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ABSTRACT

In this work, we investigate the fundamental trade-off regarding accuracy and
parameter efficiency in neural network weight parameterization using predic-
tor networks. We present a surprising finding where the predicted model not
only matches but also surpasses the original model’s performance through the
reconstruction objective (MSE loss) alone. Remarkably this improvement can be
compound incrementally over multiple rounds of reconstruction. Moreover, we
extensively explore the underlying factors for improving weight reconstruction
under parameter-efficiency constraints and propose a novel training scheme that
decouples the reconstruction objective from auxiliary objectives such as knowledge
distillation that leads to significant improvements compared to state-of-the-art
approaches. Finally, these results pave the way for more practical scenarios, where
one needs to achieve improvements in both model accuracy and predictor network
parameter-efficiency simultaneously.

1 INTRODUCTION

Recently, neural network weight space exploration and manipulation have gained an increase in
popularity as an additional step to improve model performance after traditional model training,
fine-tuning or compression. Examples of these methods range from weight manipulation strategies
such as weight merging to improve model performance without fine-tuning (Matena & Raffel, 2022)
to weight generation approaches that directly predict network parameters like Neural Representation
for Neural Networks (NeRN) (Ashkenazi et al., 2022) or diffusion-based D2NWG (Soro et al.,
2024). NeRN extends the concept of neural representations popularized in Neural Radiance Fields
(NeRF) (Mildenhall et al., 2021) to the domain of neural network weight space learning that has
increasingly become an essential foundation for optimizing model performance in various applications.
This innovative approach shifts from representing data (e.g., images or videos) to representing neural
network parameters as functions, introducing a structured, coordinate-driven framework for weight
generation. Specifically, NeRN employs implicit neural representation (INRs) (Sitzmann et al.,
2020) to map kernel or layer indices directly to their corresponding weights, offering a compact and
continuous functional encoding of network parameters. By transforming weights into a function,
NeRN opens the door to exciting possibilities such as dynamic parameter generation, model storage,
and novel forms of network adaptation. Despite its conceptual appeal, NeRN has practical limitations:
reconstructed weights fail to match the original model’s performance, and its potential usability in
applications like model compression, fine-tuning, or transfer learning remains under-explored.

In this work, we address these limitations by advancing the understanding and improving NeRN-style
weight parametrization through novel progressive-training and decoupled training strategies, enabling
effective reparametrization. We demonstrate that better-performing models can be obtained through
a weight reconstruction-only objective and these improvements can be compounded over multiple
repetitions. By iterating over the reconstruction process multiple times, where each round builds upon
the previously reconstructed weights, we establish an a recursive setup with nested improvements
in each prediction round. NeRN utilizes a multi-objective loss function where the reconstruction
loss serves as the primary objective, while distillation losses (feature-level and logit-level) play
a critical complementary role in improving reconstruction fidelity. These distillation losses help
stabilize the learning process and enable the predictor network to better approximate the original
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model’s behavior. However, we identified a key challenge: the multi-objective loss function leads
to contradictory training signals during the reconstruction process, resulting in limited performance
gains. Therefore, we propose a new training scheme that decouples the learning objectives into two
phases: a reconstruction phase and a distillation phase, ensuring that each learning objective has the
desired impact. Remarkably, our approach results in significant improvements compared to NeRN for
reconstruction fidelity and network compression. Moreover, the proposed separation provides greater
flexibility in the distillation step by allowing the use of powerful networks to be involved during the
weight refinement. All these improvements and insights led to several usage scenarios that were not
possible or practical before, for example, obtaining a better-performing model through a predictor
network that is much smaller than the original network, or iterative improving a given model through
the reconstruction process. The proposed approach provides a unique, even surprising, perspective
for achieving model performance improvement that is different from existing weight manipulation
approaches such as stochastic weight averaging (Guo et al., 2023a; Izmailov et al., 2018). We also
achieve storage compression via the predictor network, which is orthogonal and composable with
existing model quantization, model pruning (Lee et al., 2019; Liu et al., 2018; Gao et al., 2021; Wang
et al., 2021; He & Xiao, 2023) and knowledge distillation approaches (Chen et al., 2020; Gou et al.,
2021; Chen et al., 2017; Beyer et al., 2022).

2 PREDICTING MODEL WEIGHTS USING NEURAL REPRESENTATIONS

There is a growing interest in predicting the weights of pre-trained models not only to enhance
the memory efficiency of model storage but also to improve the throughput of model inference.
Existing solutions range from building high-fidelity auxiliary models (Knyazev et al., 2023) to
learning parameter-efficient approximators (Guo et al., 2023b). However, in this paper, we focus on
neural representations learning based on their flexibility and potential for producing effective, yet
parameter-efficient, approximations for deep networks. The NeRN framework first explored the idea
of training INRs and demonstrated its utility in compressing CNNs. At its core, NeRN uses a 5-layer
multilayer perceptron (MLP) Gϕ with fixed hidden layer size to learn a mapping from an input tuple
(layer ℓ, filter f, channel c) to the corresponding k × k kernel in the original CNN model Fθ. Note
that the output size of the MLP also remains fixed at the largest kernel size and smaller kernels in
the CNN are sampled from the middle while fully-connected or normalization layers are excluded
based on their comparatively negligible parameter size. Since there is no inherent smoothness in the
ordering of filters in a CNN, permutation strategies are introduced to rearrange filters in the original
model based on similarity, ensuring stable training of NeRN.

The central component of NeRN training is the reconstruction loss aimed at quantifying the disparity
between the original network weights and those recovered using the predictor. Regardless of the
capacity of Gϕ, one might expect that the reconstruction loss should reliably converge to a meaningful
approximation. However, in practice, it has been found that NeRN is prone to training instabilities
when the auxiliary model is smaller than the original network. To mitigate these issues, the authors
introduced additional loss terms inspired by existing knowledge distillation methods. Note that, while
the reconstruction loss does not require access to training data, the distillation loss does, making it
impractical for scenarios where access to the training data is not available. The overall objective
function for NeRN can be expressed as

Lobjective = Lrecon + αLKD + βLFMD,with

Lrecon =
1

|W|
∥W − Ŵ∥2, LFMD =

1

|B|
∑
i∈B

∑
l

∥ali − âli∥2, LKD =
1

|B|
∑
i∈B

KL(aout
i , âout

i ),

(1)
where W = [w0,w1, ...,wL], represents a list of convolutional weight vectors for layer ℓ in the
original network, and Ŵ denotes the corresponding weights of the reconstructed weights. The terms
aℓi and âℓi denote the L2 normalized feature maps generated from the i-th sample in the minibatch B
at layer ℓ for the original and reconstructed networks respectively. Additionally, the logit distillation
loss LKD employs the Kullback-Leibler divergence to compare the output logits aout

i and âout
i from

the original and reconstructed networks for each sample i in the minibatch B.
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3 PROPOSED APPROACH

In this section, we take a closer look at learning neural representations for pre-trained neural networks.
Specifically, we explore the role of different training objectives in realizing an effective parameteri-
zation. Based on our findings, we propose a new training scheme that circumvents the undesirable
trade-off between accuracy and model compression rate, and simultaneously improve on both aspects.

3.1 IS THE RECONSTRUCTION OBJECTIVE ALL YOU NEED?

A well-known limitation of existing approaches used for weight prediction is that they trade off
accuracy to achieve parameter efficiency. This non-trivial compromise in model performance can
be a critical bottleneck for practical applications. While existing approaches attempt to recover the
lost performance through the use of additional objectives, e.g., distillation as in NeRN, they lead
to increased reconstruction errors, albeit providing improvements in the accuracy. As this seems
counter-intuitive, it naturally raises the question: What is the relationship between reconstruction
error and expected model performance?

If we assume that reconstruction error, e.g., mean-squared error (MSE), is indeed an indication
for performance, a straightforward strategy to improve performance would be to increase the ca-
pacity of the predictor network, allowing it to overfit to the original model weights. To this end,

Figure 1: The first dot is the original net-
work accuracy, the rest show results from
predictors with different hidden layer
sizes in descending order from left to
right: 750, 680, 510, 360, 320, 280, and
220.

we first empirically analyze how well we can recover the
original network’s performance, as we continually reduce
the reconstruction error by increasing the predictor net-
work capacity. Note that in this analysis, we are not con-
cerned about parameter efficiency, and the neural represen-
tations are trained solely with the reconstruction objective.
Interestingly, by using only the reconstruction loss and
increasing the predictor network capacity, we empirically
find weight parameterizations with non-zero reconstruc-
tion errors that not only recover the true performance but
even surpass it as shown in Figure 1.

How does reconstruction-only objective lead to better net-
works? A well-known property of the MSE loss is that
it tends to have a smoothing effect on the reconstructed
weights (Domingos, 2012). We hypothesize that the per-
formance improvement is linked to such an effect. To
quantify this, we compare the weights of the reconstructed
network (based on neural representations learned using
only the reconstruction objective) with those of the orig-
inal network, in terms of changes in the ratio of singular
values of their weight matrices measured as follows: Let
M be the weight matrix of a given convolutional layer, shaped as M ∈ Rn×m. Here n represents the
number of output channels (cout), and m denotes the product of the number of input channels (cin)
and the size of the filters (k · k). Using singular value decomposition (SVD) on this matrix, we obtain
M = UΣVT where Σ ∈ Rn×m is a diagonal matrix with singular values s = [σ1, σ2, . . . , σk]
on the diagonal, sorted in descending order, and k = min(n,m). The Sratio is then calculated as
Sratio =

∑⌊k/2⌋
i=1 σ2

i /
∑k

i=1 σ
2
i . This ratio measures the proportion of the total variance (energy) of

the matrix M that is captured by the first half of the singular values. A higher ratio indicates that
more variance can be explained by fewer dominant components that tend to be lower-frequency in
nature, whereas the smaller singular values are often more related to noise (e.g., as demonstrated in
SVD-based image denoising methods (Guo et al., 2015)). As illustrated in Figure 2, a clear trend
emerges upon close inspection of the layer-wise Sratio differences between the reconstructed weights
and the original weights. We see the reconstructed weights have a higher Sratio, particularly in the
later layers, which indicates that a smoothing effect has been applied to the reconstructed weights
that align with our hypothesis regarding reconstruction loss.

To better understand the relationship between weight components and model performance, we find
interesting connections to prior works that explore neural networks’ simplicity or spectral bias (Cao
et al., 2019; Huh et al., 2021; Rahaman et al., 2019; Yoshida & Miyato, 2017), where the model
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tends to capture lower frequency components. In many cases, intentionally inducing reduction of
high-frequency information through truncation/pruning (Chen et al., 2024; Sharma et al., 2023),
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Figure 2: Layer-wise difference in
singular value ratios between the
reconstructed network and the orig-
inal network.

weight smoothing/averaging (Cheng et al., 2023; Jean & Wang,
1994) or even activation regularization during training (Khan
et al., 2019; Bu et al., 2023) can improve model’s generalization
performance. To dive deeper into the mechanism behind the
observed performance improvement and verify our hypothesis,
we have carried out an experiment to explicitly test the relation-
ship between weight frequency manipulation and performance
by applying low-pass filters on weight, which leads to model
test performance improvement, see Appendix A for details.

Building upon our observation of model improvement induced
by the weight reconstruction objective, we ask: Can multiple
rounds of neural representation learning further improve the
performance of the reconstructed network? To this end, we
extend our previous experiment by training multiple generations
of network parameterizations, where the first-round predictor
reconstructs the original network, the second-round predictor
recovers the reconstructed network from round 1, and so on.
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Layer-averaged Singular Value Ratio Diff

Figure 3: (a) Incrementally improving performance through progressive training. The colored bar
in each round represents the average accuracy across three runs. (b) Layer-averaged difference in
singular value ratios increases as the rounds progress in ResNet56 on CIFAR100.

Such a process resembles a recursive setup where the new
predictor is built on top of the previously reconstructed weights. This simple procedure leads to
further improvements over the original network’s performance, albeit producing relatively higher
reconstruction errors due to smoothing. As shown in Figure 3(a), this progressive training produces
consistent improvements in accuracy, surpassing the original network’s performance across all
architectures and datasets. We further investigate the singular value ratio (Sratio) analysis at each
round. Figure 3(b) presents the layer-averaged difference in Sratio for the last half of the layers
in ResNet56 on CIFAR100, i.e., 2

L

∑L
l=n/2

(
Sround
ratio[l]− Soriginal

ratio [l]
)

, where l denotes each layer.
Compared to the original network weights, Sratio increases with each round of reconstruction and
levels off at 5. Notably, while the slope remains positive across rounds, the slope becomes less steep.
This suggests that the weight smoothing effect diminishes, leading to only limited improvement.
Once weights are sufficiently smoothed, we do not witness further improvements by using additional
rounds of training (performance does not drop either).

3.2 DISTILLATION IMPROVES COMPRESSION, BUT ONLY WITH LOSS DECOUPLING

So far, we inspected the behavior of the reconstruction loss, and demonstrated its surprising efficacy
in enhancing model performance. Despite the observed performance improvement, we did not take
parameter-efficiency into account for our analysis. However, in practice, an important motivation
for using weight prediction networks is to achieve signification reduction in memory requirements
for model storage, while not trading-off the performance unreasonably. While NeRN originally
leveraged with such a compression objective, their accuracy trade-off makes them a less preferred
choice over other model compression (or reduction) strategies in practice. In this section, we show
how the compression capability of neural representations can be enhanced. To this end, we take a
closer look at the widely adopted distillation objective and how it interacts with the reconstruction
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loss. By doing so, we address the critical need to strike a balance between model complexity and
efficiency, paving the way for more practical and resource-efficient neural networks.

Figure 4: (a) Average weight difference between predicted weights by Recon-only and original
weights with varying hidden sizes. (b) Comparison among Recon-only (Lrecon), NeRN (Lrecon +
LKD + LFMD), and ours (only LKD in the second phase). (c) Evaluation of the reconstruction
performance for each method. ↑ represents our performance improvement over the NeRN.
To begin with, we analyze the layer-wise weight differences between the reconstructed and original
networks at varying predictor network sizes (Figure 4(a)). Note, we use the term “CR” to denote the
ratio of the learnable size of the predictor S(P ) to that of the original network S(O). For instance,
if the predictor network has Q learnable parameters in order to recover an original network with
P parameters, then CR × 100 = (Q/P ) × 100%. As expected, smaller-sized predictor networks
(i.e., higher compression) exhibit relatively large gaps and this can be attributed to the insufficient
representation power. On the other hand, increasing the capacity of the predictor network leads to
improved reconstruction performance, as depicted by the green bar in Figure 4(c). However, insights
from Section 3.1 indicate that, unless we increase the predictor capacity even further and perform
progressive training, the reconstruction-only training cannot match the true performance. Hence,
to recover the lost performance while also enabling parameter-reduction (i.e., CR < 1), NeRN
incorporates an additional distillation objective (LKD+LFMD) during training. As illustrated by the
orange bar in Figure 4(c), the predictor network’s performance can be significantly improved with the
guidance of this distillation process. This can be attributed to the fact that the arbitrary perturbations
in the reconstructed network induced by the distillation losses can make non-trivial changes to the
decision rules, thus impacting the generalization performance of the network. Hence, additional
guidance in terms of the prediction probabilities provides valuable task-relevant information.

While the original NeRN approach has proven effective, we observe that the role of the distillation
objective is to primarily supplement the reconstruction loss. For instance, Figure 4(b) illustrates
the layer-wise discrepancies between the reconstructed weights in the Recon-only and the NeRN
methods compared to the original weights for the case of Hidden 320 (number of neurons in each
layer of the MLP for neural representations). It is apparent that the training process of NeRN appears
to be predominantly driven by the reconstruction loss, which limits effectiveness at high compression
factors. This indicates that a limited predictor capacity (CR < 1) cannot accurately recover the
original weights. While one can further emphasize distillation terms in equation 1 by increasing
α and β, we find that it leads to training instabilities and the resulting network is far inferior (as
shown in Figure 6). This highlights the complementary nature of the two objectives, as well as the
challenges involved in combining them in practice.

To address this critical limitation, we propose to employ the two objectives in distinct training stages.
Initially, we train the predictor network solely based on the reconstruction objective (Recon-only)
and optionally perform progressive training when the predictor network capacity is high. In the
second phase, we fine-tune the predictor stage 1 using only the distillation objective, LKD. As
shown in Figure 4(b), this allows the predictor to explore solutions that can in principle be different
from the original network, but adhere to similar decision boundaries. Interestingly, we find that
this two-stage optimization leads to significant differences in the early layers of the network, while
still matching the later layers. This is intuitive, as it is well known that the decision rules typically
emerge in the later layers of a deep network. While the larger differences in the early layers may
seemingly compromise reconstruction fidelity, this separate training strategy facilitates a more
effective integration of distillation into the network parametrization, as evidenced by significant
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improvements (red bars in Figure 4(c)). As we show later, this decoupling of the training objectives
not only demonstrates greater resilience to variations in the predictor network size, but also recovers
or even surpasses the performance of the original network with predictors that are > 40% smaller
than the original network, which NeRN cannot achieve.

3.3 IMPROVING COMPRESSION-PERFORMANCE TRADE-OFF VIA STRONG TEACHERS

In Section 3.1, and 3.2, we considered the performance or the compression objective independently.
However, a natural next question is whether one can improve the compression vs. performance
trade-off, and obtain additional improvements in both aspects. The proposed decoupled training
offers flexibility in the second phase after the initial reconstruction objective is accomplished. One
particular benefit of such a decoupling is that it enables the use of other high-performing models
for guiding the distillation phase. We argue that by leveraging guidance from a high-performing
teacher, one can further improve the efficacy of decoupled training, thereby improving on the
performance-compression trade-off. In other words, through the proposed strategies, one can
achieve non-trivial improvements to model accuracy for a fixed predictor network capacity, or easily
push past the original network’s performance via progressive reconstruction. This flexibility of our
proposed approach goes beyond the decoupled training, as every component we have introduced can
be combined with each other or with other methods (e.g., model quantization, pruning, and standard
knowledge distillation). To help put everything together, we provide a summary of our findings and
components of the proposed approach in Figure 5.

Figure 5: Summary of training schemes and their benefits: Section 3.1 explores reconstruction-only
setups for performance improvement. Section 3.2 introduces decoupled training for better storage
compression. Finally, we show how a high-capacity teacher enhances both compression and accuracy.

4 EXPERIMENTS

We present experiment results to support the observations made in Section 3 and highlight the practical
usage scenarios made possible with our proposed approach. We use benchmark datasets, including
CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), STL-10 (Coates et al., 2011), and ImageNet (Deng
et al., 2009) and models based on ResNet architectures (He et al., 2016) . We use the test split
for model evaluations, the exceptions are no split for the reconstruction task and training split for
the knowledge distilation. Beyond evaluating the in-distribution performance of the reconstructed
models, we also assess their robustness using out-of-distribution (OOD) datasets such as CIFAR10-C,
CIFAR100-C, and ImageNet-R, and two popular adversarial attacks, FGSM and I-FGSM (Goodfellow
et al., 2014). See detailed training setups in the Appendix G.

4.1 ENHANCING PERFORMANCE THROUGH PROGRESSIVE RECONSTRUCTION - CR>1

Firstly, we discovered that the reconstructed model using only the reconstruction loss performs
better in testing when weights are predicted by a large predictor (CR > 1). The reconstruction
loss alone enabled the model to improve its performance slightly, with gains ranging from 0.1% to
0.3%. Interestingly, additional rounds of weight prediction further enhanced performance beyond the
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initial reconstructed model, ultimately achieving gains of up to 0.6%. Table 1 presents the results of
the reconstructed models at each round. In Round 1, the model reconstructs the original network,
and subsequent rounds predict the previous round’s weights. This process continues progressively
through multiple generations until performance improvements plateau. As each round progresses, the
predicted weights deviate more from the original solution, as indicated by the increased reconstruction
loss. Furthermore, the solution found in each round does not compromise on OOD generalization and
adversarial robustness metrics. In a few cases, we also notice that non-trivial gains in robustness are
possible. This suggests that our progressive training does not lead to undesirable overfitting behavior.

Table 1: Evaluation performance of large predictor networks via progressive reconstruction. The
reported results are computed across three runs.

CIFAR10 Original
ResNet20

Hidden 300 (CR>1)

Round 1 Round 2 Round 3 Round 4 Round 5

Accuracy (↑, %) 91.69% 91.79±0.02 91.88±0.04 91.98±0.03 92.00±0.02 92.02±0.01
Lrecon - 0.00332 0.00414 0.00500 0.00547 0.00590
OOD (↑, %) 70.49 69.45±0.48 69.32±0.51 68.82±0.19 68.85±0.06 68.61±0.06

FGSM (↑, %) 76.41 77.16±0.25 77.03±0.12 77.08±0.13 77.08±0.02 77.07±0.08

I-FGSM (↑, %) 75.02 75.56±0.17 75.49±0.22 75.59±0.08 75.69±0.01 75.63±0.06

STL10 Original
ResNet56

Hidden 680 (CR>1)

Round 1 Round 2 Round 3 Round 4 Round 5

Accuracy (↑, %) 76.31% 76.40±0.004 76.44±0.02 76.51±0.03 76.54±0.02 76.65±0.01
Lrecon - 0.00120 0.00117 0.00125 0.00128 0.00166
FGSM (↑, % 39.28 39.36±0.16 39.27±0.10 39.30±0.05 39.32±0.06 39.19±0.02

I-FGSM (↑, %) 36.12 36.13±0.11 36.24±0.06 36.26±0.13 36.17±0.03 36.11±0.02

CIFAR100 Original
ResNet56

Hidden 680 (CR>1)

Round 1 Round 2 Round 3 Round 4 Round 5

Accuracy (↑, %) 71.37 71.61%±0.01 71.73%±0.04 71.85%±0.03 71.92%±0.02 71.98%±0.05
Lrecon - 0.00068 0.00082 0.00088 0.00095 0.0010
OOD (↑, %) 44.70 44.47±0.47 44.75±0.31 44.50±0.26 44.29±0.03 44.47±0.21

FGSM (↑, %) 44.69 44.83±0.26 44.80±0.21 45.02±0.11 45.23±0.08 45.18±0.17

I-FGSM (↑, %) 39.31 40.91±0.38 40.82±0.28 41.04±0.14 41.21±0.08 41.04±0.08

4.2 ACHIEVING GREATER COMPRESSION WITH DECOUPLED TRAINING - CR<1
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Figure 6: Impact of hyperparameters on
model performance in NeRN training.

We identified that the NeRN training process appears
to be predominantly driven by the reconstruction loss,
thus the compression ability induced by LFMD and
LKD might be limited in Section 3.2. Although in-
creasing the distillation weights could improve com-
pression, we found that it ends up with training insta-
bility and significantly inferior network performance
(α, β = 1). In Figure 6, we gradually vary the penalty
of the distillation loss term while fixing the recon-
struction term’s weight at 1. When this parameter
is aptly chosen, it is possible to improve over the
NeRN; however, the sensitivity of this hyperparam-
eter to the dataset and model architecture choices
makes it challenging to choose reliably in practice.

By adopting the proposed two-stage training approach, where each loss is optimized separately, we
not only observe further performance gains compared to even the "oracle" hyper-parameter value
(i.e., rank different choices based on the test accuracy itself), it entirely alleviates the sensitivity of
this challenging optimization process. Consequently, the proposed network parameterization behaves
robustly in both compression and knowledge distillation use-cases, and produces significantly superior
results over NeRN. We found that even starting from an inferior point (24.20% from Recon-only with
Hidden 220 on CIFAR100 in Table 2), performance can be significantly recovered to 69.31% with
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only LKD in the second phase, representing a 9% improvement over NeRN. Furthermore, we achieve
a CR of approximately 57% (Hidden 360) while surpassing the original network’s performance. For
ImageNet, our approach shows only a 3% drop, while NeRN shows an 8% drop, compared to the
original performance when the CR is 15%.

Table 2: Evaluation performance of small predictor networks via decoupled training. The reported
results represent the mean values over three runs except for ImageNet experiments. Recon-only
(Lrecon), NeRN (Lrecon + LKD + LFMD), and Ours (LKD only in the second phase).

Method Recon-only / NeRN / Ours

CIFAR10 Original
ResNet20

Hidden 120
(CR×100 ≈ 27%)

Hidden 140
(CR×100 ≈ 35%)

Hidden 180
(CR×100 ≈ 53%)

Accuracy (↑, %) 91.69 75.75 / 87.99 / 90.75 85.64 / 89.67 / 91.34 90.03 / 91.26 / 91.75
OOD (↑, %) 70.49 50.50 / 65.00 / 68.84 60.08 / 67.19 / 69.95 66.34 / 69.75 / 70.48
FGSM (↑, %) 76.41 59.76 / 72.73 / 75.38 70.26 / 74.96 / 75.83 74.78 / 76.01 / 76.27
I-FGSM (↑, %) 75.02 58.87 / 71.48 / 73.77 69.05 / 73.58 / 74.21 73.39 / 74.44 / 74.83

CIFAR100 Original
ResNet56

Hidden 220
(CR×100 ≈ 24%)

Hidden 280
(CR×100 ≈ 36%)

Hidden 360
(CR×100 ≈ 57%)

Accuracy (↑, %) 71.37 24.20 / 60.94 / 69.31 49.55 / 66.87 / 70.84 67.48 / 70.39 / 71.46
OOD (↑, %) 44.70 13.01 / 38.59 / 43.76 27.08 / 42.00 / 44.61 40.21 / 44.21 / 45.14
FGSM (↑, %) 43.69 14.65 / 40.30 / 45.35 30.76 / 43.51 / 44.95 43.28 / 44.82 / 45.01
I-FGSM (↑, %) 39.31 14.14 / 38.73 / 42.61 29.38 / 41.41 / 41.95 40.74 / 41.78 / 41.12

STL10 Original
ResNet56

Hidden 280
(CR×100 ≈ 36%)

Hidden 320
(CR×100 ≈ 46%)

Hidden 360
(CR×100 ≈ 57%)

Accuracy (↑, %) 76.31 69.41 / 74.99 / 76.02 73.36 / 75.64 / 76.25 74.81 / 75.74 / 76.26
FGSM (↑, %) 39.28 36.27 / 39.69 / 39.82 38.89 / 39.83 / 39.28 38.53 / 39.77 / 39.21
I-FGSM (↑, %) 36.12 33.60 / 36.33 / 36.61 35.44 / 36.27 / 35.96 35.30 / 36.40 / 35.96

ImageNet Original
ResNet18

Hidden 700
(CR×100 ≈ 15%)

Hidden 1024
(CR×100 ≈ 31%)

Hidden 1372
(CR×100 ≈ 55%)

Accuracy (↑, %) 69.76 51.10 / 61.91 / 66.48 65.69 / 67.32 / 68.68 68.81 / 68.87 / 69.32
OOD (↑, %) 33.07 19.87 / 25.59 / 30.25 28.36 / 30.90 / 32.17 31.72 / 32.54 / 32.82
FGSM (↑, %) 57.83 39.99 / 50.19 / 53.94 53.82 / 55.67 / 56.69 56.96 / 57.14 / 57.40
I-FGSM (↑, %) 57.15 38.42 / 49.63 / 53.28 53.23 / 55.06 / 56.09 56.32 / 56.43 / 56.76

4.3 DISTILLATION-DRIVEN COMPRESSION AND PERFORMANCE BOOST - CR < 1 & CR > 1

In Sections 4.1 and 4.2, we explored two distinct avenues: improving model performance with large
predictors (CR > 1) and achieving greater compression with small predictors (CR < 1), respectively.
In this section, we seek to simultaneously improve on both of the objectives. Leveraging the flexibility
of our decoupled training approach, we can utilize the superior guidance provided by a high-capacity
teacher network to enhance parameter efficiency and produce high-fidelity representations. To this
end, we employ ResNet50 as a teacher network, which has a size of 90.43MB with 78.48% accuracy
on CIFAR100, and the reconstructed network (ResNet56) with a size of 3.25MB. As the teacher
network is used only during the training in the second phase, the computational overhead and larger
parameter of the teacher do not affect either the predictor network or the reconstructed model.

Firstly, we present the results of a parameter-efficient predictor guided by the teacher network in
Table 3. For a fair comparison, the NeRN model is also trained using LKD under the same teacher’s
supervision, as LFMD is applicable only to architectures that are identical between the student and
the teacher. The results in the table support the evidence that a high-performing teacher network
can improve the efficiency of the predictor. For instance, in the case of Hidden 280, our method’s
performance ‘with guidance’ achieves an accuracy of 72.06%, surpassing both the ‘without guidance’
case and the original network (71.37%), as well as NeRN (66.21%).

Interestingly, we observe that increasing the predictor size, particularly when parameter efficiency
is not a critical factor, can lead to significant performance gains. This is likely due to the ability
of a larger predictor to capture higher-fidelity representations of the teacher model. As shown in
Table 4, our method achieves superior performance levels over NeRN. Notably, our best-performing
model achieves an accuracy of 73.95%, outperforming the conventional KD approach, a student
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Table 3: Evaluation performance of parameter-efficient predictor networks with guidance from a
high-performing teacher network (ResNet50). We compare the effect of including the distillation
objective to both NeRN (Lrecon + LKD) and the proposed approaches (LKD only in the second
phase). In each case, we show the results for without guidance / with guidance from a teacher.

CIFAR100 Original
ResNet56

Hidden 220
(CR×100 ≈ 24%)

Hidden 280
(CR×100 ≈ 36%)

Hidden 360
(CR×100 ≈ 57%)

NeRN Ours NeRN Ours NeRN Ours

Accuracy (↑, %) 71.37 60.94 / 58.30 69.31 / 70.25 66.87 / 66.21 70.84 / 72.06 70.39 / 70.94 71.46 / 72.91
OOD (↑, %) 44.70 38.59 / 35.45 43.76 / 44.66 42.00 / 41.13 44.61 / 46.20 44.21 / 44.37 45.14 / 47.12
FGSM (↑, %) 43.69 40.30 / 37.01 45.35 / 46.69 43.51 / 42.65 44.95 / 47.32 44.82 / 45.53 45.01 / 48.24
I-FGSM (↑, %) 39.31 38.73 / 35.68 42.61 / 44.29 41.41 / 40.66 41.95 / 44.29 41.78 / 42.61 41.12 / 44.59

(ResNet56) is trained from scratch using the guidance of ResNet50 teacher network with the LKD

loss, achieving 73.60%. Building on the observation, and aligning with the idea presented in Section
4.1 that additional training complexity can further improve performance, we proceed with one round
of progressive reconstruction targeting our best-performing model (73.95%). This resulted in a
further improvement to 74.15%.

Table 4: Evaluation performance of large predictor networks with guidance from a high-performing
teacher network (ResNet50). We compare the effect of including the distillation objective on both,
NeRN (Lrecon + LKD) and the proposed approaches (LKD only in the second phase). In each case,
we show the results for without guidance / NeRN with guidance / Ours with guidance.

Method Recon-only / NeRN / Ours

CIFAR100 Original
ResNet56

Hidden 510
(CR>1)

Hidden 680
(CR>1)

Hidden 750
(CR>1)

Accuracy (↑, %) 71.37 71.45 / 72.02 / 73.41 71.61 / 71.80 / 73.95 71.56 / 71.89 / 73.82
OOD (↑, %) 44.70 44.33 / 45.18 / 47.62 44.47 / 45.16 / 47.61 44.93 / 44.66 / 47.74
FGSM (↑, %) 43.69 44.32 / 44.02 / 48.75 44.83 / 44.10 / 49.19 44.58 / 44.74 / 49.22
I-FGSM (↑, %) 39.31 40.24 / 39.82 / 45.24 40.91 / 39.94 / 45.26 40.35 / 40.55 / 45.53

4.4 MODEL COMPRESSION COMPARISON

In this section, we present comparative results with network quantization, applying post-training static
quantization using the ‘fbgemm’ backend (Khudia et al., 2021) with the int8 approach. Note that
the core contribution of this study lies in effective reparameterization via progressive and decoupled
training strategies. While decoupled training enhances model compression, our objectives differ from
quantization methods. We believe that combining reparameterization with quantization could advance
both model fine-tuning and efficient inference. To strengthen our hypothesis,we first perform a direct
comparison of our method with quantization and find the resulting accuracy to be superior as shown
in Table 5. For example, in the case of ResNet56 on CIFAR100, the performance of the quantized
ResNet56 is reduced by a significant margin, with a 1.72% drop. Remarkably, our model with the
same level of size reduction, experiences only a 0.5% drop, while NeRN shows lower performance
than the quantized model. Moreover, our predictor can be further compressed to achieve an even
smaller model size by leveraging quantization techniques, as demonstrated in the last column. This
further strengthens our hypothesis that these two methods can provide complementary benefits.

5 RELATED WORKS

Weight space generation and manipulation Recent advancements in weight generation utilize
transformer (Knyazev et al., 2023), and diffusion model (Soro et al., 2024) for predicting model
weights. These networks focus on representing the distribution of weights or parts of the overall
network, while our approach focuses on accurate reconstruction of the source network. Furthermore,
Weight space manipulation provides a direct way to alter model behavior and comes in a variety
of flavors. The recent development of ever larger models (Shoeybi et al., 2019) makes fine-tuning
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Table 5: Comparison with int8 quantization method. Our approach outperforms both NeRN and the
quantization method on complex datasets and architectures like ResNet56 on CIFAR100.

Method Original
ResNet20

Quantized
ResNet20

NeRN
Hidden 140

Ours
Hidden 140

Quantized
NeRN

Quantized
Ours

CIFAR10
Size 1.06MB 0.37MB 0.36MB 0.36MB 0.11MB 0.11MB
Accuracy (%) 91.69 91.38 89.67±0.28 91.34±0.04 77.96 89.34

Method Original
ResNet56

Quantized
ResNet56

NeRN
Hidden 280

Ours
Hidden 280

Quantized
NeRN

Quantized
Ours

CIFAR100
Size 3.25MB 1.17MB 1.17MB 1.17MB 0.32MB 0.32MB
Accuracy (%) 71.37 69.65 66.87±0.29 70.84±0.09 49.48 51.72

existing models increasingly challenging, as a result, post-training model merging (Matena & Raffel,
2022; Tam et al., 2023; Ilharco et al., 2022) are becoming increasingly popular that combines existing
available models for performance enhancement.

Implicit neural representations (INR) (Sitzmann et al., 2020; Tancik et al., 2020) were initially
designed for representing low-dimensional data (e.g., 2D or 3D) with complex and potential high-
frequency signals. Recently, INR has then been utilized for a variety of domains, e.g., from uncovering
correlation in scientific data (Chitturi et al., 2023) to estimating human pose (Yen-Chen et al., 2021).
We use INR for predicting filter weights for model reconstruction.

Knowledge distillation and pruning has been widely adopted for reducing model size while
preserving model performance. Knowledge distillation (Chen et al., 2020; Gou et al., 2021; Chen
et al., 2017; Beyer et al., 2022) utilizes a more capable teacher network to transfer prediction behavior
to the student network. Pruning techniques (Lee et al., 2019; Liu et al., 2018; Gao et al., 2021; Wang
et al., 2021; He & Xiao, 2023) aim to remove non-essential or potentially duplicated functionality in
the network and reduce the overall parameter counts.

Semantic representation of neural networks encode meaningful, interpretable features aligned
with human-understandable concepts Unterthiner et al. (2020); Schürholt et al. (2021); Peebles et al.
(2022); Schürholt et al. (2022); Lim et al. (2023); Navon et al. (2023); Herrmann et al. (2024);
Schürholt et al. (2024); Kofinas et al. (2024); Zhou et al. (2024b;a). Our implicit representations
encode information in a distributed and flexible manner, capturing complex patterns and relationships.

6 DISCUSSION AND FUTURE WORK

In this work, we identified effective strategies that significantly improve the accuracy of the recon-
structed model and compression ratio for predictor networks through exploring various trade-offs
in the parameterization of model weights with neural representation. While effective, one area
of the limitations is that the current predictor only works with CNN architectures, restricting its
usage. Moreover, despite the flexibility of the proposed protocols that can be combined or re-applied,
the necessary additional steps incur more training runs which can lead to a significant increase in
computation cost and complexity. However, the increased effort may be worth it to support edge
applications where the benefits are multiplied by the number of deployed instances. Still, to help
address these challenges, we need methods that can predict weights for diverse architectures and
are ideally more efficient when the target model grows in size and complexity. Another interesting
direction that is worthy of further investigation is the relationship between the weight smoothing and
the model’s generalization ability. Could we directly alter the original weights to achieve a similar
effect without the need to train a predictor model? Or can we potentially use that insight during
training as a regularization that directly improves models’ generalizability? We believe that our
research on several key areas—such as how weight parameterization converges, the data requirements,
the interplay between different loss components, and the challenges of distillation in reparameterized
models—offers valuable insights that can significantly improve model training and deployment
practices.
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A FREQUENCY AND SINGULAR VALUE MODULATION

In Section 3.1, we observed interesting behavior of the weight through the lens of singular value
ratio (Sratio) analysis, where higher Sratio values correlated with improved performance of the
reconstructed model, as shown in Figure 2. We hypothesize that the reconstruction process may
implicitly induce a weight smoothing effect, which relates to a reduction in high-frequency or noise
components, and in turn, improves the model’s generalization. To establish a closer and tangible
connection between model performance and frequency or singular value-based modulation, we
consider two simple, complementary approaches that directly apply manipulation on model weights:
(1) reducing the high-frequency components of the weight through frequency-based modulation,
and (2) downscaling the low singular values that only contribute minimally to the overall weight
structure. We find that both procedures can independently lead to improved model performance
without any additional training, though these heuristics require carefully tuned parameter on test data,
which makes them less feasible for practical application. Our goal for these experiments is to further
investigate why the reconstruction objective alone can improve reconstructed models’ performance.

Frequency-based weight modulation: First, we simply suppress the high-frequency components
using an exponential low-pass filter. Specifically, given a weight tensor w ∈ Rcout×cin×k×k, to focus
on frequency patterns across the spatial dimensions, the weight tensor is reshaped to cout×cin×(k×k).
We then apply the FFT along the spatial dimensions, transforming the tensor into its frequency
representation. To reduce the high-frequency components, we leverage a Gaussian low-pass filter
defined as: H(f) = exp(−0.5(f/D0)

2) where f is the frequency index, and D0 represents the
cutoff frequency. A smaller D0 leads to greater suppression of high-frequency components. After
low-pass filtering, we apply the inverse FFT to return the frequency-modified weights back into the
spatial domain. We apply this module to one block of ResNet56 while keeping the other blocks fixed,
considering only the convolutional layers and excluding fully connected layers, batch normalization
layers, and others. Figure 7 presents the model performance on test set (CIFAR100) using these
modified weights (solid blue line) compared to the original model without frequency filtering (dotted
red line).

Interestingly, suppressing the high-frequency components with an appropriate cutoff frequency (D0)
improves test accuracy. This trend is observed across all blocks of ResNet56, with the first block
showing the most significant improvement. Note that, selecting the optimal cutoff frequency for
each layer is non-trivial in practice, especially without access to test data. Our proposed progres-
sive optimization automatically performs this smoothing effect, eliminating the need for manual
hyperparameter tuning in different layers.
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Figure 7: Evaluation of the original model’s performance with varying cutoff frequencies applied in
each block of ResNet56 on CIFAR100.

Singular value-based weight modulation: Here, we perform singular value modulation by scaling
down the less significant singular values of a given layer, as these components contribute less to the
overall matrix. Specifically, we select the last 15 singular values to be modulated, with each singular
value multiplied by a weight factor (≤ 1). We then reconstruct the weights using the modified singular
values and evaluate the model performance on the CIFAR100 test set. We apply this modulation
to one block of ResNet56 while keeping the other blocks fixed, considering only the convolutional
layers and excluding fully connected layers, batch normalization layers, and others.

Similar to frequency-based modulation, our results indicate that using appropriately modulated
singular values yields a model that outperforms the original model. While direct modulation of
singular values is feasible, conducting a hyperparameter search for optimal scaling factors can

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

be challenging due to the varying preferences for weights across different layers. Our proposed
progressive training entirely alleviates the need for this extensive hyperparameter tuning in different
layers.
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Figure 8: Evaluation of the original model’s performance with varying weights (multipliers) applied
in each block of ResNet56 on CIFAR100.

Exploring potential link between frequency and singular value-based modulations: While
both frequency-based modulation and singular value-based modulation have independently demon-
strated improvements in model performance with a naive hyperparameter approach, it is important
to note that these methods are not inherently connected. This is because modulating singular
values (especially smaller ones) does not guarantee the removal of high-frequency components.
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Figure 9: Layer-wise Sratio analysis.

Given this distinction, the relationship between these
two concepts remains questionable. To further investi-
gate whether a meaningful link exists, we hypothesize
that the model with smoothed weights (after low-pass
filtering) should exhibit larger Sratio values than the
original weight without low-pass filtering, based on
previous observations. To test this hypothesis, we con-
duct an additional analysis. First, we extract the best-
performing model from Figure 7, where only the first
block was modulated, achieving an accuracy of 71.59%
at D0 = 23.53. We then display layer-averaged singu-
lar value ratio difference between smoothed weights
and original weights. Interestingly, the results demon-
strate a similar trend to that observed in Figure 2 and

show that the frequency-modulated model after low-pass filtering exhibits a higher Sratio compared
to the original weights before filtering. This suggests a potential correlation between the two concepts,
although further research is required to confirm a definitive link.

B ROLE OF THE FEATURE MAP DISTILLATION (FMD) LOSS

Our analysis aligns with the finding in (Ashkenazi et al., 2022), that there is an apparent drop in the
performance of the baseline NeRN when the FMD loss is omitted (e.g., 2% drop at CR ≈ 24% for
CIFAR100) as shown in Table 6. We make the following observation for proposed decoupled training:
1) LKD is essential to our optimization and superior to using LFMD. 2) Decoupled training with only
LKD is highly effective as shown in Table 7, and it outperforms NeRN trained with LKD + LFMD.
3) Adding LFMD to decoupled training does not provide significant performance gains.

Table 6: NeRN performance with/without LFMD.

Method Lrecon + LKD + LFMD / Lrecon + LKD

CIFAR100 Original
ResNet56

Hidden 220
(CR×100 ≈ 24%)

Hidden 280
(CR×100 ≈ 36%)

Accuracy (↑, %) 71.37 60.94%±0.39 / 58.94%±0.63 66.87%±0.87 / 66.03%±0.13
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Table 7: Performance of our approach.

Method LFMD / LKD / LKD + LFMD

CIFAR100 Original
ResNet56

Hidden 220
(CR×100 ≈ 24%)

Hidden 280
(CR×100 ≈ 36%)

Accuracy (↑, %) 71.37 67.53%±0.09 / 69.31%±0.03 / 69.31%±0.09 70.31%±0.09 / 70.84%±0.09 / 70.94%±0.09

C DECOUPLED TRAINING WITH NOISE INPUTS

In this section, we explore the adaptability of our decoupled training in scenarios where the original
task data is unavailable. This investigation aims to address the challenge of operating in a completely
data-free environment. We employ uniformly sampled noise as input data, denoted as X ∼ U [−1, 1].
Remarkably, even in the absence of meaningful data, our proposed approach demonstrates significant
performance enhancement, with improvements of approximately 2 to 3%.

Table 8: Reconstruction performance of Ours (LKD only in the second phase) with noise input data.

CIFAR10

Method (In-Filter)
Original

ResNet20

Hidden 140

Recon-only NeRN Ours
Size 1.03MB 0.36MB 0.36MB 0.36MB
Acc. (↑, %) 91.69% 85.64%±0.39 86.31%±0.11 87.25%±0.02

CIFAR100

Method (In-Filter)
Original

ResNet56

Hidden 320

Recon-only NeRN Ours
Size 3.25MB 1.48MB 1.48MB 1.48MB
Acc. (↑, %) 71.37% 61.31%±0.45 63.92%±0.11 64.39%±0.01

D ADDITIONAL RESULTS WITH MOBILENETS

We also explore the effectiveness of the proposed approach with architectures other than ResNet
variants. We present results using a lightweight network, MobileNet (Howard, 2017) in Table 9.
The results demonstrate that our approach not only outperforms NeRN but is also applicable to
lightweight architectures.

Table 9: Reconstruction performance with MobileNet.

CIFAR100

Method (In-Filter)
Original

ResNet20

Hidden 50

Recon-only NeRN Ours
Acc. (↑, %) 63.71% 59.85%±0.21 61.58%±0.08 62.90%±0.01

E CR RATES IN TABLES

Here, we provide the exact CR values used in all experiments.

Hidden Size 120 140 180 300

CR w.r.t ResNet20 0.27 0.35 0.53 1.28

Hidden Size 220 280 320 360 510 680 750

CR w.r.t ResNet56 0.24 0.36 0.46 0.57 1.06 1.83 2.20

Hidden Size 700 1024 1372

CR w.r.t ResNet18 0.15 0.31 0.55
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F LOSS LANDSCAPE ANALYSIS

Understanding the landscape of the loss function in the weight space provides valuable insights into
the optimization process and the behavior of neural networks. Here, we conduct a comprehensive
loss landscape analysis to compare the learned weights from each method. As shown in Figure 10,
the weights found by our decoupled training lie on the periphery of the most desirable solutions.
This suggests that decoupled training enables the predictor to explore better optima by exclusively
learning from the predictive knowledge of the original network.

Figure 10: Loss landscape analysis with comparisons among weights from the original networks,
NeRN (Lrecon + LKD + LFMD), and Ours (LKD only in the second phase)

We also visualize the loss landscape by interpolating the weights among the original network, and the
first and last rounds of the reconstructed model. As shown in Figure 11, all three weights belong to the
same local extrema in the loss landscape. This observation is expected since the reconstruction loss
constrains all weights to be close to the original model. For the testing loss/error, the reconstruction
process appears to enhance the generalization performance.

Figure 11: Loss landscape analysis comparing weights from the original network with those from the
reconstructed models in the first and last rounds.

G DATASETS AND TRAINING DETAILS

G.1 DATASET DESCRIPTION

• CIFAR-10 (Krizhevsky et al., 2009): The CIFAR-10 dataset consists of 60,000 32x32
color images in 10 classes, with 6,000 images per class. The dataset is divided into 50,000
training images and 10,000 testing images. Each image is labeled with one of the following
classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, or truck.

• CIFAR-100 (Krizhevsky et al., 2009): Similar to CIFAR-10, the CIFAR-100 dataset
contains 60,000 32x32 color images, but organized into 100 classes, with 600 images
per class. The dataset is divided into 50,000 training images and 10,000 testing images.
Each image is labeled with one of the 100 fine-grained classes, which are grouped into 20
coarse-grained superclasses.

• STL-10 (Coates et al., 2011): The STL-10 dataset comprises 10,000 labeled 96x96 color
images, with 5,000 images for training and 5,000 for testing. The dataset contains images
from 10 different classes: airplane, bird, car, cat, deer, dog, horse, monkey, ship, and truck.
Unlike CIFAR, STL-10 also includes a pre-defined unlabeled dataset for unsupervised
learning tasks.

• ImageNet-1K (Deng et al., 2009): ImageNet-1K is a large-scale dataset consisting of over
1.2 million high-resolution images across 1,000 different classes. It is widely used for image
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classification, object detection, and other computer vision tasks. The dataset is divided into
training (1.28 million images), validation (50,000 images), and test sets (100,000 images).
Each image is labeled with one of the 1,000 object categories.

G.2 TRAINING DETAILS

Training of NeRN: We follow the same settings outlined in Ashkenazi et al. (2022). The baseline
method employs a Multi-layer Perceptron (MLP) with 5 layers as a predictor, with varying hidden
sizes. Training is conducted using the ranger optimizer (Wright, 2019) with a learning rate of 5e− 3.
The number of epochs for training is 350 for CIFAR-10 and STL-10, 450 for CIFAR-100, and
16× 104 iterations for ImageNet experiments. Similar to minibatch sampling in standard stochastic
optimization, during each training step, it predicts all reconstructed weights but optimizes only on a
mini-batch of them. The weights batch method employed is a random weighted batch, using weighted
sampling with a probability of 1− puni, where puni = 0.8, and a batch size of 4096 for CIFAR-10,
CIFAR-100, and STL-10 datasets. For ImageNet, the experiment was conducted with a minibatch size
of 216. Hyperparameters α and β in learning objectives are set to 1e− 5 for CIFAR-100 and STL-10
datasets, and to 1e − 4 to CIFAR-10, and 1e − 6 for ImageNet. Based on empirical observations,
increasing the hyperparameter values during training to emphasize the distillation process causes the
method to experience highly unstable training, often resulting in convergence failure. Therefore, we
opted to use the same values as suggested by the authors.

When training predictors, there are two types of permutation-based smoothness: In-Filter and Cross-
Filter. Both approaches do not show significant difference in terms of accuracy. The order of weights
in the original network remains unchanged; this smoothness only affects the order in which the
predictor processes the kernels. In all experiments, In-Filter smoothness was used for CIFAR-10,
CIFAR-100, and STL-10 datasets, while Cross-Filter smoothness was employed for the ImageNet
dataset.

Training of Progressive-Reconstruction Training: We adhere to the same settings as full training
in the NeRN method, including the number of epochs, batch size, learning rate, and other parameters.
To isolate and illustrate the reconstruction’s pure effect, the predictor is trained only with the
reconstruction loss, Lrecon. For the next round of progressive-reconstruction training, we select the
best-performing models from the previously reconstructed network, determined across three trials
with different random seeds, as the target network. If the performance does not surpass that of the
target network, we conclude the round. To elucidate the training protocols, we present the results of
all three trials conducted on the CIFAR-100 dataset. As observed in the trend of improvement, the
gap in enhancement diminishes as the rounds progress.

Table 10: Evaluation performance of large predictor networks via progressive reconstruction. We
report all results in three trials. The colored box represents the target performance for the next round.

CIFAR100

Method

# Trial Original
ResNet56

Hidden 680 (CR>1)

Round 1 Round 2 Round 3 Round 4 Round 5

Accuracy (↑, %) 1 71.37 71.62 71.73 71.80 71.91 71.92
Accuracy (↑, %) 2 - 71.59 71.69 71.89 71.96 72.05
Accuracy (↑, %) 3 - 71.63 71.79 71.86 71.91 71.99

mean±std 71.61%±0.01 71.73%±0.04 71.85%±0.03 71.92%±0.02 71.98%±0.05

Training of Decoupled Training: We fine-tune predictors in the second phase for 100 epochs for
CIFAR-10, CIFAR-100, and STL-10, and 105 iterations for ImageNet, but even with a much smaller
number of epochs/iterations, we observe comparable performance. We employ either Adam (Kingma
& Ba, 2014) or Ranger (Wright, 2019) optimizers, and in most cases, both yield similar performance.
Additionally, in the second phase with LKD, we empirically observed that applying weights to the
LKD with α < 1 sometimes improves convergence, leading to better performance. Therefore, we set
α to 0.01 in our experiment.

G.3 CODE REPRODUCIBILITY

We plan to release our code upon acceptance of the paper.
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H SINGULAR VALUE RATIO COMPARISON

We extend our investigation to the solution obtained in the final round of progressive-reconstruction
using the singular value ratio analysis. Figure 12 presents the layer-wise Sratio differences between
the reconstructed weights and the original weights. We also observe that the reconstructed weights
in the final round exhibit a higher Sratio compared to the original weights. Notably, compared to
the first-round solution on CIFAR100 (Figure 2), the final-round solution displays a wider range of
Sratio differences in the positive area. This indicates that each round of progressive training promotes
the weight smoothing effect, with an increase in Sratio, leading to performance improvement.
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Figure 12: Layer-wise difference in singular value ratios between the reconstructed network of the
last round and the original network.

I INTERPOLATION BETWEEN TWO SOLUTIONS

We further examine individual pairs of weights by directly interpolating between the original weight
wo and the reconstructed weight in each round, w̄. Let wo and w̄i represent the original weights and
the reconstructed weights at the i-th round, respectively. For each value of α in the range [0, 1.0], we
generate plots showing the test accuracy (on the right y-axis) and the corresponding reconstruction
error (on the left y-axis) for the interpolated weights f((1− α)wo + αw̄i). Figure 13 illustrates the
performance at intermediate points across different values of α. The plots reveal a gradual increase in
both distance and accuracy as the rounds progress.

Figure 13: Analysis of interpolation in a 1-D parameter space between the original weight and the
reconstructed weight in each round.
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Table 11: Performance of the model across different conditions. The results are reported as mean ±
standard deviation where applicable.

Original 750 680 510 360 320 280 220
71.37% 71.56 ± 0.05 71.61 ± 0.01 71.45 ± 0.07 67.48 ± 0.10 61.31 ± 0.45 49.55 ± 1.72 24.20 ± 1.56

J RECONSTRUCTED MODEL PERFORMANCE WITH DIFFERENT PREDICTORS

As a sanity check we include the reconstructed model performance with different predictors that
are repeat trained with different initialization for each latent space size. In the Table, each column
indicate a model configuration, the original is the original weight, and the numbers indicate the latent
dimension size for the predictor INR.
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