
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MEDAGENTGYM: A SCALABLE AGENTIC TRAINING
ENVIRONMENT FOR CODE-CENTRIC REASONING IN
BIOMEDICAL DATA SCIENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce MedAgentGym, a scalable and interactive training environment de-
signed to enhance coding-based biomedical reasoning capabilities in large language
model (LLM) agents. MedAgentGym comprises 72, 413 task instances across 129
categories derived from 12 authentic real-world biomedical scenarios. Tasks are
encapsulated within executable sandbox environments, each featuring detailed
task specifications, interactive feedback mechanisms, verifiable ground truth an-
notations, and scalable training trajectory generation. Extensive benchmarking of
29 LLMs reveals substantial performance disparities in biomedical data science
between commercial and open-source LLMs. Leveraging efficient multi-threaded
and multi-turn trajectory sampling in MedAgentGym, Med-Copilot achieves per-
formance gains of +43.02% and +45.28% from offline and online reinforcement
learning, respectively, demonstrating MedAgentGym as an effective training ground
while establishing itself as a cost-effective, privacy-preserving alternative competi-
tive with proprietary LLMs (gpt-4o). By offering a unified execution environment
with a comprehensive benchmark and accessible, extensible training resources,
MedAgentGym delivers an integrated platform to develop LLM-based coding assis-
tants for advanced biomedical data science.

 Clinical DB
 Query

 Medical
 Calculation

Health IT

Bio SWE

Clinical Notes
Analysis

EHR Predictive
Modeling

Bio Data Analysis

 Biostats

0.2
0.4

0.6
0.8

1.0

Med-Copilot-7B (Ours)
Med-Copilot-14B (Ours)
gpt-4.1 (2025-04-14)

gpt-o4-mini (2025-04-16)
gpt-4.1-mini (2025-04-14)
Qwen2.5-14B-Instruct

Qwen2.5-7B-Instruct
HuatuoGPT-o1-7B
Qwen2.5-Coder-14B-Instruct

(a) Biomedical coding capabilities with MedAgentGym

0 10 20 30 40 50 60 70
MedAgentGym Overall Score

gpt-4.1

gpt-o4-mini

gpt-4.1-mini

gpt-4o

gpt-4o-mini

Med-Copilot-14B

Med-Copilot-7B
DeepSeek-R1-

Distill-Llama-70B
Qwen3-32B

Llama-3.3-70B-
Instruct

Qwen3-14B

Qwen3-8B
Llama-3.1-8B-

Instruct

Avg: 56.75

Avg: 35.78

API-based
Commercial

LLMs

Ours

OSS LLMs

(b) Overall score of MedAgentGym

Figure 1: Overview of (a) task-specific and (b) overall leaderboard evaluation in MedAgentGym. The
results show the (a) performance variations across biomedical data science tasks and (b) large gaps
between proprietary and open-source (OSS) LLMs, highlighting the need for continued development
of privacy-preserving, affordable LLM agents, especially for complex code-based biomedical reason-
ing tasks such as biomedical software engineering and predictive modeling.

1 INTRODUCTION

The exponential growth of healthcare data has fundamentally transformed modern biomedical re-
search, intensifying the need for integration of advanced computational methods with medical domain
expertise (Wornow et al., 2023b; Liu et al., 2025b). Biomedical researchers routinely face data science
challenges that demand both medical data analysis knowledge and programming proficiency, such

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

as querying large-scale databases, conducting statistical analyses, processing genomic sequences,
and building predictive models from electronic health records (EHRs) (Nimmolrat et al., 2021; Lee
et al., 2022; Wornow et al., 2023a). While recent advances in large language models (LLMs) have
demonstrated significant capabilities in advanced reasoning (OpenAI, 2025b; Guo et al., 2025),
including code generation (DeepMind, 2025) and scientific discovery (Swanson et al., 2024; Team
et al., 2025; Yuan et al., 2025), it remains challenging to translate real-world biomedical data science
requirements into executable computational solutions (Wang et al., 2024b; 2025d).

Developing effective biomedical coding agents poses unique challenges beyond knowledge-intensive
medical reasoning (Wang et al., 2025b;c) and general-purpose code generation (Zheng et al., 2024;
Jing et al., 2025). Within biomedical research and clinical practice, direct deployment of proprietary
LLMs remains infeasible due to strict privacy requirements and prohibitive operational costs (Meskó
& Topol, 2023; Shi et al., 2024a), whereas OSS LLMs exhibit substantial deficiencies in biomedical
coding capabilities (Figure 1). Mitigating this performance disparity calls for addressing two infras-
tructure gaps: (1) comprehensive, code-centric biomedical reasoning benchmarks to diagnose agent
limitations and support rigorous, reproducible evaluation; and (2) specialized, interactive training
environments to develop the complex reasoning and robust coding capabilities required for real-world
biomedical data science.

In this study, we introduce MedAgentGym, a scalable and agentic training environment designed to
systematically enhance the coding-centric reasoning capabilities of LLM agents for biomedical data
science workflows. Grounded in diverse real-world biomedical scenarios, MedAgentGym provides:

• Comprehensive suite of code-centric biomedical reasoning tasks. MedAgentGym encompasses
72,413 biomedical coding-centric instances across 129 categories grounded in 12 real-world
biomedical scenarios1. We standardize a rich collection of biomedical data science tasks as
executable problems with verifiable ground truth, spanning structured medical information
retrieval, numerical clinical reasoning, bioinformatics, and machine learning (ML) modeling.
Tasks incorporate diverse data modalities, including EHR tables, clinical notes, genomics, drugs,
and biological sequences, which require medical domain-specific reasoning capabilities.

• Scalable and interactive training infrastructure. MedAgentGym provides an optimized, user-
friendly environment to accelerate agent training. Each instance is encapsulated within executable,
isolated, and reproducible Docker environments with pre-install dependencies, supporting multi-
threading, parallel execution, and sequential sampling. MedAgentGym ensures efficient trajectory
collection and facilitate large-scale automated evaluation compatible with diverse agent scaffolds.

• Extensive benchmarking and effective agent training for biomedical data science. Through
an extensive benchmark of 29 proprietary and open-source LLMs, we identify critical deficiencies
in biomedical data analysis and predictive modeling. MedAgentGym effectively strengthens
agentic training: Med-Copilot-7B achieves gains of +43.02% and +45.28% through offline and
online reinforcement learning (RL), respectively, and performs comparably to gpt-4o on both in-
and out-of-distribution tasks. We publicly release MedAgentGym and Med-Copilot, together with
high-quality training trajectories and the outcome verifier, to support reproducible benchmarking
and continued development of LLM coding agents in biomedical data science.

2 RELATED WORKS

Coding-Centric Reasoning in Biomedical Data Science. Most existing medical benchmarks
primarily evaluate LLMs on knowledge-intensive, narrative reasoning (Jin et al., 2019; Pal et al.,
2022; Tsatsaronis et al., 2015). Although several efforts target isolated biomedical algorithmic
tasks (Tang et al., 2024a; HAI@Stanford, 2025; Wang et al., 2024b) or simulate portions of clinical
workflows (Schmidgall et al., 2024; Li et al., 2024c;b), they do not capture a complete set of tasks in
the full end-to-end lifecycle of biomedical data science, from data extraction (Lee et al., 2022; Ryu
et al., 2024) to model development (Wornow et al., 2023a; Wang et al., 2020b). Complementing these
benchmarks, MedAgentGym emphasizes computation- and coding-intensive tasks that require LLM
agents to retrieve, transform, analyze, and compute biomedical data while generating and executing
code with pre-installed biomedical libraries and dependencies to produce verifiable solutions.

1We emphasize that MedAgentGym mainly focuses on computational code generation for biomedical reason-
ing, rather than traditional medical coding systems (Soroush et al., 2024) such as ICD-9 or ICD-10.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Summary of related biomedical reasoning and coding datasets with task details and execution
environments. MedAgentGym is among the first publicly available training environments for LLM
agents in biomedical data science, uniquely integrating executable environments, interactive feedback,
and task-isolated run-time facilities for coding-based reasoning. “DB”, “DA”, “Bioinfo”, and “ML”
denote “database”, “data analytics”, “bioinformatics”, and “machine learning”, respectively.

Domain Task Environment & Facility Scale (#Instances)
Datasets (↓) QA Coding DB DA Bioinfo ML Execution Interaction Isolation Training # Train # Test # Traj.

MedMCQA (Pal et al., 2022) " % % % % % % % % % 3K 4.18K %

MedQA (Jin et al., 2021) " % % % % % % % % % 11.4K 1.27K %

PubMedQA (Jin et al., 2019) " % % % % % % % % % 450 500 %

BioASQ (Tsatsaronis et al., 2015) " % % % % % % % % % 745 140 %

MedAgentsBench (Tang et al., 2025) " % % % % % % % % % – 862 %

MIRAGE (Xiong et al., 2024) " % % % % % % % % % – 7.66K %

HealthBench (Arora et al., 2025) " % " % % % % % % % – 5K %

EHRSQL (Lee et al., 2022) % " " % % % % % % % 15.5K 1.73K %

MedCalcBench (Khandekar et al., 2024) % % % " % % % % % % 10.1K 1.05K %

MedAgentBench (Jiang et al., 2025b) % " % " % % " " % % – 300 %

BioCoder (Tang et al., 2024a) % " % " " % " % " % – 1.24K %

BioDSBench (Wang et al., 2024b) % " % " " % " " % % – 128 %

EHRSHOT (Wornow et al., 2023a) % " % % % " % % % % – 15 %

MedAgentGym (Ours) % " " " " " " " " " 59.2K 13.2K 6.7K

Scalable and Interactive Training Environment for Biomedical Coding Agents. Agentic RL (Guo
et al., 2025; Schulman et al., 2017; Shao et al., 2024b) shifts LLM post-training from passive
sequence generation to autonomous agents operating in complex, dynamic settings, including medical
reasoning (Xia et al., 2025; Jiang et al., 2025a; Chen et al., 2024; Lan et al., 2025; Wu et al., 2025a;
Wang et al., 2025a). Within such a framework, agents interact iteratively with their environment,
receiving observations and executing actions, while the environment returns reward signals and state
updates (Wang et al., 2025e; Chezelles et al., 2024; Shao et al., 2024a; Nathani et al., 2025). However,
most biomedical reasoning and data science benchmarks (Table 1) are single-pass evaluations
without executable environments or agent-level interaction signals (Zhu et al., 2025; Arora et al.,
2025; Wu et al., 2025b). In contrast, MedAgentGym uniquely provides an executable and interactive
biomedical coding environment covering comprehensive range of tasks. It also supports efficient
multi-turn trajectory sampling through multi-threaded rollouts, thus enabling scalable and systematic
improvement via agentic fine-tuning beyond prompting (Shi et al., 2024b; Huang et al., 2025a).

3 MEDAGENTGYM: A SCALABLE AND INTERACTIVE LLM AGENT
TRAINING ENVIRONMENT FOR CODE-CENTRIC BIOMEDICAL REASONING

3.1 PROBLEM FORMULATION

We formulate coding-based reasoning as a structured problem-solving task: given a problem descrip-
tion x ∈ X , the goal is to generate a code snippet c ∈ C that produces an output y ∈ Y . Each instance
(x, y) is paired with a ground truth output y∗, and the correctness is verified using E : C×Y → {0, 1},
where E = I(y = y∗). Existing biomedical reasoning datasets typically provide only question-answer
pairs (x, y∗) without code solutions c or only include a single predefined code solution per task. To
address this, MedAgentGym enables scalable generation and sampling of multiple coding trajectories
c(0), c(1), · · · , c(k) with corresponding executions y(0), y(1), · · · , y(k) through parallel execution of
LLM agents. Each trajectory is either single-turn or multi-turn, depending on task complexity and
user requirements. Crucially, MedAgentGym captures both positive trajectories {c(i)|y(i) = y∗} that
succeed and negative trajectories {c(i)|y(i) ̸= y∗} including error messages as learning signals.

3.2 DATA CONSTRUCTION: FROM INDIVIDUAL DATASETS TO UNIFIED BENCHMARK

Task and Data Identification. MedAgentGym focuses on verifiable biomedical data science tasks that
benefit from code-based solutions (i.e., code-centric biomedical reasoning). Clinically, we prioritize
tasks originating from real-world healthcare settings and validated by a multidisciplinary panel of
healthcare experts. For example, MedAgentGym involves MIMIC-III and eICU in EHRSQL (Lee
et al., 2022) collected from 222 hospital staff members and annotated by human programmers.
Computationally, we integrate diverse coding tasks, ranging from structured medical information
retrieval to open-ended biomedical research, ensuring comprehensive coverage and task diversity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 2: Dataset statistics for MedAgentGym and its lightweight subset for leaderboard evaluation.
⋆For open-ended tasks without explicit ground truth (e.g., ML coding in EHRSHOT and MIMIC-
Extract), we follow standard RL settings by using the same dataset for training and evaluation.

Data Sources Task Instances (all) Tasks (leader-board)
Dataset Type #Patients #Table #Elements Category #Train #Test #Total #Train #Test #Total

Training and Internal Validation (In-Distribution)

MIMIC-III (Johnson et al., 2016) Tabular <1K 17 1.4M 9 9,318 1,122 10,440 552 581 1,133
eICU (Pollard et al., 2018) Tabular <1K 10 1.5M 9 6,213 611 6,824 559 610 1,169
TREQS (Wang et al., 2020a) Tabular 100 5 2.5M 4 8,988 996 9,984 897 995 1,892
MedCalcBench (Khandekar et al., 2024) Text 1K – – 55 10,053 1,047 11,100 1,005 1,046 2,051
MedAgentBench (Jiang et al., 2025b) Tabular 100 – 700K 10 433 109 542 239 59 298
BioCoder (Tang et al., 2024a) Text – – – 8 981 157 1,138 981 156 1,137
EHRSHOT (Wornow et al., 2023a) Tabular 63K 31 1.2M 15 15 15 15⋆ 15 15 15⋆
BioDSBench (Wang et al., 2024b) Text – – – 12 50 49 99 50 49 99
MedAgentGym (Internal) – 65K 63 7.3M 113 36,036 4,106 40,142 4,283 3,511 7,794

External Validation (Out-of-Distribution)+only the test set for external evaluation; training data remains accessible

EHR-SeqSQL (Ryu et al., 2024) Tabular <1K 17 1.4M 4 18,950 7,913 26,863 1,000 500 1,500
EHRCon (Kwon et al., 2024) Tab&Text 46K 13 – 3 3,229 976 4,205 1,000 500 1,500
MIMIC-Extract (Wang et al., 2020b) Tabular 35K 4 35K 3 3 3 3⋆ 3 3 3⋆
N-PowerAI (Ruan et al., 2025) Text – – – 6 960 240 1200 960 240 1200
MedAgentGym (External) – 82K 34 1.4M 16 23,142 9,132 32,271 2,963 1,243 4,203

Overall

MedAgentGym – 146K 80 7.4M 129 59,175 13,238 72,413 7,243 4,754 11,997

Verifiable Instances Preparation. To standardize tasks across various sources, each instance in
MedAgentGym is structured with: (1) a problem description, (2) verifiable ground-truth outputs, and
(3) optional data resources (e.g., EHRs). Additionally, standardized system and user prompts are
designed to initiate the problem-solving process (see appendix G). MedAgentGym is highly flexible,
easily accommodating new tasks that include clear descriptions and verifiable ground-truth outputs.
For coding-centric tasks that provide only reference code implementations (e.g., BioCoder (Tang
et al., 2024a)), we validate task correctness based on the execution output of these reference solutions,
generating definitive output signatures. This transformation is necessary because multiple valid
code implementations may yield identical execution results, making the execution outcome–rather
than the code itself–a more reliable and consistent verification signal. For tasks involving additional
data resources (e.g., EHRSQL (Lee et al., 2022)), we include metadata on data access and sources.
Detailed task overview and task-specific preparation are documented in appendix C.

Data Statistics. MedAgentGym is a unified training environment built upon a large-scale, high-quality
dataset comprising approximately 72,000 task instances across 129 categories from 12 real-world
biomedical scenarios. Notably, with MedAgentGym, we collect large-scale agent trajectories to support
coding agent development (section 5). To ensure reproducible and robust evaluation, we define clear
train/test splits, separate internal and external validation sets, and perform n-gram (n = 10) string
match to eliminate the data contamination issue. Table 2 provides statistics for MedAgentGym. To
accommodate diverse research needs, we offer two versions of MedAgentGym: (1) a comprehensive,
full-scale dataset for extensive exploration and detailed analysis, and (2) a balanced, lightweight
subset for efficient leaderboard training and evaluation.

3.3 CODING ENVIRONMENT: FROM STATIC BENCHMARK TO INTERACTIVE INTERFACE

Isolated and Executable Sandbox Environment. To ensure robust and reproducible coding-
based biomedical reasoning, MedAgentGym provides isolated executable coding environments (i.e.,
sandbox) through Docker containers tailored to each task (Figure 2). These containers come pre-
installed with all required dependencies, including specialized biomedical packages (e.g., AlignIO
in BioCoder (Tang et al., 2024a)), facilitating reliable task execution. To address critical data
safety concerns, each Docker environment guarantees: (1) environmental integrity, where isolation
prevents contamination or data corruption potentially caused by LLM-generated code, preserving
both the computational environment and the underlying data systems (Yang et al., 2024b); (2)
medical data security, where secure containerization enforces compliance with medical data usage
policies, safeguarding sensitive patient information. Additionally, MedAgentGym supports extensive
flexibility for integrating new tasks, where users can define customized Docker environments through
configuration files. If certain packages are not initially available, a terminal tool allows LLM agents
to dynamically install the required dependencies within their isolated environments.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

LLM Agent

Agentic Traj.
Sampling LLM-friendly commands

MedAgentGym

LLM-friendly environment feedbacks

Request Info

Data Info

Evaluate Code
Edit File Debug Code

Code Results
Error Msgs Interact History

Sandbox
Terminal

Filesystem

Features

Labels

Metadata

Trajectories

EHR Data
Clinical Notes

Genomics Data
Drugs …

Bio-Medical Metadata

Bio-Medical Data
Science Tasks

…

BioMed SWE Predictive Modeling
Bio-Statistics BioMed Analysis…

129 Tasks
72K Instances

7.4M Data

Unit-Test

BioMed DS
Question Request Info Data Info Coding Errors Debug Results Reward

Figure 2: Overview of MedAgentGym. MedAgentGym contains a comprehensive suite of coding-centric
biomedical data science tasks with an interactive execution environment for LLM agents.

Interactive Feedback. MedAgentGym incorporates interactive feedback mechanisms, effectively
bridging LLMs with coding interpreters: (1) robust parsing: To begin, the output generated by
LLMs is formatted in structured JSON, facilitating straightforward parsing and code execution. In
cases of execution errors, iterative JSON regeneration is employed to maximize successful code
execution rates. (2) debugging and error grounding: Compile-time and runtime error messages are
systematically translated into a unified natural language format, making them more accessible to
LLMs and significantly improving debugging efficiency and interpretability.

Efficient Trajectory Collection. Each task in MedAgentGym is packaged in a reproducible Docker
image with built-in support for multi-threading, parallel execution, and sequential sampling. Specifi-
cally, we integrate two widely used multi-threading backend engines, Ray2 and Joblib3, to accelerate
trajectory sampling. This infrastructure ensures efficient and scalable trajectory collection, supporting
both extensive experimentation and systematic evaluation across multiple scenarios.

Plug-and-Play. A key strength of MedAgentGym lies in its flexible and modular architecture, which
readily supports the integration of new biomedical coding tasks. This inherent extensibility enables
MedAgentGym to continually adapt to evolving advancements in biomedical sciences and artificial
intelligence methodologies. Additionally, its trajectory sampling approach allows the straightforward
transformation of traditional, non-executable biomedical reasoning tasks into coding-based scenarios
with verifiable outputs, significantly broadening the scope and complexity of tasks that can be system-
atically evaluated. Moreover, users can define custom Docker environments through configuration
files, and, if specific software packages are initially absent, a built-in terminal tool facilitates dynamic
installation within each isolated execution environment, further improving MedAgentGym in runtime
adaptability and user-friendliness.

4 EVALUATING LLMS AS MEDICAL CODING AGENTS WITH MEDAGENTGYM

4.1 EXPERIMENTS SETUP

Agent Scaffolds. Following CodeAct (Wang et al., 2024a), we establish a default agent scaffold
for systematically evaluating coding-based biomedical reasoning. Interactions within MedAgentGym
are modeled as a Partially Observable Markov Decision Process (POMDP), focusing on sampled
biomedical data science tasks p ∈ P . At each timestep t, the agent observes ot ∈ O and samples
an action at+1 ∈ A from the current policy πt based on interaction history. We define four primary
action types: (a) request_info: retrieve relevant data from sources such as EHRs; (b) terminal:
manage dependencies or local files within isolated Docker environments. (c) code_execution:
execute code generated by LLMs through an integrated interpreter; and (d) debugging: translate
code execution errors into natural language explanations enriched with detailed error information for
LLM comprehension.

Tasks and Datasets. Building upon MedAgentGym, we train and evaluate Med-Copilot on 7,794
coding-based biomedical reasoning tasks across 8 datasets: (1) MIMIC-III (Johnson et al., 2016)
and (2) eICU (Pollard et al., 2018) from EHRSQL (Lee et al., 2022), (3) TREQS (Wang et al.,
2020a), (4) MedCalcBench (Khandekar et al., 2024), (5) MedAgentBench (Jiang et al., 2025b), (6)
BioCoder (Tang et al., 2024a), (7) EHRSHOT (Wornow et al., 2023a), and (8) BioDSBench (Wang

2https://github.com/ray-project/ray
3https://joblib.readthedocs.io/en/stable/

5

https://github.com/ray-project/ray
https://joblib.readthedocs.io/en/stable/

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: Test set results (zero-shot) of LLMs on MedAgentGym. Bold indicates the best result at each
scale. ‡ and ∨ denote coding LLMs and medical reasoning LLMs, respectively.

Datasets (→) MIMIC. eICU TREQS MedCalc. MedAgent. BioCoder BioDS. EHRSHOT Avg.
Baselines (↓) / Metrics (→) SR SR SR SR SR SR SR Acc Score

API-based Proprietary LLMs†: We only consider Microsoft Azure OpenAI API services due to credentialed health data use agreement.

gpt-4o-mini (2024-07-28) (Hurst et al., 2024) 35.97 16.57 38.39 73.11 40.38 30.12 57.35 7.84 37.47
gpt-4o (2024-08-06) (Hurst et al., 2024) 43.04 43.44 53.47 73.97 54.23 30.12 58.16 33.53 48.75
gpt-4.1-mini (2025-04-14) (OpenAI, 2025a) 62.79 63.44 69.75 84.36 54.23 47.46 63.47 48.28 61.72
gpt-4.1 (2025-04-14) (OpenAI, 2025a) 69.36 64.75 74.97 86.23 57.63 52.95 67.35 87.93 70.15
gpt-o4-mini (2025-04-16) (OpenAI, 2025b) 76.45 70.16 74.47 78.45 59.32 42.94 73.47 50.07 65.67
‡codex-mini (2025-05-16) (Chen et al., 2021) 67.30 64.75 74.57 82.49 58.76 48.78 67.64 58.76 65.38

OSS (Base Size): < 10B parameters

Qwen3-1.7B (Qwen, 2025a) 20.12 10.62 15.08 46.24 16.95 15.38 6.12 1.87 16.55
Qwen3-4B (Qwen, 2025a) 27.23 30.77 28.85 52.80 15.25 19.16 20.41 23.85 27.29
gemma-3-4b-it (Gemma, 2025) 27.36 29.10 24.52 42.49 18.64 17.95 8.16 4.37 21.57
∨medgemma-4b-it (Google, 2025) 15.51 13.11 14.85 41.89 17.62 26.74 17.82 1.33 18.61
Qwen2.5-7B-Instruct (Yang et al., 2024a) 13.08 15.57 12.76 25.91 30.36 21.79 10.20 5.42 17.43
Llama-3.1-8B-Instruct (Dubey et al., 2024) 16.67 25.00 19.17 27.53 16.95 18.59 9.19 2.36 16.97
‡Qwen2.5-Coder-7B-Instruct (Hui et al., 2024) 9.12 10.66 15.63 24.62 18.75 10.60 17.24 10.55 14.65
∨HuatuoGPT-o1-7B (Chen et al., 2024) 4.99 7.04 7.04 38.05 18.64 28.21 19.88 5.03 16.11
∨m1-7B-23K (Huang et al., 2025b) 6.88 9.56 7.04 28.24 9.32 20.26 14.71 0.00 12.00
Qwen3-8B (Qwen, 2025a) 29.08 34.53 37.37 54.59 20.34 20.51 24.49 25.71 30.83
Ministral-8B-Instruct-2410 (Ministral, 2025) 16.70 14.92 25.39 49.81 22.03 23.72 12.24 7.79 22.27
∨MedReason-8B (Wu et al., 2025a) 9.12 9.51 9.15 43.31 21.46 31.42 17.42 3.88 18.16
‡Seed-Coder-8B-Reasoning (Seed et al., 2025) 42.51 45.74 39.50 35.18 28.81 23.72 20.41 22.89 32.35
OSS (Large Size): 10 - 30B parameters

Qwen3-14B (Qwen, 2025a) 31.50 31.97 30.05 61.38 22.03 22.60 26.53 26.77 31.60
Qwen2.5-14B-Instruct (Yang et al., 2024a) 17.21 14.07 16.43 27.40 35.59 29.49 16.33 4.45 20.12
DeepSeek-R1-Distill-Qwen-14B (Guo et al., 2025) 35.12 38.52 32.96 48.09 32.20 21.29 24.49 11.39 30.51
‡Qwen2.5-Coder-14B-Instruct (Hui et al., 2024) 41.82 44.26 35.78 33.75 30.42 26.28 22.45 28.37 32.89
∨Baichuan-M1-14B-Instruct (Wang et al., 2025a) 4.50 12.19 7.36 1.82 21.46 16.34 17.42 0.00 10.14

OSS (XL Size): > 30B parameters

Qwen3-32B (Qwen, 2025a) 52.48 60.95 53.82 63.82 45.93 32.67 28.57 47.29 48.19
Qwen2.5-32B-Instruct (Yang et al., 2024a) 54.56 45.41 62.81 69.96 40.67 27.45 22.45 18.13 42.68
QwQ-32B (Qwen, 2025b) 62.31 56.72 66.15 67.69 47.46 42.31 14.29 55.05 51.50
DeepSeek-R1-Distill-Qwen-32B (Guo et al., 2025) 62.18 58.36 65.82 60.14 43.56 28.66 26.53 31.17 47.05
∨ Baichuan-M2-32B (Dou et al., 2025) 20.83 23.61 24.92 30.02 25.42 25.00 20.41 12.94 22.89
Llama-3.3-70B-Instruct (Dubey et al., 2024) 39.93 25.08 24.98 84.99 39.40 27.55 24.49 29.93 37.04
DeepSeek-R1-Distill-Llama-70B (Guo et al., 2025) 64.59 64.92 56.98 76.96 28.81 32.05 42.86 33.42 50.07
∨ HuatuoGPT-o1-72B (Qwen2.5-72B) (Chen et al., 2024) 27.19 29.84 29.65 52.01 28.81 31.41 26.53 16.87 30.29

et al., 2024b). Moreover, we conduct experiments for out-of-distribution evaluation on 4,203 tasks
from the following 4 datasets: (9) EHR-SeqSQL (Ryu et al., 2024), (10) EHRCon (Kwon et al.,
2024), (11) MIMIC-Extract (Wang et al., 2020b), and (12) N-PowerAI (Ruan et al., 2025). Note that
we do not consider knowledge-intensive medical question-answering tasks (Jin et al., 2019; Pal et al.,
2022; Jin et al., 2021), as they are orthogonal to coding-aided reasoning. We include detailed task
and dataset information in appendix C.

Baselines. We extensively benchmark the following state-of-the-art LLMs on MedAgentGym:
(i) API-based proprietary LLMs, including gpt-4o-mini (Hurst et al., 2024), gpt-4o (Hurst
et al., 2024), gpt-4.1-mini (OpenAI, 2025a), gpt-4.1 (OpenAI, 2025a), gpt-o4-mini (OpenAI,
2025b), and codex-mini (Chen et al., 2021); (ii) OSS LLMs, including gemma-3 (Gemma, 2025),
Qwen3 (Qwen, 2025a), Qwen2.5 (Yang et al., 2024a), Llama-3 (Dubey et al., 2024), Minis-
tral (Ministral, 2025), and DeepSeek-R1 (Guo et al., 2025); (iii) coding LLMs, including codex-
mini (Chen et al., 2021), Qwen2.5-Coder-7B-Instruct and -14B-Instruct (Hui et al., 2024), and
Seed-Coder-8B-Reasoning (Seed et al., 2025); and (iv) medical reasoning LLMs or medical domain-
specific LLMs, including medgemma-4b-it (gemma-3-4b-pt) (Google, 2025), HuatuoGPT-o1-7B
(Qwen2.5-7B-Instruct) and HuatuoGPT-o1-72B (Qwen2.5-72B) (Chen et al., 2024), m1-7B-23K
(Qwen2.5-7B-Instruct) (Huang et al., 2025b), MedReason-8B (Llama-3.1-8B-Instruct) (Wu
et al., 2025a), Baichuan-M1-14B-Instruct (Wang et al., 2025a), and Baichuan-M2-32B (Dou et al.,
2025). Additional model details are available in appendix D.

Evaluation Metrics. We adopt success rate (SR) as the primary evaluation metric. For database,
data science, and bioinformatics tasks with explicit ground truths, we compare LLM-generated code
execution outputs with reference solutions using exact match. For open-ended ML tasks in clinical
decision support, we measure performance using accuracy (Acc) across test cases. See appendix E
for implementation details and F.1 for additional evaluation on code quality and efficiency.

4.2 RESULTS: BENCHMARKING LLMS AND REASONING MODELS WITH MEDAGENTGYM

Table 3 benchmarks the state-of-the-art LLMs on MedAgentGym. We summarize key observations
from our zero-shot leaderboard evaluation as follows: ⋄ Significant Performance Gap Between
Commercial API-based and OSS LLMs. This evident performance gap highlights the critical
need for continued development of lightweight OSS LLMs that match commercial performance

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

𝜋!"#

𝜋!"#

{ 𝑜, 𝑎, 𝑟 }

𝜋$
Gym Agent

Action 𝑎

Obs 𝑜,
Reward 𝑟

Trajectory
Sampling

Trajectories

𝜋

(a) Offline Reinforcement Learning w/ MedAgentGym (b) Online RL w/ MedAgentGym

{ 𝑜, 𝑎, 𝑟 }

𝜋
Gym Agent

Action 𝑎

Obs 𝑜,
Reward 𝑟 Inference

𝜋!
Gym Agent

Obs 𝑜,
Reward 𝑟 Rollouts

Action 𝑎

Figure 3: Comparison of (a) offline and (b) online RL paradigms within MedAgentGym.

while addressing real-world privacy and cost constraints. ⋄ Task-Specific Performance Variations
between Structured and Open-ended Medical Tasks. LLMs consistently perform better on
structured tasks (e.g., database queries, medical calculations) compared to open-ended tasks requiring
advanced coding and reasoning (e.g., data analysis, ML prediction). ⋄ Suboptimal Outcomes in
Dedicated Coding and Medical Domain-Specific LLMs. Both coding and medical reasoning
LLMs deliver limited improvement or even decline over base models, revealing that coding-based
biomedical reasoning represents a unique capability not adequately captured by specialization in
either coding or medical reasoning. Surprisingly, medical reasoning models (regardless of model
sizes) consistently underperform relative to their base models except for knowledge-intensive tasks
(e.g., MedCalcBench, BioCoder), showing that fine-tuning in medical QA may reduce generalization
and instruction-following ability. These findings highlight the need to jointly improve coding skills
and medical reasoning, rather than treating them as separate objectives.

5 TRAINING LLM AGENTS FOR CODE-CENTRIC BIOMEDICAL REASONING

In this section, we leverage MedAgentGym to systematically enhance lightweight OSS LLMs as
proficient coding agents (Med-Copilot) for biomedical reasoning. We first explore a two-stage
agentic fine-tuning framework (section 5.1), followed by a detailed analysis of model scaling behaviors
(section 5.2). We then introduce self-improvement to further boost agent performance (section 5.3)
and conduct additional analysis on model generalization, ablation, and error patterns (section 5.4).

5.1 RL FINE-TUNING WITH TRAJECTORY SAMPLING

Training Setup. We select Qwen-2.5-Instruct-7B and -14B (Yang et al., 2024a) as our backbones.
To enable effective evaluation within MedAgentGym, we utilize a consistent CodeAct-style scaffold,
allowing LLM agents to iteratively reason and refine biomedical code through interactive environment
feedback. Detailed training setups, including hyperparameters, are provided in appendix E.

Trajectory Sampling. MedAgentGym facilitates efficient parallel trajectory sampling using ray and
joblib backends. Specifically, we roll out (1) 2,137 successful trajectories using gpt-4.1-mini with
a temperature of 0 to warm up the fine-tuning for smaller OSS models. Each successful trajectory
contains 9.25 turns between the LLM and the code interpreter on average. In addition to 2,137
positive trajectories for supervised fine-tuning (SFT), we prepare additional trajectory pairs for
RL such as direct preference optimization (DPO), including (2) 1,646 off-policy preference pairs
sampled from gpt-4.1-mini, and (3) 2,939 on-policy preference pairs. For both types, we use the
initial prompt interactions as shared context and contrast successful final codes against intermediate
erroneous attempts. In addition, we also performed a quantitative analysis on 250+ trajectories
(randomly sampled over 10% of our trajectory collection) and confirmed that the vast majority of
successful solutions followed a logically sound path, with cases of ‘correct answer from flawed code’
being exceptionally rare (<1%). We release all 6K trajectories above to accelerate coding agent
development. See appendix C.6 for detailed trajectories composition.

Two-Stage Fine-Tuning. We benchmark two policy improvement methods: (1) SFT directly mimics
high-reward trajectories consisting exclusively of successful outcomes, whereas (2) offline or online
RL optimizes the policy by favoring selected responses over rejected ones (Figure 3). We further
consider a two-stage fine-tuning, initially warming up with SFT and subsequently refining with RL.

Results: Offline RL (DPO). Table 4 compares several post-training methods, revealing that sim-
ple SFT over successful trajectories significantly boosts performance on structured coding tasks,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Med-Copilot performance on MedAgentGym finetuned with sampled trajectories.

Datasets (→) MIMIC-III eICU TREQS MedCalc. MedAgent. BioCoder BioDS. EHRSHOT Avg. ∆
Base (↓) / Metrics (→) SR SR SR SR SR SR SR Acc Score

Qwen2.5-7B-Instruct 13.08 15.57 12.76 25.91 30.36 21.79 10.20 5.42 16.89 –
+SFT 57.83 61.48 72.66 89.06 50.85 28.33 55.10 15.62 53.87 (+36.98)

+DPO 64.13 66.91 72.02 90.06 52.54 34.62 69.39 29.55 59.90 (+43.02)
+PPO 66.10 67.25 73.88 74.52 51.33 32.71 65.47 32.40 57.96 (+41.07)
+GRPO 68.21 68.73 70.50 92.33 55.87 37.40 71.11 33.18 62.17 (+45.28)

Qwen2.5-14B-Instrust 17.21 14.07 16.43 27.40 35.59 29.49 16.33 4.45 20.12 –
+SFT 61.45 62.46 76.38 94.36 52.54 39.80 89.80 34.58 63.92 (+43.80)

+DPO 64.54 63.52 76.08 92.45 54.32 43.56 92.96 43.56 66.37 (+46.25)
+PPO 67.55 68.53 78.32 94.86 53.22 45.88 91.33 56.79 69.56 (+49.44)
+GRPO 68.78 69.34 76.84 95.81 57.41 49.32 94.78 59.05 71.42 (+51.30)

demonstrating its effectiveness in capturing structured coding patterns. Besides, DPO is particularly
beneficial for optimizing open-ended task performance.

Results: Online RL (PPO and GRPO). We further consider online RL methods, including Prox-
imal Policy Optimization (PPO) (Schulman et al., 2017) and Group Relative Policy Optimization
(GRPO) (Shao et al., 2024b), to enable Med-Copilot to actively explore tasks and dynamically
generate higher-quality training data through interaction. The evaluation module of Med-Copilot
is employed to provide two reward signals: a correctness reward and a format reward, the latter
indicating whether the generated output contains code blocks. As shown in Table 4, GRPO achieve
markedly stronger performance, suggesting enhanced generalization capabilities in diverse biomedical
scenarios compared with offline RL.

5.2 SCALING LLM AGENT IMPROVEMENTS WITH MEDAGENTGYM

Verifier Training Setup. In addition to directly training coding agents, MedAgentGym facilitates
the development of an outcome-supervised reward model (ORM) to evaluate generated solutions
effectively. Inspired by prior work (Cobbe et al., 2021; Pan et al., 2025), we formalize the verifier task
as predicting the probability that a given trajectory successfully solves a coding task. Formally, we
represent a trajectory as an interleaved sequence τ = [o1, a1, o2, a2, · · · , on, an], r ∈ [0, 1], where
each observation ok comprises elements such as task descriptions, code execution results, and error
feedback. We fine-tune a Qwen2.5-7B-Instruct model as a verifier with binary predictions ‘YES’
(ly) or ‘NO’ (ln), from which we compute success probability: r = exp(ly)/(exp(ly) + exp(ln)).

Verifier Training Data. We construct the verifier training dataset by combining two sets of trajectories
originally sampled for agent training: (1) off-policy trajectories, consisting of 2,742 samples from
gpt-4.1-mini; and (2) on-policy trajectories, comprising 2,939 samples generated by the agent.
Combining both on- and off-policy trajectories, we ensure a balanced dataset of successful and
unsuccessful trajectories, filtering to fit within a maximum context length of 32k tokens.

Results: Inference and Training-Time Scaling. We introduce two additional evaluation metrics:
(1) Pass@K: the fraction of tasks solved by at least one trajectory from K sampled attempts; and
(2) Best@K: the fraction of accurately selects successful trajectories that actually solves the task
from a set of candidate generations. Figure 4 (left) illustrates the performance scaling with increasing
trajectory sampling. Pass@K significantly improves from 17.0% at K = 1 to 45.0% at 16, while
Best@K shows steady advancement from 17.0% to 41.7%. The relatively small gap between metrics
indicates that our trained verifier effectively identifies successful trajectories, unleashing its potential
as a reward model for integration into advanced online RL frameworks. Figure 4 (right) examines
agent performance as a function of increased training data volumes in SFT. We observe consistent
performance improvements with greater training data availability, suggesting additional computational
resources dedicated to sampling further trajectories are likely to yield continued performance gains.

5.3 MODEL PERFORMANCE SCALING WITH SELF-IMPROVEMENT

Self-Improvement Training Setup. Beyond expert-generated trajectories from gpt-4.1-mini, we
also explore self-improvement by refining the model on its own outputs (Qwen2.5-7B-Instruct). We
first apply rejection-sampling SFT: starting from Qwen2.5-7B-Instruct, we collect 1,000 successful
trajectories and perform filtered behavior cloning on this set. We subsequently apply DPO (section 5.1)
using on-policy preference pairs generated by the rejection sampling SFT checkpoint. Specifically,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12 14 16
Number of Agent Rollouts (k)

20

25

30

35

40

45

Su
cc

es
s R

at
e

(%
)

17.4 %
17.4 %

17.0 %

27.3 %

31.0 %
34.5 %

36.3 %37.6 %
39.1 %

41.2 %42.2 %42.5 %42.5 %42.8 %43.9 %44.3 %44.7 %45.0 %

17.0 %

26.9 %
29.8 %

33.1 %
35.1 %36.2 %37.3 %38.5 %39.2 %39.2 %39.5 %39.6 %40.6 %41.0 %41.4 %41.7 %

Inference-Time Scaling

Pass@k
Best@k

40 60 80 100
% of Training Data Used

20

30

40

50

Su
cc

es
s R

at
e

(%
)

21.1 %

34.1 %

43.7 %

53.9 %

Training-Time Scaling

Figure 4: Scalable improvements of LLM agents in MedAgentGym. For inference-time scaling, we
employ T = 0 for the initial rollout and T = 0.6 for the rest. For train-time scaling, we set T = 0.

Database DA BioInfo+ML Overall0

10

20

30

40

50

60

Av
g.

 S
co

re
 (%

)

Base
RS+SFT

RS+SFT+DPO
RS+SFT+DPO+iDPO

Figure 5: Self-Improvement

Database DA BioInfo+ML Overall0

20

40

60

Av
g.

 S
co

re
 (%

)

gpt-4.1-mini
gpt-4.1-mini w/o debug

Figure 6: Effect of Debug

15.22%

50.39%

1.47%

30.39%
2.53%

IO error
Stuck in the Loop
Compile error
Runtime error
Others

Figure 7: Error Types

we sample eight rollouts per task, score them via the verifier in section 5.2, and form 4,298 pairs
by contrasting the highest-scoring correct and lowest-scoring incorrect trajectories. Following Pang
et al. (2024), we repeat this data collection and policy update cycle (iDPO) for further refinement,
resampling trajectories and reconstructing preference pairs after each DPO update. In contrast to
standard DPO, which performs a single offline preference-based update on a fixed dataset, iDPO
alternates between on-policy data collection and DPO optimization so that the policy and training
data co-evolve (i.e., self-improvement).

Results: Rejection Sampling (RS) and iDPO. Figure 5 illustrates consistent performance gains
across one SFT stage and two subsequent DPO stages. However, we observe diminishing returns over
successive iterations. Initially, rejection sampling SFT significantly boosts performance by effectively
capturing successful coding patterns. Subsequent DPO stages show smaller incremental improve-
ments, reflecting the model’s diminishing exploration space as it tackles increasingly challenging
tasks, ultimately converging toward an approximate Nash equilibrium.

5.4 GENERALIZATION, ABLATION, AND ERROR ANALYSIS

Table 5: External test set results on MedAgentGym.

Datasets (→) EHR-SeqSQL EHRCon MIMIC-Extract N-PowerAI Avg.
Base (↓) / Metrics (→) SR SR Acc SR Score

API-based Proprietary LLMs† (for reference)

gpt-4o-mini (Hurst et al., 2024) 50.80 23.20 2.67 16.03 26.03
gpt-4o (Hurst et al., 2024) 58.40 35.79 9.82 20.71 34.69
gpt-4.1-mini (OpenAI, 2025a) 70.60 52.40 5.62 25.66 43.20
gpt-4.1 (OpenAI, 2025a) 78.20 63.00 10.41 33.53 51.06
gpt-o4-mini (OpenAI, 2025b) 100.00 51.00 16.88 36.15 53.94
OSS LLMs

Qwen3-1.7B (Qwen, 2025a) 33.60 17.20 1.90 14.72 16.86
Qwen3-4B (Qwen, 2025a) 44.80 26.20 4.59 19.30 23.72
Qwen3-8B (Qwen, 2025a) 52.00 31.40 6.82 20.12 27.59
∨HuatuoGPT-o1-7B (Chen et al., 2024) 33.25 19.80 2.11 12.45 16.90
Qwen2.5-7B-Inst (Yang et al., 2024a) 42.20 27.20 1.34 11.66 20.60
Med-Copilot (SFT, 7B) 42.40 28.80 1.95 10.48 20.91
Med-Copilot (DPO, 7B) 43.40 23.00 2.14 14.82 20.84
Med-Copilot (PPO, 7B) 45.60 24.40 4.30 17.19 22.87
Med-Copilot (GRPO, 7B) 61.25 46.80 10.80 27.65 36.63
Qwen3-14B (Qwen, 2025a) 69.00 45.00 9.24 23.59 36.71
Qwen2.5-Coder-14B-Inst (Hui et al., 2024) 52.40 42.00 6.77 28.95 32.53
Qwen2.5-14B-Inst (Yang et al., 2024a) 46.40 39.20 4.51 21.57 27.92
Med-Copilot (DPO, 14B) 42.20 40.80 2.75 25.89 27.91
Med-Copilot (PPO, 14B) 66.40 43.70 7.15 32.01 37.32
Med-Copilot (GRPO, 14B) 72.80 56.60 14.91 43.77 47.02
R1-Dis-Qwen-14B (Guo et al., 2025) 56.00 40.80 2.37 17.60 29.19
Qwen3-32B (Qwen, 2025a) 64.80 54.40 12.17 31.26 42.16

Results: External Evaluation.
Table 5 summarizes external eval-
uation results on MedAgentGym.
The external suites were inten-
tionally chosen to stress different
code-centric skills (e.g., sequen-
tial SQL, hybrid text–table consis-
tency, raw EHR time series, bio-
statistical power analysis), which
induces markedly different agent
trajectories (Figure 10(b)) and nat-
urally yield lower absolute scores
across all models, including pro-
prietary baselines. Med-Copilot
with SFT and DPO modestly
improve performance on open-
ended, reasoning-intensive tasks
(e.g., MIMIC-Extract). However,
improvements remain limited, in-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

dicating challenges in generalizing across specialized biomedical contexts. In particular, incorporating
online RL optimization techniques, especially GRPO (Shao et al., 2024b), can effectively improve
performance on unseen, out-of-distribution tasks. Specifically, Med-Copilot-14B (GRPO) achieves
47.02% on the external suite, a +19.10% gain over its backbone (27.92%). This significant gain on
unseen distributions verifies that MedAgentGym instills transferable biomedical coding proficiency
rather than memorizing training trajectories.

Effect of Interactive Coding. Figure 6 shows that removing debugging capabilities significantly
decreases model performance across all tasks. Interactive coding mechanism in MedAgentGym
substantially contributes to successful coding-based medical reasoning by enabling the model to
effectively interpret and rectify execution errors.

Error Analysis. Figure 7 summarizes common error types encountered by the strongest evaluated
LLM, gpt-4.1. Loop-related issues dominate, accounting for 50.39% of errors, where agents
repeatedly execute the same action in the final turns, indicating difficulty in adapting or exploring
alternative strategies. This highlights the need to promote effective exploration and enhance robustness
in solving complex biomedical reasoning tasks. Additional experimental results, including cost
analysis, case studies, and human studies, are available in appendix F.

6 CONCLUSION

We present MedAgentGym, an executable, privacy-preserving, and extensible training environment
for scaling code-based biomedical reasoning in LLM agents. With 72K task instances across 129
categories, MedAgentGym enables comprehensive benchmarking of 29 proprietary and OSS LLMs
for biomedical data science within a modular, decoupled architecture that supports flexibility and
extensibility. Med-Copilot further demonstrates that systematic training and trajectory sampling
with MedAgentGym improve coding proficiency for biomedical data science tasks. MedAgentGym has
the potential to accelerate progress from structured medical information retrieval tasks toward more
open-ended computational research questions in clinical research and biomedical discovery.

ETHICS STATEMENT

We confirm that all authors read and will adhere to the ICLR Code of Ethics. This study uses
only publicly available or credentialed deidentified datasets (e.g., MIMIC-III and eICU) under their
licenses or data use agreements. We do not redistribute data that require credentialed access; instead,
we provide scripts to obtain and prepare such data. Licensing and access requirements for all
datasets and associated code bases are summarized in Table 6, and privacy practices are detailed in
appendix A.3. In particular, we followed the PhysioNet Credentialed Health Data Use Agreement for
MIMIC-III and eICU and did not transfer any confidential patient data to third-party services. When
using Microsoft Azure OpenAI services, we opted out of human review and followed the PhysioNet
guidelines for responsible use.

REFERENCES

Rahul K. Arora, Jason Wei, Rebecca Soskin Hicks, Preston Bowman, Joaquin Quinonero-Candela,
Foivos Tsimpourlas, Michael Sharman, Meghan Shah, Andrea Vallone, Alex Beutel, Johannes
Heidecke, and Karan Singhal. Healthbench: Evaluating large language models towards improved
human health. OpenAI Blog, 2025.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning
agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou,
and Benyou Wang. Huatuogpt-o1, towards medical complex reasoning with llms. arXiv preprint
arXiv:2412.18925, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

De Chezelles, Thibault Le Sellier, Maxime Gasse, Alexandre Lacoste, Alexandre Drouin, Massimo
Caccia, Léo Boisvert, Megh Thakkar, Tom Marty, Rim Assouel, et al. The browsergym ecosystem
for web agent research. arXiv preprint arXiv:2412.05467, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Google DeepMind. Alphaevolve: A coding agent for scientific and algorithmic discovery. Google
DeepMind Blog, 2025.

Chengfeng Dou, Chong Liu, Fan Yang, Fei Li, Jiyuan Jia, Mingyang Chen, Qiang Ju, Shuai Wang,
Shunya Dang, Tianpeng Li, et al. Baichuan-m2: Scaling medical capability with large verifier
system. arXiv preprint arXiv:2509.02208, 2025.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. Workarena: How capable are
web agents at solving common knowledge work tasks? In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=BRfqYrikdo.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Shanghua Gao, Richard Zhu, Zhenglun Kong, Ayush Noori, Xiaorui Su, Curtis Ginder, Theodoros
Tsiligkaridis, and Marinka Zitnik. Txagent: An ai agent for therapeutic reasoning across a universe
of tools. arXiv preprint arXiv:2503.10970, 2025.

Gemma. Gemma 3 technical report. arXiv preprint arXiv:2503.19786, 2025.

Google. Medgemma hugging face. https://huggingface.co/collections/google/
medgemma-release-680aade845f90bec6a3f60c4, 2025. Accessed: [2025-05-20].

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. DS-agent: Automated
data science by empowering large language models with case-based reasoning. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/forum?
id=LfJgeBNCFI.

HAI@Stanford. Holistic evaluation of large language models for medical ap-
plications. Blog Post, 2025. URL https://hai.stanford.edu/news/
holistic-evaluation-of-large-language-models-for-medical-applications.

Kexin Huang, Serena Zhang, Hanchen Wang, Yuanhao Qu, Yingzhou Lu, Yusuf Roohani, Ryan Li,
Lin Qiu, Gavin Li, Junze Zhang, et al. Biomni: A general-purpose biomedical ai agent. biorxiv,
2025a.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents
on machine learning experimentation. arXiv preprint arXiv:2310.03302, 2023.

Xiaoke Huang, Juncheng Wu, Hui Liu, Xianfeng Tang, and Yuyin Zhou. m1: Unleash the po-
tential of test-time scaling for medical reasoning with large language models. arXiv preprint
arXiv:2504.00869, 2025b.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

11

https://openreview.net/forum?id=BRfqYrikdo
https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4
https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4
https://openreview.net/forum?id=LfJgeBNCFI
https://openreview.net/forum?id=LfJgeBNCFI
https://hai.stanford.edu/news/holistic-evaluation-of-large-language-models-for-medical-applications
https://hai.stanford.edu/news/holistic-evaluation-of-large-language-models-for-medical-applications

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shuyang Jiang, Yusheng Liao, Zhe Chen, Ya Zhang, Yanfeng Wang, and Yu Wang. Meds3: Towards
medical small language models with self-evolved slow thinking, 2025a. URL https://arxiv.
org/abs/2501.12051.

Yixing Jiang, Kameron C Black, Gloria Geng, Danny Park, Andrew Y Ng, and Jonathan H Chen.
Medagentbench: Dataset for benchmarking llms as agents in medical applications. arXiv preprint
arXiv:2501.14654, 2025b.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=VTF8yNQM66.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What
disease does this patient have? a large-scale open domain question answering dataset from medical
exams. Applied Sciences, 11(14):6421, 2021.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. PubMedQA: A
dataset for biomedical research question answering. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 2567–2577, Hong Kong, China, November
2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1259. URL https:
//aclanthology.org/D19-1259/.

Qiao Jin, Zhizheng Wang, Yifan Yang, Qingqing Zhu, Donald Wright, Thomas Huang, W John
Wilbur, Zhe He, Andrew Taylor, Qingyu Chen, et al. Agentmd: Empowering language agents for
risk prediction with large-scale clinical tool learning. arXiv preprint arXiv:2402.13225, 2024.

Ruofan Jin, Zaixi Zhang, Mengdi Wang, and Le Cong. Stella: Self-evolving llm agent for biomedical
research. arXiv preprint arXiv:2507.02004, 2025.

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
Zhang, Xinya Du, and Dong Yu. DSBench: How far are data science agents from becoming data
science experts? In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=DSsSPr0RZJ.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a
freely accessible critical care database. Scientific data, 3(1):1–9, 2016.

Hao Kang and Chenyan Xiong. Researcharena: Benchmarking llms’ ability to collect and organize
information as research agents. arXiv preprint arXiv:2406.10291, 2024.

Nikhil Khandekar, Qiao Jin, Guangzhi Xiong, Soren Dunn, Serina Applebaum, Zain Anwar, Maame
Sarfo-Gyamfi, Conrad Safranek, Abid Anwar, Andrew Zhang, et al. Medcalc-bench: Evaluating
large language models for medical calculations. Advances in Neural Information Processing
Systems, 37:84730–84745, 2024.

Yubin Kim, Chanwoo Park, Hyewon Jeong, Yik Siu Chan, Xuhai Xu, Daniel McDuff, Hyeonhoon Lee,
Marzyeh Ghassemi, Cynthia Breazeal, and Hae Won Park. MDAgents: An Adaptive Collaboration
of LLMs for Medical Decision-Making. In Advances in Neural Information Processing Systems,
2024.

Yeonsu Kwon, Jiho Kim, Gyubok Lee, Seongsu Bae, Daeun Kyung, Wonchul Cha, Tom Pollard,
ALISTAIR JOHNSON, and Edward Choi. EHRCon: Dataset for checking consistency between
unstructured notes and structured tables in electronic health records. In The Thirty-eight Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2024. URL https:
//openreview.net/forum?id=5OZTcbgCyH.

Yuxiang Lai, Jike Zhong, Ming Li, Shitian Zhao, and Xiaofeng Yang. Med-r1: Reinforcement learning
for generalizable medical reasoning in vision-language models. arXiv preprint arXiv:2503.13939,
2025.

12

https://arxiv.org/abs/2501.12051
https://arxiv.org/abs/2501.12051
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://aclanthology.org/D19-1259/
https://aclanthology.org/D19-1259/
https://openreview.net/forum?id=DSsSPr0RZJ
https://openreview.net/forum?id=5OZTcbgCyH
https://openreview.net/forum?id=5OZTcbgCyH

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wuyang Lan, Wenzheng Wang, Changwei Ji, Guoxing Yang, Yongbo Zhang, Xiaohong Liu, Song Wu,
and Guangyu Wang. Clinicalgpt-r1: Pushing reasoning capability of generalist disease diagnosis
with large language model. arXiv preprint arXiv:2504.09421, 2025.

Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu Kwon, Woncheol Shin, Seongjun Yang, Minjoon
Seo, Jong-Yeup Kim, and Edward Choi. Ehrsql: A practical text-to-sql benchmark for electronic
health records. Advances in Neural Information Processing Systems, 35:15589–15601, 2022.

Binxu Li, Tiankai Yan, Yuanting Pan, Jie Luo, Ruiyang Ji, Jiayuan Ding, Zhe Xu, Shilong Liu, Haoyu
Dong, Zihao Lin, et al. Mmedagent: Learning to use medical tools with multi-modal agent. In
Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 8745–8760, 2024a.

Junkai Li, Siyu Wang, Meng Zhang, Weitao Li, Yunghwei Lai, Xinhui Kang, Weizhi Ma, and Yang
Liu. Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents. arXiv preprint
arXiv:2405.02957, 2024b.

Shuyue Stella Li, Jimin Mun, Faeze Brahman, Jonathan S Ilgen, Yulia Tsvetkov, and Maarten
Sap. Aligning llms to ask good questions a case study in clinical reasoning. arXiv preprint
arXiv:2502.14860, 2025.

Stella Li, Vidhisha Balachandran, Shangbin Feng, Jonathan Ilgen, Emma Pierson, Pang Wei W Koh,
and Yulia Tsvetkov. Mediq: Question-asking llms and a benchmark for reliable interactive clinical
reasoning. Advances in Neural Information Processing Systems, 37:28858–28888, 2024c.

Yusheng Liao, Shuyang Jiang, Yanfeng Wang, and Yu Wang. Reflectool: Towards reflection-aware
tool-augmented clinical agents. arXiv preprint arXiv:2410.17657, 2024.

Valentin Liévin, Christoffer Egeberg Hother, Andreas Geert Motzfeldt, and Ole Winther. Can large
language models reason about medical questions? Patterns, 5(3), 2024.

Che Liu, Haozhe Wang, Jiazhen Pan, Zhongwei Wan, Yong Dai, Fangzhen Lin, Wenjia Bai, Daniel
Rueckert, and Rossella Arcucci. Beyond distillation: Pushing the limits of medical llm reasoning
with minimalist rule-based rl. arXiv preprint arXiv:2505.17952, 2025a.

Tianyu Liu, Simeng Han, Xiao Luo, Hanchen Wang, Pan Lu, Biqing Zhu, Yuge Wang, Keyi Li,
Jiapeng Chen, Rihao Qu, et al. Towards artificial intelligence research assistant for expert-involved
learning. arXiv preprint arXiv:2505.04638, 2025b.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Bertalan Meskó and Eric J Topol. The imperative for regulatory oversight of large language models
(or generative ai) in healthcare. NPJ Digital Medicine, 6(1):120, 2023.

Jiacheng Miao, Joe R Davis, Jonathan K Pritchard, and James Zou. Paper2agent: Reimagining
research papers as interactive and reliable ai agents. arXiv preprint arXiv:2509.06917, 2025.

Ministral. Un ministral, des ministraux. Ministral Blog, 2025. URL https://mistral.ai/news/
ministraux.

Ludovico Mitchener, Jon M Laurent, Benjamin Tenmann, Siddharth Narayanan, Geemi P Wellawatte,
Andrew White, Lorenzo Sani, and Samuel G Rodriques. Bixbench: a comprehensive benchmark
for llm-based agents in computational biology. arXiv preprint arXiv:2503.00096, 2025.

Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein Abad, Harlan M Krumholz, Jure Leskovec,
Eric J Topol, and Pranav Rajpurkar. Foundation models for generalist medical artificial intelligence.
Nature, 616(7956):259–265, 2023.

13

https://mistral.ai/news/ministraux
https://mistral.ai/news/ministraux

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vincent Moens,
Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia, et al. Mlgym: A new
framework and benchmark for advancing ai research agents. arXiv preprint arXiv:2502.14499,
2025.

Acrapol Nimmolrat, Krongkarn Sutham, and Orawit Thinnukool. Patient triage system for supporting
the operation of dispatch centres and rescue teams. BMC medical informatics and decision making,
21:1–16, 2021.

OpenAI. Introducing gpt-4.1 in the api. OpenAI Blog, 2025a. URL https://openai.com/index/
gpt-4-1/.

OpenAI. Openai o3 and o4-mini system card. OpenAI Blog, 2025b. URL https://openai.com/
index/o3-o4-mini-system-card/.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
multi-subject multi-choice dataset for medical domain question answering. In Conference on
health, inference, and learning, pp. 248–260. PMLR, 2022.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang.
Training software engineering agents and verifiers with SWE-gym. In ICLR 2025 Third Workshop
on Deep Learning for Code, 2025. URL https://openreview.net/forum?id=lpFFpTbi9s.

Richard Yuanzhe Pang, Weizhe Yuan, He He, Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. Advances in Neural Information Processing
Systems, 37:116617–116637, 2024.

Tom J Pollard, Alistair EW Johnson, Jesse D Raffa, Leo A Celi, Roger G Mark, and Omar Badawi.
The eicu collaborative research database, a freely available multi-center database for critical care
research. Scientific data, 5(1):1–13, 2018.

Cheng Qian, Emre Can Acikgoz, Hongru Wang, Xiusi Chen, Avirup Sil, Dilek Hakkani-Tür,
Gokhan Tur, and Heng Ji. Smart: Self-aware agent for tool overuse mitigation. arXiv preprint
arXiv:2502.11435, 2025.

Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin
Yao, Qihan Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan Huang,
Shilong Liu, Hongru Wang, and Mengdi Wang. Alita: Generalist agent enabling scalable agentic
reasoning with minimal predefinition and maximal self-evolution, 2025. URL https://arxiv.
org/abs/2505.20286.

Qwen. Qwen3: Think deeper, act faster. Qwen Blog, 2025a. URL https://qwenlm.github.io/
blog/qwen3/.

Qwen. Qwq-32b: Embracing the power of reinforcement learning, March 2025b. URL https:
//qwenlm.github.io/blog/qwq-32b/.

Peifeng Ruan, Ismael Villanueva-Miranda, Jialiang Liu, Donghan M Yang, Qinbo Zhou, Guanghua
Xiao, and Yang Xie. N-power ai: A specialized agent framework for automated sample size and
power analysis in clinical trial design. bioRxiv, pp. 2025–02, 2025.

Jaehee Ryu, Seonhee Cho, Gyubok Lee, and Edward Choi. Ehr-seqsql: A sequential text-to-sql
dataset for interactively exploring electronic health records. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 16388–16407, 2024.

Samuel Schmidgall and Michael Moor. Agentrxiv: Towards collaborative autonomous research.
arXiv preprint arXiv:2503.18102, 2025.

Samuel Schmidgall, Rojin Ziaei, Carl Harris, Eduardo Reis, Jeffrey Jopling, and Michael Moor.
Agentclinic: a multimodal agent benchmark to evaluate ai in simulated clinical environments.
arXiv preprint arXiv:2405.07960, 2024.

14

https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/o3-o4-mini-system-card/
https://openai.com/index/o3-o4-mini-system-card/
https://openreview.net/forum?id=lpFFpTbi9s
https://arxiv.org/abs/2505.20286
https://arxiv.org/abs/2505.20286
https://qwenlm.github.io/blog/qwen3/
https://qwenlm.github.io/blog/qwen3/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research assistants, 2025.
URL https://arxiv.org/abs/2501.04227.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

ByteDance Seed, Yuyu Zhang, Jing Su, Yifan Sun, Chenguang Xi, Xia Xiao, Shen Zheng, Anxiang
Zhang, Kaibo Liu, Daoguang Zan, et al. Seed-coder: Let the code model curate data for itself.
arXiv preprint arXiv:2506.03524, 2025.

Yijia Shao, Vinay Samuel, Yucheng Jiang, John Yang, and Diyi Yang. Collaborative gym: A frame-
work for enabling and evaluating human-agent collaboration. arXiv preprint arXiv:2412.15701,
2024a.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024b.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Wenqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Haotian Sun, Hang Wu, Carl Yang, and May D Wang.
Medadapter: Efficient test-time adaptation of large language models towards medical reasoning. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference
on Empirical Methods in Natural Language Processing, volume 2024, pp. 22294, 2024a.

Wenqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Jieyu Zhang, Hang Wu, Yuanda Zhu, Joyce C. Ho, Carl
Yang, and May Dongmei Wang. EHRAgent: Code empowers large language models for few-shot
complex tabular reasoning on electronic health records. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 22315–22339, 2024b.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
clinical knowledge. Nature, 620(7972):172–180, 2023.

Ali Soroush, Benjamin S Glicksberg, Eyal Zimlichman, Yiftach Barash, Robert Freeman, Alexan-
der W Charney, Girish N Nadkarni, and Eyal Klang. Large language models are poor medical
coders—benchmarking of medical code querying. NEJM AI, 1(5):AIdbp2300040, 2024.

Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kaddour,
and Andreas Kopf. Reasoning gym: Reasoning environments for reinforcement learning with
verifiable rewards, 2025. URL https://arxiv.org/abs/2505.24760.

Kyle Swanson, Wesley Wu, Nash L Bulaong, John E Pak, and James Zou. The virtual lab: Ai agents
design new sars-cov-2 nanobodies with experimental validation. bioRxiv, pp. 2024–11, 2024.

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan
Hu, Kaikai An, Ruijun Huang, et al. Ml-bench: Evaluating large language models and agents for
machine learning tasks on repository-level code. arXiv preprint arXiv:2311.09835, 2023.

Xiangru Tang, Bill Qian, Rick Gao, Jiakang Chen, Xinyun Chen, and Mark B Gerstein. Biocoder: a
benchmark for bioinformatics code generation with large language models. Bioinformatics, 40,
2024a.

Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming Li, Yilun Zhao, Xingyao Zhang, Arman Cohan,
and Mark Gerstein. Medagents: Large language models as collaborators for zero-shot medical
reasoning. In Findings of the Association for Computational Linguistics ACL 2024, pp. 599–621,
2024b.

Xiangru Tang, Daniel Shao, Jiwoong Sohn, Jiapeng Chen, Jiayi Zhang, Jinyu Xiang, Fang Wu, Yilun
Zhao, Chenglin Wu, Wenqi Shi, et al. Medagentsbench: Benchmarking thinking models and agent
frameworks for complex medical reasoning. arXiv preprint arXiv:2503.07459, 2025.

15

https://arxiv.org/abs/2501.04227
https://arxiv.org/abs/2505.24760

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Soroosh Tayebi Arasteh, Tianyu Han, Mahshad Lotfinia, Christiane Kuhl, Jakob Nikolas Kather,
Daniel Truhn, and Sven Nebelung. Large language models streamline automated machine learning
for clinical studies. Nature Communications, 15(1):1603, 2024.

NovelSeek Team, Bo Zhang, Shiyang Feng, Xiangchao Yan, Jiakang Yuan, Zhiyin Yu, Xiaohan He,
Songtao Huang, Shaowei Hou, Zheng Nie, et al. Novelseek: When agent becomes the scientist–
building closed-loop system from hypothesis to verification. arXiv preprint arXiv:2505.16938,
2025.

Rahul Thapa, Qingyang Wu, Kevin Wu, Harrison Zhang, Angela Zhang, Eric Wu, Haotian Ye,
Suhana Bedi, Nevin Aresh, Joseph Boen, et al. Disentangling reasoning and knowledge in medical
large language models. arXiv preprint arXiv:2505.11462, 2025.

George Tsatsaronis, Georgios Balikas, Prodromos Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia Krithara, Sergios Petridis, Dimitris Polychronopou-
los, et al. An overview of the bioasq large-scale biomedical semantic indexing and question
answering competition. BMC bioinformatics, 16:1–28, 2015.

Bingning Wang, Haizhou Zhao, Huozhi Zhou, Liang Song, Mingyu Xu, Wei Cheng, Xiangrong Zeng,
Yupeng Zhang, Yuqi Huo, Zecheng Wang, et al. Baichuan-m1: Pushing the medical capability of
large language models. arXiv preprint arXiv:2502.12671, 2025a.

Ping Wang, Tian Shi, and Chandan K Reddy. Text-to-sql generation for question answering on
electronic medical records. In Proceedings of The Web Conference 2020, pp. 350–361, 2020a.

Shirly Wang, Matthew B. A. McDermott, Geeticka Chauhan, Marzyeh Ghassemi, Michael C. Hughes,
and Tristan Naumann. Mimic-extract: a data extraction, preprocessing, and representation pipeline
for mimic-iii. In Proceedings of the ACM Conference on Health, Inference, and Learning, CHIL
’20, pp. 222–235, New York, NY, USA, 2020b. Association for Computing Machinery. ISBN
9781450370462. doi: 10.1145/3368555.3384469. URL https://doi.org/10.1145/3368555.
3384469.

Wenxuan Wang, Zizhan Ma, Meidan Ding, Shiyi Zheng, Shengyuan Liu, Jie Liu, Jiaming Ji, Wenting
Chen, Xiang Li, Linlin Shen, et al. Medical reasoning in the era of llms: A systematic review of
enhancement techniques and applications. arXiv preprint arXiv:2508.00669, 2025b.

Wenxuan Wang, Zizhan Ma, Zheng Wang, Chenghan Wu, Jiaming Ji, Wenting Chen, Xiang Li, and
Yixuan Yuan. A survey of llm-based agents in medicine: How far are we from baymax? arXiv
preprint arXiv:2502.11211, 2025c.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents. In Forty-first International Conference on Machine
Learning, 2024a.

Zifeng Wang, Benjamin Danek, Ziwei Yang, Zheng Chen, and Jimeng Sun. Can large language
models replace data scientists in clinical research? arXiv preprint arXiv:2410.21591, 2024b.

Zifeng Wang, Benjamin Danek, and Jimeng Sun. Biodsa-1k: Benchmarking data science agents for
biomedical research. arXiv preprint arXiv:2505.16100, 2025d.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Kefan Yu,
Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, et al. Ragen: Understanding self-evolution in llm
agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025e.

Michael Wornow, Rahul Thapa, Ethan Steinberg, Jason Fries, and Nigam Shah. Ehrshot: An
ehr benchmark for few-shot evaluation of foundation models. Advances in Neural Information
Processing Systems, 36:67125–67137, 2023a.

Michael Wornow, Yizhe Xu, Rahul Thapa, Birju Patel, Ethan Steinberg, Scott Fleming, Michael A
Pfeffer, Jason Fries, and Nigam H Shah. The shaky foundations of clinical foundation models: A
survey of large language models and foundation models for emrs. ArXiv preprint, abs/2303.12961,
2023b. URL https://arxiv.org/abs/2303.12961.

16

https://doi.org/10.1145/3368555.3384469
https://doi.org/10.1145/3368555.3384469
https://arxiv.org/abs/2303.12961

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Juncheng Wu, Wenlong Deng, Xingxuan Li, Sheng Liu, Taomian Mi, Yifan Peng, Ziyang Xu, Yi Liu,
Hyunjin Cho, Chang-In Choi, et al. Medreason: Eliciting factual medical reasoning steps in llms
via knowledge graphs. arXiv preprint arXiv:2504.00993, 2025a.

Kevin Wu, Eric Wu, Rahul Thapa, Kevin Wei, Angela Zhang, Arvind Suresh, Jacqueline J Tao,
Min Woo Sun, Alejandro Lozano, and James Zou. Medcasereasoning: Evaluating and learning
diagnostic reasoning from clinical case reports. arXiv preprint arXiv:2505.11733, 2025b.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen
Yang, Chenyang Liao, Xin Guo, Wei He, et al. Agentgym: Evolving large language model-based
agents across diverse environments. arXiv preprint arXiv:2406.04151, 2024.

Peng Xia, Jinglu Wang, Yibo Peng, Kaide Zeng, Xian Wu, Xiangru Tang, Hongtu Zhu, Yun Li, Shujie
Liu, Yan Lu, et al. Mmedagent-rl: Optimizing multi-agent collaboration for multimodal medical
reasoning. arXiv preprint arXiv:2506.00555, 2025.

Guangzhi Xiong, Qiao Jin, Zhiyong Lu, and Aidong Zhang. Benchmarking retrieval-augmented
generation for medicine. In Findings of the Association for Computational Linguistics ACL 2024,
pp. 6233–6251, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

John Yang, Carlos Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024b.

John Yang, Kilian Leret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents, 2025. URL https://arxiv.org/abs/2504.21798.

Ailing Yu, Lan Yao, Jingnan Liu, Zhe Chen, Jiajun Yin, Yuan Wang, Xinhao Liao, Zhiling Ye, Ji Li,
Yun Yue, et al. Medreseacher-r1: Expert-level medical deep researcher via a knowledge-informed
trajectory synthesis framework. arXiv preprint arXiv:2508.14880, 2025.

Jiakang Yuan, Xiangchao Yan, Botian Shi, Tao Chen, Wanli Ouyang, Bo Zhang, Lei Bai, Yu Qiao,
and Bowen Zhou. Dolphin: Closed-loop open-ended auto-research through thinking, practice, and
feedback. arXiv preprint arXiv:2501.03916, 2025.

Dan Zhang, Sining Zhoubian, Min Cai, Fengzu Li, Lekang Yang, Wei Wang, Tianjiao Dong, Ziniu
Hu, Jie Tang, and Yisong Yue. Datascibench: An llm agent benchmark for data science. arXiv
preprint arXiv:2502.13897, 2025a.

Sheng Zhang, Qianchu Liu, Guanghui Qin, Tristan Naumann, and Hoifung Poon. Med-rlvr:
Emerging medical reasoning from a 3b base model via reinforcement learning. arXiv preprint
arXiv:2502.19655, 2025b.

Yuge Zhang, Qiyang Jiang, XingyuHan XingyuHan, Nan Chen, Yuqing Yang, and Kan Ren. Bench-
marking data science agents. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 5677–5700, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.308. URL
https://aclanthology.org/2024.acl-long.308/.

Wanjia Zhao, Mert Yuksekgonul, Shirley Wu, and James Zou. Sirius: Self-improving multi-agent
systems via bootstrapped reasoning. arXiv preprint arXiv:2502.04780, 2025.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement. arXiv
preprint arXiv:2402.14658, 2024.

Weihai Zhi, Jiayan Guo, and Shangyang Li. Medgr: Breaking the data barrier for medical reasoning
via generative reward learning. arXiv preprint arXiv:2508.20549, 2025.

17

https://arxiv.org/abs/2504.21798
https://aclanthology.org/2024.acl-long.308/

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Yinghao Zhu, Ziyi He, Haoran Hu, Xiaochen Zheng, Xichen Zhang, Zixiang Wang, Junyi Gao,
Liantao Ma, and Lequan Yu. Medagentboard: Benchmarking multi-agent collaboration with
conventional methods for diverse medical tasks. arXiv preprint arXiv:2505.12371, 2025.

Yuxin Zuo, Shang Qu, Yifei Li, Zhangren Chen, Xuekai Zhu, Ermo Hua, Kaiyan Zhang, Ning Ding,
and Bowen Zhou. Medxpertqa: Benchmarking expert-level medical reasoning and understanding.
arXiv preprint arXiv:2501.18362, 2025.

A LIMITATIONS AND BROADER IMPACTS

A.1 LIMITATIONS

Resource Limitations. Although MedAgentGym demonstrates strong empirical performance im-
provement in a wide range of coding-aided biomedical reasoning tasks, several limitations remain.
Firstly, MedAgentGym requires substantial computational resources for trajectory sampling, model
fine-tuning, and iterative self-improvement procedures. Although we achieve significant improve-
ments with relatively lightweight OSS LLMs, further scaling and advanced RL methods require
increased computing infrastructures, limiting accessibility for resource-constrained research groups.
Secondly, our current dataset size and trajectory collection are primarily constrained by computational
budget rather than data availability, potentially limiting the full exploration of model scaling behavior.
Thirdly, MedAgentGym primarily supports text and structured data modalities. Future extensions will
incorporate multimodal biomedical data (e.g., medical imaging, EEG, audio or video signals), en-
abling a richer and more comprehensive evaluation of multi-modal reasoning capabilities. Achieving
effective multi-modal integration, however, presents significant challenges in data collection, curation,
and standardized evaluation frameworks. Lastly, because of the substantial computational cost of
API-based LLMs, we restrict ourselves to large-scale, execution-verified single-run evaluation under
a fixed scaffold. We encourage future work to conduct more extensive uncertainty analyses and
multi-run evaluations where resources allow.

Data Decontamination. We acknowledge the possibility of data contamination in the pre-training
of proprietary LLMs. To mitigate this, we have taken several steps: (1) Restricted access and
credentialing: We constructed many datasets from protected data that cannot be used for proprietary
LLMs training (e.g., MIMIC, EHRSHOT, EHR-SeqSQL, EHRCon, MIMIC-Extract) or very recent
sources where possible (e.g., MedAgentBench, BioDSBench). (2) Newly curated samples: For
N-PowerAI, we manually curated samples rather than a public repository, effectively creating a
private evaluation set. (3) Rigorous N-Gram decontamination: We performed n-gram overlap checks
to eliminate direct contamination between our training and test splits.

A.2 BROADER IMPACTS

Potential Positive Societal Impacts. MedAgentGym can significantly enhance the development of
accessible, affordable, and privacy-preserving AI tools for clinical decision-making. Improved
coding-based biomedical reasoning capabilities in open-source LLM agents (e.g., Med-Copilot)
have the potential to democratize access to advanced computational healthcare assistance, benefiting
clinicians, researchers, and healthcare systems globally, particularly in resource-limited settings.
The plug-and-play architecture also allows continuous adaptation to new medical knowledge and
practices, fostering sustainable and community-driven innovation in healthcare technology.

Potential Negative Societal Impacts. Despite the benefits, the introduction and widespread de-
ployment of sophisticated computational frameworks like MedAgentGym may unintentionally widen
existing healthcare inequities. Institutions with limited computational resources (including both Mi-
crosoft Azure API service and high-performance computing clusters) or inadequate data infrastructure
may struggle to access or fully benefit from these technological advancements, potentially exacerbat-
ing disparities in healthcare capabilities across regions or socioeconomic groups. Moreover, reliance
on publicly available datasets may perpetuate existing biases due to uneven data representation,
potentially disadvantaging underrepresented patient populations and rare disease conditions.

Implications for Low-Resource Settings. For institutions constrained to <10B OSS models, we
recommend the following practices: (1) Prioritize agentic fine-tuning over zero-shot prompt-
ing. Zero-shot performance of small OSS models is modest (e.g., Qwen3-8B at 3̃0%), but agentic

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

fine-tuning in MedAgentGym substantially closes this gap. In particular, GRPO lifts a 7B backbone
from 16.89% to 62.17%, approaching the performance of commercial APIs (e.g., gpt-4.1-mini
at 61.72%). This suggests that small models are viable for deployment if they are post-trained,
rather than used purely in zero-shot mode. (2) Exploit released models and trajectories to re-
duce compute. To lower the barrier to entry, we release Med-Copilot-7B/14B as ready-to-use,
fine-tuned models that achieve state-of-the-art performance among OSS baselines, as well as >6K
high-quality trajectories (successful and preference pairs). These resources allow practitioners to (i)
adopt Med-Copilot directly, or (ii) perform lightweight SFT/DPO on top of their own backbones
without incurring the full cost of trajectory sampling and filtering. (3) Leverage verifier-gated
inference rather than larger models. We recommend integrating the outcome verifier at deployment
time. By sampling a small number of candidate solutions and selecting with the verifier (Best@K),
practitioners can substantially improve reliability relative to single-shot decoding, effectively trading
modest additional inference compute for large accuracy gains, without resorting to much larger or
proprietary models. (4) Specialize to the target biomedical data science task type. The aggregate
scores in Table 3 reflect performance over 129 heterogeneous categories across 8 datasets, whereas
real deployments often focus on narrower workloads (e.g., clinical SQL, risk calculations, or bioinfor-
matics pipelines). Fine-tuning a small model on the subset of MedAgentGym that matches the intended
application typically yields higher task-specific performance than the overall average suggests, and is
more compute-efficient than aiming for a fully generalist agent.

A.3 PRIVACY STATEMENTS

Table 6: Data Access and License Information of 12 datasets in MedAgentGym. “Custom” represents
additional dataset- or task-specific license and data access requirements (e.g., DUA or credentials).

Dataset Data License Data Access Code License Code Access
Training and Internal Validation (In-Distribution)

MIMIC-III (Johnson et al., 2016; Lee et al., 2022) Custom MIMIC-III on PhysioNet CC-BY-4.0 MIMIC-III on EHRSQL
eICU (Pollard et al., 2018; Lee et al., 2022) Custom eICU on PhysioNet CC-BY-4.0 eICU on EHRSQL
TREQS (Wang et al., 2020a) Custom MIMIC-III on PhysioNet MIT TREQS on GitHub
MedCalcBench (Khandekar et al., 2024) CC-BY-SA 4.0 MedCalcBench Public MedCalcBench on GitHub
MedAgentBench (Jiang et al., 2025b) MIT MedAgentBench (FHIR Server) MIT MedAgentBench on GitHub
BioCoder (Tang et al., 2024a) CC-BY-4.0 BioCoder on Huggingface N/A BioCoder on GitHub
BioDSBench (Wang et al., 2024b) MIT BioDSBench MIT BioDSBench on GitHub
EHRSHOT (Wornow et al., 2023a) Custom EHRShot (Standford) Apache EHRSHOT on Github

External Validation (Out-of-Distribution)

EHR-SeqSQL (Ryu et al., 2024) Custom MIMIC-III on PhysioNet N/A EHR-SeqSQL on GitHub
EHR-Con (Kwon et al., 2024) Custom MIMIC-III on PhysioNet MIT EHR-Con on GitHub
MIMIC-Extract (Wang et al., 2020b) Custom MIMIC-III on PhysioNet MIT MIMIC-Extract on GitHub
N-PowerAI (Ruan et al., 2025) N/A N-Power AI Supp. Mat. N/A N-Power AI on Webpage

Data Privacy and Licensing. We carefully curated MedAgentGym with strict adherence to ethical
standards, using publicly available datasets or datasets with appropriate privacy protections and
anonymizations. Table 6 lists the access requirements for the 12 datasets in MedAgentGym and the code
base for data processing or task implementation. We explicitly designed isolated Docker environments
to ensure data privacy and security. Nevertheless, ethical usage of our methods and models in
clinical settings requires rigorous validation, transparency in limitations, and close collaboration
with healthcare professionals. We encourage responsible deployment, emphasizing human oversight,
continuous evaluation, and clear communication of model capabilities and uncertainties to mitigate
ethical and practical risks.

LLM Usage Statement. In compliance with the PhysioNet Credentialed Health Data Use Agreement
(version 1.5.0)4, we strictly prohibit transferring confidential patient data (e.g., MIMIC-III and eICU)
to third-party entities, including external online services and APIs. To responsibly utilize the Azure
OpenAI Service, we adhere closely to PhysioNet’s guidelines on responsible GPT usage5. Specifically,
we have opted out of the human review process by completing the Azure OpenAI Additional Use
Case Form6, thereby ensuring no third-party entity accesses or processes sensitive patient information.
We consistently monitor our data handling practices and strictly adhere to applicable guidelines and
privacy regulations, maintaining the highest ethical standards in our research and operations.

4https://physionet.org/about/licenses/physionet-credentialed-health-data-license-150/
5https://physionet.org/news/post/gpt-responsible-use
6https://aka.ms/oai/additionalusecase

19

https://physionet.org/content/mimiciii/1.4/
https://github.com/glee4810/EHRSQL
https://physionet.org/content/eicu-crd/2.0/
https://github.com/glee4810/EHRSQL
https://physionet.org/content/mimiciii/1.4/
https://github.com/wangpinggl/TREQS
https://github.com/ncbi-nlp/MedCalc-Bench/tree/main
https://github.com/ncbi-nlp/MedCalc-Bench/tree/main
https://hub.docker.com/r/jyxsu6/medagentbench
https://github.com/stanfordmlgroup/MedAgentBench
https://huggingface.co/datasets/lilbillbiscuit/biocoder_public
https://github.com/gersteinlab/BioCoder
https://github.com/RyanWangZf/BioDSBench
https://github.com/RyanWangZf/BioDSBench
https://redivis.com/datasets/53gc-8rhx41kgt
https://github.com/som-shahlab/ehrshot-benchmark
https://physionet.org/content/mimiciii/1.4/
https://github.com/seonhee99/EHR-SeqSQL
https://physionet.org/content/mimiciii/1.4/
https://github.com/dustn1259/EHRCon
https://mimic.mit.edu/docs/gettingstarted/cloud/
https://github.com/MLforHealth/MIMIC_Extract
https://www.biorxiv.org/content/10.1101/2025.02.06.636776v1.supplementary-material
https://ai.swmed.edu/N-PowerAI/
https://physionet.org/about/licenses/physionet-credentialed-health-data-license-150/
https://physionet.org/news/post/gpt-responsible-use
https://aka.ms/oai/additionalusecase

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B ADDITIONAL RELATED WORKS

MIMIC-III eICU MedCalcBench0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e

(S
R)

Narrative Reasoning
Computational Reasoning

Figure 8: Coding empowers com-
putational medical reasoning (w/
gpt-4-turbo).

Medical Agents (Coding). Recent advances have demon-
strated that LLMs exhibit strong capabilities in medical rea-
soning and planning leveraging extensive biomedical knowl-
edge (Singhal et al., 2023; Moor et al., 2023; Liévin et al.,
2024), fueling increased interest in developing LLM-based
autonomous agents tailored specifically for medical tasks (Jin
et al., 2024; Gao et al., 2025; Li et al., 2024a; Liao et al., 2024;
Tang et al., 2024b; Kim et al., 2024). In particular, LLM-based
agents have shown promise in specialized computational tasks,
including querying EHR databases (Shi et al., 2024b), perform-
ing bio-statistical calculations (Ruan et al., 2025), and conduct-
ing bioinformatics analyses (Tang et al., 2024a; Wang et al.,
2024b; Tayebi Arasteh et al., 2024). As shown in Figure 8,
integrating coding capabilities into LLM-based agents fur-
ther enhances performance on tasks traditionally approached
through natural language reasoning (e.g., MIMIC-III, eICU (Lee et al., 2022)), as well as numerical
and rule-based medical reasoning (e.g., MedCalcBench (Khandekar et al., 2024)). However, existing
coding-based medical agents rely primarily on prompt engineering without systematic improvement,
limiting their robustness and scalability when addressing complex and diverse coding tasks in real-
world biomedical scenarios. In contrast, MedAgentGym specifically targets reasoning-intensive coding
tasks by introducing a unified, scalable, and interactive training environment that systematically
improves the coding-based medical reasoning capabilities of LLM agents.

Medical Reasoning Models. Recent advancements have substantially improved biomedical reasoning
capabilities of LLMs through RL (Huang et al., 2025b; Lai et al., 2025; Zhang et al., 2025b; Jiang
et al., 2025a; Wu et al., 2025a; Chen et al., 2024; Lan et al., 2025; Wang et al., 2025a; Li et al.,
2025; Zhang et al., 2025b; Miao et al., 2025; Jin et al., 2025; Yu et al., 2025; Zhi et al., 2025; Liu
et al., 2025a). For example, M1 (Huang et al., 2025b) improves by distilling knowledge from the
reasoning traces generated by DeepSeek-R1 (Guo et al., 2025). MedS3 (Jiang et al., 2025a) employs
Monte Carlo Tree Search (MCTS) to generate rule-verifiable reasoning trajectories and employs
process-reward models to select optimal reasoning paths during inference. Similarly, HuatuoGPT-
o1 (Chen et al., 2024) and ClinicalGPT-R1 (Lan et al., 2025) integrate domain-specific verifiers
to guide RL fine-tuning processes for improved clinical reasoning. Extending beyond language
modeling, Med-R1 (Lai et al., 2025) and MedXpertQA (Zuo et al., 2025) adapt RL methodologies
to vision-language models, effectively addressing medical visual question answering tasks. Despite
these developments, current medical reasoning models predominantly target natural language-based
reasoning, with limited attention given to coding-intensive scenarios common in biomedical research
and clinical practice.

Medical Reasoning Benchmarks. Most existing medical reasoning benchmarks focus primarily on
evaluating LLM performance through closed-form medical QA tasks (Pal et al., 2022; Jin et al., 2021;
2019; Tsatsaronis et al., 2015; Tang et al., 2025; Xiong et al., 2024; Arora et al., 2025). In addition,
AgentClinic (Schmidgall et al., 2024) further evaluates diagnosis prediction within simulated clinical
scenarios, while MedHELM (HAI@Stanford, 2025) provides comprehensive evaluations in various
medical NLP tasks. Despite these extensive benchmarking efforts, existing benchmarks – including
recent concurrent works such as MedAgentBoard (Zhu et al., 2025), HealthBench (Arora et al., 2025),
and MedCaseReasoning (Wu et al., 2025b) – typically focus on evaluation scenarios, with limited
emphasis on dedicated training environments aimed at systematically improving medical reasoning
capabilities (Thapa et al., 2025), especially within coding-intensive and interactive medical scenarios.

Medical Agent Training Environments. To advance medical agents with narrative reasoning,
AgentClinic (Schmidgall et al., 2024) and AgentHospital (Li et al., 2024b) simulate hospital workflows
focused on diagnostic tasks, while MediQ (Li et al., 2024c) offers interactive simulations designed
for medical information retrieval. Beyond medicine, specialized environments have emerged for
systematically evaluating and improving LLM agents across diverse tasks (Zhao et al., 2025; Wang
et al., 2025e), such as software engineering (Pan et al., 2025; Yang et al., 2024b; 2025), reasoning
(Stojanovski et al., 2025), web browsing (Drouin et al., 2024), agent planning and collaboration (Xi
et al., 2024; Shao et al., 2024a), data science (Guo et al., 2024; Jing et al., 2025; Zhang et al.,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

2025a; 2024), machine learning engineering (Nathani et al., 2025; Huang et al., 2023; Chan et al.,
2024; Tang et al., 2023), automated research (Kang & Xiong, 2024; Schmidgall & Moor, 2025;
Schmidgall et al., 2025), and scientific discovery (Team et al., 2025; Yuan et al., 2025). Inspired by
these interactive training frameworks, MedAgentGym uniquely targets real-world biomedical scenarios,
aiming to rigorously benchmark and systematically enhance coding-based biomedical reasoning
capabilities of LLM agents. Unlike general coding agent benchmarks that primarily target software
engineering tasks (Jimenez et al., 2024; Yang et al., 2025), MedAgentGym emphasizes biomedical
coding reasoning, requiring integration of clinical knowledge and domain-specific data formats (e.g.,
EHRs, lab reports, biological sequences) within executable environments.

C TASK AND DATA DETAILS

C.1 OVERVIEW

We refer a task as coding-based biomedical reasoning when LLM agents write and run code whose
execution yields a verifiable outcome in biomedical data science. This definition allows us to
objectively verify the results while preserving the steps that agents actually take, allowing for training
and analysis at the trajectory level.

Outcome
Prediction

11.0%

Data
Integrity

4.2%

Knowledge
Retrieval

48.3%

Point-of-Care

9.9%
Patient

Reasoning
24.4%

Biostat
Analysis

2.2%

Figure 9: Diversity analysis.

Biomedical Application Category. MedAgentGym spans
multiple biomedical subdomains, including Database
queries (DB, including MIMIC-III, eICU, TREQS, EHR-
SeqSQL, and EHRCon), Data Analytics (DA, including
MedCalcBench and MedAgentBench), Bioinformatics
(Bioinfo, including BioCoder, BioDSBench, N-PowerAI),
and Machine Learning (ML, including EHRSHOT and
MIMIC-Extract).

Figure 9 illustrates the diverse task distribution within
MedAgentGym. Consider a clinician identifying patients at
risk for sepsis from EHR data, a task requiring not only
understanding of sepsis criteria but also SQL queries to
extract relevant laboratory values, temporal logic to track
patient trajectories, and statistical methods to validate find-
ings. Similarly, researchers analyzing multi-omics data
must integrate biological knowledge with bioinformatics
algorithms and computational pipelines. These scenarios
exemplify the core challenge of biomedical data science:
operationalizing medical expertise through executable code, where domain knowledge alone proves
insufficient without corresponding computational implementation.

0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity

0

1

2

3

4

5

De
ns

ity

Structured
Open-Ended

(a) Intra-Category (b) Inter-Distribution

Figure 10: Similarity analysis

In- & Out-of-Distribution. We further catego-
rize tasks in MedAgentGym into in- and out-of-
distribution, facilitating a rigorous evaluation
of model generalization and adaptability. To
highlight intrinsic differences between these dis-
tributions, Figure 10(b) shows the distribution
of sampled code trajectories. The resulting vi-
sualization demonstrates significant divergence
in trajectory complexity, interaction frequency,
and required code refinement steps between in-
distribution and out-of-distribution tasks, under-
scoring the challenges posed by novel biomed-
ical reasoning contexts.

Computational Task Category. Structured tasks primarily include database query scenarios, such
as those from MIMIC-III, eICU, TREQS, EHR-SeqSQL, EHRCon, and MedCalcBench (rule- or
equation-based), which require precise formulation of executable queries against structured EHR data.
Open-ended tasks include biomedical data analysis and medical coding scenarios drawn from datasets
such as MedAgentBench, BioCoder, BioDSBench, EHRSHOT, MIMIC-Extract, and N-PowerAI,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

demanding nuanced and flexible code generation for complex analysis, statistical reasoning, or
clinical decision-making.

Specifically, we evaluate LLMs across eight biomedical coding domains: (1) clinical database query-
ing (MIMIC-III, eICU, TREQS, EHRseqSQL), (2) clinical note analysis (EHRcon), (3) medical
computation (MedCalcBench), (4) health information technology (MedAgentBench), (5) biomedi-
cal software engineering (Biocoder), (6) biomedical data analysis (BioDSBench), (7) biostatistics
(NPowerAI), and (8) ML-based predictive modeling (EHRSHOT, MIMIC-Extract).

C.2 TRAINING AND INTERNAL TESTING (IN-DISTRIBUTION) DATASET DETAILS

EHRSQL: MIMIC-III and eICU. EHRSQL (Lee et al., 2022) comprises text-to-SQL tasks that
leverage electronic health records from MIMIC-III (Johnson et al., 2016) and eICU (Pollard et al.,
2018). They evaluate the ability of LLMs (and agents) to translate clinical questions posed by
healthcare professionals into executable SQL queries. This includes handling complex queries
involving temporal logic and conditional abstention.

TREQS. TREQS (Wang et al., 2020a) is a text-to-SQL benchmark tailored specifically to clinical
question answering using the MIMIC-III dataset. It emphasizes generating accurate SQL queries
from template-based natural language questions against a simplified schema comprising five core
tables, with an emphasis on large result-set handling.

MedCalcBench. MedCalcBench (Khandekar et al., 2024) provides a structured evaluation of
clinical calculation capabilities in LLMs. Each instance poses a patient-specific clinical scenario
requiring precise medical calculations such as clinical scores or medication dosages, accompanied by
expert-curated stepwise solutions for validation.

MedAgentBench. MedAgentBench (Jiang et al., 2025b) is a simulated EHR environment designed
to evaluate LLM-driven clinical workflows. It features realistic patient scenarios across ten task
categories, requiring agents to perform clinical reasoning, EHR querying via FHIR interfaces, and
clinical decision support.

BioCoder. BioCoder (Tang et al., 2024a) assesses the capability of LLMs to generate accurate
bioinformatics code solutions. It comprises practical coding challenges derived from authentic
bioinformatics software, requiring the generation and verification of functionally correct Python
methods.

BioDSBench. BioDSBench (Wang et al., 2024b) evaluates LLM proficiency in biomedical data
science coding tasks, involving the generation of Python or R code to replicate analytical workflows
derived from actual biomedical research studies. Tasks span statistical analyses, data manipulations,
and visualization routines.

EHRSHOT. EHRSHOT (Wornow et al., 2023a) benchmarks LLMs on few-shot clinical prediction
tasks leveraging real-world, longitudinal, deidentified EHR data. It focuses on rapid adaptation to
tasks such as risk prediction and forecasting clinical outcomes given limited labeled examples.

C.3 EXTERNAL EVALUATION (OUT-OF-DISTRIBUTION) DATASET DETAILS

EHR-SeqSQL. EHR-SeqSQL (Ryu et al., 2024) extends text-to-SQL evaluation to sequential, multi-
turn interactions, emulating realistic clinical dialogues. Tasks require maintaining context across
multiple SQL queries, assessing LLM capability in handling compositional and contextual reasoning.

EHRCon. EHRCon (Kwon et al., 2024) involves assessing clinical note consistency with structured
EHR records, focusing on identifying discrepancies. It serves as a verification task requiring precise
alignment between unstructured clinical text and corresponding database entries.

MIMIC-Extract. MIMIC-Extract(Wang et al., 2020b) provides structured, preprocessed time-
series patient data derived from the MIMIC-III dataset, used in clinical predictive modeling such as
mortality risk or intervention prediction, enabling standardized assessments of time-series reasoning
capabilities.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

N-PowerAI. N-PowerAI (Ruan et al., 2025) evaluates LLM capabilities in performing statistical
sample-size and power analyses for clinical trial design. It requires multi-step statistical reasoning
and the generation of precise numeric results corresponding to various clinical scenarios.

C.4 TRAIN-TEST SET SPLIT

For datasets that provide predefined training, validation, and test splits, we combine the training and
validation subsets into a single unified training set and retain the original test subset exclusively for
evaluation. In cases where datasets lack predefined splits, we randomly allocate 50% of the instances
to training, assigning the remaining 50% to the test set. For tasks containing more than 1000 samples
in both training and test sets, we create a lighter subset through downsampling to support efficient
leaderboard-based training and evaluation. Specifically, we leverage task-specific metadata to perform
uniform sampling within each fine-grained category, thereby maintaining diversity, ensuring balanced
representation, and preserving the original data distribution.

C.5 DATA PRE-PROCESSING DETAILS

Rather than a simple concatenation of existing benchmarks, MedAgentGym transforms and unifies
heterogeneous biomedical datasets into a single executable, Docker-isolated environment with
standardized JSON I/O, natural-language error grounding, and execution-verified tasks, together with
multi-threaded trajectory sampling and an outcome-supervised verifier to support agentic RL training.
Dataset-specific transformations are detailed as follows:

C.5.1 STRUCTURED TASKS

For database querying related datasets, including MIMIC-III, eICU, TREQS, and EHR-SeqSQL,
each task instance is structured into a JSON format comprising: (1) the contextual description and
the corresponding natural-language query, (2) the ground-truth SQL query, and (3) the resulting
answer from the database execution. Instances yielding null results upon SQL execution, indicating
the absence of a valid answer, are excluded from the dataset.

For EHRCon, we organize the data into structured databases that link patient records through hospital
admission IDs, complemented by a separate database containing associated clinical notes. Each task
is formulated as a JSON object consisting of: (1) admission ID, (2) relevant medical terminology,
(3) count of detected inconsistencies, and (4) a binary indicator denoting the presence or absence of
inconsistencies.

For MedCalcBench, each instance initially consists of a patient note, a specific medical calculation
query, a ground-truth answer, and a detailed step-by-step solution. To accurately evaluate the coding
capabilities of LLM agents without direct guidance, we remove all intermediate calculation hints,
presenting only the patient note and the calculation query for model inference.

For N-PowerAI, statistical analysis tasks are augmented through attribute substitution. Specifically,
each original instance is expanded 100-fold by systematically replacing an attribute with a randomly
chosen equivalent from a predefined valid range, preserving the integrity and interpretability of the
statistical context. Each augmented instance includes recalculated values for sample size (N) and
statistical power, stored systematically within JSON-formatted records.

C.5.2 OPEN-ENDED TASKS

MedAgentBench instances require LLM agents to follow natural-language instructions to perform
tasks within a FHIR-compliant interactive medical environment. We retain original instructions,
solutions, and Medical Record Numbers (MRNs). To derive verifiable evaluation signals, we execute
the provided ground-truth on the server-side environment to obtain authoritative reference answers.

BioCoder tasks require implementing biostatistics algorithms or addressing scientific programming
challenges. Each instance comprises a problem description, context-specific code, test cases, and
expected outputs. While evaluation datasets already contain all necessary components, training
instances initially lack context-specific code and test cases. To address this gap, we employ the
o3-mini model to auto-generate relevant context code and corresponding test cases based on provided
ground-truth functions. Generated functions undergo rigorous validation via a code interpreter,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

retaining only verified, error-free instances. Additionally, we exclusively utilize the Python-based
subset of BioCoder, deferring the JavaScript subset for subsequent integration.

BioDSBench instances involve biomedical data analysis tasks derived from real-world datasets.
Features are systematically organized into directories by task, with each task’s description and
reference Python implementation captured within JSON structures.

For datasets dedicated to predictive model development (e.g., EHRSHOT and MIMIC-Extract),
initial features are provided in pre-processed form but necessitate additional table joining, filtering,
and integration to produce final training inputs. While labels accompany these tasks, explicit reference
Python implementations are not provided, as evaluation metrics directly measure the accuracy of
model predictions on predefined test subsets. Distinct subsets of training, validation, and testing data
and labels are explicitly maintained and separately utilized for both training and evaluation phases.

C.6 SAMPLED TRAJECTORY DETAILS

Table 7: Trajectory Composition (%).

Actions (→) request info terminal code debug
MIMIC-III 71.07 0 28.84 0.08
eICU 72.17 0 27.13 0.70
TREQS 64.27 0 35.54 0.19
MedCalc. 0 0 74.91 25.09

Structured 51.88 0 41.61 6.52
MedAgent. 0 0 100 0
BioCoder 0 0.29 96.11 3.60
BioDS. 0 6.30 87.60 6.90
EHRSHOT 0 0.43 59.43 40.14

Open-ended 0 1.76 85.79 12.46
MedAgentGym 32.71 0.14 57.11 10.04

Table 7 details the proportion of action types (sec-
tion 4.1) in trajectories. Structured tasks pre-
dominantly involve data retrieval (over 50%) from
databases or resources, complemented by coding and
debugging steps. In contrast, open-ended tasks re-
quire significant coding and debugging efforts due to
diverse question types, often necessitating terminal in-
teractions to install specialized biomedical packages.
Although MedAgentGym contains extensive training
data and allows repeated sampling, the current tra-
jectory count primarily reflects computational bud-
get constraints. Specifically, Figure 4 (right) demon-
strates consistent performance improvements with
increasing training data volume, indicating that ex-
panded trajectory sampling through additional com-
putational resources would yield further gains.

D BASELINE DETAILS

We include additional details of the coding and medical domain-specific LLMs:

• Qwen2.5-Coder-Instruct (Hui et al., 2024) is derived from the Qwen2.5 series and further
fine-tuned explicitly on large-scale coding datasets and coding-specific instruction sets. This
targeted training substantially enhances their capabilities in code generation, debugging, and
programmatic reasoning, outperforming general-purpose models of similar scale on coding tasks.

• Seed-Coder-8B-Reasoning (Seed et al., 2025) is an 8B-parameter open-source coding LLM
optimized for code generation, leveraging Long-Chain-of-Thought (LongCoT) reinforcement
learning to improve multi-step code reasoning.

• medgemma-4b-it (gemma-3-4b-pt) (Google, 2025) is a medical-domain variant based on
gemma architecture and fine-tuned specifically on medical QA and instruction datasets, which
provide strong capabilities for medical reasoning and question answering.

• HuatuoGPT-o1-7B (Qwen2.5-7B-Instruct) (Chen et al., 2024), built on the Qwen2.5-7B
architecture, is extensively fine-tuned in clinical reasoning datasets via PPO with verifier-based
rewards to enhance complex reasoning capabilities. Specifically, it incorporates a medical-specific
verifier model that guides the generation of complex reasoning trajectories. HuatuoGPT-o1-7B
excels in medical reasoning tasks by explicitly generating intermediate reasoning steps that
facilitate iterative refinement and introspective evaluation. We also evaluate HuatuoGPT-o1-72B
(Qwen2.5-72B) to provide a more equitable and rigorous comparison with large-scale LLMs.

• m1-7B-23K (Qwen2.5-7B-Instruct) (Huang et al., 2025b) is fine-tuned on approximately
23,000 rigorously curated medical QA examples, significantly enhancing its domain-specific
knowledge and reasoning capabilities.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• MedReason-8B (Llama-3.1-8B-Instruct) (Wu et al., 2025a) is fine-tuned for medical
questions-answering and clinical reasoning tasks. Its training emphasizes the generation of
step-by-step rationales, enabling robust performance on medical reasoning and diagnostic tasks.

• Baichuan-M1-14B-Instruct (Wang et al., 2025a) is a 14B medical LLM pre-trained from
scratch on approximately 20 trillion tokens of medical domain-specific content and high-quality
general text. It integrates specialized modeling across over 20 medical specialties with advanced
architectural modifications enhancing context understanding and long-sequence reasoning.

• Baichuan-M2-32B (Dou et al., 2025) is a 32B medical LLM pre-trained from scratch on large-
scale medical corpora and high-quality general text, with architectural and training adaptations for
multi-specialty clinical reasoning and long-context understanding. We use it as a representative
large medical-domain baseline.

E IMPLEMENTATION DETAILS

Evaluation Metrics. Following existing agent benchmarks (Liu et al., 2023), we adopt success rate
(SR) as the primary evaluation metric. For database, data science, and bioinformatics tasks with
explicit ground truths, we compare LLM-generated code execution outputs with reference solutions
using exact match. For open-ended ML tasks in clinical decision support, we measure performance
using accuracy (Acc) across provided test cases. Note that these code generation tasks inherently
have infinite solution spaces, unlike traditional classification problems with bounded solution spaces
(e.g., even random guessing can yield around 50% accuracy in binary classification). The overall
score is computed by averaging performance across tasks in test sets of MedAgentGym (leaderboard),
providing a comprehensive evaluation of coding-based biomedical reasoning capabilities within
MedAgentGym.

Experimental Setup Details. We limit interactions to a maximum of 15 turns per session, providing
agents full access to interaction histories and constraining runtime to 120 seconds per session. Input
tokens are capped at 32, 768, with output limited to 8, 192 tokens per round. We use Python 3.10
as the primary language for agent-code execution due to its modular design and suitability for
biomedical computations. To enable interactive feedback (section 3.3), we employ a rule-based parser
converting LLM outputs to JSON, facilitating seamless code execution, and utilize gpt-4.1-mini to
translate execution errors into grounded explanations. We configure all baseline LLMs following
established best practices for reproducibility. Specifically, instruction-following LLMs are configured
with a temperature of zero, while reasoning models use a temperature of 0.6. For all experiments
with Qwen-3 series, we switch to thinking mode for optimal performance under complex reasoning
scenarios (e.g., logic, math, and coding).

SFT. For SFT experiments, smaller models (up to 8B parameters) are trained using eight NVIDIA
A100 GPUs, whereas the 14B-parameter model is trained on eight NVIDIA H200 GPUs. We utilize
the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 1e− 4. The training batch
size is set to 8, and the maximum input token length per batch is configured to 40,000 tokens.

DPO. DPO experiments are conducted using the same hardware configurations as SFT experiments.
We employ the AdamW optimizer with a reduced learning rate of 5e− 6. Training utilizes a batch
size of 64 and a KL-divergence coefficient (β) of 0.1 to regulate the divergence from the initial policy.

PPO & GRPO. PPO and GRPO experiments are conducted using the same hardware configurations
as SFT experiments. All online RL experiments are conducted using VeRL framework (Sheng et al.,
2025). We integrate the VeRL package and dependencies inside the Med-Copilot docker image to
enable communication between the reward functions and the evaluation module. PPO and GRPO
training is performed with a batch size of 128 and a learning rate of 1 × 10−5. The temperature
parameter during model rollout is consistently set to 0.6. Throughout training, the coefficient for the
KL divergence regularization term is fixed at β = 1× 10−3.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 8: Additional evaluation on code quality and efficiency for in- and out-of-distribution tasks.

Datasets (→) MIMIC. eICU TREQS MedCalc. MedAgent. BioCoder BioDS. EHRSHOT ID Avg. EHR-SeqSQL EHR-Con. MIMIC-Extract Npower-AI OOD Avg.
gpt-4.1 (2025-04-14)

#turns 25.91 26.59 20.65 10.73 17.28 22.08 21.75 8.71 19.21 25.83 38.97 10.42 22.64 20.83
complexity 0.01 0.06 0.01 4.09 0.23 7.77 0.17 20.97 4.16 0.03 0.11 20.76 0.04 4.49
maintainability 95.14 95.99 96.62 88.38 91.04 68.20 92.67 56.24 85.54 94.17 92.65 64.82 96.94 86.03
loc 9.26 9.67 4.17 19.00 18.89 24.82 28.97 144.69 32.43 9.44 12.45 129.76 5.24 34.52
lloc 5.86 6.33 3.00 15.20 10.79 21.84 16.44 110.51 23.75 6.21 8.90 117.54 3.73 26.93

gpt-4.1-mini (2025-04-14)

#turns 19.66 19.90 16.35 9.18 19.20 23.08 16.53 22.60 18.31 23.42 32.00 12.40 18.78 19.34
complexity 0.02 0.04 0.01 3.51 0.03 7.30 0.26 19.85 3.88 0.01 0.01 19.88 0.02 4.22
maintainability 95.62 96.06 98.93 87.01 94.43 69.43 92.54 57.77 86.47 92.18 96.91 54.63 97.72 86.13
loc 16.49 14.47 6.85 23.37 13.08 25.98 28.17 171.69 37.51 29.50 12.88 134.55 6.78 40.10
lloc 8.05 7.22 3.68 17.58 7.92 20.78 15.40 119.58 25.03 13.67 5.88 118.90 4.91 28.35

Qwen2.5-7B-Instruct

#turns 17.23 14.81 12.38 5.98 14.39 25.42 9.31 15.33 14.36 20.60 26.91 10.92 18.44 15.85
complexity 0.02 0.02 0.01 4.41 0.01 4.78 0.30 11.09 2.58 0.01 0.02 11.85 0.01 2.70
maintainability 96.54 96.02 98.58 82.65 80.20 81.67 95.66 54.69 85.75 93.38 94.12 64.98 96.68 86.22
loc 16.81 17.07 8.72 28.54 49.09 20.81 22.00 137.85 37.61 24.54 11.98 121.98 8.52 38.89
lloc 7.52 8.23 4.38 18.09 25.34 15.46 11.79 90.58 22.67 16.78 6.25 105.56 6.14 26.06

Med-Copilot (7B)

#turns 20.74 17.80 14.31 7.86 16.24 28.97 16.80 29.73 19.06 28.76 30.87 18.76 26.32 21.25
complexity 0.01 0.01 0.01 3.81 0.01 5.08 0.04 18.66 3.45 0.01 0.04 18.42 0.02 3.81
maintainability 94.58 95.01 98.49 83.76 82.64 81.40 97.68 62.47 87.00 94.54 98.81 72.82 98.76 88.30
loc 21.58 19.88 12.00 25.42 53.67 24.76 17.16 141.50 39.50 32.14 14.58 120.97 8.71 40.91
lloc 9.95 9.10 5.73 17.74 26.26 17.82 9.11 95.97 23.96 16.88 7.43 110.45 5.50 27.38

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 CODE QUALITY AND EFFICIENCY

For a comprehensive evaluation, we further report additional evaluation metrics on code quality and
efficiency, including (1) number of turns for interaction effectiveness, (2) cyclomatic complexity
for code complexity, (3) maintainability index for code readability, and (4) line-of-code (loc) and
(5) logical line-of-code (lloc) for code efficiency (Table 8). Comparing different tasks (take gpt-4.1
for example), we observe that machine learning tasks such as EHRSHOT involve significantly higher
complexity and longer code. Comparing different models (averaged across datasets), we observe that
advanced closed-source models generate more complex and longer code; after training, Med-Copilot
produces structurally efficient and more maintainable code compared to backbone models.

F.2 ABLATION STUDY: EFFECT OF PRE-DEFINED TOOLSET

MIMIC-III0.0

0.1

0.2

0.3

0.4

0.5
Su

cc
es

s R
at

e
(S

R)

w/ Tool Set
w/o Tool Set

Figure 11: Ef-
fect of toolset.

Figure 11 compares the performance of GPT-4-based agents on the MIMIC-III
dataset with and without predefined toolsets integrated into our agent scaffold.
This illustrates our agent scaffold’s ability to flexibly accommodate external tools.
Interestingly, despite providing a set of predefined tools, including functions for
database loading, data filtering, value retrieval, arithmetic calculations, date com-
putations, and SQL execution (see additional details of toolset in Shi et al. (2024b)),
we observe a surprising decline in agent performance. It suggests that the LLM
agent inherently generates more flexible and contextually appropriate code when
unencumbered by predefined function constraints, aligning with the observations
reported by (Qian et al., 2025; Qiu et al., 2025).

F.3 COST ANALYSIS

gpt-4o-mini gpt-4o gpt-4.1-mini gpt-4.1 o4-mini0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
st

 p
er

 1
00

 ta
sk

s (
$)

input
output

Figure 12: Cost information.

Table 9 summarizes input and output token statistics for
various API-based proprietary LLMs evaluated on datasets
within MedAgentGym. Notably, the input and output token
lengths per query vary significantly across models and
tasks. Among these models, gpt-4.1-mini achieves rela-
tively low average input and moderate output token counts,
which implies more efficient token utilization during in-
ference compared to larger variants such as gpt-4o and
gpt-o4-mini. Conversely, gpt-o4-mini incurs higher
average input costs. Figure 12 presents the API cost per
100 tasks. Overall, smaller GPT variants (e.g., gpt-4.1-mini and gpt-4o-mini) offer superior
token-efficiency, translating into lower computational and API costs without substantial compromise

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

in performance, demonstrating their effectiveness as cost-efficient solutions for large-scale biomedical
reasoning applications.

Table 9: Statistics of input and output tokens per question for API-based commercial LLMs.

Datasets (→) MIMIC. eICU TREQS MedCalc. MedAgent. BioCoder BioDS. EHRSHOT Avg.
Input

gpt-4o-mini (Hurst et al., 2024) 3430.83 1947.72 1689.71 651.92 9501.86 5166.50 5068.88 5986.20 4180.45
gpt-4o (Hurst et al., 2024) 4399.87 3122.02 1823.31 739.48 8474.81 5133.71 21077.12 3235.71 6000.75
gpt-4.1-mini (OpenAI, 2025a) 1869.37 1691.45 1430.15 834.73 8087.50 2621.79 7369.35 4466.07 3546.30
gpt-4.1 (OpenAI, 2025a) 3730.90 2979.57 1754.18 759.64 7912.81 2728.24 3035.45 2092.14 3124.12
gpt-o4-mini (OpenAI, 2025b) 2005.11 1688.73 1534.84 1306.49 7586.32 2193.82 50768.08 2858.79 8742.77

Output

gpt-4o-mini (Hurst et al., 2024) 1206.00 714.72 918.45 379.28 4206.73 4170.56 1479.87 10484.53 2945.02
gpt-4o (Hurst et al., 2024) 840.16 852.41 696.61 537.09 2821.00 4144.91 7278.49 9127.14 3287.23
gpt-4.1-mini (OpenAI, 2025a) 952.68 991.78 880.43 1000.06 2892.98 3328.07 1308.73 23276.67 4328.93
gpt-4.1 (OpenAI, 2025a) 771.91 781.86 753.88 787.45 2051.20 2846.58 1627.78 5163.57 1848.03
gpt-o4-mini (OpenAI, 2025b) 1586.65 1392.11 893.76 2407.87 1718.22 3144.74 1952.88 8083.71 2647.49

F.4 STRUCTURED AND OPEN-ENDED TASKS

Qwen3-1.7B Qwen3-4B Qwen2.5-7B Qwen2.5-14B0

20

40

60

80

Su
cc

es
s R

at
e

(S
R)

 %

+148.7%

+98.0% +317.5% +292.2%

(a) Structured Tasks
Qwen3-1.7B Qwen3-4B Qwen2.5-7B Qwen2.5-14B0

20

40

60

80

Av
g

Sc
or

e
%

+222.3% +76.9% +121.2%

+152.4%
Base
SFT

(b) Open-Ended Tasks
Qwen3-1.7B Qwen3-4B Qwen2.5-7B Qwen2.5-14B0

20

40

60

80

Av
g

Sc
or

e
%

+171.1%
+90.4% +218.9%

+217.7%

(c) Overall

Figure 13: Med-Copilot SFT performance on MedAgentGym across various backbone LLMs.

Figure 13 shows substantial performance gains from SFT across four OSS backbone LLMs of varying
sizes. Simple SFT on successful trajectories markedly boosts performance on structured coding tasks,
indicating its effectiveness in capturing structured coding patterns. DPO, in contrast, is particularly
effective for optimizing performance on open-ended tasks.

F.5 ABLATION STUDY: EFFECT OF WARM-UP STAGE

Table 10: Effect of SFT stage in two-stage finetuning framework.

Datasets (→) MIMIC-III eICU TREQS MedCalc. MedAgent. BioCoder BioDS. EHRSHOT Avg. ∆
Base (↓) / Metrics (→) SR SR SR SR SR SR SR Acc Score

Qwen2.5-7B-Instruct 13.08 15.57 12.76 25.91 30.36 21.79 10.20 5.42 16.89 –
+DPO w/o SFT 49.59 43.61 46.68 49.20 45.25 30.13 69.39 26.43 45.04 (+28.15)
+DPO 64.13 66.91 72.02 90.06 52.54 34.62 69.39 29.55 59.90 (+43.02)

Qwen2.5-14B-Instrust 17.21 14.07 16.43 27.40 35.59 29.49 16.33 4.45 20.12 –
+DPO w/o SFT 57.49 59.18 70.45 71.32 47.46 42.95 91.84 41.33 60.25 (+40.13)
+DPO 64.54 63.52 76.08 92.45 54.32 43.56 92.96 43.56 66.37 (+46.25)

Table 10 shows the effect of the initial SFT stage during agentic RL finetuning. Although DPO alone
slightly underperforms compared to SFT, combining an initial SFT warm-up with subsequent DPO
further improves overall results by leveraging their complementary strengths.

F.6 CASE STUDY

To illustrate the practical utility of interactive coding mechanism, we conduct a detailed case study
involving a typical bioinformatics coding task in Figure 14. Specifically, the task requires writing
a Python function (add_exchange_rxns) that modifies biochemical reaction graphs by integrating
exchange reactions. Initially, the LLM agent-generated solution encountered an attribute error,
mistakenly invoking a non-existent text_type method on a Graph object. Upon receiving explicit
debugging feedback, the LLM agent effectively identified and corrected the mistake by utilizing the
standalone text_type function rather than incorrectly calling it as a method of the graph instance.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

You are a biomedical expert in writing bioinformatics code and answer questions accordingly.
Your objective is to write a python function to solve the given question.
Please only write the function, do not include any other text.
Please write a Python function with the following signature:
def add_exchange_rxns(g, rxn_id, reaction, style_flux_dict) …

def add_exchange_rxns(g, rxn_id, reaction, style_flux_dict):
ACTIVE_COLOR = 'green'

for c in reaction.compounds:
node_id = g.text_type(c)
if node_id in g.nodes_id_dict:

...

Traceback (most recent call last):
…
in add_exchange_rxns
node_id = g.text_type(c)
AttributeError: 'Graph' object has no attribute 'text_type'

The error occurs because you’re attempting to call a text_type
method on the Graph object g, which doesn’t exist. Simply use the
standalone text_type function instead:

Validate
Code

Debug

You are a Python debugging expert. Your task is to debug the code.

The user has provided the following code and error:
{code} {error_msg}

Validate
Code

def add_exchange_rxns(g, rxn_id, reaction, style_flux_dict):
ACTIVE_COLOR = 'green’
for c in reaction.compounds:

Assuming text_type is a standalone function, not a method of g
node_id = text_type(c)

Figure 14: Case study of gpt-4.1-mini on BioCoder.

This case highlights the capability of debugging in MedAgentGym environment to provide targeted,
actionable debugging feedback, enabling iterative code refinement and significantly enhancing agent-
generated solutions for complex biomedical programming tasks. Case studies with code patterns in
Figures 15 to 17 further illustrate how baseline models frequently produce syntactically valid code but
incorrect solution in biomedical tasks, from hardcoding biological parameters to misapplying medical
formulas, while our fine-tuned models demonstrate accurate implementation of domain-specific
constraints and current clinical standards.

F.7 DIFFICULTY ANALYSIS ON EXTERNAL EVALUATION SET

Table 11: Difficulty analysis on external sets for model generalization.

Model MIMIC-Extract (raw) MIMIC-Extract (processed) BixBench
gpt-4.1-mini 5.62 23.47 26.01
gpt-4.1 10.41 28.94 32.09
Qwen-2.5-7B-Instruct 1.34 17.06 18.92
Med-Copilot (7B) 2.14 25.88 28.72
Qwen-2.5-14B-Instruct 4.51 18.52 20.61
Med-Copilot (14B) 2.75 28.66 29.39

MedAgentGym includes four challenging unseen out-of-distribution medical coding tasks as external
validation sets in section 5.4. For example, the original MIMIC-Extract task in MedAgentGym
intentionally utilizes raw, unprocessed data as a challenging, out-of-distribution scenario designed
specifically to assess model capabilities in feature engineering and data preprocessing. To illustrate
the difference clearly, we additionally evaluate a fully pre-processed version of MIMIC-Extract.
As demonstrated in Table 11, providing structured data significantly improves model performance,
highlighting the distinct difficulty posed by raw data.

To further demonstrate the generalization of Med-Copilot, we include an additional evaluation set,
BixBench (Mitchener et al., 2025), a bioinformatics coding dataset comprising over 50 real-world
scenarios of practical biological data analysis with nearly 300 associated open-answer questions. It is
designed to measure the ability of LLM-based agents to explore biological datasets, perform long,
multi-step analytical trajectories, and interpret the nuanced results of those analyses. Exceptional
performance in BixBench demonstrates the robustness of Med-Copilot and its ability to generalize
beyond the specific domain of medical coding to broader scientific analytical tasks.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Question: You are a biomedical expert. Write a Python script that constructs a `CNArray` object with chromosomes
`['1', 'X', 'Y', '2', 'X', 'Y', '3']'', uses `ploidy=2`, and calls the `absolute_expect'' function to compute expected copy
numbers for both female and male samples.

Qwen-2.5-14B-Instruct
def absolute_expect(cnarr, ploidy, is_sample_female):

ec = np.full(len(cnarr), float(ploidy))
x_chrom = cnarr._chr_x_label
y_chrom = cnarr._chr_y_label
if is_sample_female:

FLAW: Hardcodes female X to 2
ec[cnarr.chromosome == x_chrom] = 2
ec[cnarr.chromosome == y_chrom] = 0

else:
ec[cnarr.chromosome == x_chrom] = 1
ec[cnarr.chromosome == y_chrom] = 1

return ec

DPO-14B
def absolute_expect(cnarr, ploidy, is_sample_female):

expected_copies = []
for chrom in cnarr.chromosome:

if chrom == cnarr._chr_x_label:
if is_sample_female:

FIX: Uses ploidy for female X
expected_copies.append(ploidy)

else:
expected_copies.append(1)

elif chrom == cnarr._chr_y_label:
expected_copies.append(0 if

is_sample_female else 1)
else:

expected_copies.append(ploidy)
return np.array(expected_copies)

The Flaw: The code expected_copies[cnarr.chromosome == x_chrom] = 2 wrongly assumes females always
have two X chromosomes, which only holds for diploid samples (ploidy = 2). In higher-ploidy cases (e.g., tetraploid
tumors), females should have more copies (e.g., four).
The Correction: The revised code scales X chromosome copies with overall ploidy: if is_sample_female:
expected_copies.append(ploidy). This ensures the expected copy number matches the biological reality in cases
like whole-genome duplication.

Figure 15: Domain-specific code generation error in a biomedical task from BioCoder (Tang et al.,
2024a). The task requires implementing a Python function to compute chromosome copy numbers
based on ploidy. The baseline model (Qwen-2.5-14B-Instruct, left) incorrectly hardcodes the female
X chromosome count to 2, failing to account for non-diploid scenarios such as tetraploid tumor cells.
Our DPO-trained model (DPO-14B, right) correctly implements dynamic scaling of X chromosome
copy numbers proportional to the ploidy parameter, demonstrating improved understanding of domain-
specific biological constraints.

Table 12: Human evaluation on structured and open-ended tasks from MedAgentGym.

Dataset (↓) # Attempt # Correct SR Total Time (min) Avg Time (min)
Structured

MIMIC-III (Johnson et al., 2016; Lee et al., 2022) 10 8 80% 74 7.40
eICU (Pollard et al., 2018; Lee et al., 2022) 8 5 63% 63 7.88
TREQS (Wang et al., 2020a) 10 7 70% 39 3.90
EHR-SeqSQL (Ryu et al., 2024) 10 8 80% 67 6.70
MedCalcBench (Khandekar et al., 2024) 7 5 71% 57 8.14
N-PowerAI (Ruan et al., 2025) 7 6 86% 96 13.7
Structured Task (Total) 52 39 75% 396 7.62
Open-ended

MedAgentBench (Jiang et al., 2025b) 6 6 100% 89 14.833
EHRCon (Kwon et al., 2024) 6 1 17% 241 40.17
BioDSBench (Wang et al., 2024b) 3 0 0% 195 65.00
BioCoder (Tang et al., 2024a) 8 2 25% 142 17.75
EHRSHOT (Wornow et al., 2023a) 5 – 89% 185 37.00
MIMIC-Extract (Wang et al., 2020b) 3 – 94% 215 71.67
Open-ended Task (Total) 31 – 45% 1067 34.419

F.8 HUMAN STUDY

To systematically compare coding styles and performance differences between human programmers
and automated agents, we conducted a human evaluation involving 83 tasks randomly selected from
the test subsets of the 12 datasets included in MedAgentGym. This evaluation set comprises 52 struc-
tured and 31 open-ended biomedical coding tasks. The human participants are biomedical engineers
and research scientists with over six years of experience in computational biology, relational database
querying, HTTP-based interactions, and machine learning development. The human evaluation study
was conducted under the approval of the Institutional Review Board (IRB). Participants voluntarily
contributed to the evaluation and did not receive monetary compensation.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Question: You have a simple metabolic network represented by a ReactionDatabase, which holds a list of reaction
IDs and a stoichiometric matrix (mapping each (Compound, reaction_id) to its stoichiometric coefficient). Using the
provided function check_reaction_consistency, identify any mass-imbalanced reactions by minimizing the L1 norm
of the mass residuals, and also compute a valid integer mass assignment (≥1) for each compound. Test this on a
minimal example where reaction R1 converts compound A to B.

The main task is to write Python function with the following signature:
def check_reaction_consistency(database, solver, exchange, checked, zeromass, weights)

Invalid Objective Function: The incorrect code attempts to set the optimization objective using a Python list, which is
not a valid mathematical expression for the solver. The correct code properly constructs a LinearExpr object, which
correctly represents the mathematical function to be minimized.
Improper Initialization: The incorrect code initializes the mass balance equations with the integer 0. The correct
approach is to initialize them with empty LinearExpr() objects, ensuring type consistency and making subsequent
mathematical operations clear and bug-free.

DPO-14B MedCopilot-14B (GRPO)

Figure 16: Qualitative comparison of code generation for a complex optimization task from BioDS-
Bench (Wang et al., 2024b). The task requires implementing a linear program to verify mass
conservation in metabolic networks. The baseline model (DPO-14B, left) generates syntactically
plausible but semantically incorrect code with two critical errors: (1) defining the optimization
objective using a Python list rather than the required LinearExpr object, and (2) initializing mass
balance equations with integer 0 instead of LinearExpr(). In contrast, Med-Copilot-14B (GRPO,
right) correctly employs the LinearExpr class for both objective function construction and mass
balance initialization, producing executable code that accurately models the metabolic constraints.

Table 12 summarizes the results of human evaluation study conducted to establish reference per-
formance benchmarks across representative structured and open-ended biomedical reasoning tasks
from the MedAgentGym benchmark. Human experts completed selected instances from each dataset,
documenting the number of attempts, correctly solved instances, overall SR, total time spent, and
average time per task (in minutes). Results indicate that, on average, the human subject required
approximately 4.5 times longer to solve open-ended tasks relative to structured tasks, while achieving
a 40% lower success rate, reflecting the increased complexity and cognitive load associated with
open-ended biomedical reasoning scenarios. Given that neither current LLMs nor human experts
achieve perfect accuracy, we recommend deploying these models strictly in a copilot role rather than
as fully autonomous agents. The interactive features (e.g., debugging, execution-based verification) of
MedAgentGym also supports such human oversight, enabling human experts to validate code execution
outputs rather than manually writing code from scratch.

F.9 EFFECT OF REWARD DESIGN

Motivated by the predominance of loop-related failures in our error analysis (Figure 7), we experi-
mented with an additional shaping term, assigning a penalty term (rpenalty = −0.3) whenever the

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Question: <Patient Information>
Using the 2021 CKD-EPI Creatinine equation, what is the patient's Glomerular Filtration Rate (GFR) in terms of
mL/min/1.73 m²? Answer with a decimal number without unit and with a relative precision of 0.0001.

Qwen-2.5-14B-Instruct
def calculate_gfr(creatinine, age, sex):

Patient data from the case
scr = float(creatinine)
age_val = int(age)
gfr = 175 * (scr ** -1.154) * (age_val ** -0.203)
if sex.lower() == 'female':

gfr = gfr * 0.742
return gfr

MedCopilot-14B
def calculate_gfr(creatinine, age, sex):

scr = float(creatinine)
k, alpha = 0.0, 0.0
if sex.lower() == 'female':

k = 0.7
alpha = -0.241

elif sex.lower() == 'male':
k = 0.9
alpha = -0.302

scr_over_k = scr / k
min_term = (min(scr_over_k, 1.0)) ** alpha
max_term = (max(scr_over_k, 1.0)) ** -1.200
age_term = 0.9938 ** age_val
gfr = 142 * min_term * max_term * age_term
return gfr

Flawed Solution: Incorrectly implements the older and less accurate MDRD (Modification of Diet in Renal Disease)
equation. This formula uses a single, continuous calculation.
Correct Solution: Properly implements the required 2021 CKD-EPI (Chronic Kidney Disease Epidemiology
Collaboration) equation. This is a more modern and accurate formula that uses complex, conditional logic, changing
the calculation based on the patient's sex and whether their serum creatinine level is above or below a specific
threshold.

Figure 17: Domain-specific complexity in medical code generation from MedCalcBench (Khandekar
et al., 2024). The task requires implementing the 2021 CKD-EPI equation for Glomerular Filtration
Rate (GFR) calculation. The baseline model (Qwen-2.5-14B, left) incorrectly generates a flawed
implementation of the outdated MDRD formula instead of the requested 2021 standard. In contrast,
Med-Copilot-14B (right) accurately implements the complex conditional logic specified in the 2021
CKD-EPI guidelines, demonstrating precise adherence to current medical standards.

Table 13: Effect of reward design.

Datasets (→) MIMIC. eICU TREQS MedCalc. MedAgent. BioCoder BioDS. EHRSHOT Avg.
GRPO 68.21 68.73 70.50 92.33 55.87 37.40 71.11 33.18 62.17
GRPO w/ penalty 63.68 65.08 64.82 84.13 52.54 33.33 65.31 26.97 56.98

agent produced highly repetitive code blocks (cosine similarity > 0.9 between consecutive genera-
tions). As shown in Table 13, this heuristic consistently degraded performance across all datasets,
reducing the average score from 62.17% to 56.98%. Manual inspection of trajectories indicates that
the penalty suppresses benign self-debugging and iterative refinement (e.g., small edits to a prior code
block), causing the agent to terminate early or switch strategies prematurely rather than repairing its
own code. We therefore treat such shaping hooks (e.g., penalties on repeated actions) as optional,
implementation-level choices for users who desire more granular rewards, and not as prerequisites
for the gains reported in our main results.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

G PROMPT DETAILS

G.1 MIMIC-III PROMPTS

We include prompt details for MIMIC-III tasks as follows:

MIMIC-III Prompt

You are a biomedical expert in handling EHR data and answer questions.
Your objective is to solve a coding problem with given EHR data , with

the goal of finally give a concrete answer to the question.
Assume you have knowledge of several tables:
(1) Tables are linked by identifiers which usually have the suffix 'ID

'. For example , SUBJECT_ID refers to a unique patient , HADM_ID
refers to a unique admission to the hospital , and ICUSTAY_ID refers
to a unique admission to an intensive care unit.

(2) Charted events such as notes , laboratory tests , and fluid balance
are stored in a series of 'events ' tables. For example the
outputevents table contains all measurements related to output for
a given patient , while the labevents table contains laboratory test

(3) Tables prefixed with 'd_' are dictionary tables and provide
definitions for identifiers. For example , every row of chartevents
is associated with a single ITEMID which represents the concept
measured , but it does not contain the actual name of the
measurement. By joining chartevents and d_items on ITEMID , it is
possible to identify the concept represented by a given ITEMID.

(4) For the databases , four of them are used to define and track
patient stays: admissions , patients , icustays , and transfers.
Another four tables are dictionaries for cross -referencing codes
against their respective definitions: d_icd_diagnoses ,
d_icd_procedures , d_items , and d_labitems.

For different tables , they contain the following information:
(1) ADMISSIONS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ADMITTIME , DISCHTIME ,

ADMISSION_TYPE , ADMISSION_LOCATION , DISCHARGE_LOCATION , INSURANCE ,
LANGUAGE , MARITAL_STATUS , ETHNICITY , AGE

(2) CHARTEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID , ITEMID ,
CHARTTIME , VALUENUM , VALUEUOM

(3) COST.csv: ROW_ID , SUBJECT_ID , HADM_ID , EVENT_TYPE , EVENT_ID ,
CHARGETIME , COST

(4) D_ICD_DIAGNOSES.csv: ROW_ID , ICD9_CODE , SHORT_TITLE , LONG_TITLE
(5) D_ICD_PROCEDURES.csv: ROW_ID , ICD9_CODE , SHORT_TITLE , LONG_TITLE
(6) D_ITEMS.csv: ROW_ID , ITEMID , LABEL , LINKSTO
(7) D_LABITEMS.csv: ROW_ID , ITEMID , LABEL
(8) DIAGNOSES_ICD.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICD9_CODE
(9) ICUSTAYS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,

FIRST_CAREUNIT , LAST_CAREUNIT , FIRST_WARDID , LAST_WARDID , INTIME
(10) INPUTEVENTS_CV.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,

CHARTTIME , ITEMID , AMOUNT
(11) LABEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ITEMID , CHARTTIME ,

VALUENUM , VALUEUOM
(12) MICROBIOLOGYEVENTS.csv: RROW_ID , SUBJECT_ID , HADM_ID , CHARTTIME ,

SPEC_TYPE_DESC , ORG_NAME
(13) OUTPUTEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,

CHARTTIME , ITEMID , VALUE
(14) PATIENTS.csv: ROW_ID , SUBJECT_ID , GENDER , DOB , DOD
(15) PRESCRIPTIONS.csv: ROW_ID , SUBJECT_ID , HADM_ID , STARTDATE , ENDDATE

, DRUG , DOSE_VAL_RX , DOSE_UNIT_RX , ROUTE
(16) PROCEDURES.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICD9_CODE , CHARTTIME
(17) TRANSFERS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID , EVENTTYPE ,

CAREUNIT , WARDID , INTIME , OUTTIME
All the tabls are saved in the data directory {}.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

G.2 EICU PROMPTS

We include prompt details for eICU tasks as follows:

eICU Prompt – Main

You are a biomedical expert in handling EHR data and answer questions.
Your objective is to solve a coding problem with given EHR data , with

the goal of finally give a concrete answer to the question.
Assume you have knowledge of several tables:
(1) Tables are linked by identifiers whose name usually ends 'ID '. For

example , PATIENTUNITSTAYID refers to a unique patient , LABID refers
to a unique lab test , and ALLERGYID refers to a unique incidence

of allergy occurence.
(2) Four tables are related to measurements. First , the lab table

contains laboratory measurements of chemicals such as chloride or
albumin. Secondly , the intake and output (intakeoutput) table
records all fluid -related measurements such as administered normal
saline (ns) and urination. Thirdly , the microlab table records
measurements of culture of microorganisms. Fourth , the vitalperiod
table describes the patients ' vitals during their stay.

(3) The remaining tables (allergy , cost , diagnosis , medication , patient
and treatment) contain other critical information , and the table

names are self -explanatory.

{EHR_tables}

eICU Prompt – Table Information

For different tables , they contain the following information:
(1) allergy.csv: ALLERGYID , PATIENTUNITSTAYID , DRUGNAME , ALLERGYNAME ,

ALLERGYTIME
(2) cost.csv: COSTID , UNIQUEPID , PATIENTHEALTHSYSTEMSTAYID , EVENTTYPE ,

EVENTID , CHARGETIME , COST
(3) diagnosis.csv: DIAGNOSISID , PATIENTUNITSTAYID , ICD9CODE ,

DIAGNOSISNAME , DIAGNOSISTIME
(4) intakeoutput.csv: INTAKEOUTPUTID , PATIENTUNITSTAYID , CELLPATH ,

CELLLABEL , CELLVALUENUMERIC , INTAKEOUTPUTTIME
(5) lab.csv: LABID , PATIENTUNITSTAYID , LABNAME , LABRESULT ,

LABRESULTTIME
(6) medication.csv: MEDICATIONID , PATIENTUNITSTAYID , DRUGNAME , DOSAGE ,

ROUTEADMIN , DRUGSTARTTIME , DRUGSTOPTIME
(7) microlab.csv: MICROLABID , PATIENTUNITSTAYID , CULTURESITE , ORGANISM ,

CULTURETAKENTIME
(8) patient.csv: PATIENTUNITSTAYID , PATIENTHEALTHSYSTEMSTAYID , GENDER ,

AGE , ETHNICITY , HOSPITALID , WARDID , ADMISSIONHEIGHT ,
HOSPITALADMITSOURCE , HOSPITALDISCHARGESTATUS , ADMISSIONWEIGHT ,
DISCHARGEWEIGHT , UNIQUEPID , HOSPITALADMITTIME , UNITADMITTIME ,
UNITDISCHARGETIME , HOSPITALDISCHARGETIME

(9) treatment.csv: TREATMENTID , PATIENTUNITSTAYID , TREATMENTNAME ,
TREATMENTTIME

(10) vitalperiod.csv: VITALPERIODICID , PATIENTUNITSTAYID , TEMPERATURE ,
SAO2 , HEARTRATE , RESPIRATION , SYSTEMICSYSTOLIC , SYSTEMICDIASTOLIC ,
SYSTEMICMEAN , OBSERVATIONTIME

All the tabls are saved in the data directory {data_directory }.

G.3 TREQS PROMPTS

We include prompt details for TREQS tasks as follows:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

TREQS Prompt

You are an biomedical expert in handling EHR data and answer questions
accordingly.

Your objective is to solve a coding problem with given EHR data , with
the goal of finally give a concrete answer to the question.

Assume you have knowledge of several tables:
(1) Tables are linked by identifiers which usually have the suffix 'ID

'. For example , SUBJECT_ID refers to a unique patient. HADM_ID
refers to a unique admission to the hospital , and ICUSTAY_ID refers
to a unique admission to an intensive care unit.

(2) All tables contain SUBJECT_ID (patient identifier) and HADM_ID (
hospital admission identifier).

(3) The table names are self -explanatory.

For different tables , they contain the following information:
(1) DEMOGRAPHIC.csv: SUBJECT_ID , HADM_ID , NAME , MARITAL_STATUS , AGE ,

DOB , GENDER , LANGUAGE , RELIGION , ADMISSION_TYPE , DAYS_STAY ,
INSURANCE , ETHNICITY , EXPIRE_FLAG , ADMISSION_LOCATION ,
DISCHARGE_LOCATION , DIAGNOSIS , DOD , DOB_YEAR , DOD_YEAR , ADMITTIME ,
DISCHTIME , ADMITYEAR

(2) DIAGNOSES.csv: SUBJECT_ID , HADM_ID , ICD9_CODE , SHORT_TITLE ,
LONG_TITLE

(3) LAB.csv: SUBJECT_ID , HADM_ID , ITEMID , CHARTTIME , FLAG , VALUE_UNIT ,
LABEL , FLUID , CATEGORY

(4) PRESCRIPTIONS.csv: SUBJECT_ID , HADM_ID , ICUSTAY_ID , DRUG_TYPE , DRUG
, FORMULARY_DRUG_CD , ROUTE , DRUG_DOSE

(5) PROCEDURES.csv: SUBJECT_ID , HADM_ID , ICD9_CODE , SHORT_TITLE ,
LONG_TITLE

All the tabls are saved in the data directory {data_directory }.

G.4 MEDCALCBENCH PROMPTS

We include prompt details for MedCalcBench tasks as follows:

MedCalcBench Prompt

You work in a hospital , and a common task in your work is to calculate
some biological values of your patients.

To do this , you need to identify from clinical notes what information
is relevant , before using your clinical knowledge to calculate.

And then write a Python code to calculate the value.
In the code , please use the variable 'answer ' to store the answer of

the code.
In the main function , please print the final answer of the code without

any other text.

G.5 MEDAGENTBENCH PROMPTS

We include prompt details for MedAgentBench tasks as follows:

MedAgentBench Prompt – Part I

You are an expert in using FHIR functions to assist medical
professionals.

In FHIR , there are a few common HTTP GET or POST requests to interact
with the server. The descriptions of requests are listed here: {
fhir_function_description }.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

MedAgentBench Prompt – Part II

You are given a question and a set of possible functions.
Based on the question , you will need to write a python code to achieve

the purpose.
1. Write a python script to invoke a GET function of the FHIR

server , you MUST put it in the format of\nGET url?param_name1=
param_value1¶m_name2=param_value2 ...

2. Write a python script to invoke a POST function of the FHIR
server , you MUST put it in the format of\nPOST url\n[your
payload data in JSON format]

3. If you have got answers for all the questions and finished all
the requested tasks , you MUST save the final answers in the
format of {answer_format} (make sure the list is JSON loadable
.)

You SHOULD NOT include any other text in the response.
Please write the python code and use the variable 'answer ' to store the

answer of the code.
Question: {question }\n. The FHIR server base URL is {fhir_api_base }. Do

not directly write the GET and POST requests.

MedAgentBench Prompt – Answer Format

answer = {"GET": ["60" ," S2874099"], "POST": ["http :// localhost :8080/
fhir/Observation", "payload]}

The answers to the questions are listed in "GET" instead of the get
commands , while the post url and payload are listed in "POST".

G.6 BIOCODER PROMPTS

We include prompt details for Biocoder tasks as follows:

Biocoder Prompt

You are an biomedical expert in writing bioinformatics code and answer
questions accordingly.

Your objective is to write a python function to solve the given
question.

Please only write the function , do not include any other text.

Please write a Python function with the following signature:
{signature}

G.7 BIODSBENCH PROMPTS

We include prompt details for BioDSBench tasks as follows:

BioDSBench Prompt

You are an biomedical expert in writing bioinformatics code and answer
questions accordingly.

Your objective is to write a python code to solve the given question.
Please only write the code , do not include any other text.
All the required data are stored in the directory:
{dataset_path}

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

G.8 EHRSHOT PROMPTS

We include prompt details for EHRShot tasks as follows:

BioDSBench Prompt – Main

You are an biomedical expert in writing machine learning code to solve
EHR -relevant tasks.

Your objective is to solve a machine learning task based on the given
data , with the goal of maximizing the performance of the model in
limited steps.

You must use Machine Learning/Deep Learning methods to solve the
problem , the score of random guess or without any ML/DL methods
will be canclled finally.

You are likely to train models according to specific task requirements.
You have access to a GPU and several CPUs for training DL/ML models.
Use CUDA and PyTorch for faster training if needed.

Code requirements:
- Read all data files from data_dir ={ data_dir}
- Save all the predictions given by the model to a file named '

predictions -{ task_name }.csv ' in the './cache/ehrshot /{model}/'
directory.

- Don 't add , delete , or modify any files in data_dir
- Use "print" to output information in the feedback
- No plotting or visualization is allowed
- Code should be self -contained and not rely on any variables or

state outside
- Code must be completely runnable , otherwise it will be considered

as failed
- Optimize your Model/Parameters/Data Processing/Algorithm for

continuous improvement
- The prediction file should be a csv file with the following

format , where the prediction should be predicted labels instead
of predicted probabilities:

patient_id , prediction
115967096 , 8192
...

{feature_information}

{label_information}

BioDSBench Prompt – Feature Information

The corresponding features are stored in the following directories:
{feature_directory_train }: training features for the task
{feature_directory_val }: validation features for the task
{feature_directory_test }: test features for the task
Each of the feature files is a dictionary , containing the following

keys:
- data_matrix: the feature vectors of the visits , where each row is

a embedded vector , representing a single visit of a patient
- patient_ids: the identifiers of the patients , where each row is a

visit and the corresponding patient id
- labeling_time: the time of the visit , where each row is a visit

and the corresponding time

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

BioDSBench Prompt – Label Information

The corresponding labels are stored in the following directories:
{label_directory_train }: training labels for the task
{label_directory_val }: validation labels for the task
{label_directory_test }: test labels for the task
Each of the label files contain the following columns:

- patient_id: the identifier of the patient
- value: the label value of the patient on the {task_name} task
- label_type: the type of the label , which can be 'categorical '/'

boolean ', etc.
- prediction_time: only the features before this time can be used

to predict the label , used in data processing stage

G.9 EHR-SEQSQL PROMPTS

We include prompt details for EHR-SeqSQL tasks as follows:

EHR-SeqSQL Prompt – Part I

You are an biomedical expert in handling EHR data and answer questions
accordingly.

Your objective is to solve a coding problem with given EHR data , with
the goal of finally give a concrete answer to the question.

Assume you have knowledge of several tables:
(1) Tables are linked by identifiers which usually have the suffix 'ID

'. For example , SUBJECT_ID refers to a unique patient , HADM_ID
refers to a unique admission to the hospital , and ICUSTAY_ID refers
to a unique admission to an intensive care unit.

(2) Charted events such as notes , laboratory tests , and fluid balance
are stored in a series of 'events ' tables. For example the
outputevents table contains all measurements related to output for
a given patient , while the labevents table contains laboratory test
results for a patient.

(3) Tables prefixed with 'd_' are dictionary tables and provide
definitions for identifiers. For example , every row of chartevents
is associated with a single ITEMID which represents the concept
measured , but it does not contain the actual name of the
measurement. By joining chartevents and d_items on ITEMID , it is
possible to identify the concept represented by a given ITEMID.

(4) For the databases , four of them are used to define and track
patient stays: admissions , patients , icustays , and transfers.
Another four tables are dictionaries for cross -referencing codes
against their respective definitions: d_icd_diagnoses ,
d_icd_procedures , d_items , and d_labitems. The remaining tables ,
including chartevents , cost , inputevents_cv , labevents ,
microbiologyevents , outputevents , prescriptions , procedures_icd ,
contain data associated with patient care , such as physiological
measurements , caregiver observations , and billing information.

For different tables , they contain the following information:
(1) ADMISSIONS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ADMITTIME , DISCHTIME ,

ADMISSION_TYPE , ADMISSION_LOCATION , DISCHARGE_LOCATION , INSURANCE ,
LANGUAGE , MARITAL_STATUS , ETHNICITY , AGE

(2) CHARTEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID , ITEMID ,
CHARTTIME , VALUENUM , VALUEUOM

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

EHR-SeqSQL Prompt – Part II

(3) COST.csv: ROW_ID , SUBJECT_ID , HADM_ID , EVENT_TYPE , EVENT_ID ,
CHARGETIME , COST

(4) D_ICD_DIAGNOSES.csv: ROW_ID , ICD9_CODE , SHORT_TITLE , LONG_TITLE
(5) D_ICD_PROCEDURES.csv: ROW_ID , ICD9_CODE , SHORT_TITLE , LONG_TITLE
(6) D_ITEMS.csv: ROW_ID , ITEMID , LABEL , LINKSTO
(7) D_LABITEMS.csv: ROW_ID , ITEMID , LABEL
(8) DIAGNOSES_ICD.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICD9_CODE ,

CHARTTIME
(9) ICUSTAYS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,

FIRST_CAREUNIT , LAST_CAREUNIT , FIRST_WARDID , LAST_WARDID , INTIME ,
OUTTIME

(10) INPUTEVENTS_CV.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,
CHARTTIME , ITEMID , AMOUNT

(11) LABEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ITEMID , CHARTTIME ,
VALUENUM , VALUEUOM

(12) MICROBIOLOGYEVENTS.csv: RROW_ID , SUBJECT_ID , HADM_ID , CHARTTIME ,
SPEC_TYPE_DESC , ORG_NAME

(13) OUTPUTEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,
CHARTTIME , ITEMID , VALUE

(14) PATIENTS.csv: ROW_ID , SUBJECT_ID , GENDER , DOB , DOD
(15) PRESCRIPTIONS.csv: ROW_ID , SUBJECT_ID , HADM_ID , STARTDATE , ENDDATE

, DRUG , DOSE_VAL_RX , DOSE_UNIT_RX , ROUTE
(16) PROCEDURES.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICD9_CODE , CHARTTIME
(17) TRANSFERS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID , EVENTTYPE ,

CAREUNIT , WARDID , INTIME , OUTTIME

All the tabls are saved in the data directory {data_directory }.

G.10 EHRCON PROMPTS

We include prompt details for EHRCon tasks as follows:

EHRCon Prompt – Part I

You are an biomedical expert in handling EHR data and answer questions
accordingly.

Your objective is to solve a coding problem with given EHR data , with
the goal of finally give a concrete answer to the question.

Assume you have knowledge of several tables:
(1) Tables are linked by identifiers which usually have the suffix 'ID

'. For example , SUBJECT_ID refers to a unique patient , HADM_ID
refers to a unique admission to the hospital , and ICUSTAY_ID refers
to a unique admission to an intensive care unit.

(2) Charted events such as notes , laboratory tests , and fluid balance
are stored in a series of 'events ' tables. For example the
outputevents table contains all measurements related to output for
a given patient , while the labevents table contains laboratory test
results for a patient.

(3) Tables prefixed with 'd_' are dictionary tables and provide
definitions for identifiers. For example , every row of chartevents
is associated with a single ITEMID which represents the concept
measured , but it does not contain the actual name of the
measurement. By joining chartevents and d_items on ITEMID , it is
possible to identify the concept represented by a given ITEMID.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

EHRCon Prompt – Part II

(4) For the databases , four of them are used to define and track
patient stays: admissions , patients , icustays , and transfers.
Another four tables are dictionaries for cross -referencing codes
against their respective definitions: d_icd_diagnoses ,
d_icd_procedures , d_items , and d_labitems. The remaining tables ,
including chartevents , cost , inputevents_cv , labevents ,
microbiologyevents , outputevents , prescriptions , procedures_icd ,
contain data associated with patient care , such as physiological
measurements , caregiver observations , and billing information.

For different tables , they contain the following information:
(1) ADMISSIONS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ADMITTIME , DISCHTIME ,

ADMISSION_TYPE , ADMISSION_LOCATION , DISCHARGE_LOCATION , INSURANCE ,
LANGUAGE , MARITAL_STATUS , ETHNICITY , AGE

(2) CHARTEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID , ITEMID ,
CHARTTIME , VALUENUM , VALUEUOM

(3) COST.csv: ROW_ID , SUBJECT_ID , HADM_ID , EVENT_TYPE , EVENT_ID ,
CHARGETIME , COST

(4) D_ICD_DIAGNOSES.csv: ROW_ID , ICD9_CODE , SHORT_TITLE , LONG_TITLE
(5) D_ICD_PROCEDURES.csv: ROW_ID , ICD9_CODE , SHORT_TITLE , LONG_TITLE
(6) D_ITEMS.csv: ROW_ID , ITEMID , LABEL , LINKSTO
(7) D_LABITEMS.csv: ROW_ID , ITEMID , LABEL
(8) DIAGNOSES_ICD.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICD9_CODE ,

CHARTTIME
(9) ICUSTAYS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,

FIRST_CAREUNIT , LAST_CAREUNIT , FIRST_WARDID , LAST_WARDID , INTIME ,
OUTTIME

(10) INPUTEVENTS_CV.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,
CHARTTIME , ITEMID , AMOUNT

(11) LABEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ITEMID , CHARTTIME ,
VALUENUM , VALUEUOM

(12) MICROBIOLOGYEVENTS.csv: RROW_ID , SUBJECT_ID , HADM_ID , CHARTTIME ,
SPEC_TYPE_DESC , ORG_NAME

(13) OUTPUTEVENTS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID ,
CHARTTIME , ITEMID , VALUE

(14) PATIENTS.csv: ROW_ID , SUBJECT_ID , GENDER , DOB , DOD
(15) PRESCRIPTIONS.csv: ROW_ID , SUBJECT_ID , HADM_ID , STARTDATE , ENDDATE

, DRUG , DOSE_VAL_RX , DOSE_UNIT_RX , ROUTE
(16) PROCEDURES.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICD9_CODE , CHARTTIME
(17) TRANSFERS.csv: ROW_ID , SUBJECT_ID , HADM_ID , ICUSTAY_ID , EVENTTYPE ,

CAREUNIT , WARDID , INTIME , OUTTIME

All the tables are saved in the a .db file at {db_location }.

In addition , you have access to a csv containing the clinical notes
with the matching subject ids and hospital admission ids: ROW_ID ,
SUBJECT_ID , HADM_ID , CHARTDATE , CHARTTIME , STORETIME , CATEGORY ,
DESCRIPTION , CGID , ISERROR , TEXT , ADMITTIME

This clinical note csv is at {note_csv }.

G.11 MIMIC-EXTRACT PROMPTS

We include prompt details for MIMIC-EXTRACT tasks as follows:

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

MIMIC-EXTRACT Prompt – PART I

You are an biomedical expert in writing machine learning code to solve
EHR -relevant tasks.

Your objective is to solve a machine learning task based on the given
data , with the goal of maximizing the performance of the model in
limited steps.

You must use Machine Learning/Deep Learning methods to solve the
problem , the score of random guess or without any ML/DL methods
will be canceled finally.

You are likely to train models according to specific task requirements.
You have access to a GPU and several CPUs for training DL/ML models.
Use CUDA and PyTorch for faster training if needed.

Code requirements:
- Read all data files from data_dir ={ data_dir}
- Save all the predictions given by the model to a file named '

predictions -{ task_name }.csv ' in the './cache/ehrshot /{model}/'
directory.

- Don 't add , delete , or modify any files in data_dir
- Use "print" to output information in the feedback
- No plotting or visualization is allowed
- Code should be self -contained and not rely on any variables or

state outside
- Code must be completely runnable , otherwise it will be considered

as failed
- Optimize your Model/Parameters/Data Processing/Algorithm for

continuous improvement
- The prediction file should be a csv file with the following

format , where the prediction should be predicted labels instead
of predicted probabilities:

You have the data splits based on hospital admission ids. You are asked
to use longitudinal EHR data within each admission instance to

predict a two types of tasks:
(1) Classification associated with the entire duration of admission:

mortality inside hospital , mortality inside ICU , length of stay
beyond 3 days , length of stay beyond 7 days. All 4 are binary
classification tasks using lab features only.

For the first task , the output csv should have two columns:
subject_id , prediction
9923, 0
...

(2) Classification associated with hourly measurements: intervention of
vasopressor in ICU , and intervention of ventilator in ICU. Use the
past 6 hours of lab measurements and static demographics (matching
patient id) to predict the 4 intervention statuses during the 4-

hour period after 6 hours.
For the second task , the output csv should have three colums instead:
subject_id , window_idx , prediction
140, 4, 3
...

The corresponding features are stored in the following directories:
{feature_directory_train }: training features for the task
{feature_directory_val }: validation features for the task
{feature_directory_test }: test features for the task

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

MIMIC-EXTRACT Prompt – PART II

Each of the feature files is a pickled pandas dataframe:
- subject_id: the unique ID of the subject
- hadm_id: the unique ID of the hospital admission
- icustay_id: the unique ID of the ICU session
- hours_in: the number of hours since hospital admission. Counting

from 0
- The rest of the columns are organized in groups of three , where

the outer level specifies the type of measurements (e.g.
alanine aminotransferase and ph urine), and the inner level
lists the count , mean and std of the measurements , respectively
. The table has been imputed.

{feature_information}

{label_information}

MIMIC-EXTRACT Prompt – Lab Feature

The corresponding features are stored in the following directories:
{feature_directory_train }: training features for the task
{feature_directory_val }: validation features for the task
{feature_directory_test }: test features for the task
Each of the feature files is a pickled pandas dataframe:

- subject_id: the unique ID of the subject
- hadm_id: the unique ID of the hospital admission
- icustay_id: the unique ID of the ICU session
- hours_in: the number of hours since hospital admission. Counting

from 0
- The rest of the columns are organized in groups of three , where

the outer level specifies the type of measurements (e.g.
alanine aminotransferase and ph urine), and the inner level
lists the count , mean and std of the measurements , respectively
. The table has been imputed.

MIMIC-EXTRACT Prompt – Static Feature

The corresponding features are stored in the following directories:
{feature_directory_train }: demographic training features for the task
{feature_directory_val }: demographic validation features for the task
{feature_directory_test }: demographic test features for the task
Each of the feature files is a pickled pandas dataframe:

- subject_id: the unique ID of the subject
- hadm_id: the unique ID of the hospital admission
- icustay_id: the unique ID of the ICU session
- intime: the total number of hours in the associated admission
- gender_F and gender_M: one -hot boolean columns for gender
- Age 1.0, Age 2.0, Age 3.0, Age 4.0: one -hot boolean columns for

ages groups of 10-30, 30-50, 50-70, and >70, respectively
- Ethnicity columns: one -hot boolean columns for ethnicity (

American Indian , Asian , Black , Hispano , Other , White)
- First care columns: one -hot boolean columns for first admitted

care unit (CCU , CSRU , MICU , SICU , TSICU)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

MIMIC-EXTRACT Prompt – Mor Los Label

The corresponding labels are stored in the following directories:
{label_directory_train }: training labels for the task
{label_directory_val }: validation labels for the task
{label_directory_test }: test labels for the task
Each of the label csv files contain the following columns:

- subject_id: the unique ID of the subject
- hadm_id: the unique ID of the hospital admission
- mort_icu or mort_hosp or los_3 or los_7: the boolean label for

whether the patient died in the ICU , died in hospital , the
length of stay exceeding 3 days , and LOS exceeding 7 days ,
respectively

- label_type: the type of the label , which can be 'categorical '/'
boolean ', etc.

MIMIC-EXTRACT Prompt – Ventilator Vasopressor Label

The corresponding labels are stored in the following directories:
{label_directory_train }: training labels for the task
{label_directory_val }: validation labels for the task
{label_directory_test }: test labels for the task
Each of the label csv files contain the following columns:

- subject_id: the unique ID of the subject
- 6_hour_window_id: the 6 hour predicted window counted since the

patient is admitted to hospital.
- intervention_category: one of the four scenarios: Label 1 "

CONTROL ": No intervention throughout the prediction window.
Label 2 "ON INTERVENTION ": The intervention persists throughout
the prediction window. Label 3 "ONSET": Intervention starts

within the prediction window. Label 4 "WEAN": Intervention ends
within the prediction window.

- label_type: the type of the label , which can be 'categorical '/'
boolean ', etc.

G.12 N-POWERAI PROMPTS

We include prompt details for NPowerAI tasks as follows:

NPowerAI Prompt

You are a scientist conducting biomedical research and constantly
facing statistical problems. Sometimes , you need to find the
minimum sample size to achieve a specific power. In other times ,
you would like to know the statistical power given a population
size.

42

	Introduction
	Related Works
	MedAgentGym: A Scalable and Interactive LLM Agent Training Environment for Code-Centric Biomedical Reasoning
	Problem Formulation
	Data Construction: From Individual Datasets to Unified Benchmark
	Coding Environment: From Static Benchmark to Interactive Interface

	Evaluating LLMs as Medical Coding Agents with MedAgentGym
	Experiments Setup
	Results: Benchmarking LLMs and Reasoning Models with MedAgentGym

	Training LLM Agents for Code-Centric Biomedical Reasoning
	RL Fine-tuning with Trajectory Sampling
	Scaling LLM Agent Improvements with MedAgentGym
	Model Performance Scaling with Self-improvement
	Generalization, Ablation, and Error Analysis

	Conclusion
	Limitations and Broader Impacts
	Limitations
	Broader Impacts
	Privacy Statements

	Additional Related Works
	Task and Data Details
	Overview
	Training and Internal Testing (In-Distribution) Dataset Details
	External Evaluation (Out-of-Distribution) Dataset Details
	Train-Test Set Split
	Data Pre-processing Details
	Structured Tasks
	Open-ended Tasks

	Sampled Trajectory Details

	Baseline Details
	Implementation Details
	Additional Experimental Results
	Code Quality and Efficiency
	Ablation Study: Effect of Pre-defined Toolset
	Cost Analysis
	Structured and Open-ended Tasks
	Ablation Study: Effect of Warm-up Stage
	Case Study
	Difficulty Analysis on External Evaluation Set
	Human Study
	Effect of Reward Design

	Prompt Details
	MIMIC-III Prompts
	eICU Prompts
	TREQS Prompts
	MedCalcBench Prompts
	MedAgentBench Prompts
	Biocoder Prompts
	BioDSBench Prompts
	EHRShot Prompts
	EHR-SeqSQL Prompts
	EHRCon Prompts
	MIMIC-Extract Prompts
	N-PowerAI Prompts

