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ABSTRACT

Diffusion-based generative models represent the current state-of-the-art for image
generation. However, standard diffusion models are based on Euclidean geometry
and do not translate directly to manifold-valued data. In this work, we develop ex-
tensions of both score-based generative models (SGMs) and Denoising Diffusion
Probabilistic Models (DDPMs) to the Lie group of 3D rotations, SO(3). SO(3)
is of particular interest in many disciplines such as robotics, biochemistry and
astronomy/planetary science. Contrary to more general Riemannian manifolds,
SO(3) admits a tractable solution to heat diffusion, and allows us to implement
efficient training of diffusion models. We apply both SO(3) DDPMs and SGMs to
synthetic densities on SO(3) and demonstrate state-of-the-art results.

1 INTRODUCTION

Deep generative models (DGM) are trained to learn the underlying data distribution and then gener-
ate new samples that match the empirical data. There are several classes of deep generative models,
including Generative Adversarial Networks (Goodfellow et al., 2014), Variational Auto Encoders
(Kingma & Welling, 2013) and Normalizing Flows (Rezende & Mohamed, 2015). Recently, a new
class of DGMs based on Diffusion, such as Denoising Diffusion Probabilistic Models (DDPM) (Ho
et al., 2020) and Score Matching with Langevin Dynamics (SMLD) , a subset of general score-based
generative models (SGMs), (Song & Ermon, 2019), have achieved state-of-the-art quality in gen-
erating images, molecules, audio and graphs1 (Song et al., 2021). Unlike GANs, training diffusion
models is usually very stable and straightforward, they do not suffer as much from mode collapse
issues, and they can generate images of similar quality.

In parallel with the success of these diffusion models, Song et al. (2021) demonstrated that both
SGMs and DDPMs can mathematically be understood as variants of the same process. In both cases,
the data distribution is progressively perturbed by a noise diffusion process defined by a specific
Stochastic Differential Equation (SDE), which can then be time-reversed to generate realistic data
samples from initial noise samples.

While the success of diffusion models has mainly been driven by data with Euclidean geometry
(e.g., images), there is great interest in extending these methods to manifold-valued data, which
are ubiquitous in many scientific disciplines. Examples include high-energy physics (Brehmer &
Cranmer, 2020; Craven et al., 2022), astrophysics (Hemmati et al., 2019), geoscience (Gaddes et al.,
2019), and biochemistry (Zelesko et al., 2020). Very recently, pioneering work has started to develop
generic frameworks for defining SGMs on arbitrary compact Riemannian manifolds (De Bortoli
et al., 2022), and non-compact Riemannian manifolds (Huang et al., 2022).

In this work, instead of considering generic Riemannian manifolds, we are specifically concerned
with the Special Orthogonal group in 3 dimensions, SO(3), which corresponds to the Lie group
of 3D rotations. Modeling 3D orientations is of particularly high interest in many fields including
for instance in robotics (estimating the pose of an object, Hoque et al. 2021); and in biochemistry
(finding the conformation angle of molecules that minimizes the binding energy, Mansimov et al.
2019). Contrary to more generic Riemannian manifolds, SO(3) benefits from specific properties,
including a tractable heat kernel and efficient geometric ODE/SDE solvers, that will allow us to
define very efficient diffusion models specifically for this manifold.

1For a comprehensive list of articles on score-based generative modeling, see https://
scorebasedgenerativemodeling.github.io/
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Figure 1: Illustration of reversible diffusion of a mixture of two IGSO(3) blobs on SO(3). Samples from a
given base distribution (right most, denoted by circles) can be evolved under the probability flow ODE (Eq. 3)
towards a noisy distribution (left most), or vice-versa from the noisy distribution back to the target distribution.
Each point represents a rotation matrix in SO(3) projected on the sphere according to its canonical axis, the
color indicates the tilt around that axis (visualisation adopted from Murphy et al. 2021). An animation of this
figure is available at this link.

The contributions of our paper are summarized as follows:

• We reformulate Euclidean diffusion models on the SO(3) manifold, and demonstrate how
the tractable heat kernel solution on SO(3) can be used to recover simple and efficient
algorithms on this manifold.

• We provide concrete implementations of both Score-Based Generative Model and Denois-
ing Diffusion Probabilistic Models specialized for SO(3).

• We reach a new state-of-the-art in sample quality on synthetic SO(3) distributions with our
proposed SO(3) Score-Based Generative Model.

2 PRELIMINARIES AND NOTATIONS

In this work, we are exclusively considering the SO(3) manifold, corresponding to the Lie group
of 3D rotation matrices. We will denote by exp : so(3) →SO(3) and log : SO(3) → so(3) the
exponential and logarithmic maps that connect SO(3) to its tangent space and Lie algebra so(3).
so(3) corresponds to all skew-symmetric 3x3 matrices in R3, which can be parameterised in terms
of a vector in R3, which corresponds in turn to the axis-angle representation of rotation matrices.
For any rotation x ∈ SO(3), its axis-angle representation ω ∈ R3 can be computed as ω = ωv with
ω = arccos

(
2−1(tr(x)− 1)

)
∈ (−π, π] and v = 1

2 sinω (x32 − x23,x13 − x31,x21 − x12) a unit
vector of R3.

We direct the interested reader to more information on representations of SO(3) in Appendix C.

3 DIFFUSION PROCESS ON SO(3)

Similarly to Euclidean diffusion models (Song et al., 2021), we begin by defining a Brownian noising
process that will be used to perturb the data distribution. Let us assume a Stochastic Differential
Equation of the following form:

dx = f(x, t) dt+ g(t) dw, (1)

where w is a Brownian process on SO(3), f(· , t) : SO(3) → TxSO(3) is a drift term, and g(·) :
R → R is a diffusion term. If we sample initial conditions for this SDE at t = 0 from a given data
distribution x(0) ∼ pdata, we will denote by pt the marginal distribution of x(t) at time t > 0. Thus
p0 = pdata, and at final time T at which we stop the diffusion process pT will typically tend to a
known target distribution that will be easy to sample from.

Just like in the Euclidean case, as demonstrated in De Bortoli et al. (2022), under mild regularity
conditions Equation 1 admits a reverse diffusion process on compact Riemannian manifolds such as
SO(3), defined by the following reverse-time SDE:

dx = [f(x, t)− g(t)2∇ log pt(x)]dt+ g(t)dw̄, (2)
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where w̄ is a reversed-time Brownian motion and the score function ∇ log pt(x) ∈ TxSO(3) is
the derivative of the log marginal density of the forward process at time t. Corresponding to this
reverse-time SDE, one can also define a probability flow ODE (Song et al., 2021):

dx = [f(x, t)− g(t)2∇ log pt(x)]dt. (3)

This deterministic process is entirely defined once the score is known and maps pT to any interme-
diate marginal distributions {pt}0≤t<T of the forward process, including p0. In particular, it can
be seen as the equivalent of Neural ODE-based Continuous Normalizing Flows (CNF, Chen et al.,
2018) with an explicit parameterization in terms of the score function. We illustrate this process in
Figure 1 with samples from two Gaussian-like blobs on SO(3) being transported reversibly through
this ODE between t = 0 and t = T .

While these equations are direct analog of the Euclidean SDEs and ODE described in Song et al.
(2021), defining diffusion generative models on SO(3) will mainly differ on the two following points:

• Defining the equivalent of the Gaussian heat kernel on SO(3): this is needed to easily
sample from any intermediate pt without having to simulate an SDE.

• Solving SDEs and ODEs on the manifold: contrary to the Euclidean case, the diffusion
process must remained confined to the SO(3) manifold, which requires specific solvers.

We address these two points below before moving on to defining our generative models on SO(3).

3.1 THE ISOTROPIC GAUSSIAN DISTRIBUTION ON SO(3)

In general, the main disadvantage of working on Riemannian manifolds compared to Euclidean
space is that they lack a closed form expression for the heat kernel, i.e., the solution of the diffusion
process (which is a Gaussian in Euclidean space). For compact manifolds, the heat kernel is in
general only available as an infinite series, which in the case of SO(3), takes the following form
(Nikolayev & Savyolov, 1970):

fϵ(ω) =

∞∑
ℓ=0

(2ℓ+ 1) exp(−l(l + 1)ϵ2)
sin((ℓ+ 1/2)ω)

sin(ω/2)
(4)

where ω = |ω| ∈ (−π, π] is the rotation angle of the axis-angle representation ω of a given rotation
matrix and ϵ is a concentration parameter.

While for ϵ > 1 this series converges quickly (ℓmax = 5 is sufficient to achieve sub-percent accu-
racy), the convergence gets slower as ϵ gets smaller, which makes it impractical to model concen-
trated distributions. Thankfully, this series has been thoroughly studied in the literature and Matthies
et al. (1988) shows that an excellent approximation of Equation 4 can be achieved for ϵ < 1 using
the following closed-form expression:

fϵ(ω) ≃
√
πϵ−3/2e

ϵ
4−

(ω/2)2

ϵ

(
ω − e−

π2

ϵ

(
(ω − 2π)eπω/ϵ + (ω + 2π)e−πω/ϵ

)
2 sin(ω/2)

)
. (5)

Therefore, in practical applications, one can switch between using a truncation of Equation 4 for
ϵ ≥ 1 and the approximation Equation 5 for ϵ < 1.

Because of the property of being a solution of a diffusion process on SO(3), fϵ can be used to define
the manifold equivalent of the Euclidean isotropic Gaussian distribution, which we will refer to as
IGSO(3), the Isotropic Gaussian on SO(3) (Leach et al., 2022; Ryu et al., 2022), also known in the
literature as the normal distribution on SO(3) (Nikolayev & Savyolov, 1970; Matthies et al., 1988).
For a given mean rotation µ ∈ SO(3) and scale ϵ, the probability density of a rotation x ∈ SO(3)
under IGSO(3)(µ, ϵ) is given by:

IGSO(3)(x;µ, ϵ) = fϵ(arccos
[
2−1(tr(µTx)− 1)

]
) . (6)

Sampling from IGSO(3)(µ, ϵ) is achieved in practice by inverse transform sampling. The cumulative
distribution function over angles needed to sample with respect to the uniform distribution on SO(3)
can be evaluated numerically given integrating 1−cos(ω)

π fϵ(ω) over (−π, π]. To form a rotation ma-
trix x ∼ IGSO(3)(·;µ, ϵ), one therefore first samples a rotation angle by inverse transform sampling
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Algorithm 1 Geometric ODE solver on SO(3) (Heun’s method) for dx = f(x, t) dt

Require: Step size h, initial condition x0, time steps {tn}Nn=0, number of steps N
1: for n ∈ {0, . . . , N − 1} do
2: y1 = h f(xn, tn)
3: y2 = h f(exp( 12y1)xn, tn + 1

2h)
4: xn+1 = exp(y2)xn

5: end for
6: return {xn}Nn=0

given this CDF, then samples uniformly on S2 a rotation axis v, yielding an axis-angle representa-
tion of a rotation matrix ω = ωv, which is then shifted by the mean of the distribution according to
x = µ exp(ω).

An important property of IGSO(3)(µ, ϵ), which sets it apart from other distributions on SO(3) (e.g.
Bingham, Matrix Fisher, Wrapped Normal, more on this in Appendix E.1 ), is that it remains closed
under convolution, as a direct consequence of being the solution of a diffusion process. The convo-
lution of two centered IGSO(3) distributions of scale parameter ϵ1 and ϵ2 is an IGSO(3) distribution
of scale ϵ1 + ϵ2.

We will also note two interesting asymptotic behaviors. For large ϵ, it tends to USO(3), the uniform
distribution on SO(3), while for small ϵ the distribution IGSO(3)(I, ϵ) can locally be approximated
in the axis-angle representation of the tangent space by a normal distribution N (0, σ2I) in R3, with
ϵ = σ2

2 .

3.2 SOLVING ORDINARY DIFFERENTIAL EQUATIONS ON SO(3)

Thanks to the existence of a tractable heat kernel on SO(3), the generative models we will define in
the next section will not actually require us to solve the SDEs introduced at the beginning of this
section, and we will only need to solve the probability flow ODE defined in Equation 3.

Solving differential equations on manifolds can broadly be achieved using two distinct strategies, ei-
ther projection methods using a Euclidean solver followed by a projection step onto the manifold, or
intrinsic methods that rely on additional structure of the manifold to define an iteration that remains
by construction on the manifold. In this work, we are concerned with SO(3), which is not only a
compact Riemannian manifold, but also possesses a Lie group structure, which makes it amenable
to efficient solvers. In particular, we will make use of the Runge-Kutta-Munthe-Kaas (RK-MK)
class of algorithms and direct the interested reader to Iserles et al. (2000) for a review of Lie group
integrators. We adopt in practice the Lie group equivalent of Heun’s method, which is one variant
of RK-MK integrators, and we provide the details of this integrator in Algorithm 1.

While we will not require it in practice, it is also possible to build SDE solvers on SO(3) with
a similar strategy, and we point the interested reader for instance to the Geodesic Random Walk
algorithm described in De Bortoli et al. (2022).

4 DIFFUSION GENERATIVE MODELS ON SO(3)

The core idea of diffusion models is to perturb a given empirical data distribution pdata by a noise
process defined in terms of a stochastic differential equation of the form Equation 1. While sev-
eral expressions can be proposed for this SDE, for simplicity we will consider here the case of the
Variance-Exploding SDE (for our experiments we use a Variance-Preserving SDE in the DDPM

case), with f(x, t) = 0 and g(t) =
√

dϵ(t)
dt for a given choice of noise schedule ϵ(t), which cor-

responds to the canonical choice of the Euclidean Score-Matching Langevin Dynamics (Song &
Ermon, 2019):

dx =

√
dϵ(t)

dt
dw . (7)

For our fiducial model, and unless stated otherwise, we will further assume for simplicity the fol-
lowing noise schedule: ϵ(t) = t. The main drawback of this SDE in Euclidean geometry is that it
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t = T t = 3T/4 t = T/2 t = T/4 t = 0

Figure 2: Sampling from a Diffusion Generative Model trained on a synthetic density on SO(3). Starting from
USO(3), the uniform distribution on SO(3) at t = T (left), the sampling procedure (either based on SGMs or
DDPMs) denoises this distribution back to the target density at t = 0 (right). For visualization this density plot
shows the distribution of canonical axes of sampled rotations projected on the sphere; the tilt around that axis
is discarded.

will tend to a Gaussian with infinitely large variance. However, on SO(3) this SDE will tend to the
uniform distribution USO(3) which is a natural choice for the prior distribution at large T .

Following from this choice of SDE, we can define a noise kernel pϵ(x̃|x) = IGSO(3)(x̃;x, ϵ) for
x, x̃ ∈SO(3), such that the data distribution convolved by this noise kernel becomes

pϵ(x) =

∫
SO(3)

pdata(x
′)pϵ(x|x̃) dx , (8)

and corresponds to pt, the marginal distribution of the diffusion process at time t: pϵ(t) = pt.

Having introduced a specific choice of kernel and SDE well suited to the SO(3) manifold, we now
move on to describing the two different approaches to build generative models: Score-Based Mod-
els and Denoising Diffusion Probabilistic Models. They both will lead to sampling procedures
illustrated in Figure 2.

4.1 SCORE-BASED GENERATIVE MODEL

The first strategy directly extends Euclidean SGMs (Song & Ermon, 2019; Song et al., 2021) and
relies on the time-reversed diffusion process described in Equation 2. Samples from the learned
distribution p0 can be sampled by first sampling xT ∼ USO(3) and evolving these samples either
through the reverse SDE (Equation 2) or probability flow ODE (Equation 3) back to t = 0. This
process is entirely defined as soon as the score function of the marginal distribution at any interme-
diate time t, ∇ log pϵ(t), is known. Therefore the first step is to establish a score-matching strategy
on SO(3).

Let us consider {Xi}3i=0, an orthonormal basis of the tangent space TeSO(3). The directional deriva-
tive of the log density of the noise kernel pϵ(x|x̃) can be computed as:

∇Xi log pϵ(x̃|x) =
d

ds
log pϵ(x̃ exp(sXi)|x)

∣∣∣∣
s=0

, (9)

which can be computed in practice by automatic differentiation given the explicit approximation
formulae for the IGSO(3) distribution introduced in subsection 3.1. To match this derivative, we
introduce a neural score estimator sθ(x, ϵ) : SO(3) × R+⋆ → R3, which can be trained directly
under a conventional denoising score matching loss:

LDSM = Epdata(x)Eϵ∼N (0,σ2
ϵ )
Ep|ϵ|(x̃|x)

[
|ϵ| ∥ sθ(x̃, ϵ)−∇X log p|ϵ|(x̃|x) ∥22

]
(10)

where we sample at training time random noise scales ϵ ∼ N (0, σ2
ϵ ) similarly to Song & Ermon

(2020). The minimum of this loss will be achieved for sθ(x, ϵ) = ∇ log pϵ.

Once the score function is estimated from data using this score matching loss, sampling from the
generative model can be achieved by using the reverse SDE formula, or using the ODE flow formula.
In this work, we use the latter for its simplicity and speed, so that our specific fiducial sampling
strategy becomes:

xT ∼ USO(3) ; dxt = −1

2

dϵ(t)

dt
sθ(xt, ϵ(t)) dt (11)

which we solve down to t = 0 with the geometric ODE solver described in Algorithm 1. Compared
to stochastic sampling strategies based on simulating the reverse SDE, this approach has several
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Algorithm 2 Sampling from Denoising Diffusion Probabilistic Model on SO(3)

Require: Trained neural networks µθ(x, t), ϵθ(x, t), number of steps N , time steps {ti}Ni=0
1: xN ∼ USO(3)
2: for i = {N,N − 1, . . . , 1} do
3: xi−1 ∼ pθ(·;xi) = IGSO(3)(·; exp(µθ(xi, ti)), ϵθ(xi, ti))
4: end for
5: return {xn}Nn=0

advantages. 1) It is much faster, and can benefit from adaptive ODE solvers bringing down the
number of score evaluations needed, 2) the same ODE can be used to evaluate the log likelihood of
the model by applying the probability flow formula of CNFs.

4.2 DENOISING DIFFUSION PROBABILISTIC MODEL

As described in Song et al. (2021), when using a finite number of steps, the forward diffusion process
defined by Equation 7 {xi}Ni=0 (corresponding to times {0 ≤ ti ≤ T}ni=0) can be interpreted as a
Markov process:

p(x0:N ) = p(x0)pϵ1(x1|x0) . . . pϵ2(xi|xi−1) . . . pϵN (xN |xN−1) (12)
with the transition kernel pϵi+1

(xi+1|xi) = IGSO(3)(xi+1;xi, ϵi+1), where ϵi+1 = ϵ(ti+1)− ϵ(ti).

The idea of DDPMs is to introduce a reverse Markov process defined in terms of variational transi-
tion kernels pθ(xi−1|xi):

pθ(x0:N ) = pθ(xN )pθ(xN−1|xN ) . . . pθ(xi−1|xi) . . . pθ(x0|x1). (13)
While one could choose any distribution on SO(3) to parameterize this inverse transition kernel
(e.g., Matrix Fisher, Bingham), we adopt for convenience an Isotropic Gaussian on SO(3) and use
the following expression:

pθ(xi−1|xi) = IGSO(3)(xi−1;xi δθ(xi, ti), ϵθ(xi, ti)) (14)
where δθ : SO(3) × R+ → SO(3) is a neural network predicting the residual rotation to apply to xi

to obtain the mean of the reverse kernel and ϵθ : SO(3) × R+ → R+ is a neural network predicting
the variance of this reverse kernel. To parameterize the output of δθ we adopt the 6D continuous
rotation representation of (Zhou et al., 2019) and explore the impact of this choice in Appendix D.

If the reverse Markov process can be successfully trained to match the forward process, it provides a
direct sampling strategy to generate samples from p0 by initializing the chain from pT and iteratively
sampling from the reverse kernel pθ(xi−1|xi).

In DDPMs, the training strategy is to write down the Evidence Lower Bound (ELBO), given this
variational approximation for the reverse Markov process, in order to train the individual transition
kernels pθ(xi−1|xi). To reduce the variance of this loss over a naive evaluation of the ELBO, Sohl-
Dickstein et al. (2015) and Ho et al. (2020) propose to use a closed form expression of the reverse
kernel p(xi−1|xi,x0) when conditioned on x0. This makes it possible to rewrite the ELBO in terms
of analytic KL divergences between Gaussian transitions kernels. However, contrary to the Gaussian
case of Euclidean DDPMs, for IGSO(3) we do not easily have access to a closed form expression of
the reverse kernel p(xt−1|xt, x0) which is needed to derive the training loss used in Ho et al. (2020).
The same approach cannot be applied.

Instead, we consider the expression for the ELBO:

E [− log pθ(x0)] ≤ Ep

− log p(xN )−
∑
i≥1

log
pθ(xi−1|xi)

p(xi|xi−1)

 =: LELBO (15)

which will be optimized by maximizing the log likelihood of individual transition kernels
log pθ(xi−1|xi) over samples xi−1,xi obtained through simulating the forward Markov diffusion
process over the training set. Our strategy on SO(3), is therefore to train each transition kernel by
maximum likelihood using the following loss function:

LDDPM :=
∑
i≥0

Epdata(x0)Epϵ(xi|x0)Epϵi
(xi+1|xi) [− log pθ(xi|xi+1)] (16)
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where the log probability of the IGSO(3) distribution used in our parameterised reverse kernel is
defined in Equation 6. While this loss can indeed be used to train a DDPM (as demonstrated in the
next section), compared to the strategy of Ho et al. (2020), we expect it to suffer from larger variance
and is not explicitly parameterised in terms of the score function (Song et al., 2021). Once trained,
we can use the sampling strategy described in Algorithm 2 to draw from the generative model.

5 RELATED WORK

Most related to our work is Song et al. (2021) which introduces the diffusion framework we use in
this paper, and served as a point of reference throughout. We survey below related works that have
developed methodologies to represent distributions on SO(3).

Directional statistics The classical approach for modeling distributions on SO(3) relies on (mix-
tures) of analytic distributions defined over the group of rotations. Common examples of using
such distributions for modeling uncertainties over orientations include the Bingham distribution
(Peretroukhin et al., 2020; Srivatsan et al., 2018a; Gilitschenski et al., 2020) or the matrix Fisher
distribution (Mohlin et al., 2020). The two main issues of these approaches are the lack of flexibil-
ity/expressivity of these analytic distributions, and the general difficulty of computing their normal-
ization constant, which is typically required to train these models by maximum likelihood.

Normalizing Flows A number of approach have been proposed to build density estimators on
manifolds (which include SO(3)) based on Normalizing Flows. A first class of methods proposes to
use a conventional Euclidean Normalizing Flow in Rn, which is then mapped to the target manifold
using an invertible mapping (Gemici et al., 2016; Falorsi et al., 2019). This has some limitations
however as the target manifold needs to be homeomorphic to Rn (which is the case for SO(3)),
and this mapping can also present discontinuities. As an improvement over this approach, a second
class of methods based on continuous normalizing flows (Chen et al., 2018) has emerged, defining
directly flows on the manifold (Falorsi & Forré, 2020; Mathieu & Nickel, 2020). These approaches
remain relatively costly as training requires backpropagating through an ODE solver. Rozen et al.
(2021) proposes to sidestep that issue by training the CNF through penalizing the divergence of the
neural network. And finally, in recent work (Ben-Hamu et al., 2022) proposes to train a flow on
manifolds by penalizing a Probability Path Divergence (PPD).

Diffusion models In concurrent work, Leach et al. (2022) proposed an implementation of DDPMs
on SO(3) by direct analogy with Ho et al. (2020), based on the Isotropic Gaussian on SO(3) as a
replacement for the Normal distribution in Rn. However, as mentioned in the previous section,
the loss function used in Euclidan DDPMs does not directly translate to SO(3), which leads to
imperfect density estimation as we will illustrate in our experiments. Finally, De Bortoli et al.
(2022); Huang et al. (2022); Thornton et al. (2022) introduce generic frameworks for diffusion
models on Riemannian manifolds but only for Score-Based Generative Model (SGM). Their generic
approach means they do not benefit from the knowledge of a solution to the heat equation in SO(3),
which we use extensively in our work to avoid the need to simulate SDEs and to efficiently generate
samples from the forward diffusion process. In addition, we note that the method developed in
Huang et al. (2022) is not particularly efficient on the orthogonal group as it requires a projection
operation, which involves a singular value decomposition.

Other approaches Murphy et al. (2021) develops a non-parametric representation of distributions
on SO(3) by introducing a neural network to implicitly represent an unnormalized density on SO(3).
Training this model by maximum likelihood requires computing the normalization constant of this
implicit probability density function through brute-force evaluation on a tiling of SO(3), which is
very costly in memory and limits the effective resolution of the learned densities.

6 EXPERIMENTS

We investigate the quality of the generative models described in the previous section on a series of
synthetic test densities on SO(3). Details of the training procedures and architectural choices for all
models can be found in Appendix A.
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Model Checkerboard 4-Gaussians 3-Stripes

SGM on SO(3) (ours) 0.50± 0.01 0.50± 0.01 0.51± 0.01

DDPM on SO(3) (ours) 0.52± 0.01 0.53± 0.01 0.52± 0.01

RSGM (De Bortoli et al., 2022) 0.51± 0.01 – 0.51 ± 0.01

Moser Flow(Rozen et al., 2021) 0.56± 0.01 0.60± 0.02 0.53± 0.02

DDPM (Leach et al., 2022) 0.71± 0.04 0.90± 0.05 0.60± 0.03

Implicit-PDF (Murphy et al., 2021) 0.59± 0.04 0.81± 0.09 0.63± 0.04

Table 1: Sample quality metric from the C2ST (lower is better). If the learned distribution is identical to the
original one, the metric should be ∼ 0.5; if it is significantly different, the metric tends towards ∼ 1. The errors
on the metric were obtain from the standard deviation of the metric over k-fold cross validation samples for a
single training of the model. – indicate a failure to evaluate the metric for a particular model.

Model Checkerboard 4-Gaussians 3-Stripes

True

SGM (Ours)

DDPM (Ours)

RSGM, (De Bortoli
et al., 2022)

Moser Flow,
(Rozen et al., 2021)

(Leach et al., 2022)

Implicit-PDF,
(Murphy et al.,

2021)

Figure 3: Density plot comparing samples from learned synthetic densities on SO(3). For visualization this
density plot shows the distribution of canonical axes of sampled rotations projected on the sphere; the tilt around
that axis is discarded.
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Image True Scatter (Predicted) Density (Predicted)

Figure 4: Example of pose estimation using an SO(3) SGM conditioned on images from the SYMSOL dataset
Murphy et al. (2021).

Test densities on SO(3) We adopt three different toy distributions on SO(3): a checkerboard pat-
tern, a multi-modal distribution of 4 concentrated Gaussians and a stripe pattern that can be viewed
as circles on the sphere. We focus on evaluating the generative models in terms of the quality of their
sample generation using the Classifier 2-Sample Tests (C2ST) metric (Lopez-Paz & Oquab, 2017;
Dalmasso et al., 2020; Lueckmann et al., 2021). The C2ST metric has been used in particular in the
context of simulation-based inference to quantify the quality of inferred distributions. Concisely, the
C2ST method uses a neural network classifier to discriminate between true and the generated sam-
ples, yielding a value of 0.5 if the two distributions are perfectly indistinguishable to the classifier,
up to a value of 1 if they are extremely different. In contrast to the usual Negative Log Likelihood
(NLL), C2ST can be consistently computed for all generative models we compare bellow.
We present in Figure 3 and Table 1 the results of our (SGM, DDPM-VExp, DDPM-VPres) com-
parisons on these test densities against the implicit-pdf method of Murphy et al. (2021), the DDPM
implementation of Leach et al. (2022), Moser flow of Rozen et al. (2021), and the Riemannian
Score-Based Generative Model (RSGM) of De Bortoli et al. (2022) (trained under their ℓt|0 score
matching loss). We find that in all cases our SGM implementation on SO(3) yields the best C2ST
metric, which is in line with the visual quality of distributions shown in Figure 3. Our DDPM im-
plementation on SO(3) yields distributions that are comparatively less sharp, which we attribute to
the larger variance of our training loss for that model. Compared to other models, our experiments
illustrate a failure mode in the method of Leach et al. (2022) which we attribute to the fact that the
usual DDPM loss function cannot be directly translated to SO(3) (as discussed in subsection 4.2).
We also note that the Implicit-PDF model, in comparison, is extremely limited in resolution because
of the memory cost of evaluating the pdf on a tiling of SO(3), and thus yields much lower scores.
The best results after our method are achieved by the RSGM model (De Bortoli et al., 2022), which
is expected due to its similarity with our work, but is slower to train in the specific case of SO(3).
We find that the cost of simulating the forward SDE in the training phase leads to a factor x8 in
computation time per batch on a given GPU.

Pose estimation To test practical applications of our model, following (Murphy et al., 2021) we
used a vision description obtained from a pre-trained ResNet architecture with ImageNet weights
consisting of 2048 dimensional vector to condition an SO(3) SGM. Using images of symmetric
solids from the SYMSOL dataset Murphy et al. (2021) we show that we can correctly estimate
poses of objects with degenerate symmetry, as shown in Fig. 4. (and in Appendix B).

7 CONCLUSIONS AND DISCUSSION

In this paper, we have presented a framework for score-based diffusion generative models on SO(3),
as an extension of Euclidean SDE-based models (Song et al., 2021). Because it is developed specif-
ically for the SO(3) manifold, our work proposes a simpler and more efficient alternative to other
recent (and general) Riemannian diffusion models while reaching state-of-the-art quality on syn-
thetic distributions on SO(3). One of the most promising applications of this work is in robotics and
computer vision, for the general task of pose-estimation, where our proposed model significantly
outperforms current baselines (Murphy et al., 2021). In the natural sciences, generative models on
SO(3) are also of great interest and can be used for instance to find the angle of a molecule that mini-
mizes the binding energy. Finally we note that as an interesting extension of the models presented in
this work, one could define a Schrödinger bridge approach (De Bortoli et al., 2021; Thornton et al.,
2022) specifically for SO(3), which would improve both sampling efficiency and sample quality.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Maximillian Nickel, Aditya Grover,
Ricky T. Q. Chen, and Yaron Lipman. Matching normalizing flows and probability paths on
manifolds. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 1749–1763. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/v162/ben-hamu22a.html.

Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density esti-
mation. In Proceedings of the 34th International Conference on Neural Information Processing
Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Nicola De Cao and Wilker Aziz. The power spherical distribution. ArXiv, abs/2006.04437, 2020.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural Ordinary
Differential Equations. In Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/
hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html.

Sean Craven, Djuna Croon, Daniel Cutting, and Rachel Houtz. Machine learning a manifold. Phys.
Rev. D, 105:096030, May 2022. doi: 10.1103/PhysRevD.105.096030. URL https://link.
aps.org/doi/10.1103/PhysRevD.105.096030.

Niccolo Dalmasso, Ann Lee, Rafael Izbicki, Taylor Pospisil, Ilmun Kim, and Chieh-An Lin. Valida-
tion of approximate likelihood and emulator models for computationally intensive simulations. In
Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the Twenty Third International Con-
ference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning
Research, pp. 3349–3361. PMLR, 26–28 Aug 2020. URL https://proceedings.mlr.
press/v108/dalmasso20a.html.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion Schr\”odinger
Bridge with Applications to Score-Based Generative Modeling, December 2021. URL http:
//arxiv.org/abs/2106.01357. arXiv:2106.01357 [cs, math, stat].

Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and
Arnaud Doucet. Riemannian Score-Based Generative Modeling, May 2022. URL http://
arxiv.org/abs/2202.02763. arXiv:2202.02763 [cs, math, stat].
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A IMPLEMENTATION AND TRAINING

We designed our neural networks with a size of {256,256,256,256,256} neurons each with leaky
ReLU activation and with a residual connection. The neural networks were implemented using the
axis-angle representation of SO(3), i.e. the input and output elements were represented using axis-
angle representation. Additionally, the neural networks were conditioned on the noise scheduler and
the noise scales were also learned parameters. We trained our models using the Adam optimizer
with learning rate of 10−4, exponential decay rates of β1 = 0.90 and β2 = 0.95, 400 000 iterations,
and a batch size of 1024. NVIDIA Tesla V100 GPU was used as the hardware, with JAX and
DeepMind-Haiku Python libraries as the software.

For the DDPM, we adopt in practice the Variance Preserving SDE of (Ho et al., 2020) as we obtain
better results empirically than with a Variance Exploding SDE.

B ADDITIONAL POSE ESTIMATION RESULTS

Here we provide on Figure 5 additional results on pose estimation.

C REPRESENTATIONS OF SO(3)

The special orthogonal group, SO(3), is the Lie group of all rotations about the origin in 3-
dimensional space. There are several ways to represent the elements of the group SO(3), each
with its advantages and disadvantages:

• Rotation Matrices ∈ R3x3 with determinant equal to 1. This representation has 9 parame-
ters and can be subject to some numerical stabilities, such as when computing the inverse
or trigonometric functions.

• Euler angles (also called yaw, pitch, and roll in robotics) are three angles α, β, ψ that can
describe an orientation with respect to a fixed coordinate system. This representation is
subject to the infamous Gimbal lock, where one degree of freedom is lost when two axes
of the gimbal become parallel.

• Unit Quaternions defined as γ = a+ bi+ cj+ dk, where a, b, c, d are real number satisfy-
ing

√
a2 + b2 + c2 + d2 = 1 with i+ j+ k denoting the vector (or imaginary) part of the

unit quaternion. This representation has 4 parameters and has elegant operations (Hamilton
product) without trigonometric functions E. However, quaternions are antipodally symmet-
ric which introduces some degeneracies.

• Axis - angle representation (normalized), Tangent space (unnormalized ) defined as θ =
θe = (θ1, θ2, θ3) = θ(e1, e2, e3), where θ is the rotation angle and e is the rotation axis.
However, this representation does not have well defined operations to combine rotations,
and is furthermore discontinuous at θ = π (Zhou et al., 2019).

Therefore, in practice it is best to use some combinations of the aforementioned representations
and convert back and forth among them. For a comprehensive review on SO(3) representations and
metrics, especially for computer scientists, please refer to (Hartley et al., 2013).
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Image True Scatter (Predicted) Density (Predicted)

Figure 5: Predicted poses for an image of a solid with degenerate symmetry, here we only show it for the
cone. The 1st column depicts the image of the symmetric solid. In column 2, each point represents a rotation
matrix in SO(3) projected on the sphere according to its canonical axis, the color indicates the tilt around that
axis. For visualization the density plot (column 3) shows the distribution of canonical axes of sampled rotations
projected on the sphere; the tilt around that axis is discarded.
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(a) DDPM trained with axis-angle inputs and out-
puts.

(b) DDPM trained with 3x3 rotation matrices as
inputs and using a continuous 6D output rotation
representation.

Figure 6: Comparison of distributions sampled from the DDPM under two different parameteriza-
tions of both input and output rotations. Once the models are fully trained as illustrated here, the
impact is small, but on a partially trained network discontinuities would be visible in the case of the
axis-angle representation, mostly due to the discontinuity in the input rotations.

D IMPACT OF ROTATION REPRESENTATIONS ON NEURAL DIFFUSION
MODEL

As highlighted in Zhou et al. (2019), a particular choice of rotation representation can affect the
training and accuracy of neural networks which either take rotations as an input or that output rota-
tions. In particular, common representations such as axis-angle and quaternions are known to have
discontinuities, which are needlessly difficult to capture for a neural network. In that work, they
propose in particular to use 5 or 6 dimensional representations which have the particularity of being
continuous and demonstrate their benefit in neural network training.

In our work, we make the choice of providing as inputs of the neural networks directly the 3x3
rotation matrix. Only the network involved in the DDPM needs to represent rotations as an output,
and there we adopt the 6D representation following Zhou et al. (2019), which can be seen as two 3D
vectors, from which we can build a full orthogonal rotation matrix using cross-products.

In comparing the impact of this choice against using only an axis-angle representation as inputs and
outputs, we observe the following points:

• The choice of the output parameterization (in the case of the DDPM) has no noticeable
effect, which is expected as the model outputs residual rotations, which remain small and
thus away from the discontinuity in the axis-angle representation.

• While the differences are small once the networks are fully trained, as illustrated on Fig-
ure 6, we notice for partially trained networks a discontinuity in the sampled distributions in
the case of an input axis-angle representation. Therefore, we directly feed the 3x3 rotation
matrix as an input to our networks.

E QUATERNION OPERATIONS FOR SO(3)

Quaternions form a group under multiplication, defined by the Hamilton product. Given quternions
γ1 and γ2, the Hamilton product is defined by carrying out the γ1 · γ2 = (a1 + b1i + c1j + d1k) ·
(a2 + b2i+ c2j+ d2k) in a distributive manner, keeping in mind the basis multiplication identities.
This operation is physically equivalent to rotating by γ1 and then by γ2. The identity of the group
is the quaternion γ0 = 1 + 0i + 0j + 0k and the inverse of γ∗ (also conjugate) is defined as
γ∗ = a− bi− cj− dk.

The reparametrization trick and variance preserving quaternions In Euclidean space for a
Gaussian random variable x from N (µ;σ2I), the reparametrization trick is defined as x = µ+σ2 ·δ
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where δ ∼ N (0; I). We can define a analogous operation in the quaternion group, as such:

γ = θ · ϵδ (17)

Here, the quternion raised to some scalar power is defined as the γa = exp(ln(γ)a), in other words
we take the quaternion to the tangent space from the manifold, perform the operation of multiplica-
tion and bring it back into the manifold by using the exponential map. and the variance preserving
operation analogous to

√
α · x+

√
(1− α)δ can be defined as

x = x
√
α · δ

√
(1−α) (18)

For the variance exploding case, we can directly sample from the heat kernel without resorting to
the quaternion operations.

E.1 DISTRIBUTIONS ON SO(3)

In literature there are numerous ways to represent distributions on the hypersphere. Most of them in-
volve taking a standard distribution from the Euclidian space Rn and then constraining or projecting
them on to the hypersphere Sn. Some of the popular distributions are:

• Projected Gaussian(s) on the sphere where standard Gaussian(s) on the tangent space of
the hypersphere are projected via central projection, as done in Feiten et al. (2013);

• the von Mises-Fisher (vMF) distribution where an isotropic Gaussian on Rn is restricted
to the unit hypersphere von Mises (1918);

• The recently developed Power Spherical distribution Cao & Aziz (2020), which addresses
some of the challenges of the vMF distribution, such as numerical stability and scalability.

• The antipodally symmetric Bingham distribution. The antipodal symmetry makes it a
suitable distribution to represent quaternions, since quaternions double cover the space of
rotations on SO(3) Gilitschenski et al. (2020); Peretroukhin et al. (2020); Srivatsan et al.
(2018b;a). However, the Bingham distribution is notorious for its normalization constant
that is very hard to compute.

Unfortunately, these distributions are not closed under convolution (i.e. composition of their random
variables), thus writing down an closed form diffusion process akin to the Euclidean Gaussian case
is intractable. One way to circumvent this problem is to use class of functions that are closed under
convolutions on the manifold. An obvious choice is the heat kernel which is the canonical solution
to the diffusion equation and is closed under convolutions by definition (Grigoryan, 2009).
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