sitivity of model predictions to changes in
individual input features, thus generating
scores that represent that feature’s impor-
tance or relevance [5, 89]. In particular,
local methods generate separate scores for
each given input sample; this helps users
to understand individual model predictions
rather than relying solely on global attribu-
tion scores. Many recent feature attribution
methods have adapted the Shapley Value
framework [65] from the field of coopera-
tive game theory [43, 75]. Shapley-based
methods have demonstrated their utility in
a wide range of domains [70, 28, 9] and sat-
isfy a number of theoretical properties [43].
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Figure 1: Predicting hospital Length-of-Stay (LOS)
> 3 days for a patient using a sequence of medical
tokens, representing tests and medications (App. A.2).
Traditional feature attribution methods capture model
sensitivity to token values. However, we observe that
permuting token order has a significant effect on the
predicted risk over time (Left) and final prediction
(Right), even when token values are unchanged.
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Figure 2: Overview of OrdShap on a medical example. (A) OrdShap takes a sequence of features
(i.e. tokens) as input, then (B) evaluates the black-box model while sampling different token
permutations (i.e. reordering tokens) and subsets. (C) We summarize attributions due to token
value and token position using OrdShap-VI and OrdShap-PI, respectively. Positive OrdShap-VI
indicates that the presence of the token in the sequence increases the probability of LOS> 3. Positive
OrdShap-PI indicates that probability of LOS> 3 increases when the token appears later in the
sequence; high magnitude indicates high model sensitivity to token position.
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In this work we focus on sequential data, where the samples consist of a sequence of features, such
as text, time-series, or genetic sequencing. Deep learning models such as Transformers [80] and
Recurrent Neural Networks [62] have been shown to be highly effective on sequential data [83] and
are able to capture the sequential dependency between data features. These models make predictions
based not only on the specific feature values in each sample, but also the order in which they occur.

While existing feature attribution methods can be applied to sequential models, they inherently assume
a fixed feature ordering. In particular, most approaches generally derive attributions by measuring
the sensitivity of predictions to small changes in feature values, and otherwise disregard the effects
of feature order [26]. However, permuting feature order, while leaving feature values unchanged,
can have a significant impact on the model’s prediction. For example, when predicting hospital
length-of-stay from longitudinal Electronic Health Record (EHR) data' [59, 41, 55, 27], simply
permuting the timestep of a test result can inflate the predicted risk even when the test result values
are unchanged (Fig. 1), resulting in widely varying predictions. Since existing feature attribution
methods assume a fixed feature ordering, they effectively conflate the effects of 1) the feature’s value
and 2) the feature’s relative position within the sequence.

In this work we propose OrdShap, a local feature attribution approach that quantifies model sensitivity
to both feature values and feature positions in sequential data (Fig. 2). To the best of our knowledge,
OrdShap is the first method to disentangle these two effects. This disentanglement is particularly
valuable in critical domains such as health, where the timing of medical events can be as important as
their occurrence. For example, when analyzing patient trajectories, OrdShap can identify whether an
elevated lab value is significant due to its magnitude or because it occurred when the patient was first
admitted—a distinction that cannot be captured with existing methods.

Main Contributions:

* We propose OrdShap, a local feature attribution framework for sequential models. We further
propose OrdShap-VI and OrdShap-PI, which quantify the Value Importance (VI) and Position
Importance (PI) of each feature in a sequence, respectively.

* We establish a game-theoretical connection between OrdShap and the Sanchez-Bergantifios (SB)
value [63], which satisfies several desirable axioms but has not been utilized for feature attribution.

* We propose two algorithms to efficiently approximate OrdShap.

* Empirical results from health, natural language, and synthetic datasets show that OrdShap is able
to capture how feature ordering affects model prediction.

2 Related Works

Feature Attribution Methods. A variety of post-hoc feature attribution methods have been proposed
[26, 88], many of which can be applied to sequential models. Existing methods have used feature
masking [60, 43, 17], model gradients [4, 66, 76, 69], or self-attention weights [86, 1, 22, 13].
Lundberg and Lee [43] adapted Shapley Values [65] for feature attributions, which has been extended

'We provide additional background on EHR data in App. A.2.



to a number of Shapley-based approaches [75, 44, 21, 33]. While these attributions methods can be
applied to sequential models, many assume feature independence [43, 39]. Frye et al. [23] and Wang
et al. [82] investigate additional constraints to enforce sequential dependency. Second-order methods
[44, 77, 46, 32, 79] can also be used to detect used to detect feature dependencies.

Feature Attribution for Sequential Models. Several methods have also been proposed specifically
for sequential models [51, 89, 78], both on unstructured and structured datasets. TransSHAP [36]
and MSP [72] calculate feature attributions for unstructured text using feature masking. TimeSHAP
[6] adapts KernelSHAP [43] to Recurrent Neural Networks. Meng et al. [47] applies realistic
perturbations to test samples using a generative model. TIME [71] calculates the change in model
loss when permuting features between samples. While these methods are specific for sequential
models, they do not explicitly estimate the importance of feature position or order. The most closely
related work is POSHAP [20], which is a global method that averages KernelSHAP [43] attributions
over each position index for a given test set of samples. In contrast, the proposed method OrdShap is
local attribution method that distentangles the effects of within-sample feature permutations.

3 Technical Preliminaries and Background

Let X be a dataset, where each sample x € X is a sequence (1, Z2, ..., z4). We refer to elements
x; € z as features of x; depending on the application, these can represent (e.g.) tokens, sensor
measurements, or word embeddings, and can be real or vector-valued. Given a sample x € X, let
N ={1,...,d} be the set of feature indices in 2. Consider a trained prediction model f that takes
samples from X as input. We refer to f as the black-box model that we want to explain. We assume
that f has real-valued output; in the multi-class setting, we take the model output for a single selected
class. Let Sg be the symmetric group on S C N with permutations o € Sg. We denote the bijective
mapping corresponding to each 0 € Gg usmg the same symbol, i.e. o(i) maps i € S to another
element j € S. For example, we can write a given o € 6{1,27374} using one-line notation:

o = (o(1),0(2),0(3),0(4)) = (3,2,4,1) M
We can similarly write the inverse permutation o' which maps o back to the previous ordering:
o7 =(07(1),07(2),07(3),07(4)) = (4,2,1,3) @)

An inversion is a pair (o(i),o(j)) such that i < j and o(i) > o(j). We denote o'¢ as the unique
permutation within &g VS C N with 0 inversions, i.e. the identity permutatlon Leto,;¢ =
(e(1),...,0(—=1),i,0(f+1),...,0(]S])) denote the permutation o € &g\ ;3 with i inserted at
position ¢. The goal of feature attribution is to assign a scalar value to each feature ¢ € N representing
its relevance to the model output. In this work, we focus on the Shapley value framework; we introduce
Shapley values in §3.1 and discuss how they are used for feature attribution in §3.2.

3.1 Shapley Values and Extensions

The Shapley value [65] is a game-theoretic method to attribute the contributions of individual “players”
to a cooperative game. Let v : P(N) — R be a set function, i.e. the characteristic function, that
represents the “payoff” assigned to a subset of players S C N, where P(N) denotes the power set of
N. The Shapley value is then the unique attribution for (N, ) that satisfies several desirable axioms:
Efficiency, Symmetry, Null Player, and Additivity (App. A.4).

_ (IN] = [S] = DSTY ,
s = 3 o v (SU{i}) - u(S)] ©)
SCN\{i}
The notation | - | indicates set cardinality. Intuitively, the Shapley value averages the marginal

contribution of feature ¢ (i.e. v (S U {i}) — v(S)) over the all subsets S C N \ {i}. Note that Eq. 3
does not assume any player ordering. A number of extensions have been proposed in this direction
[53, 63]; in particular, Sanchez and Bergantifios [63] propose a value that also captures permutations
for each subset S C N. Let w : 2 — R denote a generalized characteristic function, where 2 is the
set of permutations o € &g V.S C N. We can then define the Sanchez-Bergaiitinos (SB) value:
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The SB value has been investigated in the context of network theory [18, 49] and other game theory
applications [48], though it has not been investigated in the XAl literature. Similar to the Shapley
value, the SB value is the unique value to satisfy the axioms of Efficiency*, Symmetry*, Null Player*,
and Additivity*, which have been adapted for ordered coalitions (App. A.S).

3.2 Shapley Values for Feature Attribution

Shapley values have become widely adopted in machine learning as principled approach for calculat-
ing feature attributions in black-box models [61]. Specifically, we define features as “players” in a
cooperative game, then define a characteristic function vy, that maps a given sample x € X', with
features IV \ S ablated, to the output of model f. Several such functions have been investigated in the
literature [43, 75, 14], differing mainly in their ablation mechanisms. Feature ablation is generally
performed by masking ablated features with some value. For example, we can replace features N \ S
by sampling a distribution X', where X can be the data distribution or a reference distribution.
via(S) =Epox [f(2) | 2] =2, Vi€ S] 5)
We omit the subscripts f,z when clear from context. In contrast, the SB value have not been

investigated in the context of feature attribution. In the next section we discuss challenges with the
SB value and introduce a novel framework for attributing importance to feature positions.

4 Disentangling Feature Position Importance

Assume that we have a sample € X and a prediction model f whose output f(z) depends on the
ordering of features in z. Our goal is to generate an attribution for each feature in = based on 1)
the feature’s value, and 2) the feature’s position within the sequence. For convenience, we assume
that each feature can be permuted to any position within the sequence; in App. B.1 we extend this
assumption for applications with fixed subsequences of features or irregular time intervals. We
first introduce a novel characteristic function to allow feature permutations (§4.1). We then define
OrdShap in §4.2. Approximation methods are addressed in §5.

4.1 Quantifying the Effects of Feature Ordering

We propose to quantify the model’s output when permuting each feature 7 across different positions
in the sequence. Intuitively, the Shapley value evaluates the model f for every possible subset of
features S C N. For each subset S C N, we also want to evaluate f when each feature i € S is
permuted to every position £ € N. This poses a challenge when applying permutations o € Sg to
the sequence z, since the features in N \ .S are not permuted. More formally, for a given feature i,
there exist positions ¢, ¢/ € N such that:

Y Hoes:o(i)=0]# > [{oec&s:07(i) =} (6)
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The proof is detailed in App. C.1. Therefore, feature ¢ is not permuted umformly across positions. For
example, in the singleton set S = {i}, the only permutation o € Sg is or ; therefore 7 is not permuted
to positions £ € N \ S. We therefore define the characteristic function & : 73( ) X &y — R, which
instead rearranges x for a permutation o € S, then ablates the features in IV \ S:

B B , , - xi V'L 6 S
wf7w<570) =Esx l:f(x ) .7,‘071(1,) o {ml- Vie N \ S:| @
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Note that Eq. 7 is a generalization of Eq. 5, reducing to the latter under the identity permutation.
Concretely, s ,(on) = vy () recovers the model output for sample x under the original order.

4.2 OrdShap: Shapley Value with Positional Conditioning

We now define a new attribution v : N x © — R? x R?, where O is the space of functions &.

Definition 1. (OrdShap) Given a set of players N = {1,...,d} and function® : P(N) X 6y — R,
then the OrdShap values v; ¢(N, o) for each player i € N and position ¢ € N is defined as follows:

e = Yy B 50y —a(s\fiho)] @

SCN aeGN
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Definition 1 yields a d x d matrix, where each row corresponds to a feature ¢ € N, and each column
to a position £ € N. Each element -, , represents the importance of feature ¢, conditioned on being
permuted to position £ in the sequence. The diagonal elements +y; ; correspond to the importance of
each feature i at its original position, with the remaining features randomly permuted. Thus, OrdShap
provide a structured representation of how feature position influences the model output.

Next, while OrdShap offer a detailed view of the position-specific importance, we propose two
summary measures: importance related to feature value (OrdShap-VI) and position (OrdShap-PI).

OrdShap-VI. We can disentangle the effect of a feature’s value from its position by averaging over all
possible positions where that feature might appear (i.e., averaging over o ()). This marginalization
yields a single attribution score for each feature ¢ that reflects only the feature’s contribution due to
its value, separate of any positional dependency within the sequence.

_ - 1 -
WN.B) = 15 > (N, @) ©)
LeN
This can be interpreted as the Shapley value averaged over all permutations of the features in x.
Under certain conditions, Eq. 9 has an additional interpretation as the SB value for feature ¢:

Theorem 1. Given a set of players N = {1, ...,d} and a characteristic function o : P(N) xSy —
R, there exists a corresponding function w : ) — R, representing & averaged over the permutations
o € &y which contain a given € &g V.S C N. Then %;(N,&) = ¢B(N,w) is the unique value
to satisfy the SB axioms of Efficiency, Symmetry, Null Player, and Additivity (App. A.5).

The proof is detailed in App. C.2. Further, if we assume that permuting ablated features, which
represent noninformative features, to different positions within x has no effect on the model output,
then 4; corresponds directly to the SB value for feature :.

OrdShap-PI. We propose a summary measure that quantifies the average change in y; ¢ as the
feature position ¢ varies, by approximating the positional effects through a linear model. Intuitively,
OrdShap-PI provides an interpretable answer to the question: is a given feature more important
if it appears later in the sequence, and by how much more? The OrdShap-PI j; is estimated by
minimizing the squared error between the centered feature importance y;  — %; and the centered
positions £ — {, where £ =3\ j/|IN|:

argﬂmin [(£ = 0)Bi — (vie (N, v) — 3:)]° (10)
This results in an attribution whose magnitude indicates the strength of the positional effect, and
whose sign indicates whether the model output increases (3; > 0) or decreases (3; < 0) as feature ¢
is permuted to later positions in the sequence. Together, the OrdShap-VI values capture the feature
importance when averaging over all positions, and OrdShap-PI reflects the average change in model
output as a feature’s position deviates from its mean position. In practice, a user can leverage the
full OrdShap matrix for detailed positional effects on model predictions, or use the OrdShap-VI and
OrdShap-PI values for summarized attributions for feature value and position.

4.3 Comparison: Shapley, OrdShap, OrdShap-VI, and OrdShap-PI

In Fig. 3 we present a toy example illustrating the differences Table 1: Payoffs for the toy example.
between the introduced measures. Items are drawn from a

¢ ¢ - : Item Value
pile with replacement, each with a value defined in Table 1. In
particular, note that bags have no inherent value, however, any gaé’kl;flove’ 0
= Vi

items drawn before drawing a bag are discarded, and therefore 3 if drawn after
have value 0. Only pairs of gloves, and not individual gloves, Hat “Bag”, otherwise 0
have value. We investigate a sample sequence of six items, ) 9 if drawn after
o =[Hat, Hat, Hat, Bag, R-Glove, R-Glove], with a combined Pair of Gloves  «p.0» otherwise 0.
value of &, (o) = 0.

We observe that Shapley Values (§3.2) yields zero attribution for each feature, as the method does
not capture order-dependent effects. In contrast, the OrdShap values (Fig. 3B) indicate that several
features have non-zero importance but they are highly affected by sequence position. In particular, the
“Bag” feature (red) contributes less when it appears later, as fewer items can follow it. The three “Hat”
features (blue, orange, green) have equal, increased value in later positions, while the two “R-Glove”
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Figure 3: Toy example illustrating the differences between (A) Shapley Values, (B) OrdShap, (C)
OrdShap-VI, and (D) OrdShap-PI. Values are calculated on the sample [Hat, Hat, Hat, Bag, R-Glove,
R-Glove], with characteristic function defined in §4.3.

features yield no value, as they never form a pair with a “L-Glove” feature. The OrdShap-VI values
(Fig. 3C) provide the average contribution across all permutations, isolating feature importance
from positional effects. The OrdShap-PI (Fig. 3D) then quantifies position importance; the strongly
negative coefficient for “Bag” indicating reduced value in later positions. In summary, OrdShap
shows that “Hat” and “Bag” do contribute to the sequence, but their impact is masked by their
positional dependency.

5 OrdShap Approximation

While OrdShap provides a way to quantify importance due to feature value and position, the for-
mulation in Eq. 8 is generally infeasible due to the 2¢ subsets and d! permutations. We therefore
introduce two model-agnostic, fixed-sample algorithms for approximating OrdShap. §5.1 introduces
a sampling-based approach that approximates 7; ¢. §5.2 introduces a least-squares approach for
directly estimating OrdShap-VI and OrdShap-PIL.

5.1 Sampling Approximation

We use a permutation sampling approach [74] to approximate ; (N, &) with a fixed sample size
(detailed in App. B.3, Alg. 1). Our approach samples subsets S C N and permutations o € Gy,
then evaluates the marginal contribution to model output when feature 7 is included in .S. For a given
¢ € N we filter permutations such that o~ (i) = /.

5.2 Least-Squares Approximation

While the sampling algorithm in §5.1 estimates each ~y; ¢(V, @) using a fixed number of samples,
we can further improve efficiency by directly approximating OrdShap-VI and OrdShap-PI using a
least-squares (LS) approach. As compared with the sampling algorithm, the LS approach reduces the
number of calls to the model f, since attributions are calculated for all features simultaneously.

Definition 2. (Least-Squares Approximation of OrdShap) Given a set of players N = {1, ...,d} and
a characteristic function & : P(N) x & — R, then OrdShap-VI and OrdShap-PI are the solutions
«;, By, respectively, Yi € N for the following minimization problem:

m’in 5 Z Z (1S Z%Jrz (i) =] Bi — [@(S,0) — (2, 0%)]

SCN oceby 1€S €S
S#@,N

Y= X GNo) +a(e.dd) an

iEN " oEGN

The coefficient u applies a weighting based on subset size. Per Thm. 2 (proof details in App. C.3),

setting this coefficient to % recovers the SB value for the optimal « coefficients.
Theorem 2. Given a set of players N = {1,...,d}, characteristic function® : P(N) x 6y — R,

[NV]-1
(MNISI(INT=s)’
values for the game (N, w), where w is the corresponding function defined in Thm. 1.

and weighting p(s) = then the coefficients oy, . . ., minimizing Eq. 11 are SB
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Figure 4: Evaluation of OrdShap-PI (blue) by permuting an increasing number of features and
calculating the change in the predicted probability of the predicted class (higher is better). On average,
permutating features according to the OrdShap-PI attributions increases or maintains the model’s
prediction, in contrast to existing methods. AUC calculations and error bars are provided in App. E.1.

The optimal /5 coefficients then represent the linear approximation of the average change in ;¢
as the position ¢ changes, i.e. the OrdShap-PI values. We now approximate Eq. 11 using a fixed
number of samples. Let (&) and U(P(N)) be the uniform distributions over S and P(N),
respectively. For a given K, L € N, we draw K samples Sy, ...,Sk ~ U(P(N)) and KL samples
o1,...,0x1 ~U(S ). We take advantage of two key properties to improve efficiency. First, from
the proof of Thm. 2, we can calculate « independently of 3. Second, extending a result from [63],
we establish the following corollary (proof details in App. C.4):

Corollary 2.1. Let  be a characteristic function s.t. 7(S) = ﬁ Yvces W(S,0) VS C N. Then

the OrdShap-VI value 7¥; is equal to the Shapley value under v, i.e. 7;(N,©) = ¢; (N, D).

This result allows us to solve for « separately using the KernelSHAP algorithm [43]; the solution to
o is then used to calculate 3. Let A(®) € {0,1}%%% and A(?) € NKL*4 be defined as follows:

A =15.0G) AL =150, (D@76 - D (12)
where “mod” denotes the modulo operator and 1 denotes the indicator function. Additionally,
let W) € [0,1]5%K and W) € [0, 1]KE*KL be diagonal weighting matrices, with diagonal
elements Wl(’;‘) = u(S;), Wi(’(? ) = (Simod 1) and all other elements equal to 0. Let F(®) ¢ R,

F®) e REL represent the model outputs, with elements Fi(a) = %Zf;ol D, 7 (Si, Ok 4i) —
Wz, (9, oi;\j,) and Fi(ﬁ) = Wy, £ (Simod L, i) — Wq, £ (D, Ui]‘\’,). It then follows that «v, 8 has the solution:

-1
o = {(A(Q))TW(Q)A(Q)} (AT (@) ple) (13)

o
8= {(A(ﬁ))TW(ﬁ)A(ﬁ)} - (A(ﬁ))Tw(ﬁ) B _ (14)
o

Similar to Lundberg and Lee [43], we enforce the constraint in Eq. 11 by eliminating a feature j in
Eq. 13 then solving «; using the constraint. The algorithm is summarized in App. B.3 Alg. 2. In
practice, we can improve efficiency by reducing the number of features to evaluate: for example,
including a preliminary feature selection step, combining features into interpretable groups (similar
to superpixels [60]), or omitting irrelevant features.

In summary, naively evaluating Eq. 8 incurs O(d!2% 6 +) complexity, where 4 is the cost of evaluating
the model f. We reduce this to O(dK L&y + d? K L) with the sampling algorithm, and O(K Ly +
d?>K L+ d®) with the LS algorithm. In practice, the LS algorithm is typically faster than the Sampling
algorithm since function evaluations are often the performance bottleneck. However, the LS algorithm
only calculates OrdShap-PI and OrdShap-VI values, therefore the Sampling algorithm is required to
calculate the full OrdShap value matrix in Def. 1.

6 Experiments

We empirically evaluate OrdShap on its ability to identify the importance of a given sample’s feature
ordering. In §6.1 we quantitatively evaluate OrdShap against existing attribution methods. In §6.2



Table 2: Evaluation of OrdShap-VI using Inclusion AUC (higher is better) and Exclusion AUC (lower
is better) metrics, with standard error in parentheses. The best-performing explainer for each model
is bolded. The associated curves used to generate these results are provided in App. E.1.

Metric Explainer EICU-LOS EICU-Mort MIMICII-LOS MIMICIII-Mort IMDB
DL 0.906 (0.010) 0.804 (0.013) 0.893 (0.011) 0.854 (0.012) 0.784 (0.016)
1G 0.903 (0.010) 0.803 (0.013) 0.896 (0.011) 0.859 (0.012) 0.791 (0.016)
Inclusion KS 0.904 (0.010) 0.801 (0.014) 0.898 (0.011) 0.855 (0.012) 0.863 (0.011)
AUC 1 LIME 0.866 (0.012) 0.776 (0.016) 0.885 (0.012) 0.804 (0.015) 0.859 (0.012)
LOCO 0.904 (0.010) 0.799 (0.014) 0.894 (0.011) 0.854 (0.012) 0.855 (0.012)
Random 0.812 (0.014) 0.769 (0.016) 0.851 (0.014) 0.705 (0.017) 0.797 (0.016)
OrdShap-VI 0.913 (0.010) 0.809 (0.013) 0.899 (0.011) 0.862 (0.011) 0.866 (0.012)
DL 0.614 (0.025) 0.727 (0.022) 0.817 (0.018) 0.484 (0.025) 0.855 (0.012)
1G 0.629 (0.024) 0.728 (0.021) 0.795 (0.019) 0.481 (0.025) 0.867 (0.013)
Exclusion KS 0.626 (0.024) 0.730 (0.021) 0.805 (0.019) 0.485 (0.025) 0.766 (0.018)
AUC | LIME 0.771 (0.017) 0.750 (0.018) 0.840 (0.016) 0.591 (0.022) 0.804 (0.016)
LOCO 0.618 (0.025) 0.732 (0.021) 0.803 (0.019) 0.495 (0.025) 0.784 (0.017)
Random 0.821 (0.014) 0.759 (0.017) 0.866 (0.013) 0.694 (0.018) 0.849 (0.014)
OrdShap-VI 0.573 (0.028) 0.724 (0.022) 0.788 (0.020) 0.472 (0.025) 0.779 (0.021)

we investigate OrdShap on a synthetic dataset. In §6.3 we qualitatively compare OrdShap with
KernelSHAP. In §6.4 we present execution time results. All experiments were performed on an
internal cluster using AMD 7302 16-Core processors and NVIDIA A100 GPUs.

Datasets and Models. We evaluated OrdShap on two EHR datasets (MIMICIII [34] and EICU [57])
and a natural language dataset (IMDB [45]). Full dataset and model details are provided in App. D.1.
MIMICIII and EICU are large-scale studies for Intensive Care Unit (ICU) patient stays. Both datasets
include sequences of clinical events for each patient stay, such as administered lab tests, infusions,
and medications. We follow Hur et al. [31] for data preprocessing and tokenization, then train BERT
classification models [19] on two tasks for each dataset: 1) Mortality and 2) Length-of-Stay > 3 days
(LOS). We also include the IMDB dataset, containing over 50,000 movie reviews, on a sentiment
analysis task. We apply a pretrained DistiIBERT model [64] using the Huggingface library [85], then
evaluate the relevance of each sentence towards the predicted sentiment of the entire movie review.

Explainers. Unless otherwise stated, we use the OrdShap Least-Squares algorithm (§5.2) due to
computational constraints. We compare OrdShap to a variety of attribution methods: KernelSHAP
(KS) [43], LIME [60], and LOCO [40] are perturbation-based approaches. We additionally compare
against gradient-based approaches: Integrated Gradients (IG) [76], and DeepLIFT (DL) [66]. We
also include a baseline, Random, consisting of attributions drawn from 2/ (0, 1)d. Additional detail on
the implemented methods are provided in App. D.2.

6.1 Quantitative Evaluation

We compare OrdShap to a variety of attribution methods to evaluate how (1) OrdShap-PI captures
feature position importance, and (2) OrdShap-VI calculates an attribution that incorporates position
information. For all explainers, we generate attributions for 200 test samples which are evaluated
using quantitative metrics.

(1) Position Importance. The OrdShap-PI attributions quantify both the magnitude and direction of
positional impact on feature importance with respect to model predictions. Therefore, to evaluate
OrdShap-PI, we systematically permute samples according to the generated attributions and measure
the change in model output. Specifically, we select a subset of features based attribution magnitude,
then permute features toward the beginning (negative attributions) or end (positive attributions) of
the sequence. We then measure the model output probability for the predicted class, P(Y = §|Z),
where I represents the permuted sample and  is the predicted class under the original sample x. We
compare to competing methods by similarly permuting features according to their attributions.

Results are presented in Fig. 4. As expected, we observe that permuting features according to
OrdShap-PI generally increases the model output across feature subsets. Interestingly, the model
output remains relatively flat for IMDB when permuting features; this suggests that the model is able
to accurately predict sentiment regardless of sentence order. In contrast, competing methods fail to
capture the importance of feature ordering. Permuting features according to traditional attributions
either does not affect (EICU-LOS) or negatively affects (all other models) affects model output.
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Figure 5: Attributions for a synthetic dataset and model fyoninear- (A) Token values; tokens are
assigned Value Importance (VI) and/or Position Importance (PI) with respect to sequence index 7. (B)
OrdShap-VI and OrdShap-PI attributions are able to separate the different tokens based on VI and PI
effects. (C) In contrast, attributions from existing methods cannot distinguish between the different
tokens since VI and PI effects are entangled.

(2) Value Importance. OrdShap-VI attributions quantify a feature’s contribution to model predictions
independent of positional effects, making them robust across different sequence orderings. To
evaluate this property, we extend the Inclusion/Exclusion AUC (IncAUC / ExcAUC) [33] metrics to
incorporate feature permutations (details provided in App. D.3). More concretely, for each sample we
rank features by attribution scores and iteratively select the top k% of features. These features are then
either masked from the original sample (ExcAUC) or retained in an otherwise completely masked
sample (IncAUC). Importantly, we add a permutation step that reorders features in the masked sample.
We then measure agreement (post-hoc accuracy) between the model’s predictions under the masked,
permuted samples and original sample, averaging over 10 permutations for each &, then summing the
area under the resulting curve for different & values. We additionally implement a similarly modified
1AUC/dAUC metric [56], which directly evaluates the model output rather than post-hoc accuracy.

IncAUC/ExcAUC results are shown in Table 2 1IAUC/dAUC results in App. E.1 Table 5). We observe
that OrdShap-VTI outperforms all competing methods on IncAUC, and performs well on ExcAUC,
only second to KernelSHAP on the IMDB dataset. This supports our observation from (1), that the
DistilBert model predictions are only mildly affected by sentence order in IMDB. Overall the results
indicate that OrdShap-VI provides a more robust attribution under feature permutation, and better
captures each feature’s value importance independent of positional context.

6.2 Attribution Disentanglement on Synthetic Data

We create a synthetic dataset to evaluate the disentanglement of value and position importance.

We sample 200 sequences t) n e {1,..., 200},_0f_1en_gth 10, where each element tE") is a
token sampled uniformly from the set {A, B,C, D, A, B, C'}. We define two models: fiinear(t) =
221 v(t;) and foontinear (t) = sigmoid( fiinear (t)), Where v(t;) is the value of token ¢; (Fig. SA).

Fig. 5 shows the results for fuoniincar- We observe that the associated OrdShap-VI and OrdShap-PI
(Fig. 5B) follow the expected VI and PI values from Fig. 5A. In particular, tokens A, B, A, B exhibit
nonzero OrdShap-PI values, which indicates dependency on feature position. In contrast, tokens
C, D, C exhibit OrdShap-PI = 0, indicating no positional dependency. In addition, OrdShap-VI and
OrdShap-PI attributions are able to fully separate the 7 tokens according to their value and position
importance. This contrasts with traditional attribution methods (Fig. 5C), in which value and position
importance are entangled together, and thus the tokens are unable to be separated.

The results for fiiear are shown in App. E.3 Fig. 9. The additive nature of fje, results in constant
OrdShap attributions for all samples in the dataset. However, existing metrics (Fig. 9C) are still
unable to disentangle the effects of value and position importance.

6.3 Case Study on Medical Tokens

In Fig. 6A we further investigate the LOS > 3 prediction sample from Fig. 1. In this sample, the
model predicts LOS < 3 days, therefore positive attributions indicate important features with respect
to LOS < 3 days. Several key observations emerge. Many medication tokens have high OrdShap-VI
values, which suggests that these medications correspond to LOS < 3 prediction. In particular,
Potassium Chloride is generally used to treat potassium deficiency, a relatively minor condition that
does not generally require a long hospital stay. OrdShap-PI (negative with low magnitude) indicates



Table 3: Execution time results, in seconds, averaged over 200 samples. Standard deviation results
are provided in parentheses. We compare existing attribution methods with OrdShap, calculated
using the Least Squares (LS) and Sampling (S) algorithms. Note that competing methods cannot
disentangle importance due to feature value and position.

Explainer EICU-LOS EICU-Mort MIMICHI-LOS MIMICII-Mort  IMDB

DL 0.02 (0.03) 0.01 (0.03) 0.02 (0.03) 0.01 (0.03) 0.08 (0.03)

1G 0.13 (0.25) 0.04 (0.07) 0.10 (0.08) 0.03 (0.04) 0.22 (0.08)
KS 0.69 (0.08) 0.21 (0.08) 0.68 (0.10) 0.17 (0.06) 1.85(1.88)
LIME 0.14 (0.04) 0.11 (0.06) 0.16 (0.07) 0.12 (0.05) 0.14 (0.05)
LOCO 0.57 (0.13) 0.38 (0.09) 0.36 (0.16) 0.26 (0.11) 0.06 (0.04)
OrdShap (LS) 29.29 (1.30) 5.53 (0.30) 27.33 (4.41) 5.49 (1.23) 54.61 (72.16)
OrdShap (S) 2470.73 (685.0) 984.03 (264.0) 1369.00 (721.7) 565.51 (288.9) 680.23 (440.9)

that this token is less predictive of LOS < 3 (and conversely, more predictive of LOS > 3) when
it occurs later in the sequence. We observe that, indeed, KernelSHAP attributions are relatively
low compared with OrdShap-VI for this token due to its position, however KernelSHAP fails to
distentangle the positional effect.

. . . . . @ Lab Test 8  Medicati
Interestingly, Bedside Glucose Test is assigned a high (A) == . = Ifa =
KernelSHAP value, but OrdShap indicates that this to- 0.06 OrdShap gt"'b"tmns

ken’s importance is mainly positional; having this test
later in the sequence is indicative of longer LOS. This 0.04 [—Potassium-Chigride 2 mEqfmb——
follows intuition, as Bedside Glucose is a common test
that does not typically indicate a patient’s condition.
Again, KernelSHAP assigns this token a high attribu-
tion value since it appears within the last quartile of the 002 =
original sequence, but cannot distinguish between the o °
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6.4 Execution Time Evaluation (B)

KernelSHAP Attributions

We provide execution time results for OrdShap and com-
peting methods in Table 3. Both OrdShap algorithms
are generally slower than competing methods; this is
this cost of calculating positional attributions, which
requires evaluating the black-box model over multiple
permutations of the input sequence. As expected, the
the Least Squares algorithm (LS) significantly improves
computational efficiency compared with the Sampling
algorithm (S), and therefore should be the preferable
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0.15 0.20 /

Bedside Glucose Test

-0.05 | 0.00 0.05 0.10
Base Excess Test

Potassium Chloride 2 mEg/ml

Figure 6: Case study for the sample from
Fig. 1. (A) OrdShap-PI and OrdShap-VI
attributions. (B) KernelSHAP attributions.

algorithm when the user does not require calculating the
entire y matrix.

7 Limitations and Conclusion

While many feature attributions methods exist for sequential deep learning models, existing methods
assume a fixed feature ordering when explaining model predictions. Our work addresses this gap
by introducing OrdShap, a novel approach that uses permutations to quantify the importance of a
feature’s position within the input sequence. Regarding limitations, Shapley-based methods are often
computationally expensive due to the summation over 2¢ coalitions; OrdShap additionally requires
averaging over d! permutations. We address this limitation through sampling and approximation (§5),
and leave further improvements for future work. In particular, many algorithms have been proposed
for improving the efficiency of Shapley value approximation (App. A.3) which could possibly be
extended to approximate OrdShap. Additionally, while we theoretically establish a relationship
between OrdShap-VI and Sanchez-Bergantifios values in this work (Thm. 1), OrdShap-PI requires a
different axiomatization based on positional importance, which we leave for future work.
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A Background

A.1 Societal Impact

As machine learning models are increasingly used for decision-making in high-impact domains [58,
15, 28, 87, 10, 9], it is important to develop explainable AI (XAI) methods to improve understanding
of model predictions. XAI methods help to increase model transparency and reliability, which allows
for informed decision-making when using the prediction models. The proposed method, OrdShap,
addresses a critical gap in explainable Al for sequential models by quantifying how feature ordering
influences model predictions.

However, we acknowledge that improved explainability tools could potentially be misused to reverse-
engineer proprietary models or reconstruct private information from models trained on medical data.
Additionally, like all attribution methods, OrdShap provides simplified approximations of complex
model behavior that may create overconfidence in model predictions. Practitioners should use these
XAI methods to in conjunction with human judgment and combine them with other safeguards. For
example, recent works have developed uncertainty quantification methods [68, 29, 16], as well as
metrics to evaluate explainer stability [81], robustness [2, 35, 67], and complexity [30, 52, 7]. These
additional tools can be used to mitigate the possible negative societal effects of XAL

A.2 Machine Learning with Electronic Health Record (EHR) Data

Many of the examples and experiments in the main text use electronic health record (EHR) data,
which consist of clinical events that occur during a patient’s interactions with hospitals or clinics.
Clinical events can include medical diagnoses (e.g. ICD-9 codes), prescribed medications, medical
procedures, or laboratory tests. Each sample in the EICU and MIMICIII datasets (see App. D)
contains the history for an individual patient, which consists of lists of these clinical events over
time. Recent works [59, 41, 55, 27, 31] have explored tokenizing these clinical events for use with
Transformers in various prediction tasks. While there are a variety of approaches, most convert each
unique clinical event to a separate token, which we refer to as medical tokens in the manuscript.
Therefore, the processed EHR datasets in the main text consist of tokenized samples, where each
sample represents a separate patient, and each token represents a clinical event.

Below we provide examples of medical tokens. The MIMICIII and EICU datasets include medications,
laboratory tests, and infusions.
Medications:

* Sodium Chloride 0.9% IV

¢ Insulin Lispro (Human) 100 unit/mL

* Dextrose 50% IV Solution

* Hydrocortisone Sodium Succinate PF 100 mg

* Magnesium Sulfate 50% Injection Solution

Laboratory Tests:
* total bilirubin
* platelets x 1000
WBC x 1000 [White blood cell count]
¢ MPV [Mean Platelet Volume]
* Glucose

Infusions:
¢ Normal Saline 20K
* Epinephrine
* Sodium Bicarbonate mL/hr
* Propofol

* Isoproterenol
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(A) Tokenized Sequence Input (B) Tokenized Sequence with Irregular Intervals and Grouping
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Figure 7: Extension of OrdShap to alternative position indexing. (A) A sequence of features,
presented as tokens. We assume that each token can be permuted to each position. For convenience,
this is the assumed formulation in the main text. (B) Alternative sequence of tokens, with tokens
separated into permutation-invariant groups and occurring at an independent, irregular time indexing.

A.3 Background: Shapley Value Approximation

Shapley-based methods are often prohibitively expensive to compute exactly in the general case;
many methods been proposed to address this challenge [14]. Some algorithms take advantage of
model-specific properties to compute Shapley values, such as for linear models [43, 74], trees [44],
or neural networks [43, 21, 3]. Model-agnostic methods generally sample a number of subsets < 2¢
at random. These stochastic approaches include permutation sampling methods [73, 74, 11] and also
least-squares methods [12, 43]. Several works have further investigated and improved both sampling
[50] and least-squares approaches [16, 54, 84]. An alternate line of work has also investigated Shapley
approximation approaches for higher-order attributions [38, 24, 25].

A.4 Shapley Value Axioms [65]

Efficiency. >,y ¢ = v(N).

Symmetry. Define v, as the characteristic function v where the players are permuted according to
permutation o € S . For any player ¢ and permutation o € Sy, ¢;(N,v,) = ¢;(N,v).

Null Player. A player i is considered a null player in the game (N, v) if for every S C N \ {i},
v(S) = v(S U{i}). The null player axiom states that for every null player 4, ¢;(N,v) = 0.

Additivity. Let v, v be two different characteristic functions. Let (v + 1) (S) represent the character-
istic function v(S) + ©(S) VS C N. Then for any player i, ¢;(N,v + ) = ¢;(N,v) + ¢:(N, D).

A.5 Sanchez-Bergantiiios Value Axioms [63]

Efficiency*. >, ¢35 (N,w) = ﬁ Yveay W(0)-

Symmetry*. Two players 4, j are symmetric in the game (N,w) if w(o,i¢) = w(o ;) for all
S C N\{ij}, o€ Gg,and ! € i;l,...,\S| + 1}. The symmetry axiom states that for any
symmetric players 7, j, ¢?® (N, w) = ¢;° (N, w).

Null Player*. A player i is considered a null player in the game (N, w) if w(o) = w(o ., ¢) for all
S C N\ {s } o E 65, and ! € {1,...,|S| + 1}. The null player axiom states that for every null
player i, ¢;®

Addlthlty*. Let w,w be two different characteristic functions. Let (w + w)(o) represent the
characteristic function w(o) + w(o) Vo € &g, S C N. Then for any player i, ¢5° (N, w + &) =
#3B(N,w) + ¢3B(N,w).
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Algorithm 1 OrdShap Sampling Algorithm

Input : Data sample € R%; Model f; Number of Samples K, L.
Output : v € R%*¢

v+ 0
fori e {1,...,d} do
forl € {1,...,L} do // Sample Permutations
Sample a permutation o; ~ U (S )
fork e {1,... K} do // Sample Subsets
Sample a permutation o, ~ U (S )
S« c(ok, o, (1))
A d;x,f(S, o’l) — d)m,f(S \ {i},al)
Vior @) < Vit T A
end
end
end

1
Return 7=~

B Additional Method Details

B.1 Generalization to Alternative Position Indexing

In the main text we assume that each feature can be permuted to any position in the sequence (Fig. 7A).
However, in some applications, (1) features may be naturally grouped into permutation-invariant sets,
or (2) features may occur at irregular time indices (Fig. 7B). For example, in EHR data, a sequence
of patient tokens may be grouped into individual visits; in this case, a user may want to enforce the
tokens within each visit to be permutation invariant. Visits may also occur at irregular time indices,
therefore permuting tokens between visits should not always result in the same change in position.

OrdShap can be extended to accommodate these constraints while maintaining the same framework
and theoretical properties. Intuitively, the position index used in the main text can be mapped to
any other index, including time. Under this new mapping, for a given feature, OrdShap-PI would
represent position importance with respect to units of time rather than position index. OrdShap-VI
would correspondingly represent value importance with respect to the mean time of the sequence.

More concretely, let N = {1,...,|N|} be the original token indices and let G be the grouped time
indices (e.g., visit-level indices). We define a mapping function g : N — G that associates each
token with its corresponding group. As illustrated in Fig. 7B, we might have N = {1,...,9} and
G = {1, 3,9}. We can then rewrite Eq. 8 to account for the new constraints:

. S|—1)! —1SP! . . .
SCN oc6y

€5 (gooT)(i)=t
Note that in Eq. 15, £ € G rather than ¢ € N from the original definition of -y; therefore, this results in
a d x |G| matrix rather than a d x d matrix. In addition, Eq. 15 still evaluates & on each permutation
o € Gy, however permutations within each group are effectively averaged together, resulting in
the desired within-group permutation invariance. Therefore, after this extension, the remainder of
the framework and algorithm remain unchanged with position indices ¢ € G representing grouped
positions rather than individual position indices.

B.2 OrdShap Approximation: Sampling Algorithm
In Algorithm 1, we present the sampling algorithm as described in §5.1. We define a function c that

takes an ordering o € S and a position ¢ € {1, ..., N} and returns the set of elements in o that are
ordered before i;i.e. {j: 07 (j) < o(i) " }.
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Algorithm 2 OrdShap Least-Squares Algorithm

Input : Data sample 2 € R%; Model f; Number of Samples K, L.
Output : o € R?, 3 € R?

A AB W w® pl gl o 50 // Initialize variables
Sample permutations o1, . ..,0xr ~ U(SN) // Sample Permutations
Sample subsets S, ..., Sk ~ U(P(N)) // Sample Subsets
8 ¢ G, (@, 0M%) // Compute the baseline

l+ \IT\ ZjENj
fori € {1,..., KL} do
forj e {1,...,d} do
| AL 15 G) (07 (G) — )
end
Wz(f) <~ H(Sz mod L)
Fi(ﬁ) — Wz, f(SimoaL,0i) — 0 // Evaluate f under permutations and subsets
end

fori e {1,...,K} do

forj € {1,...,d} do
| AL 1s,0)

end

Wi ()

Fi(a> « 1 L-1 F(ﬁ)

L 21=0 YIK+i
end
F@) ) _ pl @Afi) // Remove a feature to enforce the constraint.
-1
az = [(AG)WOAG] T AW e // Eq. 13
a1 £ 30 O(N,00) +@(9,0%) - Z?:Q Q; // Enforce constraint.
et
8 [(A<6>)TW<B)A(B)}’1(A<6>)TW<B> FO | /) Eq. 14
et
Return o, 3

B.3 OrdShap Approximation: Least-Squares Algorithm

In Algorithm 2, we present the sampling algorithm as described in §5.2.
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C Theoretical Details

C.1 Proof of Permutation Non-uniformity.

We want to show that, for a given feature i, there exist positions ¢, ¢’ € N such that:

Y Hoes:o(i)=0# > [{oe&s:07(i) =} (16)
= =

Proof. We set up a proof by contradiction. Assume that the following equation holds for all £, ¢’ € N:

Z {oeGs:07'(i) =1} = Z {o € &g:07'(i) = '} (17)
SCN SCN
i€s i€S

Combining components in the summations:

S [\{o— €Gs: 0 (i) =t} —|{o € &s:07'(i) = z’}ﬂ -0 (18)
SCN
€S

We fix ¢ = i, i.e. the position of feature ¢. We also fix £/ = j for a given j € N \ {i}. Therefore, we
can rewrite the equation as follows:

3 [\{a €Gs: 0 (i) =t} —|{o € &s:07'(i) = z’}ﬂ
Ses an
jeSs

+ 3 []{a €Gs:0(i) =1}~ {0 €Gs:07(i) = e’}|] =0 (19)
Ses
jgs

>0 =0

Note that the first summation in Eq. 19 reduces to zero, since the permutations within &g where S
contains both ¢ and j will uniformly permute feature  to positions £ and ¢’. In the second summation,
the first term is strictly positive, since 7 is always in the set S. However, since j ¢ S, there exist no
permutations o € G that permute feature 4 to position £'. Therefore, the second term in the second
summation will always be zero. This forms a contradiction, which completes the proof.

O

C.2 Proof of Theorem 1.

Proof. We want to show that, given the value 4; (N, @), there exists a corresponding characteristic
function w such that ¥;(N, &) = ¢3B(N, w).

We first introduce the relevant notation. Given permutations 7 € Sg and 0 € Gy for S C N, we
define ((7, o) as the number of pairwise disagreements between 7 and o:

C(m,0) = [{(7 (i), 7(5)) : w(i) < 7(G) Ao(i) > o(5)}] (20)
Let T'(Sy,7) = {0 € &n : ((m,0) = 0} represent the set of all permutations o € & such that
there are 0 pairwise disagreements between 7 and 0. Let T'(w) = {i € N : i € 7} denote the set
containing the elements in permutation 7. We define the characteristic function w : 2 — R, where 2
is the set of permutations 0 € G5 VS C N:

T !
w(r) = YLD J(\;fﬁ') > a(Tm.0) 1)
celN(Sn,m)
Note that for a given 7 € &g, [I'(Gn,7)| = % The characteristic function w represents w

averaged over all permutations in & with the relative order of elements in 7 fixed, and N \ S
elements masked.

22



For a given permutation o0 € Gg, let o_; denote the permutation o with ¢ removed, i.e. 0_; =
(0154, Ok—1,0k41,--.,0]5)) such that k = o~'(i). Additionally, let 0.k represent o with ¢
inserted at index k,i.e. 0.k = (01, ..., Ok—1,%, 0k 11, -, O|5])-

‘We now begin the proof. From Eq. 8:

Yie(N, Q) Z Z (5l |_Nl| A)[!||N||!S)! [@(S,0) =& (S\ {i},0)]

SCN o€eby
i€S o @)=L

Averaging over ¢ € {1,...,|N|}:

|V [NV

Wi ma s X Py Fse) e\ )] e

{=1SCN oce6Gyn
i€S oM )=

=X Y e s -a (s o) @)

SCN oceSN
€S

Group the permutations in G that contain each permutation 7 € Sg:

Z Z Z (1] - 1()]\([||]l\)7 1S])! [@(S,0) —@(S\ {i},0)] (24

SCN €65 oel(Sn,m)
i€S

Substitute the characteristic function w with w:

- P ) i) @

SCN neSg
i€S

Note that U {S} = U {S U {i}}, therefore:

SCN SCN\{i}
€S

vy SV DUNI SISO oy ) e

! Nl
SCN\{i} m€&su(s} VIS Uz

I
> Y “EmsiTn W -] 27)

SCN\{:} T€Ssu{s}

Note that we can recover the set of permutations in &g ;) by taking each permutation 7 € S5 and
inserting ¢ at each possible index k, i.e.

[S]+1
Gsupy = |J U {mein}
T€Gs k=1

Therefore, we can rewrite Eq. 27 as follows:

[S|+1

(NI =151 =1)!
= > 2 ZW[W(M,H—OJ(W)] (28)

SCN\{i} 765 k=1

This recovers the Sanchez-Bergantifios value [63] for player 7 in the game (V, w). O
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C.3 Proof of Theorem 2

Proof. For a given characteristic function w, we define the following corresponding characteristic
function w, which was introduced in App. C.2:

w(m) = w > @(T(r),0) (29)
‘N| celN(Gn,m)
IN|—1

We want to show that the optimal coefficients « for the problem in Eq. 11 using u(s) = [GUIETRES)

and characteristic function «w are equivalent to the SB values under w.

We first set up the Lagrangian for the optimization problem in Eq. 11, with multiplier A € R.

Lla, B, = > > u(lS)

SCN 0ce6n
S#D N

2
i+ [o76) - 1] [w(s,o)w(@,af,)]]

€S €S

(Za’ N Z (N, o) +&(2, UI]?]))

iEN ceGN
(30)
First order conditions with respect to A.
oL id
ﬁzzai \N|' Z (N,o)+@(9,0y)=0 (31)
1EN ceGn
Zai |l Z (N,o) —@(@,09) (32)
1EN oceGN

From Eq. 32, substitute the characteristic function @ with w. We change ¢ to m for notational

consistency.
> ai= |, dw o) (33)

i1EN TESN

First order conditions with respect to «;.

607_22 SIS 1D e+ (o7 () = 2] B — [@(S.0) —@(@,08)] | —A=0

SCN eSSy JjES jeSs
i€S
SEN
(34)
1 71 . ~ ~ 1
SA= 2 2 S Do+ [070) — ] 65— [@(8,0) a2 0R)] | G5
SCN oeGy jES jes
i€S
SEN
From Eq. 35, separating the components related to 3;. Note that > [0 (j) —€] =0Vj € S.
1 )
Be 5 8 [ Sy - [5(5.0) — (e
SCN oeGy jes
i€S
SEN

+ > ulSND 8 > o' 6) -] (36)

SCN jES  oeGN
i€S
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Group the permutations in G that contain each permutation 7 € Sg.

=383 > wl8) Doy - [@(8,0) — (2, 04))] 37)

SCN 7€6s o€l (Sn,m) JES
i€S
S#N

DN | =
>

N)\)—l

= > ullsh m,Z] Y. [#(5.0) - a(2,0%)] (38)

SCN neSgs jes cel (& n,m)
i€S
S#N

Substitute the characteristic function @ with w.

%A_ > > |N|| (1SD) Dy — [w(m) —w(rg)] (39)

SCNTFGGS JjES
i€s
S#N

Sum both sides of Eq. 39 over i € N and dividing by |N]|.

1 1 N .
W25t TS ) [Sas - e -] | @0

i€EN SCN T€Gs JjES
S;éN
1 (N1 -1t 1
P=X X ¥ B sh s - utlsh fotm) - we] | @
iEN SCN T€ESg jeSs

SN @ @

We separate Eq. 41 into two components, @ and @, which we will examine separately.

First, we take @, excluding the outer summation Zl N

O=X > |N|S|, EIDI (42)

SCNneSg jES
i€S
S#N

Change the outer summation to be over subsets of size s.

IN|-1
= > UNI=Dr (s ey (43)
s=1 SCN jes
i€s
|S|=s
Separate the terms ¢ and j # .
[N[-1
= > > (UNI=Du(S) [ei+ > o (44)
s=1 SCN jes\{i}
€S
|S|=s

IN|-1

:|]§1<N|—1>!u<s>('N' Dot > S awi-vmes(" 5 )es @

JeEN\{i} s=2

terms involving feature % terms involving features j#1
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Separating and rearranging the terms involving feature i. Note that (I¥151) = (IV152) 4 (IN172),

s—2
[N|—1 |IN|—1
[N| -2 IN| -2
:(N —1)! (S oy + S 673
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Combining terms (l ! 22)a and (‘fl:;)aj.
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=<|N—1>![Z (7 et T3 ('N"2)aj] @)
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Note that 3,y @ = 577 Dree, W(T) — w(m) from Eq. 33. We can substitute this in the
right-most component of Eq. 47.
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We next sum Eq. 48 over all features ¢ € N (the outer summation in Eq. 41).
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Again, plug in Eq. 33 for ),y ;.
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Next, we take component @
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Substituting the results of @ @ into Eq. 41:
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Set the RHS of Eq. 57 equal to the RHS of Eq. 39
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Separate the terms in the LHS of Eq. 58 and substitute in Eq. 48.
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Rearrange and combine terms.
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Solve for «;.
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In @, we separate the subsets S C N where ¢ € S and ¢ ¢ S, and the subsets S = N \ {i}, {i}.
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Eq. 66 provides a general result for a given weight function 1 : N — R™. To complete the proof,

-1
we let yu(s) = ﬁ(‘f:z) :

= [ S ) — ()

INT|INE &5,
*m 2 wtmi) - w(wﬁmﬁ > [w(m) —w(r)
TeES N TESG 143
(NI =SS =D
L X Ny el @)
ston

1 1
IR Zg‘ wim) vl + g 2 W —w(m-o)

‘n'EG{ i}

oy s WNEZISDSIZ D e ) o)

SN rees VIS
i€sS
S#{i},N
(IN SPHI(S] — 1!
=> > (1 ||N,é||,| 2 fom) — ) (69)
SCéVTrGGs
S

Note that this result is equivalent to Eq. 25 in the proof of Theorem 1 (App. C.2). We follow the
remaining steps in App. C.2 to complete the proof.

O

C.4 Proof of Corollary 2.1.

We first restate Remark 3 in Sanchez and Bergantifios [63] using our notation.

Remark. Given a game (N,w), Nowak and Radzik [53] defined the “averaged game” (N,v) as
U= ﬁ Y sess W(S,0) VS C N. Then ¢(N,v) = »B(N,w).

As we established in Theorem 1, 4; (N, @) = ¢°8(IV,w). Therefore, it follows that Remark 3 in
Sanchez and Bergantifios [63] holds for ¥; (N, ).

D Experiment Detail

D.1 Datasets

MIMICIII [34]. The Medical Information Mart for Intensive Care (MIMIC-III) dataset contains
health records for over 60,000 intensive care unit (ICU) stays at the Beth Israel Deaconess Medical
Center from 2001-2012. Each patient’s stay is represented as a sequence of codes that include
laboratory tests, medications, and drug infusions. We follow the preprocessing in Hur et al. [31],
using the provided public repository . To summarize, we create a dictionary using all codes,
excluding codes have less than 5 occurrences in the dataset. For codes that contain a numerical
component (e.g. drug dosage), we exclude the numerical component to reduce the number of unique
codes. We then pass the dictionary to the HuggingFace tokenizer and tokenize each patient’s stay
using the dictionary, taking only the codes from the first 12 hours of the patient’s stay, and limiting the
total sequence length to 150 tokens to reduce computational cost. We split the patients into a training
set (80%) and test set (20%). After preprocessing, we train a modified BERT model [19] using the

*https://github.com/hoon9405/DescEmb
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Huggingface library [85] with 6 attention heads, 3 hidden layers of width 384, and a dropout rate of
0.5.

EICU [57]. The EICU Colaborative Research Database is a multi-center observational study for over
200,000 ICU stays in the United States from 2014-2015. We use the same preprocessing and model
training steps as in MIMICIII but with a different dictionary.

IMDB [45]. The Large Movie Review Database (IMDB) contains 50,000 written movie reviews. We
use a DistilBert Sequence Classifier [64] to predict positive or negative sentiment. The pretrained
model is loaded using the Huggingface library [85]. We then apply XAI methods to infer the
importance of each sentence towards the sentiment prediction. We use the NLTK tokenizer [8] to
separate each review into sentences. For perturbation-based methods (e.g. KernelSHAP, LIME,
OrdSHAP), we pass the individual sentences as “superpixels” for which attributions are calculated.
For gradient-based methods (DeepLIFT, IG) we average attributions over each token and sentence.

D.2 Explainers

Local Interpretable Model-agnostic Explanations (LIME) [60]. LIME explains individual predic-
tions by training a surrogate linear model locally for each instance to be explained. It perturbs the
input data around the sample, weighted by the distance to the original sample, then fits a linear model.
The coefficients of the linear model are used as the feature attributions. We use the implementation
from the Captum library [37] in our experiments. To ensure fair comparison, we use the same
baseline as OrdShap (i.e. the mask token) and disable feature selection, but otherwise use the default
parameters.

KernelSHAP (KS) [42]. KernelSHAP is a model-agnostic method for approximating Shapley values.
It builds off the LIME least-squares approach by selecting a weighting that corresponds to Shapley
value approximation. We use the official implementation of KernelSHAP from the SHAP library *.
We use the same baseline as OrdShap (i.e. the mask token) and disable feature selection.

Leave-One-Covariate-Out (LOCO) [40]. LOCO measures feature importance by comparing a
model’s prediction with and without a particular feature. For each feature, LOCO removes or
randomizes that feature while keeping all others unchanged, then measures the resulting change in
prediction. We use the implementation from the Captum library [37] in our experiments.

DeepLift (DL) [66]. DeepLift is a gradient-based approach that attributes changes in neural network
outputs to specific input features. We use the implementation from the Captum library [37] in our
experiments. For gradient-based methods, we average the attributions over each token embedding.

Integrated Gradients (IG) [76]. Integrated Gradients assigns importance to features by calculating
gradients along a straight-line path from a baseline to the input. We use the implementation from the
Captum library [37] in our experiments. The baseline is set to be the embedding for the mask token.
For gradient-based methods, we average the attributions over each token embedding.

D.3 Metrics

Insertion / Deletion AUC (iIAUC / dAUC) [56] Insertion/Deletion AUC evaluates explanation
quality by measuring changes in model output as features are progressively added or removed. iAUC
calculates the area under the curve when pixels or features are added in order of importance, while
dAUC measures the curve when they are removed in order of importance. Higher iAUC and lower
dAUC indicate better explanations, as they show that the most important features identified have the
greatest impact on the model’s predictions.

Inclusion / Exclusion AUC (incAUC / excAUC) [33] In contrast to iAUC and dAUC, Jethani et al.
[33] evaluate the constancy of the masked model outputs to the original model output. This can be
measured using post-hoc accuracy, which is the accuracy of the masked prediction compared to the
original prediction. This post-hoc accuracy metric has also been used in other works [46]. We would
expect that masking the most important features from the original sample would lead to a larger drop
in accuracy (excAUC). Conversely, including the most important features in a masked sample would
lead to a larger increase in accuracy (incAUC). We then calculate the area under the resulting curve
for both metrics.

*https://github.com/shap/shap

31


https://github.com/shap/shap

Table 4: The associated AUC values for the curves shown in Fig. 4, with standard error in parentheses.
The best results are bolded.

IMDB

Method EICU-LOS EICU-Mortality MIMICII-LOS MIMICII-Morality
DL 0.777 (0.015) 0.724 (0.023) 0.759 (0.012) 0.779 (0.011) 0.869 (0.010)
IG 0.779 (0.014)  0.746 (0.021)  0.764 (0.012) 0.781 (0.011) 0.874 (0.009)
KS 0.780 (0.014) 0.752 (0.021) 0.757 (0.012) 0.782 (0.011) 0.870 (0.010)
LIME 0.774 (0.013) 0.792 (0.018) 0.758 (0.012) 0.783 (0.011) 0.862 (0.010)
LOCO 0.783 (0.014) 0.775 (0.021) 0.756 (0.012) 0.783 (0.011) 0.870 (0.010)
Random 0.761 (0.012) 0.781 (0.018) 0.752 (0.011) 0.783 (0.011) 0.870 (0.009)
OrdShap-PI  0.885 (0.005) 0.963 (0.007) 0.809 (0.010)  0.808 (0.010)  0.883 (0.008)
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Figure 8: Evaluation of OrdShap-VI using Post-Hoc accuracy when iteratively unmasking features
from a baseline sample (Top, higher is better) and masking features from the original sample (Bottom,
lower is better). The AUC values for these curves are presented in Table 2.

E Additional Results

E.1 AUC Metrics

Position Importance. AUC and standard error results for Fig. 4 are shown in Table 4.

Value Importance. The curves associated with Table 2 are shown in Fig. 8 for reference. Additional
1AUC and dAUC results are shown in Table 5, with standard error values shown in Table 6.

E.2 Additional Synthetic Dataset Results

In Fig. 9, we show the results of OrdShap-VI and OrdShap-PI on a synthetic dataset with a linear
model.

E.3 Sensitivity Analysis

In this section, we investigate the sensitivity of OrdShap-PI sample size in the Least-Squares algorithm
approximation. We recalculate the position importance metric in §6.1, varying the number of subset
samples K and permutation samples L, then calculate the resulting standard errors. Results are
calculated on 100 explanation samples from each dataset, and shown in Table 7. We observe that the
standard error results are relatively stable across different sampling configurations.
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Table 5: Insertion AUC and Deletion AUC metrics for evaluating OrdShap-VI. The best results are
bolded. Standard error values are provided in Table 6.

Metric Model DL IG KS LIME LOCO Random  OrdShap-VI
EICU-LOS 0.689  0.690 0.690 0.672  0.692 0.655 0.695
Insertion EICU-Mortality 0.678  0.680 0.679 0.669  0.680 0.664 0.682
AUC 1 MIMICIII-LOS ' 0.692  0.695 0.694 0.687  0.692 0.661 0.696
MIMICIII-Mortality ~ 0.697  0.701 0.700 0.677  0.697 0.633 0.702
IMDB 0.719  0.730 0.794 0.790  0.785 0.736 0.797
EICU-LOS 0.611 0.611 0.610 0.643  0.608 0.661 0.597
Deletion EICU-Mortality 0.646  0.645 0.646 0.655  0.647 0.661 0.643
AUC | MIMICIII-LOS ) 0.624 0.613 0.617 0.644  0.620 0.666 0.608
MIMICIII-Mortality ~ 0.523  0.518 0.520 0.581 0.527 0.626 0.513
IMDB 0.789 0.793 0.703 0.735 0.722 0.774 0.717

Table 6: Standard error values for Insertion AUC and Deletion AUC metrics.

Metric Model DL 1G KS LIME LOCO Random  OrdShap-VI
EICU-LOS 0.009 0.008 0.008 0.009 0.008 0.009 0.009
Insertion EICU-Mortality 0.011 0.011 0.011 0.012 0.011 0.013 0.011
AUC 1 MIMICIII-LOS 0.008 0.008 0.008 0.008 0.008 0.009 0.008
MIMICIII-Mortality 0.008 0.008 0.008 0.009 0.008 0.011 0.008
IMDB 0.012 0.012 0.009 0.009 0.010 0.011 0.011
EICU-LOS 0.011 0.011 0.011 0.009 0.011 0.009 0.012
Deletion EICU-Mortality 0.017 0.017 0.017 0.014 0.016 0.013 0.018
AUC | MIMICIII-LOS 0.009 0.009 0.009 0.010 0.009 0.009 0.009
MIMICIII-Mortality 0.016 0.016 0.016 0.013 0.016 0.011 0.016
IMDB 0.010 0.011 0.012 0.012 0.014 0.012 0.015
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Figure 9: Attributions for a synthetic dataset and model (finear).- (A) Token values; tokens are
assigned Value Importance (VI) and/or Position Importance (PI) with respect to sequence index 7. (B)
OrdShap-VI and OrdShap-P1I attributions are able to separate the different tokens based on VI and PI
effects. (C) In contrast, attributions from existing methods cannot distinguish between the different
tokens, since VI and PI effects are entangled.

Table 7: Sensitivity analysis of OrdShap-PI sample size in the Least-Squares algorithm approximation.
Standard errors are calculated for different combinations of subset samples K and permutation
samples L for the position importance metric described in §6.1.

Permutation Samples L Subset Samples K EICU MIMICTI
LOS Mortality LOS Mortality
10 0.0046  0.0117  0.0100  0.0107
10 50 0.0046  0.0117  0.0100  0.0107
100 0.0046  0.0117  0.0100  0.0107
10 0.0046  0.0120  0.0099  0.0100
50 50 0.0046  0.0120 0.0099  0.0100
100 0.0046  0.0120  0.0099  0.0100
10 0.0046  0.0118  0.0103  0.0099
100 50 0.0046  0.0118  0.0103  0.0099
100 0.0046  0.0118  0.0103  0.0099
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are properly supported in the
manuscript.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in §7.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All proof details are provided in App. C.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experiment details are provided in App. D.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: All datasets are publically available, as described in App. D. All source code
will be provided for the review process. Public release of the source code is contingent on
an internal review process and will be released if/when possible after acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All experiment details are provided in App. D.
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:[Yes]
Justification: Error bars for the quantitative experiment results are provided in App. E.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Compute resources are detailed in App. D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This research conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Broader impacts are discussed in App. A.1.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All assets used are publically available and properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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