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ABSTRACT

We introduce MedAgentGym, a scalable and interactive training environment de-
signed to enhance coding-based biomedical reasoning capabilities in large language
model (LLM) agents. MedAgentGym comprises 72, 413 task instances across 129
categories derived from 12 authentic real-world biomedical scenarios. Tasks are
encapsulated within executable sandbox environments, each featuring detailed
task specifications, interactive feedback mechanisms, verifiable ground truth an-
notations, and scalable training trajectory generation. Extensive benchmarking of
29 LLMs reveals substantial performance disparities in biomedical data science
between commercial and open-source LLMs. Leveraging efficient multi-threaded
and multi-turn trajectory sampling in MedAgentGym, Med-Copilot achieves per-
formance gains of +43.02% and +45.28% from offline and online reinforcement
learning, respectively, demonstrating MedAgentGym as an effective training ground
while establishing itself as a cost-effective, privacy-preserving alternative competi-
tive with proprietary LLMs (gpt-4o). By offering a unified execution environment
with a comprehensive benchmark and accessible, extensible training resources,
MedAgentGym delivers an integrated platform to develop LLM-based coding assis-
tants for advanced biomedical data science.
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Figure 1: Overview of (a) task-specific and (b) overall leaderboard evaluation in MedAgentGym. The
results show the (a) performance variations across biomedical data science tasks and (b) large gaps
between proprietary and open-source (OSS) LLMs, highlighting the need for continued development
of privacy-preserving, affordable LLM agents, especially for complex code-based biomedical reason-
ing tasks such as biomedical software engineering and predictive modeling.

1 INTRODUCTION

The exponential growth of healthcare data has fundamentally transformed modern biomedical re-
search, intensifying the need for integration of advanced computational methods with medical domain
expertise (Wornow et al., 2023b; Liu et al., 2025b). Biomedical researchers routinely face data science
challenges that demand both medical data analysis knowledge and programming proficiency, such
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as querying large-scale databases, conducting statistical analyses, processing genomic sequences,
and building predictive models from electronic health records (EHRs) (Nimmolrat et al., 2021; Lee
et al., 2022; Wornow et al., 2023a). While recent advances in large language models (LLMs) have
demonstrated significant capabilities in advanced reasoning (OpenAI, 2025b; Guo et al., 2025),
including code generation (DeepMind, 2025) and scientific discovery (Swanson et al., 2024; Team
et al., 2025; Yuan et al., 2025), it remains challenging to translate real-world biomedical data science
requirements into executable computational solutions (Wang et al., 2024b; 2025d).

Developing effective biomedical coding agents poses unique challenges beyond knowledge-intensive
medical reasoning (Wang et al., 2025b;c) and general-purpose code generation (Zheng et al., 2024;
Jing et al., 2025). Within biomedical research and clinical practice, direct deployment of proprietary
LLMs remains infeasible due to strict privacy requirements and prohibitive operational costs (Meskó
& Topol, 2023; Shi et al., 2024a), whereas OSS LLMs exhibit substantial deficiencies in biomedical
coding capabilities (Figure 1). Mitigating this performance disparity calls for addressing two infras-
tructure gaps: (1) comprehensive, code-centric biomedical reasoning benchmarks to diagnose agent
limitations and support rigorous, reproducible evaluation; and (2) specialized, interactive training
environments to develop the complex reasoning and robust coding capabilities required for real-world
biomedical data science.

In this study, we introduce MedAgentGym, a scalable and agentic training environment designed to
systematically enhance the coding-centric reasoning capabilities of LLM agents for biomedical data
science workflows. Grounded in diverse real-world biomedical scenarios, MedAgentGym provides:

• Comprehensive suite of code-centric biomedical reasoning tasks. MedAgentGym encompasses
72,413 biomedical coding-centric instances across 129 categories grounded in 12 real-world
biomedical scenarios1. We standardize a rich collection of biomedical data science tasks as
executable problems with verifiable ground truth, spanning structured medical information
retrieval, numerical clinical reasoning, bioinformatics, and machine learning (ML) modeling.
Tasks incorporate diverse data modalities, including EHR tables, clinical notes, genomics, drugs,
and biological sequences, which require medical domain-specific reasoning capabilities.

• Scalable and interactive training infrastructure. MedAgentGym provides an optimized, user-
friendly environment to accelerate agent training. Each instance is encapsulated within executable,
isolated, and reproducible Docker environments with pre-install dependencies, supporting multi-
threading, parallel execution, and sequential sampling. MedAgentGym ensures efficient trajectory
collection and facilitate large-scale automated evaluation compatible with diverse agent scaffolds.

• Extensive benchmarking and effective agent training for biomedical data science. Through
an extensive benchmark of 29 proprietary and open-source LLMs, we identify critical deficiencies
in biomedical data analysis and predictive modeling. MedAgentGym effectively strengthens
agentic training: Med-Copilot-7B achieves gains of +43.02% and +45.28% through offline and
online reinforcement learning (RL), respectively, and performs comparably to gpt-4o on both in-
and out-of-distribution tasks. We publicly release MedAgentGym and Med-Copilot, together with
high-quality training trajectories and the outcome verifier, to support reproducible benchmarking
and continued development of LLM coding agents in biomedical data science.

2 RELATED WORKS

Coding-Centric Reasoning in Biomedical Data Science. Most existing medical benchmarks
primarily evaluate LLMs on knowledge-intensive, narrative reasoning (Jin et al., 2019; Pal et al.,
2022; Tsatsaronis et al., 2015). Although several efforts target isolated biomedical algorithmic
tasks (Tang et al., 2024a; HAI@Stanford, 2025; Wang et al., 2024b) or simulate portions of clinical
workflows (Schmidgall et al., 2024; Li et al., 2024c;b), they do not capture a complete set of tasks in
the full end-to-end lifecycle of biomedical data science, from data extraction (Lee et al., 2022; Ryu
et al., 2024) to model development (Wornow et al., 2023a; Wang et al., 2020b). Complementing these
benchmarks, MedAgentGym emphasizes computation- and coding-intensive tasks that require LLM
agents to retrieve, transform, analyze, and compute biomedical data while generating and executing
code with pre-installed biomedical libraries and dependencies to produce verifiable solutions.

1We emphasize that MedAgentGym mainly focuses on computational code generation for biomedical reason-
ing, rather than traditional medical coding systems (Soroush et al., 2024) such as ICD-9 or ICD-10.
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Table 1: Summary of related biomedical reasoning and coding datasets with task details and execution
environments. MedAgentGym is among the first publicly available training environments for LLM
agents in biomedical data science, uniquely integrating executable environments, interactive feedback,
and task-isolated run-time facilities for coding-based reasoning. “DB”, “DA”, “Bioinfo”, and “ML”
denote “database”, “data analytics”, “bioinformatics”, and “machine learning”, respectively.

Domain Task Environment & Facility Scale (#Instances)
Datasets (↓) QA Coding DB DA Bioinfo ML Execution Interaction Isolation Training # Train # Test # Traj.

MedMCQA (Pal et al., 2022) " % % % % % % % % % 3K 4.18K %

MedQA (Jin et al., 2021) " % % % % % % % % % 11.4K 1.27K %

PubMedQA (Jin et al., 2019) " % % % % % % % % % 450 500 %

BioASQ (Tsatsaronis et al., 2015) " % % % % % % % % % 745 140 %

MedAgentsBench (Tang et al., 2025) " % % % % % % % % % – 862 %

MIRAGE (Xiong et al., 2024) " % % % % % % % % % – 7.66K %

HealthBench (Arora et al., 2025) " % " % % % % % % % – 5K %

EHRSQL (Lee et al., 2022) % " " % % % % % % % 15.5K 1.73K %

MedCalcBench (Khandekar et al., 2024) % % % " % % % % % % 10.1K 1.05K %

MedAgentBench (Jiang et al., 2025b) % " % " % % " " % % – 300 %

BioCoder (Tang et al., 2024a) % " % " " % " % " % – 1.24K %

BioDSBench (Wang et al., 2024b) % " % " " % " " % % – 128 %

EHRSHOT (Wornow et al., 2023a) % " % % % " % % % % – 15 %

MedAgentGym (Ours) % " " " " " " " " " 59.2K 13.2K 6.7K

Scalable and Interactive Training Environment for Biomedical Coding Agents. Agentic RL (Guo
et al., 2025; Schulman et al., 2017; Shao et al., 2024b) shifts LLM post-training from passive
sequence generation to autonomous agents operating in complex, dynamic settings, including medical
reasoning (Xia et al., 2025; Jiang et al., 2025a; Chen et al., 2024; Lan et al., 2025; Wu et al., 2025a;
Wang et al., 2025a). Within such a framework, agents interact iteratively with their environment,
receiving observations and executing actions, while the environment returns reward signals and state
updates (Wang et al., 2025e; Chezelles et al., 2024; Shao et al., 2024a; Nathani et al., 2025). However,
most biomedical reasoning and data science benchmarks (Table 1) are single-pass evaluations
without executable environments or agent-level interaction signals (Zhu et al., 2025; Arora et al.,
2025; Wu et al., 2025b). In contrast, MedAgentGym uniquely provides an executable and interactive
biomedical coding environment covering comprehensive range of tasks. It also supports efficient
multi-turn trajectory sampling through multi-threaded rollouts, thus enabling scalable and systematic
improvement via agentic fine-tuning beyond prompting (Shi et al., 2024b; Huang et al., 2025a).

3 MEDAGENTGYM: A SCALABLE AND INTERACTIVE LLM AGENT
TRAINING ENVIRONMENT FOR CODE-CENTRIC BIOMEDICAL REASONING

3.1 PROBLEM FORMULATION

We formulate coding-based reasoning as a structured problem-solving task: given a problem descrip-
tion x ∈ X , the goal is to generate a code snippet c ∈ C that produces an output y ∈ Y . Each instance
(x, y) is paired with a ground truth output y∗, and the correctness is verified using E : C×Y → {0, 1},
where E = I(y = y∗). Existing biomedical reasoning datasets typically provide only question-answer
pairs (x, y∗) without code solutions c or only include a single predefined code solution per task. To
address this, MedAgentGym enables scalable generation and sampling of multiple coding trajectories
c(0), c(1), · · · , c(k) with corresponding executions y(0), y(1), · · · , y(k) through parallel execution of
LLM agents. Each trajectory is either single-turn or multi-turn, depending on task complexity and
user requirements. Crucially, MedAgentGym captures both positive trajectories {c(i)|y(i) = y∗} that
succeed and negative trajectories {c(i)|y(i) ̸= y∗} including error messages as learning signals.

3.2 DATA CONSTRUCTION: FROM INDIVIDUAL DATASETS TO UNIFIED BENCHMARK

Task and Data Identification. MedAgentGym focuses on verifiable biomedical data science tasks that
benefit from code-based solutions (i.e., code-centric biomedical reasoning). Clinically, we prioritize
tasks originating from real-world healthcare settings and validated by a multidisciplinary panel of
healthcare experts. For example, MedAgentGym involves MIMIC-III and eICU in EHRSQL (Lee
et al., 2022) collected from 222 hospital staff members and annotated by human programmers.
Computationally, we integrate diverse coding tasks, ranging from structured medical information
retrieval to open-ended biomedical research, ensuring comprehensive coverage and task diversity.

3
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Table 2: Dataset statistics for MedAgentGym and its lightweight subset for leaderboard evaluation.
⋆For open-ended tasks without explicit ground truth (e.g., ML coding in EHRSHOT and MIMIC-
Extract), we follow standard RL settings by using the same dataset for training and evaluation.

Data Sources Task Instances (all) Tasks (leader-board)
Dataset Type #Patients #Table #Elements Category #Train #Test #Total #Train #Test #Total

Training and Internal Validation (In-Distribution)

MIMIC-III (Johnson et al., 2016) Tabular <1K 17 1.4M 9 9,318 1,122 10,440 552 581 1,133
eICU (Pollard et al., 2018) Tabular <1K 10 1.5M 9 6,213 611 6,824 559 610 1,169
TREQS (Wang et al., 2020a) Tabular 100 5 2.5M 4 8,988 996 9,984 897 995 1,892
MedCalcBench (Khandekar et al., 2024) Text 1K – – 55 10,053 1,047 11,100 1,005 1,046 2,051
MedAgentBench (Jiang et al., 2025b) Tabular 100 – 700K 10 433 109 542 239 59 298
BioCoder (Tang et al., 2024a) Text – – – 8 981 157 1,138 981 156 1,137
EHRSHOT (Wornow et al., 2023a) Tabular 63K 31 1.2M 15 15 15 15⋆ 15 15 15⋆
BioDSBench (Wang et al., 2024b) Text – – – 12 50 49 99 50 49 99
MedAgentGym (Internal) – 65K 63 7.3M 113 36,036 4,106 40,142 4,283 3,511 7,794

External Validation (Out-of-Distribution)+only the test set for external evaluation; training data remains accessible

EHR-SeqSQL (Ryu et al., 2024) Tabular <1K 17 1.4M 4 18,950 7,913 26,863 1,000 500 1,500
EHRCon (Kwon et al., 2024) Tab&Text 46K 13 – 3 3,229 976 4,205 1,000 500 1,500
MIMIC-Extract (Wang et al., 2020b) Tabular 35K 4 35K 3 3 3 3⋆ 3 3 3⋆
N-PowerAI (Ruan et al., 2025) Text – – – 6 960 240 1200 960 240 1200
MedAgentGym (External) – 82K 34 1.4M 16 23,142 9,132 32,271 2,963 1,243 4,203

Overall

MedAgentGym – 146K 80 7.4M 129 59,175 13,238 72,413 7,243 4,754 11,997

Verifiable Instances Preparation. To standardize tasks across various sources, each instance in
MedAgentGym is structured with: (1) a problem description, (2) verifiable ground-truth outputs, and
(3) optional data resources (e.g., EHRs). Additionally, standardized system and user prompts are
designed to initiate the problem-solving process (see appendix G). MedAgentGym is highly flexible,
easily accommodating new tasks that include clear descriptions and verifiable ground-truth outputs.
For coding-centric tasks that provide only reference code implementations (e.g., BioCoder (Tang
et al., 2024a)), we validate task correctness based on the execution output of these reference solutions,
generating definitive output signatures. This transformation is necessary because multiple valid
code implementations may yield identical execution results, making the execution outcome–rather
than the code itself–a more reliable and consistent verification signal. For tasks involving additional
data resources (e.g., EHRSQL (Lee et al., 2022)), we include metadata on data access and sources.
Detailed task overview and task-specific preparation are documented in appendix C.

Data Statistics. MedAgentGym is a unified training environment built upon a large-scale, high-quality
dataset comprising approximately 72,000 task instances across 129 categories from 12 real-world
biomedical scenarios. Notably, with MedAgentGym, we collect large-scale agent trajectories to support
coding agent development (section 5). To ensure reproducible and robust evaluation, we define clear
train/test splits, separate internal and external validation sets, and perform n-gram (n = 10) string
match to eliminate the data contamination issue. Table 2 provides statistics for MedAgentGym. To
accommodate diverse research needs, we offer two versions of MedAgentGym: (1) a comprehensive,
full-scale dataset for extensive exploration and detailed analysis, and (2) a balanced, lightweight
subset for efficient leaderboard training and evaluation.

3.3 CODING ENVIRONMENT: FROM STATIC BENCHMARK TO INTERACTIVE INTERFACE

Isolated and Executable Sandbox Environment. To ensure robust and reproducible coding-
based biomedical reasoning, MedAgentGym provides isolated executable coding environments (i.e.,
sandbox) through Docker containers tailored to each task (Figure 2). These containers come pre-
installed with all required dependencies, including specialized biomedical packages (e.g., AlignIO
in BioCoder (Tang et al., 2024a)), facilitating reliable task execution. To address critical data
safety concerns, each Docker environment guarantees: (1) environmental integrity, where isolation
prevents contamination or data corruption potentially caused by LLM-generated code, preserving
both the computational environment and the underlying data systems (Yang et al., 2024b); (2)
medical data security, where secure containerization enforces compliance with medical data usage
policies, safeguarding sensitive patient information. Additionally, MedAgentGym supports extensive
flexibility for integrating new tasks, where users can define customized Docker environments through
configuration files. If certain packages are not initially available, a terminal tool allows LLM agents
to dynamically install the required dependencies within their isolated environments.

4
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Figure 2: Overview of MedAgentGym. MedAgentGym contains a comprehensive suite of coding-centric
biomedical data science tasks with an interactive execution environment for LLM agents.

Interactive Feedback. MedAgentGym incorporates interactive feedback mechanisms, effectively
bridging LLMs with coding interpreters: (1) robust parsing: To begin, the output generated by
LLMs is formatted in structured JSON, facilitating straightforward parsing and code execution. In
cases of execution errors, iterative JSON regeneration is employed to maximize successful code
execution rates. (2) debugging and error grounding: Compile-time and runtime error messages are
systematically translated into a unified natural language format, making them more accessible to
LLMs and significantly improving debugging efficiency and interpretability.

Efficient Trajectory Collection. Each task in MedAgentGym is packaged in a reproducible Docker
image with built-in support for multi-threading, parallel execution, and sequential sampling. Specifi-
cally, we integrate two widely used multi-threading backend engines, Ray2 and Joblib3, to accelerate
trajectory sampling. This infrastructure ensures efficient and scalable trajectory collection, supporting
both extensive experimentation and systematic evaluation across multiple scenarios.

Plug-and-Play. A key strength of MedAgentGym lies in its flexible and modular architecture, which
readily supports the integration of new biomedical coding tasks. This inherent extensibility enables
MedAgentGym to continually adapt to evolving advancements in biomedical sciences and artificial
intelligence methodologies. Additionally, its trajectory sampling approach allows the straightforward
transformation of traditional, non-executable biomedical reasoning tasks into coding-based scenarios
with verifiable outputs, significantly broadening the scope and complexity of tasks that can be system-
atically evaluated. Moreover, users can define custom Docker environments through configuration
files, and, if specific software packages are initially absent, a built-in terminal tool facilitates dynamic
installation within each isolated execution environment, further improving MedAgentGym in runtime
adaptability and user-friendliness.

4 EVALUATING LLMS AS MEDICAL CODING AGENTS WITH MEDAGENTGYM

4.1 EXPERIMENTS SETUP

Agent Scaffolds. Following CodeAct (Wang et al., 2024a), we establish a default agent scaffold
for systematically evaluating coding-based biomedical reasoning. Interactions within MedAgentGym
are modeled as a Partially Observable Markov Decision Process (POMDP), focusing on sampled
biomedical data science tasks p ∈ P . At each timestep t, the agent observes ot ∈ O and samples
an action at+1 ∈ A from the current policy πt based on interaction history. We define four primary
action types: (a) request_info: retrieve relevant data from sources such as EHRs; (b) terminal:
manage dependencies or local files within isolated Docker environments. (c) code_execution:
execute code generated by LLMs through an integrated interpreter; and (d) debugging: translate
code execution errors into natural language explanations enriched with detailed error information for
LLM comprehension.

Tasks and Datasets. Building upon MedAgentGym, we train and evaluate Med-Copilot on 7,794
coding-based biomedical reasoning tasks across 8 datasets: (1) MIMIC-III (Johnson et al., 2016)
and (2) eICU (Pollard et al., 2018) from EHRSQL (Lee et al., 2022), (3) TREQS (Wang et al.,
2020a), (4) MedCalcBench (Khandekar et al., 2024), (5) MedAgentBench (Jiang et al., 2025b), (6)
BioCoder (Tang et al., 2024a), (7) EHRSHOT (Wornow et al., 2023a), and (8) BioDSBench (Wang

2https://github.com/ray-project/ray
3https://joblib.readthedocs.io/en/stable/
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Table 3: Test set results (zero-shot) of LLMs on MedAgentGym. Bold indicates the best result at each
scale. ‡ and ∨ denote coding LLMs and medical reasoning LLMs, respectively.

Datasets (→) MIMIC. eICU TREQS MedCalc. MedAgent. BioCoder BioDS. EHRSHOT Avg.
Baselines (↓) / Metrics (→) SR SR SR SR SR SR SR Acc Score

API-based Proprietary LLMs†: We only consider Microsoft Azure OpenAI API services due to credentialed health data use agreement.

gpt-4o-mini (2024-07-28) (Hurst et al., 2024) 35.97 16.57 38.39 73.11 40.38 30.12 57.35 7.84 37.47
gpt-4o (2024-08-06) (Hurst et al., 2024) 43.04 43.44 53.47 73.97 54.23 30.12 58.16 33.53 48.75
gpt-4.1-mini (2025-04-14) (OpenAI, 2025a) 62.79 63.44 69.75 84.36 54.23 47.46 63.47 48.28 61.72
gpt-4.1 (2025-04-14) (OpenAI, 2025a) 69.36 64.75 74.97 86.23 57.63 52.95 67.35 87.93 70.15
gpt-o4-mini (2025-04-16) (OpenAI, 2025b) 76.45 70.16 74.47 78.45 59.32 42.94 73.47 50.07 65.67
‡codex-mini (2025-05-16) (Chen et al., 2021) 67.30 64.75 74.57 82.49 58.76 48.78 67.64 58.76 65.38

OSS (Base Size): < 10B parameters

Qwen3-1.7B (Qwen, 2025a) 20.12 10.62 15.08 46.24 16.95 15.38 6.12 1.87 16.55
Qwen3-4B (Qwen, 2025a) 27.23 30.77 28.85 52.80 15.25 19.16 20.41 23.85 27.29
gemma-3-4b-it (Gemma, 2025) 27.36 29.10 24.52 42.49 18.64 17.95 8.16 4.37 21.57
∨medgemma-4b-it (Google, 2025) 15.51 13.11 14.85 41.89 17.62 26.74 17.82 1.33 18.61
Qwen2.5-7B-Instruct (Yang et al., 2024a) 13.08 15.57 12.76 25.91 30.36 21.79 10.20 5.42 17.43
Llama-3.1-8B-Instruct (Dubey et al., 2024) 16.67 25.00 19.17 27.53 16.95 18.59 9.19 2.36 16.97
‡Qwen2.5-Coder-7B-Instruct (Hui et al., 2024) 9.12 10.66 15.63 24.62 18.75 10.60 17.24 10.55 14.65
∨HuatuoGPT-o1-7B (Chen et al., 2024) 4.99 7.04 7.04 38.05 18.64 28.21 19.88 5.03 16.11
∨m1-7B-23K (Huang et al., 2025b) 6.88 9.56 7.04 28.24 9.32 20.26 14.71 0.00 12.00
Qwen3-8B (Qwen, 2025a) 29.08 34.53 37.37 54.59 20.34 20.51 24.49 25.71 30.83
Ministral-8B-Instruct-2410 (Ministral, 2025) 16.70 14.92 25.39 49.81 22.03 23.72 12.24 7.79 22.27
∨MedReason-8B (Wu et al., 2025a) 9.12 9.51 9.15 43.31 21.46 31.42 17.42 3.88 18.16
‡Seed-Coder-8B-Reasoning (Seed et al., 2025) 42.51 45.74 39.50 35.18 28.81 23.72 20.41 22.89 32.35
OSS (Large Size): 10 - 30B parameters

Qwen3-14B (Qwen, 2025a) 31.50 31.97 30.05 61.38 22.03 22.60 26.53 26.77 31.60
Qwen2.5-14B-Instruct (Yang et al., 2024a) 17.21 14.07 16.43 27.40 35.59 29.49 16.33 4.45 20.12
DeepSeek-R1-Distill-Qwen-14B (Guo et al., 2025) 35.12 38.52 32.96 48.09 32.20 21.29 24.49 11.39 30.51
‡Qwen2.5-Coder-14B-Instruct (Hui et al., 2024) 41.82 44.26 35.78 33.75 30.42 26.28 22.45 28.37 32.89
∨Baichuan-M1-14B-Instruct (Wang et al., 2025a) 4.50 12.19 7.36 1.82 21.46 16.34 17.42 0.00 10.14

OSS (XL Size): > 30B parameters

Qwen3-32B (Qwen, 2025a) 52.48 60.95 53.82 63.82 45.93 32.67 28.57 47.29 48.19
Qwen2.5-32B-Instruct (Yang et al., 2024a) 54.56 45.41 62.81 69.96 40.67 27.45 22.45 18.13 42.68
QwQ-32B (Qwen, 2025b) 62.31 56.72 66.15 67.69 47.46 42.31 14.29 55.05 51.50
DeepSeek-R1-Distill-Qwen-32B (Guo et al., 2025) 62.18 58.36 65.82 60.14 43.56 28.66 26.53 31.17 47.05
∨ Baichuan-M2-32B (Dou et al., 2025) 20.83 23.61 24.92 30.02 25.42 25.00 20.41 12.94 22.89
Llama-3.3-70B-Instruct (Dubey et al., 2024) 39.93 25.08 24.98 84.99 39.40 27.55 24.49 29.93 37.04
DeepSeek-R1-Distill-Llama-70B (Guo et al., 2025) 64.59 64.92 56.98 76.96 28.81 32.05 42.86 33.42 50.07
∨ HuatuoGPT-o1-72B (Qwen2.5-72B) (Chen et al., 2024) 27.19 29.84 29.65 52.01 28.81 31.41 26.53 16.87 30.29

et al., 2024b). Moreover, we conduct experiments for out-of-distribution evaluation on 4,203 tasks
from the following 4 datasets: (9) EHR-SeqSQL (Ryu et al., 2024), (10) EHRCon (Kwon et al.,
2024), (11) MIMIC-Extract (Wang et al., 2020b), and (12) N-PowerAI (Ruan et al., 2025). Note that
we do not consider knowledge-intensive medical question-answering tasks (Jin et al., 2019; Pal et al.,
2022; Jin et al., 2021), as they are orthogonal to coding-aided reasoning. We include detailed task
and dataset information in appendix C.

Baselines. We extensively benchmark the following state-of-the-art LLMs on MedAgentGym:
(i) API-based proprietary LLMs, including gpt-4o-mini (Hurst et al., 2024), gpt-4o (Hurst
et al., 2024), gpt-4.1-mini (OpenAI, 2025a), gpt-4.1 (OpenAI, 2025a), gpt-o4-mini (OpenAI,
2025b), and codex-mini (Chen et al., 2021); (ii) OSS LLMs, including gemma-3 (Gemma, 2025),
Qwen3 (Qwen, 2025a), Qwen2.5 (Yang et al., 2024a), Llama-3 (Dubey et al., 2024), Minis-
tral (Ministral, 2025), and DeepSeek-R1 (Guo et al., 2025); (iii) coding LLMs, including codex-
mini (Chen et al., 2021), Qwen2.5-Coder-7B-Instruct and -14B-Instruct (Hui et al., 2024), and
Seed-Coder-8B-Reasoning (Seed et al., 2025); and (iv) medical reasoning LLMs or medical domain-
specific LLMs, including medgemma-4b-it (gemma-3-4b-pt) (Google, 2025), HuatuoGPT-o1-7B
(Qwen2.5-7B-Instruct) and HuatuoGPT-o1-72B (Qwen2.5-72B) (Chen et al., 2024), m1-7B-23K
(Qwen2.5-7B-Instruct) (Huang et al., 2025b), MedReason-8B (Llama-3.1-8B-Instruct) (Wu
et al., 2025a), Baichuan-M1-14B-Instruct (Wang et al., 2025a), and Baichuan-M2-32B (Dou et al.,
2025). Additional model details are available in appendix D.

Evaluation Metrics. We adopt success rate (SR) as the primary evaluation metric. For database,
data science, and bioinformatics tasks with explicit ground truths, we compare LLM-generated code
execution outputs with reference solutions using exact match. For open-ended ML tasks in clinical
decision support, we measure performance using accuracy (Acc) across test cases. See appendix E
for implementation details and F.1 for additional evaluation on code quality and efficiency.

4.2 RESULTS: BENCHMARKING LLMS AND REASONING MODELS WITH MEDAGENTGYM

Table 3 benchmarks the state-of-the-art LLMs on MedAgentGym. We summarize key observations
from our zero-shot leaderboard evaluation as follows: ⋄ Significant Performance Gap Between
Commercial API-based and OSS LLMs. This evident performance gap highlights the critical
need for continued development of lightweight OSS LLMs that match commercial performance
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Figure 3: Comparison of (a) offline and (b) online RL paradigms within MedAgentGym.

while addressing real-world privacy and cost constraints. ⋄ Task-Specific Performance Variations
between Structured and Open-ended Medical Tasks. LLMs consistently perform better on
structured tasks (e.g., database queries, medical calculations) compared to open-ended tasks requiring
advanced coding and reasoning (e.g., data analysis, ML prediction). ⋄ Suboptimal Outcomes in
Dedicated Coding and Medical Domain-Specific LLMs. Both coding and medical reasoning
LLMs deliver limited improvement or even decline over base models, revealing that coding-based
biomedical reasoning represents a unique capability not adequately captured by specialization in
either coding or medical reasoning. Surprisingly, medical reasoning models (regardless of model
sizes) consistently underperform relative to their base models except for knowledge-intensive tasks
(e.g., MedCalcBench, BioCoder), showing that fine-tuning in medical QA may reduce generalization
and instruction-following ability. These findings highlight the need to jointly improve coding skills
and medical reasoning, rather than treating them as separate objectives.

5 TRAINING LLM AGENTS FOR CODE-CENTRIC BIOMEDICAL REASONING

In this section, we leverage MedAgentGym to systematically enhance lightweight OSS LLMs as
proficient coding agents (Med-Copilot) for biomedical reasoning. We first explore a two-stage
agentic fine-tuning framework (section 5.1), followed by a detailed analysis of model scaling behaviors
(section 5.2). We then introduce self-improvement to further boost agent performance (section 5.3)
and conduct additional analysis on model generalization, ablation, and error patterns (section 5.4).

5.1 RL FINE-TUNING WITH TRAJECTORY SAMPLING

Training Setup. We select Qwen-2.5-Instruct-7B and -14B (Yang et al., 2024a) as our backbones.
To enable effective evaluation within MedAgentGym, we utilize a consistent CodeAct-style scaffold,
allowing LLM agents to iteratively reason and refine biomedical code through interactive environment
feedback. Detailed training setups, including hyperparameters, are provided in appendix E.

Trajectory Sampling. MedAgentGym facilitates efficient parallel trajectory sampling using ray and
joblib backends. Specifically, we roll out (1) 2,137 successful trajectories using gpt-4.1-mini with
a temperature of 0 to warm up the fine-tuning for smaller OSS models. Each successful trajectory
contains 9.25 turns between the LLM and the code interpreter on average. In addition to 2,137
positive trajectories for supervised fine-tuning (SFT), we prepare additional trajectory pairs for
RL such as direct preference optimization (DPO), including (2) 1,646 off-policy preference pairs
sampled from gpt-4.1-mini, and (3) 2,939 on-policy preference pairs. For both types, we use the
initial prompt interactions as shared context and contrast successful final codes against intermediate
erroneous attempts. In addition, we also performed a quantitative analysis on 250+ trajectories
(randomly sampled over 10% of our trajectory collection) and confirmed that the vast majority of
successful solutions followed a logically sound path, with cases of ‘correct answer from flawed code’
being exceptionally rare (<1%). We release all 6K trajectories above to accelerate coding agent
development. See appendix C.6 for detailed trajectories composition.

Two-Stage Fine-Tuning. We benchmark two policy improvement methods: (1) SFT directly mimics
high-reward trajectories consisting exclusively of successful outcomes, whereas (2) offline or online
RL optimizes the policy by favoring selected responses over rejected ones (Figure 3). We further
consider a two-stage fine-tuning, initially warming up with SFT and subsequently refining with RL.

Results: Offline RL (DPO). Table 4 compares several post-training methods, revealing that sim-
ple SFT over successful trajectories significantly boosts performance on structured coding tasks,
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Table 4: Med-Copilot performance on MedAgentGym finetuned with sampled trajectories.

Datasets (→) MIMIC-III eICU TREQS MedCalc. MedAgent. BioCoder BioDS. EHRSHOT Avg. ∆
Base (↓) / Metrics (→) SR SR SR SR SR SR SR Acc Score

Qwen2.5-7B-Instruct 13.08 15.57 12.76 25.91 30.36 21.79 10.20 5.42 16.89 –
+SFT 57.83 61.48 72.66 89.06 50.85 28.33 55.10 15.62 53.87 (+36.98)

+DPO 64.13 66.91 72.02 90.06 52.54 34.62 69.39 29.55 59.90 (+43.02)
+PPO 66.10 67.25 73.88 74.52 51.33 32.71 65.47 32.40 57.96 (+41.07)
+GRPO 68.21 68.73 70.50 92.33 55.87 37.40 71.11 33.18 62.17 (+45.28)

Qwen2.5-14B-Instrust 17.21 14.07 16.43 27.40 35.59 29.49 16.33 4.45 20.12 –
+SFT 61.45 62.46 76.38 94.36 52.54 39.80 89.80 34.58 63.92 (+43.80)

+DPO 64.54 63.52 76.08 92.45 54.32 43.56 92.96 43.56 66.37 (+46.25)
+PPO 67.55 68.53 78.32 94.86 53.22 45.88 91.33 56.79 69.56 (+49.44)
+GRPO 68.78 69.34 76.84 95.81 57.41 49.32 94.78 59.05 71.42 (+51.30)

demonstrating its effectiveness in capturing structured coding patterns. Besides, DPO is particularly
beneficial for optimizing open-ended task performance.

Results: Online RL (PPO and GRPO). We further consider online RL methods, including Prox-
imal Policy Optimization (PPO) (Schulman et al., 2017) and Group Relative Policy Optimization
(GRPO) (Shao et al., 2024b), to enable Med-Copilot to actively explore tasks and dynamically
generate higher-quality training data through interaction. The evaluation module of Med-Copilot
is employed to provide two reward signals: a correctness reward and a format reward, the latter
indicating whether the generated output contains code blocks. As shown in Table 4, GRPO achieve
markedly stronger performance, suggesting enhanced generalization capabilities in diverse biomedical
scenarios compared with offline RL.

5.2 SCALING LLM AGENT IMPROVEMENTS WITH MEDAGENTGYM

Verifier Training Setup. In addition to directly training coding agents, MedAgentGym facilitates
the development of an outcome-supervised reward model (ORM) to evaluate generated solutions
effectively. Inspired by prior work (Cobbe et al., 2021; Pan et al., 2025), we formalize the verifier task
as predicting the probability that a given trajectory successfully solves a coding task. Formally, we
represent a trajectory as an interleaved sequence τ = [o1, a1, o2, a2, · · · , on, an], r ∈ [0, 1], where
each observation ok comprises elements such as task descriptions, code execution results, and error
feedback. We fine-tune a Qwen2.5-7B-Instruct model as a verifier with binary predictions ‘YES’
(ly) or ‘NO’ (ln), from which we compute success probability: r = exp(ly)/(exp(ly) + exp(ln)).

Verifier Training Data. We construct the verifier training dataset by combining two sets of trajectories
originally sampled for agent training: (1) off-policy trajectories, consisting of 2,742 samples from
gpt-4.1-mini; and (2) on-policy trajectories, comprising 2,939 samples generated by the agent.
Combining both on- and off-policy trajectories, we ensure a balanced dataset of successful and
unsuccessful trajectories, filtering to fit within a maximum context length of 32k tokens.

Results: Inference and Training-Time Scaling. We introduce two additional evaluation metrics:
(1) Pass@K: the fraction of tasks solved by at least one trajectory from K sampled attempts; and
(2) Best@K: the fraction of accurately selects successful trajectories that actually solves the task
from a set of candidate generations. Figure 4 (left) illustrates the performance scaling with increasing
trajectory sampling. Pass@K significantly improves from 17.0% at K = 1 to 45.0% at 16, while
Best@K shows steady advancement from 17.0% to 41.7%. The relatively small gap between metrics
indicates that our trained verifier effectively identifies successful trajectories, unleashing its potential
as a reward model for integration into advanced online RL frameworks. Figure 4 (right) examines
agent performance as a function of increased training data volumes in SFT. We observe consistent
performance improvements with greater training data availability, suggesting additional computational
resources dedicated to sampling further trajectories are likely to yield continued performance gains.

5.3 MODEL PERFORMANCE SCALING WITH SELF-IMPROVEMENT

Self-Improvement Training Setup. Beyond expert-generated trajectories from gpt-4.1-mini, we
also explore self-improvement by refining the model on its own outputs (Qwen2.5-7B-Instruct). We
first apply rejection-sampling SFT: starting from Qwen2.5-7B-Instruct, we collect 1,000 successful
trajectories and perform filtered behavior cloning on this set. We subsequently apply DPO (section 5.1)
using on-policy preference pairs generated by the rejection sampling SFT checkpoint. Specifically,
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Figure 4: Scalable improvements of LLM agents in MedAgentGym. For inference-time scaling, we
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we sample eight rollouts per task, score them via the verifier in section 5.2, and form 4,298 pairs
by contrasting the highest-scoring correct and lowest-scoring incorrect trajectories. Following Pang
et al. (2024), we repeat this data collection and policy update cycle (iDPO) for further refinement,
resampling trajectories and reconstructing preference pairs after each DPO update. In contrast to
standard DPO, which performs a single offline preference-based update on a fixed dataset, iDPO
alternates between on-policy data collection and DPO optimization so that the policy and training
data co-evolve (i.e., self-improvement).

Results: Rejection Sampling (RS) and iDPO. Figure 5 illustrates consistent performance gains
across one SFT stage and two subsequent DPO stages. However, we observe diminishing returns over
successive iterations. Initially, rejection sampling SFT significantly boosts performance by effectively
capturing successful coding patterns. Subsequent DPO stages show smaller incremental improve-
ments, reflecting the model’s diminishing exploration space as it tackles increasingly challenging
tasks, ultimately converging toward an approximate Nash equilibrium.

5.4 GENERALIZATION, ABLATION, AND ERROR ANALYSIS

Table 5: External test set results on MedAgentGym.

Datasets (→) EHR-SeqSQL EHRCon MIMIC-Extract N-PowerAI Avg.
Base (↓) / Metrics (→) SR SR Acc SR Score

API-based Proprietary LLMs† (for reference)

gpt-4o-mini (Hurst et al., 2024) 50.80 23.20 2.67 16.03 26.03
gpt-4o (Hurst et al., 2024) 58.40 35.79 9.82 20.71 34.69
gpt-4.1-mini (OpenAI, 2025a) 70.60 52.40 5.62 25.66 43.20
gpt-4.1 (OpenAI, 2025a) 78.20 63.00 10.41 33.53 51.06
gpt-o4-mini (OpenAI, 2025b) 100.00 51.00 16.88 36.15 53.94
OSS LLMs

Qwen3-1.7B (Qwen, 2025a) 33.60 17.20 1.90 14.72 16.86
Qwen3-4B (Qwen, 2025a) 44.80 26.20 4.59 19.30 23.72
Qwen3-8B (Qwen, 2025a) 52.00 31.40 6.82 20.12 27.59
∨HuatuoGPT-o1-7B (Chen et al., 2024) 33.25 19.80 2.11 12.45 16.90
Qwen2.5-7B-Inst (Yang et al., 2024a) 42.20 27.20 1.34 11.66 20.60
Med-Copilot (SFT, 7B) 42.40 28.80 1.95 10.48 20.91
Med-Copilot (DPO, 7B) 43.40 23.00 2.14 14.82 20.84
Med-Copilot (PPO, 7B) 45.60 24.40 4.30 17.19 22.87
Med-Copilot (GRPO, 7B) 61.25 46.80 10.80 27.65 36.63
Qwen3-14B (Qwen, 2025a) 69.00 45.00 9.24 23.59 36.71
Qwen2.5-Coder-14B-Inst (Hui et al., 2024) 52.40 42.00 6.77 28.95 32.53
Qwen2.5-14B-Inst (Yang et al., 2024a) 46.40 39.20 4.51 21.57 27.92
Med-Copilot (DPO, 14B) 42.20 40.80 2.75 25.89 27.91
Med-Copilot (PPO, 14B) 66.40 43.70 7.15 32.01 37.32
Med-Copilot (GRPO, 14B) 72.80 56.60 14.91 43.77 47.02
R1-Dis-Qwen-14B (Guo et al., 2025) 56.00 40.80 2.37 17.60 29.19
Qwen3-32B (Qwen, 2025a) 64.80 54.40 12.17 31.26 42.16

Results: External Evaluation.
Table 5 summarizes external eval-
uation results on MedAgentGym.
The external suites were inten-
tionally chosen to stress different
code-centric skills (e.g., sequen-
tial SQL, hybrid text–table consis-
tency, raw EHR time series, bio-
statistical power analysis), which
induces markedly different agent
trajectories (Figure 10(b)) and nat-
urally yield lower absolute scores
across all models, including pro-
prietary baselines. Med-Copilot
with SFT and DPO modestly
improve performance on open-
ended, reasoning-intensive tasks
(e.g., MIMIC-Extract). However,
improvements remain limited, in-
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dicating challenges in generalizing across specialized biomedical contexts. In particular, incorporating
online RL optimization techniques, especially GRPO (Shao et al., 2024b), can effectively improve
performance on unseen, out-of-distribution tasks. Specifically, Med-Copilot-14B (GRPO) achieves
47.02% on the external suite, a +19.10% gain over its backbone (27.92%). This significant gain on
unseen distributions verifies that MedAgentGym instills transferable biomedical coding proficiency
rather than memorizing training trajectories.

Effect of Interactive Coding. Figure 6 shows that removing debugging capabilities significantly
decreases model performance across all tasks. Interactive coding mechanism in MedAgentGym
substantially contributes to successful coding-based medical reasoning by enabling the model to
effectively interpret and rectify execution errors.

Error Analysis. Figure 7 summarizes common error types encountered by the strongest evaluated
LLM, gpt-4.1. Loop-related issues dominate, accounting for 50.39% of errors, where agents
repeatedly execute the same action in the final turns, indicating difficulty in adapting or exploring
alternative strategies. This highlights the need to promote effective exploration and enhance robustness
in solving complex biomedical reasoning tasks. Additional experimental results, including cost
analysis, case studies, and human studies, are available in appendix F.

6 CONCLUSION

We present MedAgentGym, an executable, privacy-preserving, and extensible training environment
for scaling code-based biomedical reasoning in LLM agents. With 72K task instances across 129
categories, MedAgentGym enables comprehensive benchmarking of 29 proprietary and OSS LLMs
for biomedical data science within a modular, decoupled architecture that supports flexibility and
extensibility. Med-Copilot further demonstrates that systematic training and trajectory sampling
with MedAgentGym improve coding proficiency for biomedical data science tasks. MedAgentGym has
the potential to accelerate progress from structured medical information retrieval tasks toward more
open-ended computational research questions in clinical research and biomedical discovery.
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A LIMITATIONS AND BROADER IMPACTS

A.1 LIMITATIONS

Resource Limitations. Although MedAgentGym demonstrates strong empirical performance im-
provement in a wide range of coding-aided biomedical reasoning tasks, several limitations remain.
Firstly, MedAgentGym requires substantial computational resources for trajectory sampling, model
fine-tuning, and iterative self-improvement procedures. Although we achieve significant improve-
ments with relatively lightweight OSS LLMs, further scaling and advanced RL methods require
increased computing infrastructures, limiting accessibility for resource-constrained research groups.
Secondly, our current dataset size and trajectory collection are primarily constrained by computational
budget rather than data availability, potentially limiting the full exploration of model scaling behavior.
Thirdly, MedAgentGym primarily supports text and structured data modalities. Future extensions will
incorporate multimodal biomedical data (e.g., medical imaging, EEG, audio or video signals), en-
abling a richer and more comprehensive evaluation of multi-modal reasoning capabilities. Achieving
effective multi-modal integration, however, presents significant challenges in data collection, curation,
and standardized evaluation frameworks. Lastly, because of the substantial computational cost of
API-based LLMs, we restrict ourselves to large-scale, execution-verified single-run evaluation under
a fixed scaffold. We encourage future work to conduct more extensive uncertainty analyses and
multi-run evaluations where resources allow.

Data Decontamination. We acknowledge the possibility of data contamination in the pre-training
of proprietary LLMs. To mitigate this, we have taken several steps: (1) Restricted access and
credentialing: We constructed many datasets from protected data that cannot be used for proprietary
LLMs training (e.g., MIMIC, EHRSHOT, EHR-SeqSQL, EHRCon, MIMIC-Extract) or very recent
sources where possible (e.g., MedAgentBench, BioDSBench). (2) Newly curated samples: For
N-PowerAI, we manually curated samples rather than a public repository, effectively creating a
private evaluation set. (3) Rigorous N-Gram decontamination: We performed n-gram overlap checks
to eliminate direct contamination between our training and test splits.

A.2 BROADER IMPACTS

Potential Positive Societal Impacts. MedAgentGym can significantly enhance the development of
accessible, affordable, and privacy-preserving AI tools for clinical decision-making. Improved
coding-based biomedical reasoning capabilities in open-source LLM agents (e.g., Med-Copilot)
have the potential to democratize access to advanced computational healthcare assistance, benefiting
clinicians, researchers, and healthcare systems globally, particularly in resource-limited settings.
The plug-and-play architecture also allows continuous adaptation to new medical knowledge and
practices, fostering sustainable and community-driven innovation in healthcare technology.

Potential Negative Societal Impacts. Despite the benefits, the introduction and widespread de-
ployment of sophisticated computational frameworks like MedAgentGym may unintentionally widen
existing healthcare inequities. Institutions with limited computational resources (including both Mi-
crosoft Azure API service and high-performance computing clusters) or inadequate data infrastructure
may struggle to access or fully benefit from these technological advancements, potentially exacerbat-
ing disparities in healthcare capabilities across regions or socioeconomic groups. Moreover, reliance
on publicly available datasets may perpetuate existing biases due to uneven data representation,
potentially disadvantaging underrepresented patient populations and rare disease conditions.

Implications for Low-Resource Settings. For institutions constrained to <10B OSS models, we
recommend the following practices: (1) Prioritize agentic fine-tuning over zero-shot prompt-
ing. Zero-shot performance of small OSS models is modest (e.g., Qwen3-8B at 3̃0%), but agentic

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

fine-tuning in MedAgentGym substantially closes this gap. In particular, GRPO lifts a 7B backbone
from 16.89% to 62.17%, approaching the performance of commercial APIs (e.g., gpt-4.1-mini
at 61.72%). This suggests that small models are viable for deployment if they are post-trained,
rather than used purely in zero-shot mode. (2) Exploit released models and trajectories to re-
duce compute. To lower the barrier to entry, we release Med-Copilot-7B/14B as ready-to-use,
fine-tuned models that achieve state-of-the-art performance among OSS baselines, as well as >6K
high-quality trajectories (successful and preference pairs). These resources allow practitioners to (i)
adopt Med-Copilot directly, or (ii) perform lightweight SFT/DPO on top of their own backbones
without incurring the full cost of trajectory sampling and filtering. (3) Leverage verifier-gated
inference rather than larger models. We recommend integrating the outcome verifier at deployment
time. By sampling a small number of candidate solutions and selecting with the verifier (Best@K),
practitioners can substantially improve reliability relative to single-shot decoding, effectively trading
modest additional inference compute for large accuracy gains, without resorting to much larger or
proprietary models. (4) Specialize to the target biomedical data science task type. The aggregate
scores in Table 3 reflect performance over 129 heterogeneous categories across 8 datasets, whereas
real deployments often focus on narrower workloads (e.g., clinical SQL, risk calculations, or bioinfor-
matics pipelines). Fine-tuning a small model on the subset of MedAgentGym that matches the intended
application typically yields higher task-specific performance than the overall average suggests, and is
more compute-efficient than aiming for a fully generalist agent.

A.3 PRIVACY STATEMENTS

Table 6: Data Access and License Information of 12 datasets in MedAgentGym. “Custom” represents
additional dataset- or task-specific license and data access requirements (e.g., DUA or credentials).

Dataset Data License Data Access Code License Code Access
Training and Internal Validation (In-Distribution)

MIMIC-III (Johnson et al., 2016; Lee et al., 2022) Custom MIMIC-III on PhysioNet CC-BY-4.0 MIMIC-III on EHRSQL
eICU (Pollard et al., 2018; Lee et al., 2022) Custom eICU on PhysioNet CC-BY-4.0 eICU on EHRSQL
TREQS (Wang et al., 2020a) Custom MIMIC-III on PhysioNet MIT TREQS on GitHub
MedCalcBench (Khandekar et al., 2024) CC-BY-SA 4.0 MedCalcBench Public MedCalcBench on GitHub
MedAgentBench (Jiang et al., 2025b) MIT MedAgentBench (FHIR Server) MIT MedAgentBench on GitHub
BioCoder (Tang et al., 2024a) CC-BY-4.0 BioCoder on Huggingface N/A BioCoder on GitHub
BioDSBench (Wang et al., 2024b) MIT BioDSBench MIT BioDSBench on GitHub
EHRSHOT (Wornow et al., 2023a) Custom EHRShot (Standford) Apache EHRSHOT on Github

External Validation (Out-of-Distribution)

EHR-SeqSQL (Ryu et al., 2024) Custom MIMIC-III on PhysioNet N/A EHR-SeqSQL on GitHub
EHR-Con (Kwon et al., 2024) Custom MIMIC-III on PhysioNet MIT EHR-Con on GitHub
MIMIC-Extract (Wang et al., 2020b) Custom MIMIC-III on PhysioNet MIT MIMIC-Extract on GitHub
N-PowerAI (Ruan et al., 2025) N/A N-Power AI Supp. Mat. N/A N-Power AI on Webpage

Data Privacy and Licensing. We carefully curated MedAgentGym with strict adherence to ethical
standards, using publicly available datasets or datasets with appropriate privacy protections and
anonymizations. Table 6 lists the access requirements for the 12 datasets in MedAgentGym and the code
base for data processing or task implementation. We explicitly designed isolated Docker environments
to ensure data privacy and security. Nevertheless, ethical usage of our methods and models in
clinical settings requires rigorous validation, transparency in limitations, and close collaboration
with healthcare professionals. We encourage responsible deployment, emphasizing human oversight,
continuous evaluation, and clear communication of model capabilities and uncertainties to mitigate
ethical and practical risks.

LLM Usage Statement. In compliance with the PhysioNet Credentialed Health Data Use Agreement
(version 1.5.0)4, we strictly prohibit transferring confidential patient data (e.g., MIMIC-III and eICU)
to third-party entities, including external online services and APIs. To responsibly utilize the Azure
OpenAI Service, we adhere closely to PhysioNet’s guidelines on responsible GPT usage5. Specifically,
we have opted out of the human review process by completing the Azure OpenAI Additional Use
Case Form6, thereby ensuring no third-party entity accesses or processes sensitive patient information.
We consistently monitor our data handling practices and strictly adhere to applicable guidelines and
privacy regulations, maintaining the highest ethical standards in our research and operations.

4https://physionet.org/about/licenses/physionet-credentialed-health-data-license-150/
5https://physionet.org/news/post/gpt-responsible-use
6https://aka.ms/oai/additionalusecase
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Figure 8: Coding empowers com-
putational medical reasoning (w/
gpt-4-turbo).

Medical Agents (Coding). Recent advances have demon-
strated that LLMs exhibit strong capabilities in medical rea-
soning and planning leveraging extensive biomedical knowl-
edge (Singhal et al., 2023; Moor et al., 2023; Liévin et al.,
2024), fueling increased interest in developing LLM-based
autonomous agents tailored specifically for medical tasks (Jin
et al., 2024; Gao et al., 2025; Li et al., 2024a; Liao et al., 2024;
Tang et al., 2024b; Kim et al., 2024). In particular, LLM-based
agents have shown promise in specialized computational tasks,
including querying EHR databases (Shi et al., 2024b), perform-
ing bio-statistical calculations (Ruan et al., 2025), and conduct-
ing bioinformatics analyses (Tang et al., 2024a; Wang et al.,
2024b; Tayebi Arasteh et al., 2024). As shown in Figure 8,
integrating coding capabilities into LLM-based agents fur-
ther enhances performance on tasks traditionally approached
through natural language reasoning (e.g., MIMIC-III, eICU (Lee et al., 2022)), as well as numerical
and rule-based medical reasoning (e.g., MedCalcBench (Khandekar et al., 2024)). However, existing
coding-based medical agents rely primarily on prompt engineering without systematic improvement,
limiting their robustness and scalability when addressing complex and diverse coding tasks in real-
world biomedical scenarios. In contrast, MedAgentGym specifically targets reasoning-intensive coding
tasks by introducing a unified, scalable, and interactive training environment that systematically
improves the coding-based medical reasoning capabilities of LLM agents.

Medical Reasoning Models. Recent advancements have substantially improved biomedical reasoning
capabilities of LLMs through RL (Huang et al., 2025b; Lai et al., 2025; Zhang et al., 2025b; Jiang
et al., 2025a; Wu et al., 2025a; Chen et al., 2024; Lan et al., 2025; Wang et al., 2025a; Li et al.,
2025; Zhang et al., 2025b; Miao et al., 2025; Jin et al., 2025; Yu et al., 2025; Zhi et al., 2025; Liu
et al., 2025a). For example, M1 (Huang et al., 2025b) improves by distilling knowledge from the
reasoning traces generated by DeepSeek-R1 (Guo et al., 2025). MedS3 (Jiang et al., 2025a) employs
Monte Carlo Tree Search (MCTS) to generate rule-verifiable reasoning trajectories and employs
process-reward models to select optimal reasoning paths during inference. Similarly, HuatuoGPT-
o1 (Chen et al., 2024) and ClinicalGPT-R1 (Lan et al., 2025) integrate domain-specific verifiers
to guide RL fine-tuning processes for improved clinical reasoning. Extending beyond language
modeling, Med-R1 (Lai et al., 2025) and MedXpertQA (Zuo et al., 2025) adapt RL methodologies
to vision-language models, effectively addressing medical visual question answering tasks. Despite
these developments, current medical reasoning models predominantly target natural language-based
reasoning, with limited attention given to coding-intensive scenarios common in biomedical research
and clinical practice.

Medical Reasoning Benchmarks. Most existing medical reasoning benchmarks focus primarily on
evaluating LLM performance through closed-form medical QA tasks (Pal et al., 2022; Jin et al., 2021;
2019; Tsatsaronis et al., 2015; Tang et al., 2025; Xiong et al., 2024; Arora et al., 2025). In addition,
AgentClinic (Schmidgall et al., 2024) further evaluates diagnosis prediction within simulated clinical
scenarios, while MedHELM (HAI@Stanford, 2025) provides comprehensive evaluations in various
medical NLP tasks. Despite these extensive benchmarking efforts, existing benchmarks – including
recent concurrent works such as MedAgentBoard (Zhu et al., 2025), HealthBench (Arora et al., 2025),
and MedCaseReasoning (Wu et al., 2025b) – typically focus on evaluation scenarios, with limited
emphasis on dedicated training environments aimed at systematically improving medical reasoning
capabilities (Thapa et al., 2025), especially within coding-intensive and interactive medical scenarios.

Medical Agent Training Environments. To advance medical agents with narrative reasoning,
AgentClinic (Schmidgall et al., 2024) and AgentHospital (Li et al., 2024b) simulate hospital workflows
focused on diagnostic tasks, while MediQ (Li et al., 2024c) offers interactive simulations designed
for medical information retrieval. Beyond medicine, specialized environments have emerged for
systematically evaluating and improving LLM agents across diverse tasks (Zhao et al., 2025; Wang
et al., 2025e), such as software engineering (Pan et al., 2025; Yang et al., 2024b; 2025), reasoning
(Stojanovski et al., 2025), web browsing (Drouin et al., 2024), agent planning and collaboration (Xi
et al., 2024; Shao et al., 2024a), data science (Guo et al., 2024; Jing et al., 2025; Zhang et al.,
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2025a; 2024), machine learning engineering (Nathani et al., 2025; Huang et al., 2023; Chan et al.,
2024; Tang et al., 2023), automated research (Kang & Xiong, 2024; Schmidgall & Moor, 2025;
Schmidgall et al., 2025), and scientific discovery (Team et al., 2025; Yuan et al., 2025). Inspired by
these interactive training frameworks, MedAgentGym uniquely targets real-world biomedical scenarios,
aiming to rigorously benchmark and systematically enhance coding-based biomedical reasoning
capabilities of LLM agents. Unlike general coding agent benchmarks that primarily target software
engineering tasks (Jimenez et al., 2024; Yang et al., 2025), MedAgentGym emphasizes biomedical
coding reasoning, requiring integration of clinical knowledge and domain-specific data formats (e.g.,
EHRs, lab reports, biological sequences) within executable environments.

C TASK AND DATA DETAILS

C.1 OVERVIEW

We refer a task as coding-based biomedical reasoning when LLM agents write and run code whose
execution yields a verifiable outcome in biomedical data science. This definition allows us to
objectively verify the results while preserving the steps that agents actually take, allowing for training
and analysis at the trajectory level.

Outcome 
Prediction
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Data 
Integrity

4.2%

Knowledge
Retrieval
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Point-of-Care

9.9%
Patient 

Reasoning
24.4%
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Figure 9: Diversity analysis.

Biomedical Application Category. MedAgentGym spans
multiple biomedical subdomains, including Database
queries (DB, including MIMIC-III, eICU, TREQS, EHR-
SeqSQL, and EHRCon), Data Analytics (DA, including
MedCalcBench and MedAgentBench), Bioinformatics
(Bioinfo, including BioCoder, BioDSBench, N-PowerAI),
and Machine Learning (ML, including EHRSHOT and
MIMIC-Extract).

Figure 9 illustrates the diverse task distribution within
MedAgentGym. Consider a clinician identifying patients at
risk for sepsis from EHR data, a task requiring not only
understanding of sepsis criteria but also SQL queries to
extract relevant laboratory values, temporal logic to track
patient trajectories, and statistical methods to validate find-
ings. Similarly, researchers analyzing multi-omics data
must integrate biological knowledge with bioinformatics
algorithms and computational pipelines. These scenarios
exemplify the core challenge of biomedical data science:
operationalizing medical expertise through executable code, where domain knowledge alone proves
insufficient without corresponding computational implementation.
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Figure 10: Similarity analysis

In- & Out-of-Distribution. We further catego-
rize tasks in MedAgentGym into in- and out-of-
distribution, facilitating a rigorous evaluation
of model generalization and adaptability. To
highlight intrinsic differences between these dis-
tributions, Figure 10(b) shows the distribution
of sampled code trajectories. The resulting vi-
sualization demonstrates significant divergence
in trajectory complexity, interaction frequency,
and required code refinement steps between in-
distribution and out-of-distribution tasks, under-
scoring the challenges posed by novel biomed-
ical reasoning contexts.

Computational Task Category. Structured tasks primarily include database query scenarios, such
as those from MIMIC-III, eICU, TREQS, EHR-SeqSQL, EHRCon, and MedCalcBench (rule- or
equation-based), which require precise formulation of executable queries against structured EHR data.
Open-ended tasks include biomedical data analysis and medical coding scenarios drawn from datasets
such as MedAgentBench, BioCoder, BioDSBench, EHRSHOT, MIMIC-Extract, and N-PowerAI,
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demanding nuanced and flexible code generation for complex analysis, statistical reasoning, or
clinical decision-making.

Specifically, we evaluate LLMs across eight biomedical coding domains: (1) clinical database query-
ing (MIMIC-III, eICU, TREQS, EHRseqSQL), (2) clinical note analysis (EHRcon), (3) medical
computation (MedCalcBench), (4) health information technology (MedAgentBench), (5) biomedi-
cal software engineering (Biocoder), (6) biomedical data analysis (BioDSBench), (7) biostatistics
(NPowerAI), and (8) ML-based predictive modeling (EHRSHOT, MIMIC-Extract).

C.2 TRAINING AND INTERNAL TESTING (IN-DISTRIBUTION) DATASET DETAILS

EHRSQL: MIMIC-III and eICU. EHRSQL (Lee et al., 2022) comprises text-to-SQL tasks that
leverage electronic health records from MIMIC-III (Johnson et al., 2016) and eICU (Pollard et al.,
2018). They evaluate the ability of LLMs (and agents) to translate clinical questions posed by
healthcare professionals into executable SQL queries. This includes handling complex queries
involving temporal logic and conditional abstention.

TREQS. TREQS (Wang et al., 2020a) is a text-to-SQL benchmark tailored specifically to clinical
question answering using the MIMIC-III dataset. It emphasizes generating accurate SQL queries
from template-based natural language questions against a simplified schema comprising five core
tables, with an emphasis on large result-set handling.

MedCalcBench. MedCalcBench (Khandekar et al., 2024) provides a structured evaluation of
clinical calculation capabilities in LLMs. Each instance poses a patient-specific clinical scenario
requiring precise medical calculations such as clinical scores or medication dosages, accompanied by
expert-curated stepwise solutions for validation.

MedAgentBench. MedAgentBench (Jiang et al., 2025b) is a simulated EHR environment designed
to evaluate LLM-driven clinical workflows. It features realistic patient scenarios across ten task
categories, requiring agents to perform clinical reasoning, EHR querying via FHIR interfaces, and
clinical decision support.

BioCoder. BioCoder (Tang et al., 2024a) assesses the capability of LLMs to generate accurate
bioinformatics code solutions. It comprises practical coding challenges derived from authentic
bioinformatics software, requiring the generation and verification of functionally correct Python
methods.

BioDSBench. BioDSBench (Wang et al., 2024b) evaluates LLM proficiency in biomedical data
science coding tasks, involving the generation of Python or R code to replicate analytical workflows
derived from actual biomedical research studies. Tasks span statistical analyses, data manipulations,
and visualization routines.

EHRSHOT. EHRSHOT (Wornow et al., 2023a) benchmarks LLMs on few-shot clinical prediction
tasks leveraging real-world, longitudinal, deidentified EHR data. It focuses on rapid adaptation to
tasks such as risk prediction and forecasting clinical outcomes given limited labeled examples.

C.3 EXTERNAL EVALUATION (OUT-OF-DISTRIBUTION) DATASET DETAILS

EHR-SeqSQL. EHR-SeqSQL (Ryu et al., 2024) extends text-to-SQL evaluation to sequential, multi-
turn interactions, emulating realistic clinical dialogues. Tasks require maintaining context across
multiple SQL queries, assessing LLM capability in handling compositional and contextual reasoning.

EHRCon. EHRCon (Kwon et al., 2024) involves assessing clinical note consistency with structured
EHR records, focusing on identifying discrepancies. It serves as a verification task requiring precise
alignment between unstructured clinical text and corresponding database entries.

MIMIC-Extract. MIMIC-Extract(Wang et al., 2020b) provides structured, preprocessed time-
series patient data derived from the MIMIC-III dataset, used in clinical predictive modeling such as
mortality risk or intervention prediction, enabling standardized assessments of time-series reasoning
capabilities.
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N-PowerAI. N-PowerAI (Ruan et al., 2025) evaluates LLM capabilities in performing statistical
sample-size and power analyses for clinical trial design. It requires multi-step statistical reasoning
and the generation of precise numeric results corresponding to various clinical scenarios.

C.4 TRAIN-TEST SET SPLIT

For datasets that provide predefined training, validation, and test splits, we combine the training and
validation subsets into a single unified training set and retain the original test subset exclusively for
evaluation. In cases where datasets lack predefined splits, we randomly allocate 50% of the instances
to training, assigning the remaining 50% to the test set. For tasks containing more than 1000 samples
in both training and test sets, we create a lighter subset through downsampling to support efficient
leaderboard-based training and evaluation. Specifically, we leverage task-specific metadata to perform
uniform sampling within each fine-grained category, thereby maintaining diversity, ensuring balanced
representation, and preserving the original data distribution.

C.5 DATA PRE-PROCESSING DETAILS

Rather than a simple concatenation of existing benchmarks, MedAgentGym transforms and unifies
heterogeneous biomedical datasets into a single executable, Docker-isolated environment with
standardized JSON I/O, natural-language error grounding, and execution-verified tasks, together with
multi-threaded trajectory sampling and an outcome-supervised verifier to support agentic RL training.
Dataset-specific transformations are detailed as follows:

C.5.1 STRUCTURED TASKS

For database querying related datasets, including MIMIC-III, eICU, TREQS, and EHR-SeqSQL,
each task instance is structured into a JSON format comprising: (1) the contextual description and
the corresponding natural-language query, (2) the ground-truth SQL query, and (3) the resulting
answer from the database execution. Instances yielding null results upon SQL execution, indicating
the absence of a valid answer, are excluded from the dataset.

For EHRCon, we organize the data into structured databases that link patient records through hospital
admission IDs, complemented by a separate database containing associated clinical notes. Each task
is formulated as a JSON object consisting of: (1) admission ID, (2) relevant medical terminology,
(3) count of detected inconsistencies, and (4) a binary indicator denoting the presence or absence of
inconsistencies.

For MedCalcBench, each instance initially consists of a patient note, a specific medical calculation
query, a ground-truth answer, and a detailed step-by-step solution. To accurately evaluate the coding
capabilities of LLM agents without direct guidance, we remove all intermediate calculation hints,
presenting only the patient note and the calculation query for model inference.

For N-PowerAI, statistical analysis tasks are augmented through attribute substitution. Specifically,
each original instance is expanded 100-fold by systematically replacing an attribute with a randomly
chosen equivalent from a predefined valid range, preserving the integrity and interpretability of the
statistical context. Each augmented instance includes recalculated values for sample size (N) and
statistical power, stored systematically within JSON-formatted records.

C.5.2 OPEN-ENDED TASKS

MedAgentBench instances require LLM agents to follow natural-language instructions to perform
tasks within a FHIR-compliant interactive medical environment. We retain original instructions,
solutions, and Medical Record Numbers (MRNs). To derive verifiable evaluation signals, we execute
the provided ground-truth on the server-side environment to obtain authoritative reference answers.

BioCoder tasks require implementing biostatistics algorithms or addressing scientific programming
challenges. Each instance comprises a problem description, context-specific code, test cases, and
expected outputs. While evaluation datasets already contain all necessary components, training
instances initially lack context-specific code and test cases. To address this gap, we employ the
o3-mini model to auto-generate relevant context code and corresponding test cases based on provided
ground-truth functions. Generated functions undergo rigorous validation via a code interpreter,
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retaining only verified, error-free instances. Additionally, we exclusively utilize the Python-based
subset of BioCoder, deferring the JavaScript subset for subsequent integration.

BioDSBench instances involve biomedical data analysis tasks derived from real-world datasets.
Features are systematically organized into directories by task, with each task’s description and
reference Python implementation captured within JSON structures.

For datasets dedicated to predictive model development (e.g., EHRSHOT and MIMIC-Extract),
initial features are provided in pre-processed form but necessitate additional table joining, filtering,
and integration to produce final training inputs. While labels accompany these tasks, explicit reference
Python implementations are not provided, as evaluation metrics directly measure the accuracy of
model predictions on predefined test subsets. Distinct subsets of training, validation, and testing data
and labels are explicitly maintained and separately utilized for both training and evaluation phases.

C.6 SAMPLED TRAJECTORY DETAILS

Table 7: Trajectory Composition (%).

Actions (→) request info terminal code debug
MIMIC-III 71.07 0 28.84 0.08
eICU 72.17 0 27.13 0.70
TREQS 64.27 0 35.54 0.19
MedCalc. 0 0 74.91 25.09

Structured 51.88 0 41.61 6.52
MedAgent. 0 0 100 0
BioCoder 0 0.29 96.11 3.60
BioDS. 0 6.30 87.60 6.90
EHRSHOT 0 0.43 59.43 40.14

Open-ended 0 1.76 85.79 12.46
MedAgentGym 32.71 0.14 57.11 10.04

Table 7 details the proportion of action types (sec-
tion 4.1) in trajectories. Structured tasks pre-
dominantly involve data retrieval (over 50%) from
databases or resources, complemented by coding and
debugging steps. In contrast, open-ended tasks re-
quire significant coding and debugging efforts due to
diverse question types, often necessitating terminal in-
teractions to install specialized biomedical packages.
Although MedAgentGym contains extensive training
data and allows repeated sampling, the current tra-
jectory count primarily reflects computational bud-
get constraints. Specifically, Figure 4 (right) demon-
strates consistent performance improvements with
increasing training data volume, indicating that ex-
panded trajectory sampling through additional com-
putational resources would yield further gains.

D BASELINE DETAILS

We include additional details of the coding and medical domain-specific LLMs:

• Qwen2.5-Coder-Instruct (Hui et al., 2024) is derived from the Qwen2.5 series and further
fine-tuned explicitly on large-scale coding datasets and coding-specific instruction sets. This
targeted training substantially enhances their capabilities in code generation, debugging, and
programmatic reasoning, outperforming general-purpose models of similar scale on coding tasks.

• Seed-Coder-8B-Reasoning (Seed et al., 2025) is an 8B-parameter open-source coding LLM
optimized for code generation, leveraging Long-Chain-of-Thought (LongCoT) reinforcement
learning to improve multi-step code reasoning.

• medgemma-4b-it (gemma-3-4b-pt) (Google, 2025) is a medical-domain variant based on
gemma architecture and fine-tuned specifically on medical QA and instruction datasets, which
provide strong capabilities for medical reasoning and question answering.

• HuatuoGPT-o1-7B (Qwen2.5-7B-Instruct) (Chen et al., 2024), built on the Qwen2.5-7B
architecture, is extensively fine-tuned in clinical reasoning datasets via PPO with verifier-based
rewards to enhance complex reasoning capabilities. Specifically, it incorporates a medical-specific
verifier model that guides the generation of complex reasoning trajectories. HuatuoGPT-o1-7B
excels in medical reasoning tasks by explicitly generating intermediate reasoning steps that
facilitate iterative refinement and introspective evaluation. We also evaluate HuatuoGPT-o1-72B
(Qwen2.5-72B) to provide a more equitable and rigorous comparison with large-scale LLMs.

• m1-7B-23K (Qwen2.5-7B-Instruct) (Huang et al., 2025b) is fine-tuned on approximately
23,000 rigorously curated medical QA examples, significantly enhancing its domain-specific
knowledge and reasoning capabilities.
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• MedReason-8B (Llama-3.1-8B-Instruct) (Wu et al., 2025a) is fine-tuned for medical
questions-answering and clinical reasoning tasks. Its training emphasizes the generation of
step-by-step rationales, enabling robust performance on medical reasoning and diagnostic tasks.

• Baichuan-M1-14B-Instruct (Wang et al., 2025a) is a 14B medical LLM pre-trained from
scratch on approximately 20 trillion tokens of medical domain-specific content and high-quality
general text. It integrates specialized modeling across over 20 medical specialties with advanced
architectural modifications enhancing context understanding and long-sequence reasoning.

• Baichuan-M2-32B (Dou et al., 2025) is a 32B medical LLM pre-trained from scratch on large-
scale medical corpora and high-quality general text, with architectural and training adaptations for
multi-specialty clinical reasoning and long-context understanding. We use it as a representative
large medical-domain baseline.

E IMPLEMENTATION DETAILS

Evaluation Metrics. Following existing agent benchmarks (Liu et al., 2023), we adopt success rate
(SR) as the primary evaluation metric. For database, data science, and bioinformatics tasks with
explicit ground truths, we compare LLM-generated code execution outputs with reference solutions
using exact match. For open-ended ML tasks in clinical decision support, we measure performance
using accuracy (Acc) across provided test cases. Note that these code generation tasks inherently
have infinite solution spaces, unlike traditional classification problems with bounded solution spaces
(e.g., even random guessing can yield around 50% accuracy in binary classification). The overall
score is computed by averaging performance across tasks in test sets of MedAgentGym (leaderboard),
providing a comprehensive evaluation of coding-based biomedical reasoning capabilities within
MedAgentGym.

Experimental Setup Details. We limit interactions to a maximum of 15 turns per session, providing
agents full access to interaction histories and constraining runtime to 120 seconds per session. Input
tokens are capped at 32, 768, with output limited to 8, 192 tokens per round. We use Python 3.10
as the primary language for agent-code execution due to its modular design and suitability for
biomedical computations. To enable interactive feedback (section 3.3), we employ a rule-based parser
converting LLM outputs to JSON, facilitating seamless code execution, and utilize gpt-4.1-mini to
translate execution errors into grounded explanations. We configure all baseline LLMs following
established best practices for reproducibility. Specifically, instruction-following LLMs are configured
with a temperature of zero, while reasoning models use a temperature of 0.6. For all experiments
with Qwen-3 series, we switch to thinking mode for optimal performance under complex reasoning
scenarios (e.g., logic, math, and coding).

SFT. For SFT experiments, smaller models (up to 8B parameters) are trained using eight NVIDIA
A100 GPUs, whereas the 14B-parameter model is trained on eight NVIDIA H200 GPUs. We utilize
the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 1e− 4. The training batch
size is set to 8, and the maximum input token length per batch is configured to 40,000 tokens.

DPO. DPO experiments are conducted using the same hardware configurations as SFT experiments.
We employ the AdamW optimizer with a reduced learning rate of 5e− 6. Training utilizes a batch
size of 64 and a KL-divergence coefficient (β) of 0.1 to regulate the divergence from the initial policy.

PPO & GRPO. PPO and GRPO experiments are conducted using the same hardware configurations
as SFT experiments. All online RL experiments are conducted using VeRL framework (Sheng et al.,
2025). We integrate the VeRL package and dependencies inside the Med-Copilot docker image to
enable communication between the reward functions and the evaluation module. PPO and GRPO
training is performed with a batch size of 128 and a learning rate of 1 × 10−5. The temperature
parameter during model rollout is consistently set to 0.6. Throughout training, the coefficient for the
KL divergence regularization term is fixed at β = 1× 10−3.
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Table 8: Additional evaluation on code quality and efficiency for in- and out-of-distribution tasks.

Datasets (→) MIMIC. eICU TREQS MedCalc. MedAgent. BioCoder BioDS. EHRSHOT ID Avg. EHR-SeqSQL EHR-Con. MIMIC-Extract Npower-AI OOD Avg.
gpt-4.1 (2025-04-14)

#turns 25.91 26.59 20.65 10.73 17.28 22.08 21.75 8.71 19.21 25.83 38.97 10.42 22.64 20.83
complexity 0.01 0.06 0.01 4.09 0.23 7.77 0.17 20.97 4.16 0.03 0.11 20.76 0.04 4.49
maintainability 95.14 95.99 96.62 88.38 91.04 68.20 92.67 56.24 85.54 94.17 92.65 64.82 96.94 86.03
loc 9.26 9.67 4.17 19.00 18.89 24.82 28.97 144.69 32.43 9.44 12.45 129.76 5.24 34.52
lloc 5.86 6.33 3.00 15.20 10.79 21.84 16.44 110.51 23.75 6.21 8.90 117.54 3.73 26.93

gpt-4.1-mini (2025-04-14)

#turns 19.66 19.90 16.35 9.18 19.20 23.08 16.53 22.60 18.31 23.42 32.00 12.40 18.78 19.34
complexity 0.02 0.04 0.01 3.51 0.03 7.30 0.26 19.85 3.88 0.01 0.01 19.88 0.02 4.22
maintainability 95.62 96.06 98.93 87.01 94.43 69.43 92.54 57.77 86.47 92.18 96.91 54.63 97.72 86.13
loc 16.49 14.47 6.85 23.37 13.08 25.98 28.17 171.69 37.51 29.50 12.88 134.55 6.78 40.10
lloc 8.05 7.22 3.68 17.58 7.92 20.78 15.40 119.58 25.03 13.67 5.88 118.90 4.91 28.35

Qwen2.5-7B-Instruct

#turns 17.23 14.81 12.38 5.98 14.39 25.42 9.31 15.33 14.36 20.60 26.91 10.92 18.44 15.85
complexity 0.02 0.02 0.01 4.41 0.01 4.78 0.30 11.09 2.58 0.01 0.02 11.85 0.01 2.70
maintainability 96.54 96.02 98.58 82.65 80.20 81.67 95.66 54.69 85.75 93.38 94.12 64.98 96.68 86.22
loc 16.81 17.07 8.72 28.54 49.09 20.81 22.00 137.85 37.61 24.54 11.98 121.98 8.52 38.89
lloc 7.52 8.23 4.38 18.09 25.34 15.46 11.79 90.58 22.67 16.78 6.25 105.56 6.14 26.06

Med-Copilot (7B)

#turns 20.74 17.80 14.31 7.86 16.24 28.97 16.80 29.73 19.06 28.76 30.87 18.76 26.32 21.25
complexity 0.01 0.01 0.01 3.81 0.01 5.08 0.04 18.66 3.45 0.01 0.04 18.42 0.02 3.81
maintainability 94.58 95.01 98.49 83.76 82.64 81.40 97.68 62.47 87.00 94.54 98.81 72.82 98.76 88.30
loc 21.58 19.88 12.00 25.42 53.67 24.76 17.16 141.50 39.50 32.14 14.58 120.97 8.71 40.91
lloc 9.95 9.10 5.73 17.74 26.26 17.82 9.11 95.97 23.96 16.88 7.43 110.45 5.50 27.38

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 CODE QUALITY AND EFFICIENCY

For a comprehensive evaluation, we further report additional evaluation metrics on code quality and
efficiency, including (1) number of turns for interaction effectiveness, (2) cyclomatic complexity
for code complexity, (3) maintainability index for code readability, and (4) line-of-code (loc) and
(5) logical line-of-code (lloc) for code efficiency (Table 8). Comparing different tasks (take gpt-4.1
for example), we observe that machine learning tasks such as EHRSHOT involve significantly higher
complexity and longer code. Comparing different models (averaged across datasets), we observe that
advanced closed-source models generate more complex and longer code; after training, Med-Copilot
produces structurally efficient and more maintainable code compared to backbone models.

F.2 ABLATION STUDY: EFFECT OF PRE-DEFINED TOOLSET

MIMIC-III0.0

0.1

0.2

0.3

0.4

0.5
Su

cc
es

s R
at

e 
(S

R)

w/ Tool Set
w/o Tool Set

Figure 11: Ef-
fect of toolset.

Figure 11 compares the performance of GPT-4-based agents on the MIMIC-III
dataset with and without predefined toolsets integrated into our agent scaffold.
This illustrates our agent scaffold’s ability to flexibly accommodate external tools.
Interestingly, despite providing a set of predefined tools, including functions for
database loading, data filtering, value retrieval, arithmetic calculations, date com-
putations, and SQL execution (see additional details of toolset in Shi et al. (2024b)),
we observe a surprising decline in agent performance. It suggests that the LLM
agent inherently generates more flexible and contextually appropriate code when
unencumbered by predefined function constraints, aligning with the observations
reported by (Qian et al., 2025; Qiu et al., 2025).

F.3 COST ANALYSIS
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Figure 12: Cost information.

Table 9 summarizes input and output token statistics for
various API-based proprietary LLMs evaluated on datasets
within MedAgentGym. Notably, the input and output token
lengths per query vary significantly across models and
tasks. Among these models, gpt-4.1-mini achieves rela-
tively low average input and moderate output token counts,
which implies more efficient token utilization during in-
ference compared to larger variants such as gpt-4o and
gpt-o4-mini. Conversely, gpt-o4-mini incurs higher
average input costs. Figure 12 presents the API cost per
100 tasks. Overall, smaller GPT variants (e.g., gpt-4.1-mini and gpt-4o-mini) offer superior
token-efficiency, translating into lower computational and API costs without substantial compromise
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in performance, demonstrating their effectiveness as cost-efficient solutions for large-scale biomedical
reasoning applications.

Table 9: Statistics of input and output tokens per question for API-based commercial LLMs.

Datasets (→) MIMIC. eICU TREQS MedCalc. MedAgent. BioCoder BioDS. EHRSHOT Avg.
Input

gpt-4o-mini (Hurst et al., 2024) 3430.83 1947.72 1689.71 651.92 9501.86 5166.50 5068.88 5986.20 4180.45
gpt-4o (Hurst et al., 2024) 4399.87 3122.02 1823.31 739.48 8474.81 5133.71 21077.12 3235.71 6000.75
gpt-4.1-mini (OpenAI, 2025a) 1869.37 1691.45 1430.15 834.73 8087.50 2621.79 7369.35 4466.07 3546.30
gpt-4.1 (OpenAI, 2025a) 3730.90 2979.57 1754.18 759.64 7912.81 2728.24 3035.45 2092.14 3124.12
gpt-o4-mini (OpenAI, 2025b) 2005.11 1688.73 1534.84 1306.49 7586.32 2193.82 50768.08 2858.79 8742.77

Output

gpt-4o-mini (Hurst et al., 2024) 1206.00 714.72 918.45 379.28 4206.73 4170.56 1479.87 10484.53 2945.02
gpt-4o (Hurst et al., 2024) 840.16 852.41 696.61 537.09 2821.00 4144.91 7278.49 9127.14 3287.23
gpt-4.1-mini (OpenAI, 2025a) 952.68 991.78 880.43 1000.06 2892.98 3328.07 1308.73 23276.67 4328.93
gpt-4.1 (OpenAI, 2025a) 771.91 781.86 753.88 787.45 2051.20 2846.58 1627.78 5163.57 1848.03
gpt-o4-mini (OpenAI, 2025b) 1586.65 1392.11 893.76 2407.87 1718.22 3144.74 1952.88 8083.71 2647.49

F.4 STRUCTURED AND OPEN-ENDED TASKS
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Figure 13: Med-Copilot SFT performance on MedAgentGym across various backbone LLMs.

Figure 13 shows substantial performance gains from SFT across four OSS backbone LLMs of varying
sizes. Simple SFT on successful trajectories markedly boosts performance on structured coding tasks,
indicating its effectiveness in capturing structured coding patterns. DPO, in contrast, is particularly
effective for optimizing performance on open-ended tasks.

F.5 ABLATION STUDY: EFFECT OF WARM-UP STAGE

Table 10: Effect of SFT stage in two-stage finetuning framework.

Datasets (→) MIMIC-III eICU TREQS MedCalc. MedAgent. BioCoder BioDS. EHRSHOT Avg. ∆
Base (↓) / Metrics (→) SR SR SR SR SR SR SR Acc Score

Qwen2.5-7B-Instruct 13.08 15.57 12.76 25.91 30.36 21.79 10.20 5.42 16.89 –
+DPO w/o SFT 49.59 43.61 46.68 49.20 45.25 30.13 69.39 26.43 45.04 (+28.15)
+DPO 64.13 66.91 72.02 90.06 52.54 34.62 69.39 29.55 59.90 (+43.02)

Qwen2.5-14B-Instrust 17.21 14.07 16.43 27.40 35.59 29.49 16.33 4.45 20.12 –
+DPO w/o SFT 57.49 59.18 70.45 71.32 47.46 42.95 91.84 41.33 60.25 (+40.13)
+DPO 64.54 63.52 76.08 92.45 54.32 43.56 92.96 43.56 66.37 (+46.25)

Table 10 shows the effect of the initial SFT stage during agentic RL finetuning. Although DPO alone
slightly underperforms compared to SFT, combining an initial SFT warm-up with subsequent DPO
further improves overall results by leveraging their complementary strengths.

F.6 CASE STUDY

To illustrate the practical utility of interactive coding mechanism, we conduct a detailed case study
involving a typical bioinformatics coding task in Figure 14. Specifically, the task requires writing
a Python function (add_exchange_rxns) that modifies biochemical reaction graphs by integrating
exchange reactions. Initially, the LLM agent-generated solution encountered an attribute error,
mistakenly invoking a non-existent text_type method on a Graph object. Upon receiving explicit
debugging feedback, the LLM agent effectively identified and corrected the mistake by utilizing the
standalone text_type function rather than incorrectly calling it as a method of the graph instance.
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You are a biomedical expert in writing bioinformatics code and answer questions accordingly. 
Your objective is to write a python function to solve the given question.
Please only write the function, do not include any other text.
Please write a Python function with the following signature:
def add_exchange_rxns(g, rxn_id, reaction, style_flux_dict) …

def add_exchange_rxns(g, rxn_id, reaction, style_flux_dict):    
ACTIVE_COLOR = 'green'    

for c in reaction.compounds:        
node_id = g.text_type(c)        
if node_id in g.nodes_id_dict:

... 

Traceback (most recent call last):
…
in add_exchange_rxns
node_id = g.text_type(c)
AttributeError: 'Graph' object has no attribute 'text_type'

The error occurs because you’re attempting to call a text_type
method on the Graph object g, which doesn’t exist. Simply use the 
standalone text_type function instead:

Validate
Code

Debug

You are a Python debugging expert. Your task is to debug the code.

The user has provided the following code and  error:
{code} {error_msg}

Validate
Code

def add_exchange_rxns(g, rxn_id, reaction, style_flux_dict):
ACTIVE_COLOR = 'green’
for c in reaction.compounds:

# Assuming text_type is a standalone function, not a method of g
node_id = text_type(c)

Figure 14: Case study of gpt-4.1-mini on BioCoder.

This case highlights the capability of debugging in MedAgentGym environment to provide targeted,
actionable debugging feedback, enabling iterative code refinement and significantly enhancing agent-
generated solutions for complex biomedical programming tasks. Case studies with code patterns in
Figures 15 to 17 further illustrate how baseline models frequently produce syntactically valid code but
incorrect solution in biomedical tasks, from hardcoding biological parameters to misapplying medical
formulas, while our fine-tuned models demonstrate accurate implementation of domain-specific
constraints and current clinical standards.

F.7 DIFFICULTY ANALYSIS ON EXTERNAL EVALUATION SET

Table 11: Difficulty analysis on external sets for model generalization.

Model MIMIC-Extract (raw) MIMIC-Extract (processed) BixBench
gpt-4.1-mini 5.62 23.47 26.01
gpt-4.1 10.41 28.94 32.09
Qwen-2.5-7B-Instruct 1.34 17.06 18.92
Med-Copilot (7B) 2.14 25.88 28.72
Qwen-2.5-14B-Instruct 4.51 18.52 20.61
Med-Copilot (14B) 2.75 28.66 29.39

MedAgentGym includes four challenging unseen out-of-distribution medical coding tasks as external
validation sets in section 5.4. For example, the original MIMIC-Extract task in MedAgentGym
intentionally utilizes raw, unprocessed data as a challenging, out-of-distribution scenario designed
specifically to assess model capabilities in feature engineering and data preprocessing. To illustrate
the difference clearly, we additionally evaluate a fully pre-processed version of MIMIC-Extract.
As demonstrated in Table 11, providing structured data significantly improves model performance,
highlighting the distinct difficulty posed by raw data.

To further demonstrate the generalization of Med-Copilot, we include an additional evaluation set,
BixBench (Mitchener et al., 2025), a bioinformatics coding dataset comprising over 50 real-world
scenarios of practical biological data analysis with nearly 300 associated open-answer questions. It is
designed to measure the ability of LLM-based agents to explore biological datasets, perform long,
multi-step analytical trajectories, and interpret the nuanced results of those analyses. Exceptional
performance in BixBench demonstrates the robustness of Med-Copilot and its ability to generalize
beyond the specific domain of medical coding to broader scientific analytical tasks.
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Question: You are a biomedical expert. Write a Python script that constructs a `CNArray` object with chromosomes 
`['1', 'X', 'Y', '2', 'X', 'Y', '3']'', uses `ploidy=2`, and calls the `absolute_expect'' function to compute expected copy 
numbers for both female and male samples. 

Qwen-2.5-14B-Instruct
def absolute_expect(cnarr, ploidy, is_sample_female):

ec = np.full(len(cnarr), float(ploidy))
x_chrom = cnarr._chr_x_label
y_chrom = cnarr._chr_y_label
if is_sample_female:

# FLAW: Hardcodes female X to 2
ec[cnarr.chromosome == x_chrom] = 2
ec[cnarr.chromosome == y_chrom] = 0

else:
ec[cnarr.chromosome == x_chrom] = 1
ec[cnarr.chromosome == y_chrom] = 1

return ec

DPO-14B
def absolute_expect(cnarr, ploidy, is_sample_female):

expected_copies = []
for chrom in cnarr.chromosome:

if chrom == cnarr._chr_x_label:
if is_sample_female:

# FIX: Uses ploidy for female X
expected_copies.append(ploidy)

else:
expected_copies.append(1)

elif chrom == cnarr._chr_y_label:
expected_copies.append(0 if 

is_sample_female else 1)
else:

expected_copies.append(ploidy)
return np.array(expected_copies)

The Flaw: The code expected_copies[cnarr.chromosome == x_chrom] = 2 wrongly assumes females always 
have two X chromosomes, which only holds for diploid samples (ploidy = 2). In higher-ploidy cases (e.g., tetraploid 
tumors), females should have more copies (e.g., four).
The Correction: The revised code scales X chromosome copies with overall ploidy: if is_sample_female:
expected_copies.append(ploidy). This ensures the expected copy number matches the biological reality in cases 
like whole-genome duplication.

Figure 15: Domain-specific code generation error in a biomedical task from BioCoder (Tang et al.,
2024a). The task requires implementing a Python function to compute chromosome copy numbers
based on ploidy. The baseline model (Qwen-2.5-14B-Instruct, left) incorrectly hardcodes the female
X chromosome count to 2, failing to account for non-diploid scenarios such as tetraploid tumor cells.
Our DPO-trained model (DPO-14B, right) correctly implements dynamic scaling of X chromosome
copy numbers proportional to the ploidy parameter, demonstrating improved understanding of domain-
specific biological constraints.

Table 12: Human evaluation on structured and open-ended tasks from MedAgentGym.

Dataset (↓) # Attempt # Correct SR Total Time (min) Avg Time (min)
Structured

MIMIC-III (Johnson et al., 2016; Lee et al., 2022) 10 8 80% 74 7.40
eICU (Pollard et al., 2018; Lee et al., 2022) 8 5 63% 63 7.88
TREQS (Wang et al., 2020a) 10 7 70% 39 3.90
EHR-SeqSQL (Ryu et al., 2024) 10 8 80% 67 6.70
MedCalcBench (Khandekar et al., 2024) 7 5 71% 57 8.14
N-PowerAI (Ruan et al., 2025) 7 6 86% 96 13.7
Structured Task (Total) 52 39 75% 396 7.62
Open-ended

MedAgentBench (Jiang et al., 2025b) 6 6 100% 89 14.833
EHRCon (Kwon et al., 2024) 6 1 17% 241 40.17
BioDSBench (Wang et al., 2024b) 3 0 0% 195 65.00
BioCoder (Tang et al., 2024a) 8 2 25% 142 17.75
EHRSHOT (Wornow et al., 2023a) 5 – 89% 185 37.00
MIMIC-Extract (Wang et al., 2020b) 3 – 94% 215 71.67
Open-ended Task (Total) 31 – 45% 1067 34.419

F.8 HUMAN STUDY

To systematically compare coding styles and performance differences between human programmers
and automated agents, we conducted a human evaluation involving 83 tasks randomly selected from
the test subsets of the 12 datasets included in MedAgentGym. This evaluation set comprises 52 struc-
tured and 31 open-ended biomedical coding tasks. The human participants are biomedical engineers
and research scientists with over six years of experience in computational biology, relational database
querying, HTTP-based interactions, and machine learning development. The human evaluation study
was conducted under the approval of the Institutional Review Board (IRB). Participants voluntarily
contributed to the evaluation and did not receive monetary compensation.
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Question: You have a simple metabolic network represented by a ReactionDatabase, which holds a list of reaction 
IDs and a stoichiometric matrix (mapping each (Compound, reaction_id) to its stoichiometric coefficient). Using the 
provided function check_reaction_consistency, identify any mass-imbalanced reactions by minimizing the L1 norm 
of the mass residuals, and also compute a valid integer mass assignment (≥1) for each compound. Test this on a 
minimal example where reaction R1 converts compound A to B.

The main task is to write Python function with the following signature:
def check_reaction_consistency(database, solver, exchange, checked, zeromass, weights)

Invalid Objective Function: The incorrect code attempts to set the optimization objective using a Python list, which is 
not a valid mathematical expression for the solver. The correct code properly constructs a LinearExpr object, which 
correctly represents the mathematical function to be minimized.
Improper Initialization: The incorrect code initializes the mass balance equations with the integer 0. The correct 
approach is to initialize them with empty LinearExpr() objects, ensuring type consistency and making subsequent 
mathematical operations clear and bug-free.

DPO-14B MedCopilot-14B (GRPO)

Figure 16: Qualitative comparison of code generation for a complex optimization task from BioDS-
Bench (Wang et al., 2024b). The task requires implementing a linear program to verify mass
conservation in metabolic networks. The baseline model (DPO-14B, left) generates syntactically
plausible but semantically incorrect code with two critical errors: (1) defining the optimization
objective using a Python list rather than the required LinearExpr object, and (2) initializing mass
balance equations with integer 0 instead of LinearExpr(). In contrast, Med-Copilot-14B (GRPO,
right) correctly employs the LinearExpr class for both objective function construction and mass
balance initialization, producing executable code that accurately models the metabolic constraints.

Table 12 summarizes the results of human evaluation study conducted to establish reference per-
formance benchmarks across representative structured and open-ended biomedical reasoning tasks
from the MedAgentGym benchmark. Human experts completed selected instances from each dataset,
documenting the number of attempts, correctly solved instances, overall SR, total time spent, and
average time per task (in minutes). Results indicate that, on average, the human subject required
approximately 4.5 times longer to solve open-ended tasks relative to structured tasks, while achieving
a 40% lower success rate, reflecting the increased complexity and cognitive load associated with
open-ended biomedical reasoning scenarios. Given that neither current LLMs nor human experts
achieve perfect accuracy, we recommend deploying these models strictly in a copilot role rather than
as fully autonomous agents. The interactive features (e.g., debugging, execution-based verification) of
MedAgentGym also supports such human oversight, enabling human experts to validate code execution
outputs rather than manually writing code from scratch.

F.9 EFFECT OF REWARD DESIGN

Motivated by the predominance of loop-related failures in our error analysis (Figure 7), we experi-
mented with an additional shaping term, assigning a penalty term (rpenalty = −0.3) whenever the
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Question: <Patient Information>
Using the 2021 CKD-EPI Creatinine equation, what is the patient's Glomerular Filtration Rate (GFR) in terms of 
mL/min/1.73 m²? Answer with a decimal number without unit and with a relative precision of 0.0001.

Qwen-2.5-14B-Instruct
def calculate_gfr(creatinine, age, sex):

# Patient data from the case
scr = float(creatinine)
age_val = int(age)
gfr = 175 * (scr ** -1.154) * (age_val ** -0.203)
if sex.lower() == 'female':

gfr = gfr * 0.742
return gfr

MedCopilot-14B
def calculate_gfr(creatinine, age, sex):

scr = float(creatinine)
k, alpha = 0.0, 0.0
if sex.lower() == 'female':

k = 0.7
alpha = -0.241

elif sex.lower() == 'male':
k = 0.9
alpha = -0.302

scr_over_k = scr / k
min_term = (min(scr_over_k, 1.0)) ** alpha
max_term = (max(scr_over_k, 1.0)) ** -1.200
age_term = 0.9938 ** age_val
gfr = 142 * min_term * max_term * age_term
return gfr

Flawed Solution: Incorrectly implements the older and less accurate MDRD (Modification of Diet in Renal Disease) 
equation. This formula uses a single, continuous calculation.
Correct Solution: Properly implements the required 2021 CKD-EPI (Chronic Kidney Disease Epidemiology 
Collaboration) equation. This is a more modern and accurate formula that uses complex, conditional logic, changing 
the calculation based on the patient's sex and whether their serum creatinine level is above or below a specific 
threshold.

Figure 17: Domain-specific complexity in medical code generation from MedCalcBench (Khandekar
et al., 2024). The task requires implementing the 2021 CKD-EPI equation for Glomerular Filtration
Rate (GFR) calculation. The baseline model (Qwen-2.5-14B, left) incorrectly generates a flawed
implementation of the outdated MDRD formula instead of the requested 2021 standard. In contrast,
Med-Copilot-14B (right) accurately implements the complex conditional logic specified in the 2021
CKD-EPI guidelines, demonstrating precise adherence to current medical standards.

Table 13: Effect of reward design.

Datasets (→) MIMIC. eICU TREQS MedCalc. MedAgent. BioCoder BioDS. EHRSHOT Avg.
GRPO 68.21 68.73 70.50 92.33 55.87 37.40 71.11 33.18 62.17
GRPO w/ penalty 63.68 65.08 64.82 84.13 52.54 33.33 65.31 26.97 56.98

agent produced highly repetitive code blocks (cosine similarity > 0.9 between consecutive genera-
tions). As shown in Table 13, this heuristic consistently degraded performance across all datasets,
reducing the average score from 62.17% to 56.98%. Manual inspection of trajectories indicates that
the penalty suppresses benign self-debugging and iterative refinement (e.g., small edits to a prior code
block), causing the agent to terminate early or switch strategies prematurely rather than repairing its
own code. We therefore treat such shaping hooks (e.g., penalties on repeated actions) as optional,
implementation-level choices for users who desire more granular rewards, and not as prerequisites
for the gains reported in our main results.
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G PROMPT DETAILS

G.1 MIMIC-III PROMPTS

We include prompt details for MIMIC-III tasks as follows:

MIMIC-III Prompt

You are a biomedical expert in handling EHR data and answer questions.
Your objective is to solve a coding problem with given EHR data , with

the goal of finally give a concrete answer to the question.
Assume you have knowledge of several tables:
(1) Tables are linked by identifiers which usually have the suffix 'ID

'. For example , SUBJECT_ID refers to a unique patient , HADM_ID
refers to a unique admission to the hospital , and ICUSTAY_ID refers
to a unique admission to an intensive care unit.

(2) Charted events such as notes , laboratory tests , and fluid balance
are stored in a series of 'events ' tables. For example the
outputevents table contains all measurements related to output for
a given patient , while the labevents table contains laboratory test

(3) Tables prefixed with 'd_' are dictionary tables and provide
definitions for identifiers. For example , every row of chartevents
is associated with a single ITEMID which represents the concept
measured , but it does not contain the actual name of the
measurement. By joining chartevents and d_items on ITEMID , it is
possible to identify the concept represented by a given ITEMID.

(4) For the databases , four of them are used to define and track
patient stays: admissions , patients , icustays , and transfers.
Another four tables are dictionaries for cross -referencing codes
against their respective definitions: d_icd_diagnoses ,
d_icd_procedures , d_items , and d_labitems.

For different tables , they contain the following information:
(1) ADMISSIONS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ADMITTIME , DISCHTIME ,

ADMISSION_TYPE , ADMISSION_LOCATION , DISCHARGE_LOCATION , INSURANCE ,
LANGUAGE , MARITAL_STATUS , ETHNICITY , AGE

(2) CHARTEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID , ITEMID ,
CHARTTIME , VALUENUM , VALUEUOM

(3) COST.csv: ROW_ID , SUBJECT_ID , HADM_ID , EVENT_TYPE , EVENT_ID ,
CHARGETIME , COST

(4) D_ICD_DIAGNOSES.csv: ROW_ID , ICD9_CODE , SHORT_TITLE , LONG_TITLE
(5) D_ICD_PROCEDURES.csv: ROW_ID , ICD9_CODE , SHORT_TITLE , LONG_TITLE
(6) D_ITEMS.csv: ROW_ID , ITEMID , LABEL , LINKSTO
(7) D_LABITEMS.csv: ROW_ID , ITEMID , LABEL
(8) DIAGNOSES_ICD.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICD9_CODE
(9) ICUSTAYS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,

FIRST_CAREUNIT , LAST_CAREUNIT , FIRST_WARDID , LAST_WARDID , INTIME
(10) INPUTEVENTS_CV.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,

CHARTTIME , ITEMID , AMOUNT
(11) LABEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ITEMID , CHARTTIME ,

VALUENUM , VALUEUOM
(12) MICROBIOLOGYEVENTS.csv: RROW_ID , SUBJECT_ID , HADM_ID , CHARTTIME ,

SPEC_TYPE_DESC , ORG_NAME
(13) OUTPUTEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,

CHARTTIME , ITEMID , VALUE
(14) PATIENTS.csv: ROW_ID , SUBJECT_ID , GENDER , DOB , DOD
(15) PRESCRIPTIONS.csv: ROW_ID , SUBJECT_ID , HADM_ID , STARTDATE , ENDDATE

, DRUG , DOSE_VAL_RX , DOSE_UNIT_RX , ROUTE
(16) PROCEDURES.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICD9_CODE , CHARTTIME
(17) TRANSFERS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID , EVENTTYPE ,

CAREUNIT , WARDID , INTIME , OUTTIME
All the tabls are saved in the data directory {}.
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G.2 EICU PROMPTS

We include prompt details for eICU tasks as follows:

eICU Prompt – Main

You are a biomedical expert in handling EHR data and answer questions.
Your objective is to solve a coding problem with given EHR data , with

the goal of finally give a concrete answer to the question.
Assume you have knowledge of several tables:
(1) Tables are linked by identifiers whose name usually ends 'ID '. For

example , PATIENTUNITSTAYID refers to a unique patient , LABID refers
to a unique lab test , and ALLERGYID refers to a unique incidence

of allergy occurence.
(2) Four tables are related to measurements. First , the lab table

contains laboratory measurements of chemicals such as chloride or
albumin. Secondly , the intake and output (intakeoutput) table
records all fluid -related measurements such as administered normal
saline (ns) and urination. Thirdly , the microlab table records
measurements of culture of microorganisms. Fourth , the vitalperiod
table describes the patients ' vitals during their stay.

(3) The remaining tables (allergy , cost , diagnosis , medication , patient
and treatment) contain other critical information , and the table

names are self -explanatory.

{EHR_tables}

eICU Prompt – Table Information

For different tables , they contain the following information:
(1) allergy.csv: ALLERGYID , PATIENTUNITSTAYID , DRUGNAME , ALLERGYNAME ,

ALLERGYTIME
(2) cost.csv: COSTID , UNIQUEPID , PATIENTHEALTHSYSTEMSTAYID , EVENTTYPE ,

EVENTID , CHARGETIME , COST
(3) diagnosis.csv: DIAGNOSISID , PATIENTUNITSTAYID , ICD9CODE ,

DIAGNOSISNAME , DIAGNOSISTIME
(4) intakeoutput.csv: INTAKEOUTPUTID , PATIENTUNITSTAYID , CELLPATH ,

CELLLABEL , CELLVALUENUMERIC , INTAKEOUTPUTTIME
(5) lab.csv: LABID , PATIENTUNITSTAYID , LABNAME , LABRESULT ,

LABRESULTTIME
(6) medication.csv: MEDICATIONID , PATIENTUNITSTAYID , DRUGNAME , DOSAGE ,

ROUTEADMIN , DRUGSTARTTIME , DRUGSTOPTIME
(7) microlab.csv: MICROLABID , PATIENTUNITSTAYID , CULTURESITE , ORGANISM ,

CULTURETAKENTIME
(8) patient.csv: PATIENTUNITSTAYID , PATIENTHEALTHSYSTEMSTAYID , GENDER ,

AGE , ETHNICITY , HOSPITALID , WARDID , ADMISSIONHEIGHT ,
HOSPITALADMITSOURCE , HOSPITALDISCHARGESTATUS , ADMISSIONWEIGHT ,
DISCHARGEWEIGHT , UNIQUEPID , HOSPITALADMITTIME , UNITADMITTIME ,
UNITDISCHARGETIME , HOSPITALDISCHARGETIME

(9) treatment.csv: TREATMENTID , PATIENTUNITSTAYID , TREATMENTNAME ,
TREATMENTTIME

(10) vitalperiod.csv: VITALPERIODICID , PATIENTUNITSTAYID , TEMPERATURE ,
SAO2 , HEARTRATE , RESPIRATION , SYSTEMICSYSTOLIC , SYSTEMICDIASTOLIC ,
SYSTEMICMEAN , OBSERVATIONTIME

All the tabls are saved in the data directory {data_directory }.

G.3 TREQS PROMPTS

We include prompt details for TREQS tasks as follows:
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TREQS Prompt

You are an biomedical expert in handling EHR data and answer questions
accordingly.

Your objective is to solve a coding problem with given EHR data , with
the goal of finally give a concrete answer to the question.

Assume you have knowledge of several tables:
(1) Tables are linked by identifiers which usually have the suffix 'ID

'. For example , SUBJECT_ID refers to a unique patient. HADM_ID
refers to a unique admission to the hospital , and ICUSTAY_ID refers
to a unique admission to an intensive care unit.

(2) All tables contain SUBJECT_ID (patient identifier) and HADM_ID (
hospital admission identifier).

(3) The table names are self -explanatory.

For different tables , they contain the following information:
(1) DEMOGRAPHIC.csv: SUBJECT_ID , HADM_ID , NAME , MARITAL_STATUS , AGE ,

DOB , GENDER , LANGUAGE , RELIGION , ADMISSION_TYPE , DAYS_STAY ,
INSURANCE , ETHNICITY , EXPIRE_FLAG , ADMISSION_LOCATION ,
DISCHARGE_LOCATION , DIAGNOSIS , DOD , DOB_YEAR , DOD_YEAR , ADMITTIME ,
DISCHTIME , ADMITYEAR

(2) DIAGNOSES.csv: SUBJECT_ID , HADM_ID , ICD9_CODE , SHORT_TITLE ,
LONG_TITLE

(3) LAB.csv: SUBJECT_ID , HADM_ID , ITEMID , CHARTTIME , FLAG , VALUE_UNIT ,
LABEL , FLUID , CATEGORY

(4) PRESCRIPTIONS.csv: SUBJECT_ID , HADM_ID , ICUSTAY_ID , DRUG_TYPE , DRUG
, FORMULARY_DRUG_CD , ROUTE , DRUG_DOSE

(5) PROCEDURES.csv: SUBJECT_ID , HADM_ID , ICD9_CODE , SHORT_TITLE ,
LONG_TITLE

All the tabls are saved in the data directory {data_directory }.

G.4 MEDCALCBENCH PROMPTS

We include prompt details for MedCalcBench tasks as follows:

MedCalcBench Prompt

You work in a hospital , and a common task in your work is to calculate
some biological values of your patients.

To do this , you need to identify from clinical notes what information
is relevant , before using your clinical knowledge to calculate.

And then write a Python code to calculate the value.
In the code , please use the variable 'answer ' to store the answer of

the code.
In the main function , please print the final answer of the code without

any other text.

G.5 MEDAGENTBENCH PROMPTS

We include prompt details for MedAgentBench tasks as follows:

MedAgentBench Prompt – Part I

You are an expert in using FHIR functions to assist medical
professionals.

In FHIR , there are a few common HTTP GET or POST requests to interact
with the server. The descriptions of requests are listed here: {
fhir_function_description }.
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MedAgentBench Prompt – Part II

You are given a question and a set of possible functions.
Based on the question , you will need to write a python code to achieve

the purpose.
1. Write a python script to invoke a GET function of the FHIR

server , you MUST put it in the format of\nGET url?param_name1=
param_value1&param_name2=param_value2 ...

2. Write a python script to invoke a POST function of the FHIR
server , you MUST put it in the format of\nPOST url\n[your
payload data in JSON format]

3. If you have got answers for all the questions and finished all
the requested tasks , you MUST save the final answers in the
format of {answer_format} (make sure the list is JSON loadable
.)

You SHOULD NOT include any other text in the response.
Please write the python code and use the variable 'answer ' to store the

answer of the code.
Question: {question }\n. The FHIR server base URL is {fhir_api_base }. Do

not directly write the GET and POST requests.

MedAgentBench Prompt – Answer Format

answer = {"GET": ["60" ," S2874099"], "POST": ["http :// localhost :8080/
fhir/Observation", "payload ]}

The answers to the questions are listed in "GET" instead of the get
commands , while the post url and payload are listed in "POST".

G.6 BIOCODER PROMPTS

We include prompt details for Biocoder tasks as follows:

Biocoder Prompt

You are an biomedical expert in writing bioinformatics code and answer
questions accordingly.

Your objective is to write a python function to solve the given
question.

Please only write the function , do not include any other text.

Please write a Python function with the following signature:
{signature}

G.7 BIODSBENCH PROMPTS

We include prompt details for BioDSBench tasks as follows:

BioDSBench Prompt

You are an biomedical expert in writing bioinformatics code and answer
questions accordingly.

Your objective is to write a python code to solve the given question.
Please only write the code , do not include any other text.
All the required data are stored in the directory:
{dataset_path}
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G.8 EHRSHOT PROMPTS

We include prompt details for EHRShot tasks as follows:

BioDSBench Prompt – Main

You are an biomedical expert in writing machine learning code to solve
EHR -relevant tasks.

Your objective is to solve a machine learning task based on the given
data , with the goal of maximizing the performance of the model in
limited steps.

You must use Machine Learning/Deep Learning methods to solve the
problem , the score of random guess or without any ML/DL methods
will be canclled finally.

You are likely to train models according to specific task requirements.
You have access to a GPU and several CPUs for training DL/ML models.
Use CUDA and PyTorch for faster training if needed.

Code requirements:
- Read all data files from data_dir ={ data_dir}
- Save all the predictions given by the model to a file named '

predictions -{ task_name }.csv ' in the './cache/ehrshot /{model}/'
directory.

- Don 't add , delete , or modify any files in data_dir
- Use "print" to output information in the feedback
- No plotting or visualization is allowed
- Code should be self -contained and not rely on any variables or

state outside
- Code must be completely runnable , otherwise it will be considered

as failed
- Optimize your Model/Parameters/Data Processing/Algorithm for

continuous improvement
- The prediction file should be a csv file with the following

format , where the prediction should be predicted labels instead
of predicted probabilities:

patient_id , prediction
115967096 , 8192
...

{feature_information}

{label_information}

BioDSBench Prompt – Feature Information

The corresponding features are stored in the following directories:
{feature_directory_train }: training features for the task
{feature_directory_val }: validation features for the task
{feature_directory_test }: test features for the task
Each of the feature files is a dictionary , containing the following

keys:
- data_matrix: the feature vectors of the visits , where each row is

a embedded vector , representing a single visit of a patient
- patient_ids: the identifiers of the patients , where each row is a

visit and the corresponding patient id
- labeling_time: the time of the visit , where each row is a visit

and the corresponding time
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BioDSBench Prompt – Label Information

The corresponding labels are stored in the following directories:
{label_directory_train }: training labels for the task
{label_directory_val }: validation labels for the task
{label_directory_test }: test labels for the task
Each of the label files contain the following columns:

- patient_id: the identifier of the patient
- value: the label value of the patient on the {task_name} task
- label_type: the type of the label , which can be 'categorical '/'

boolean ', etc.
- prediction_time: only the features before this time can be used

to predict the label , used in data processing stage

G.9 EHR-SEQSQL PROMPTS

We include prompt details for EHR-SeqSQL tasks as follows:

EHR-SeqSQL Prompt – Part I

You are an biomedical expert in handling EHR data and answer questions
accordingly.

Your objective is to solve a coding problem with given EHR data , with
the goal of finally give a concrete answer to the question.

Assume you have knowledge of several tables:
(1) Tables are linked by identifiers which usually have the suffix 'ID

'. For example , SUBJECT_ID refers to a unique patient , HADM_ID
refers to a unique admission to the hospital , and ICUSTAY_ID refers
to a unique admission to an intensive care unit.

(2) Charted events such as notes , laboratory tests , and fluid balance
are stored in a series of 'events ' tables. For example the
outputevents table contains all measurements related to output for
a given patient , while the labevents table contains laboratory test
results for a patient.

(3) Tables prefixed with 'd_' are dictionary tables and provide
definitions for identifiers. For example , every row of chartevents
is associated with a single ITEMID which represents the concept
measured , but it does not contain the actual name of the
measurement. By joining chartevents and d_items on ITEMID , it is
possible to identify the concept represented by a given ITEMID.

(4) For the databases , four of them are used to define and track
patient stays: admissions , patients , icustays , and transfers.
Another four tables are dictionaries for cross -referencing codes
against their respective definitions: d_icd_diagnoses ,
d_icd_procedures , d_items , and d_labitems. The remaining tables ,
including chartevents , cost , inputevents_cv , labevents ,
microbiologyevents , outputevents , prescriptions , procedures_icd ,
contain data associated with patient care , such as physiological
measurements , caregiver observations , and billing information.

For different tables , they contain the following information:
(1) ADMISSIONS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ADMITTIME , DISCHTIME ,

ADMISSION_TYPE , ADMISSION_LOCATION , DISCHARGE_LOCATION , INSURANCE ,
LANGUAGE , MARITAL_STATUS , ETHNICITY , AGE

(2) CHARTEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID , ITEMID ,
CHARTTIME , VALUENUM , VALUEUOM
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EHR-SeqSQL Prompt – Part II

(3) COST.csv: ROW_ID , SUBJECT_ID , HADM_ID , EVENT_TYPE , EVENT_ID ,
CHARGETIME , COST

(4) D_ICD_DIAGNOSES.csv: ROW_ID , ICD9_CODE , SHORT_TITLE , LONG_TITLE
(5) D_ICD_PROCEDURES.csv: ROW_ID , ICD9_CODE , SHORT_TITLE , LONG_TITLE
(6) D_ITEMS.csv: ROW_ID , ITEMID , LABEL , LINKSTO
(7) D_LABITEMS.csv: ROW_ID , ITEMID , LABEL
(8) DIAGNOSES_ICD.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICD9_CODE ,

CHARTTIME
(9) ICUSTAYS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,

FIRST_CAREUNIT , LAST_CAREUNIT , FIRST_WARDID , LAST_WARDID , INTIME ,
OUTTIME

(10) INPUTEVENTS_CV.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,
CHARTTIME , ITEMID , AMOUNT

(11) LABEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ITEMID , CHARTTIME ,
VALUENUM , VALUEUOM

(12) MICROBIOLOGYEVENTS.csv: RROW_ID , SUBJECT_ID , HADM_ID , CHARTTIME ,
SPEC_TYPE_DESC , ORG_NAME

(13) OUTPUTEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,
CHARTTIME , ITEMID , VALUE

(14) PATIENTS.csv: ROW_ID , SUBJECT_ID , GENDER , DOB , DOD
(15) PRESCRIPTIONS.csv: ROW_ID , SUBJECT_ID , HADM_ID , STARTDATE , ENDDATE

, DRUG , DOSE_VAL_RX , DOSE_UNIT_RX , ROUTE
(16) PROCEDURES.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICD9_CODE , CHARTTIME
(17) TRANSFERS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID , EVENTTYPE ,

CAREUNIT , WARDID , INTIME , OUTTIME

All the tabls are saved in the data directory {data_directory }.

G.10 EHRCON PROMPTS

We include prompt details for EHRCon tasks as follows:

EHRCon Prompt – Part I

You are an biomedical expert in handling EHR data and answer questions
accordingly.

Your objective is to solve a coding problem with given EHR data , with
the goal of finally give a concrete answer to the question.

Assume you have knowledge of several tables:
(1) Tables are linked by identifiers which usually have the suffix 'ID

'. For example , SUBJECT_ID refers to a unique patient , HADM_ID
refers to a unique admission to the hospital , and ICUSTAY_ID refers
to a unique admission to an intensive care unit.

(2) Charted events such as notes , laboratory tests , and fluid balance
are stored in a series of 'events ' tables. For example the
outputevents table contains all measurements related to output for
a given patient , while the labevents table contains laboratory test
results for a patient.

(3) Tables prefixed with 'd_' are dictionary tables and provide
definitions for identifiers. For example , every row of chartevents
is associated with a single ITEMID which represents the concept
measured , but it does not contain the actual name of the
measurement. By joining chartevents and d_items on ITEMID , it is
possible to identify the concept represented by a given ITEMID.
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EHRCon Prompt – Part II

(4) For the databases , four of them are used to define and track
patient stays: admissions , patients , icustays , and transfers.
Another four tables are dictionaries for cross -referencing codes
against their respective definitions: d_icd_diagnoses ,
d_icd_procedures , d_items , and d_labitems. The remaining tables ,
including chartevents , cost , inputevents_cv , labevents ,
microbiologyevents , outputevents , prescriptions , procedures_icd ,
contain data associated with patient care , such as physiological
measurements , caregiver observations , and billing information.

For different tables , they contain the following information:
(1) ADMISSIONS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ADMITTIME , DISCHTIME ,

ADMISSION_TYPE , ADMISSION_LOCATION , DISCHARGE_LOCATION , INSURANCE ,
LANGUAGE , MARITAL_STATUS , ETHNICITY , AGE

(2) CHARTEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID , ITEMID ,
CHARTTIME , VALUENUM , VALUEUOM

(3) COST.csv: ROW_ID , SUBJECT_ID , HADM_ID , EVENT_TYPE , EVENT_ID ,
CHARGETIME , COST

(4) D_ICD_DIAGNOSES.csv: ROW_ID , ICD9_CODE , SHORT_TITLE , LONG_TITLE
(5) D_ICD_PROCEDURES.csv: ROW_ID , ICD9_CODE , SHORT_TITLE , LONG_TITLE
(6) D_ITEMS.csv: ROW_ID , ITEMID , LABEL , LINKSTO
(7) D_LABITEMS.csv: ROW_ID , ITEMID , LABEL
(8) DIAGNOSES_ICD.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICD9_CODE ,

CHARTTIME
(9) ICUSTAYS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,

FIRST_CAREUNIT , LAST_CAREUNIT , FIRST_WARDID , LAST_WARDID , INTIME ,
OUTTIME

(10) INPUTEVENTS_CV.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,
CHARTTIME , ITEMID , AMOUNT

(11) LABEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ITEMID , CHARTTIME ,
VALUENUM , VALUEUOM

(12) MICROBIOLOGYEVENTS.csv: RROW_ID , SUBJECT_ID , HADM_ID , CHARTTIME ,
SPEC_TYPE_DESC , ORG_NAME

(13) OUTPUTEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,
CHARTTIME , ITEMID , VALUE

(14) PATIENTS.csv: ROW_ID , SUBJECT_ID , GENDER , DOB , DOD
(15) PRESCRIPTIONS.csv: ROW_ID , SUBJECT_ID , HADM_ID , STARTDATE , ENDDATE

, DRUG , DOSE_VAL_RX , DOSE_UNIT_RX , ROUTE
(16) PROCEDURES.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICD9_CODE , CHARTTIME
(17) TRANSFERS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID , EVENTTYPE ,

CAREUNIT , WARDID , INTIME , OUTTIME

All the tables are saved in the a .db file at {db_location }.

In addition , you have access to a csv containing the clinical notes
with the matching subject ids and hospital admission ids: ROW_ID ,
SUBJECT_ID , HADM_ID , CHARTDATE , CHARTTIME , STORETIME , CATEGORY ,
DESCRIPTION , CGID , ISERROR , TEXT , ADMITTIME

This clinical note csv is at {note_csv }.

G.11 MIMIC-EXTRACT PROMPTS

We include prompt details for MIMIC-EXTRACT tasks as follows:
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MIMIC-EXTRACT Prompt – PART I

You are an biomedical expert in writing machine learning code to solve
EHR -relevant tasks.

Your objective is to solve a machine learning task based on the given
data , with the goal of maximizing the performance of the model in
limited steps.

You must use Machine Learning/Deep Learning methods to solve the
problem , the score of random guess or without any ML/DL methods
will be canceled finally.

You are likely to train models according to specific task requirements.
You have access to a GPU and several CPUs for training DL/ML models.
Use CUDA and PyTorch for faster training if needed.

Code requirements:
- Read all data files from data_dir ={ data_dir}
- Save all the predictions given by the model to a file named '

predictions -{ task_name }.csv ' in the './cache/ehrshot /{model}/'
directory.

- Don 't add , delete , or modify any files in data_dir
- Use "print" to output information in the feedback
- No plotting or visualization is allowed
- Code should be self -contained and not rely on any variables or

state outside
- Code must be completely runnable , otherwise it will be considered

as failed
- Optimize your Model/Parameters/Data Processing/Algorithm for

continuous improvement
- The prediction file should be a csv file with the following

format , where the prediction should be predicted labels instead
of predicted probabilities:

You have the data splits based on hospital admission ids. You are asked
to use longitudinal EHR data within each admission instance to

predict a two types of tasks:
(1) Classification associated with the entire duration of admission:

mortality inside hospital , mortality inside ICU , length of stay
beyond 3 days , length of stay beyond 7 days. All 4 are binary
classification tasks using lab features only.

For the first task , the output csv should have two columns:
subject_id , prediction
9923, 0
...

(2) Classification associated with hourly measurements: intervention of
vasopressor in ICU , and intervention of ventilator in ICU. Use the
past 6 hours of lab measurements and static demographics (matching
patient id) to predict the 4 intervention statuses during the 4-

hour period after 6 hours.
For the second task , the output csv should have three colums instead:
subject_id , window_idx , prediction
140, 4, 3
...

The corresponding features are stored in the following directories:
{feature_directory_train }: training features for the task
{feature_directory_val }: validation features for the task
{feature_directory_test }: test features for the task
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MIMIC-EXTRACT Prompt – PART II

Each of the feature files is a pickled pandas dataframe:
- subject_id: the unique ID of the subject
- hadm_id: the unique ID of the hospital admission
- icustay_id: the unique ID of the ICU session
- hours_in: the number of hours since hospital admission. Counting

from 0
- The rest of the columns are organized in groups of three , where

the outer level specifies the type of measurements (e.g.
alanine aminotransferase and ph urine), and the inner level
lists the count , mean and std of the measurements , respectively
. The table has been imputed.

{feature_information}

{label_information}

MIMIC-EXTRACT Prompt – Lab Feature

The corresponding features are stored in the following directories:
{feature_directory_train }: training features for the task
{feature_directory_val }: validation features for the task
{feature_directory_test }: test features for the task
Each of the feature files is a pickled pandas dataframe:

- subject_id: the unique ID of the subject
- hadm_id: the unique ID of the hospital admission
- icustay_id: the unique ID of the ICU session
- hours_in: the number of hours since hospital admission. Counting

from 0
- The rest of the columns are organized in groups of three , where

the outer level specifies the type of measurements (e.g.
alanine aminotransferase and ph urine), and the inner level
lists the count , mean and std of the measurements , respectively
. The table has been imputed.

MIMIC-EXTRACT Prompt – Static Feature

The corresponding features are stored in the following directories:
{feature_directory_train }: demographic training features for the task
{feature_directory_val }: demographic validation features for the task
{feature_directory_test }: demographic test features for the task
Each of the feature files is a pickled pandas dataframe:

- subject_id: the unique ID of the subject
- hadm_id: the unique ID of the hospital admission
- icustay_id: the unique ID of the ICU session
- intime: the total number of hours in the associated admission
- gender_F and gender_M: one -hot boolean columns for gender
- Age 1.0, Age 2.0, Age 3.0, Age 4.0: one -hot boolean columns for

ages groups of 10-30, 30-50, 50-70, and >70, respectively
- Ethnicity columns: one -hot boolean columns for ethnicity (

American Indian , Asian , Black , Hispano , Other , White)
- First care columns: one -hot boolean columns for first admitted

care unit (CCU , CSRU , MICU , SICU , TSICU)
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MIMIC-EXTRACT Prompt – Mor Los Label

The corresponding labels are stored in the following directories:
{label_directory_train }: training labels for the task
{label_directory_val }: validation labels for the task
{label_directory_test }: test labels for the task
Each of the label csv files contain the following columns:

- subject_id: the unique ID of the subject
- hadm_id: the unique ID of the hospital admission
- mort_icu or mort_hosp or los_3 or los_7: the boolean label for

whether the patient died in the ICU , died in hospital , the
length of stay exceeding 3 days , and LOS exceeding 7 days ,
respectively

- label_type: the type of the label , which can be 'categorical '/'
boolean ', etc.

MIMIC-EXTRACT Prompt – Ventilator Vasopressor Label

The corresponding labels are stored in the following directories:
{label_directory_train }: training labels for the task
{label_directory_val }: validation labels for the task
{label_directory_test }: test labels for the task
Each of the label csv files contain the following columns:

- subject_id: the unique ID of the subject
- 6_hour_window_id: the 6 hour predicted window counted since the

patient is admitted to hospital.
- intervention_category: one of the four scenarios: Label 1 "

CONTROL ": No intervention throughout the prediction window.
Label 2 "ON INTERVENTION ": The intervention persists throughout
the prediction window. Label 3 "ONSET": Intervention starts

within the prediction window. Label 4 "WEAN": Intervention ends
within the prediction window.

- label_type: the type of the label , which can be 'categorical '/'
boolean ', etc.

G.12 N-POWERAI PROMPTS

We include prompt details for NPowerAI tasks as follows:

NPowerAI Prompt

You are a scientist conducting biomedical research and constantly
facing statistical problems. Sometimes , you need to find the
minimum sample size to achieve a specific power. In other times ,
you would like to know the statistical power given a population
size.
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