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ABSTRACT

Large language models (LLMs) quantization predominantly relies on round-to-
nearest (RTN) operations as the atomic operation to map floating point (FP)
weights into quantization grids. Applied at tensor-, group-, or channel-level gran-
ularities, such non-element-wise rounding is sub-optimal, as it prevents error can-
cellation across elements. Adaptive rounding addresses this by assigning each
weight an optimized rounding parameter, but existing methods introduce an aux-
iliary matrix of equal size to the weights, substantially inflating computation and
memory costs. Thus, we propose VQRound, which re-parameterizes the rounding
matrix via vector quantization (VQ) into a compact codebook, drastically reducing
trainable variables while preserving quantization fidelity. We identify the critical
role of the initialization of the rounding matrix, as a proper scheme minimizes the
deviation from the FP model and facilitates efficient tuning of the rounding param-
eters. Beyond naive layer- or block-wise optimization, we introduce a lightweight
end-to-end finetuning pipeline that requires only 128 samples and enables global
optimization of codebooks across all layers. Moreover, VQRound can be used as
a plug-and-play replacement for atomic rounding, complementing existing quan-
tization techniques to further enhance accuracy. Experiments on billion-parameter
models, including OPT, LLaMA, and Qwen, show that VQRound achieves com-
petitive performance under 4-bit, 3-bit, or even 2-bit quantization with as few as
0.2% of the learnable parameters of prior adaptive rounding methods.

1 INTRODUCTION

Large language models (LLMs) have pushed the boundaries of natural language processing, but
their rapid growth in parameters and context length comes with prohibitive compute and memory
costs (Kwon et al., 2023)). Low-bit weight quantization has emerged as a crucial tool to reduce model
size and inference latency while preserving task performance, enabling more scalable and efficient
deployment of LLMs. Existing methods such as GPTQ (Frantar et al., 2023)) and QuaRot (Ashkboos
et al.l2024) can achieve near lossless 4-bit quantization on large models. However, most quantiza-
tion pipelines treat various components (e.g., rounding strategy, grouping schemes, outlier handling)
in isolation, which complicates their integration and limits overall efficiency.

A fundamental atomic operation in all quantization algorithms is rounding, which maps each
floating-point weight to a nearby quantized value. The prevailing approach is round-to-nearest
(RTN), which can be applied at the tensor, group, or channel level (Egiazarian et al., 2024} [Fran-
tar et al., 2023} Liu et al) 2025 [Tseng et al., [2024). While simple, RTN independently rounds
each weight and is theoretically suboptimal for minimizing global error. |[Nagel et al.| (2020) pointed
out that the task loss increase induced by quantization can be approximated by a quadratic form
Aw' - H(w) - Aw. When H has non-zero off-diagonal entries, the quantization error of different
weights interacts via cross terms Aw; Aw;. In such cases, the optimal rounding decision for one
weight depends on the rounding of others, meaning that strictly local (per-weight) rounding cannot
exploit cross-element error cancellation. This insight motivates adaptive rounding that assign each
weight an optimized rounding direction to jointly minimize the overall quantization error.

Several prior works proposed adaptive rounding schemes (Hubara et al., 2020; Nagel et al., [2020;
Kim et al.l|2024; |Lee et al.,[2024;[2025) by introducing a learnable rounding matrix that determines,
for each weight, whether to round up or down from the nearest quantization bin. While effective
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Figure 1: Left: Convergence behavior of Adaround and VQRound on OPT-350M under same steps;
Right: WikiText2 perplexity of LLaMA-7B and LLaMA2-7B under 3-bit quantization.

on smaller networks (e.g., 4-bit CNN quantization in AdaRound (Nagel et al.| [2020), these methods
scale poorly to LLMs because the rounding matrix is the same size as the weight matrix. This
not only inflates memory and computation overhead, but also creates a huge solution space that is
difficult to optimize (Shao et al., 2024} Ding et al. |2025). As a result, existing adaptive rounding
approaches struggle to converge or yield marginal gains when applied to billion-parameter models.
In practice, due to the difficulty of globally optimizing so many rounding parameters, many PTQ
methods still resort to layer-wise or block-wise calibration (Nagel et al., [2020; |Ding et al., 2025
Frantar et al.| 2023)), which breaks the problem into smaller subproblems at the cost of potentially
losing global error cancellation benefits.

In this work, we address these limitations with VQRound, a new adaptive rounding framework tai-
lored for large LLMs. The key idea is a vectorized reparameterization of the rounding matrix using
vector quantization (VQ). Instead of assigning an independent learnable parameter to each weight,
we represent the entire rounding matrix via a compact codebook. Each small group of weights is
associated with a code from this codebook, whose entries encode rounding decisions. This design
drastically shrinks the number of trainable parameters typically to around 0.2% of billion-parameter
models, what naive per-weight rounding would require, thereby reducing the optimization com-
plexity. Crucially, we find that proper initialization of the rounding codebook is vital for efficient
convergence. By initializing the codebook such that the resulting quantized weights closely approx-
imate the original full-precision weights, we minimize the initial quantization error and provide a
strong starting point for subsequent fine-tuning. This careful initialization helps avoid bad local
minima and accelerates the learning of rounding parameters. We demonstrate both theoretically
and empirically that the proposed method is superior to other efficient reparameterization methods
such as singular value decomposition (SVD) (Ding et al., |2025) and Kronecker product decomposi-
tion (Edalati1 et al., [2022).

Beyond the parameter reduction, VQRound introduces a lightweight end-to-end (E2E) fine-tuning
stage to fully exploit cross-layer interactions. Instead of optimizing rounding in each layer indepen-
dently, we jointly fine-tune all codebooks across the network using only a small calibration dataset
(128 samples). In contrast to prior block-wise reconstructions, our E2E approach treats the quantized
model’s error holistically, yielding better accuracy with negligible data or compute overhead.

Moreover, VQRound is also designed as a plug-and-play component that can integrate with existing
quantization workflows. Because it focuses solely on replacing the atomic rounding operation, it
can complement orthogonal techniques such as group-wise quantization, outlier suppression (e.g.,
weight clipping or rotation), and error compensation. Practically, one can insert VQRound into a
standard PTQ pipeline (in place of RTN) to boost accuracy without modifying other parts of the
algorithm. Our experiments on diverse LLMs (including, OPT (Zhang et al.,|2022), LLaMA (Tou-
vron et al., 2023a)), LLaMA2 (Touvron et al.| [2023b) and Qwen-3 (Yang et al.l 2025)) show that
VQRound consistently improves low-bit (4-bit, 3-bit, even 2-bit) quantization performance.

In summary, the main contributions of this paper are as follows:

* We propose VQRound, a novel vectorized reparameterization of the rounding matrix that dras-
tically reduces the number of learned parameters (to around 0.2% of billion-parameter models)



Under review as a conference paper at ICLR 2026

while preserving fidelity. A careful initialization scheme is used to ensure the rounding codebook
starts close to the full-precision model, which is critical for fast convergence.

* We theoretically analyze why the vectorized reparameterization method is superior to other effi-
cient reparameterization methods, such as SVD and Kronecker product decomposition. Empiri-
cal results also support the theoretical analysis.

* We develop a lightweight end-to-end fine-tuning pipeline that globally optimizes all rounding
codebooks using minimal calibration data.

* VQRound is designed as a modular drop-in replacement for standard rounding operations, mak-
ing it compatible with and complementary to existing quantization frameworks.

2 RELATED WORK

2.1 ATOMIC ROUNDING

Rounding is the atomic operation in almost all LLM quantization algorithms (in contrast, vec-
tor quantization addresses a sphere packing problem via K-means clustering or nearest-neighbor
search |[Egiazarian et al.|(2024); |Tseng et al.| (2024). Thus, rounding is not needed). Delicate quanti-
zation methods typically employ round-to-nearest (RTN) as the atomic operation at different gran-
ularities, i.e., per-tensor, per-group, per-channel, or even element-wise. Despite its central role, few
studies investigate how to optimize rounding itself for efficient and accurate LLM quantization. Re-
cent work shows that stochastic rounding (Croci et al} [2022) and adaptive rounding (Gupta et al.,
2015) can effectively cancel out quantization error, yielding better solutions than RTN.

In particular, adaptive rounding replaces rigid nearest-neighbor rounding with learnable or opti-
mized rounding functions that minimize task-relevant reconstruction loss. Early works such as
AdaRound (Nagel et al., 2020) demonstrated that optimized rounding enables 4-bit quantization of
CNNs, while subsequent methods like AdaQuant (Hubara et al., 2020) and BRECQ (Li et al.| 2021}
extended the framework with more flexible formulations, error metrics, and data-aware objectives.
However, these do not show that adaptive rounding is ripe for scaling up in LLM quantization. Even
though existing efforts such as (Lee et al.l 2024)) and (Lee et al., | 2025) have made attempts to apply
adaptive rounding in LLMs, the problems that will arise in scaling up are unavoidable. For example,
(Shao et al., 2024) mentioned that the rounding matrix is hard to optimize in LLM due to its huge
solution space. What’s more, the reconstruction is usually block-by-block (Wu et al., [2025)), which
would bring potentially high costs on large models.

2.2 VECTOR QUANTIZATION

Beyond model quantization, vector quantization has been widely adopted as a discrete represen-
tation learning mechanism in generative modeling. VQ-VAE (van den Oord et al., 2017)) learns a
discrete latent codebook that supports high-fidelity reconstruction and autoregressive priors, while
VQ-GAN (Esser et al.,[2021) couples a learned codebook in order to synthesize high-resolution im-
ages. In embodied Al, UniAct (Zheng et al.| 2025) introduces a universal action space and action
tokenizer that discretizes continuous robot controls into transferable action tokens.

VQ has emerged as a powerful alternative to scalar quantization for compressing large models.
Unlike scalar methods that treat weights independently, VQ learns a codebook of representative
vectors and maps groups of parameters to code indices. Recent methods adapt VQ to LLMs.
AQLM (Egiazarian et al.[2024) performs input-adaptive multi-codebook quantization. VPTQ (Liu
et al., [2024) introduces a second-order optimization framework. QulP# (Tseng et al., [ 2024) com-
bines Hessian-aware compression with task-aware reconstruction. While effective at very low bit-
widths, these approaches typically require expensive Hessian estimation or multi-codebook cluster-
ing, making them computationally and memory intensive for PTQ. Different from the previous work,
we use VQ to reparameterize the rounding matrix, which proves to be both efficient and accurate.

3 METHODOLOGY

In this section, we introduce the details of VQRound, which dramatically improves the efficiency of
adaptive rounding. We utilize a vector codebook to reparameterize the rounding matrix as illustrated
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Figure 2: Comparison of different rounding strategies (Adaround (Nagel et al.,2020), LoRA Round
and VQRound). Rounding matrix is initialized by the residual of quantized matrix W and its floored

floor(W) and o~ (-) is the inverse rectified sigmoid transform. In VQRound, only the codebook
C € RV*¢ needs to be updated, more parameter-efficient than Adaround and LoRA Round.

in Fig. 2] In §3.2] we discuss the rationale for this approach and its optimality over other reparam-
eterization methods. To cope with the suboptimal localized optimization of traditional adaptive
rounding methods, we introduce an end-to-end finetuning approach that enables globally optimal
quantization in a one-time finetuning stage in §3.4} In §3.5] we explain that VQRound can be used
as a plug-and-play replacement for RTN.

Notation. We denote the weight matrix by W, its quantized form by W¢ (or simply @), the j-th
column of W by W, and the submatrix consisting of columns from the j-th onward (inclusive) by
W;.. Matrices are denoted by uppercase letters while scalars are represented by lowercase letters.
The Hessian matrix is denoted by H throughout this paper.

3.1 PRELIMINARIES

We follow standard uniform affine weight quantization. For a weight matrix W € R"*™ and b-bit
integers, the quantized integer tensor W under RTN is

w
Wgo = clip(round(?) + 2, Gmin;s Gmaz), (D

where s is the (per-tensor, -group or -channel) scale, z is the zero-point, and g in, gmax denote the
valid integer range. RTN independently rounds each entry of W/ s to its nearest integer.

Adaptive rounding. To enable error cancellation, adaptive rounding replaces the rigid RTN decision
with a learnable rounding matrix H € [0, 1]™*™ that controls the up/down rounding of each entry:

o~

w
WQ - Cllp({SJ + H + Z5 Qmin, Qmax)7 W = S(WQ_Z) (2)

Here H;; = 0 forces a round down (e.g., |2.3| = 2), while H;; = 1 rounds up (since [2.3]+1 = 3).
H is initialized as the quantization residual, constrained to the interval [0, 1], and gradually annealed
toward binary values 0, 1. At the inference stage, the resulting binary matrix provides deterministic
rounding decisions. Classical adaptive rounding, however, learns H as a dense matrix of the same
size as W, which is impractical for LLMs.

Element-wise Error. In matrix approximation, the Frobenius norm ||E||r = (Zl ; |Eij\2)1/ ?
measures the global energy of the error. For LLM quantization, however, such an energy-based
metric can be misleading. The weight distributions in LLMs are often heavy-tailed, meaning that
even if || E||  is small, a few large local errors can still occur and dominate the degradation in model

performance. Let H be the target (full-precision) rounding matrix, H its approximation (quantized
rounding matrix), and £ = H — H the error. We emphasize the element-wise worst-case error,
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defined as || E||max = max; j | E;;|, and relate it to more global norms. For any matrix E, we have:
HEHmax < ||E||2 < HE||F> 3)

where || -||2 denotes the spectral norm. The first inequality follows from evaluating z " E'y on canon-
ical basis vectors, and the second is the standard relationship between spectral and Frobenius norms
(see Appendix for a proof). Thus, controlling ||E||max is at least as stringent as controlling
IE||2, and it also implies a bound on || E|| . In practice, prioritizing a small || E'|| max (i.e., minimiz-
ing the worst-case per-weight error) curbs outlier rounding decisions and has been found to correlate
better with downstream performance (e.g. lower perplexity in language modeling).

3.2 VECTORIZED REPARAMETERIZATION

Optimizing a full rounding matrix H € [0, 1]™*"™ assigns one learnable variable to every weight
and is therefore impractical at billion scale: the search space is O(mn) and the memory/compute
footprint grows accordingly, making adaptive rounding pipelines slow or even infeasible on large
LLMs. To address this, we propose a vectorized reparameterization of the rounding matrix that
is far more parameter-efficient than AdaRound. In particular, we reparameterize H using vector
quantization (VQ), so that only a small codebook of vectors is learned.

We divide H into L vectors of length D, {h, € RP }Ll (so L - D = mn), and learn a codebook

C={eci,...,cx} C RP with K < L. Each vector is assigned to its nearest centroid
ip = ar, min he — i3 hyQ = ¢
0 gke{l,‘..,K} H L k||27 ¢ (73
yielding the VQ-based reconstruction of the rounding matrix Hyqg = reshape([ Ciyy---5Cip ]) In

forward passes, the substitution is a table lookup; only the codebook vectors {cy} are trainable.
This reduces the number of learned parameters from O(mn) to O(K D) and the stored assignment
to L[log, K] bits, while preserving local flexibility within each block.

Let Eyq = H — Hyq be the quantization error after applying the codebook. Because each block Ay is
replaced by a single centroid c;,, the worst-case error over all weights is bounded by the largest error
within any block: || Evgllec = maxyg ||he — ¢;,|lco- We can further prove that under mild regularity
assumptions on the block distribution (see Appendix[A.6), the minimum achievable worst-case error
decays polynomially with the codebook size K and exponentially with the block dimension D, i.e.,

. _ -1/D
dnt - Bvall oK), @)

Larger codebooks (or smaller block sizes D) enable finer local adjustments, directly reducing the
worst-case error ||E||o. In contrast, low-rank approximations such as SVD or Kronecker decom-
position minimize the global energy metric || E|| p, which satisfy Eq. but provide no guarantee on
element-wise deviations. As a result, they may achieve small || F||r yet leave large local residu-
als, especially under heavy-tailed weight distributions. Our VQ-based reparameterization explicitly
controls || F||, making it more robust to outliers. Empirically, we observe significantly smaller
element-wise residuals after VQ initialization than with SVD or Kronecker decomposition (Fig. d).

We can also prove a formal inequality to compare the best achievable worst-case error under our VQ
approach versus low-rank methods (details in Appendix [A.3]and[A.7). In particular, we show that
for a given budget of N parameters, the minimum || - ||« error attainable with a codebook of size N
is asymptotically smaller than what any rank-constrained method can achieve:

‘élllirjlv |Bvollee SONTY?) < min [|[Erora/kronlloe < 0rp1;  0ry1 — o2(Kronecker) (5)

by defining the LoRA and Kronecker rounding approximation as:
Hiora = ABT, AeR™" BeRY", (6)
Hgson = A® B,  AeR™ BeR™, )

where m = a X b, n = ¢ x d. Through the above approach, we have transformed the optimization
of a rounding matrix with the same weight into the optimization of a vector codebook C, thereby
achieving a reduction in parameters. For codebook initialization-based clustering, we perform a
K-means search on the codebook of each layer.
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3.3 ROUNDING INITIALIZATION

We find that the initialization of the rounding matrix is decisive for adaptive rounding: with identical
training schedules, different initializations can lead to remarkably different final perplexities. Be-
cause rounding parameters determine whether each weight rounds up or down, a poor starting point
can induce unstable optimization, slow convergence, and suboptimal rounding patterns that accu-
mulate large quantization error. An effective initialization should (i) reduce inference error from the

outset and (ii) explicitly control the worst-case element-wise deviation, i.e., || E||« for E = H — H,
so that each entry is already oriented toward a correct descent direction.

Hessian-aware residual initialization. We visualize our initialization scheme for channel-wise
quantization with error compensation in Fig[3] At each step we (i) quantize the current column by
RTN, (ii) form its residual, (iii) propagate a Hessian-scaled correction to the unprocessed columns,
and (iv) convert the corrected residual to the initial rounding matrix through the inverse sigmoid as
shown in Figl2] This Hessian-aware initialization substantially reduces the initial deviation from
the FP weights, stabilizes optimization, and yields better final quantization. Note that this initializa-
tion strategy naturally generalizes to group-wise [Huang et al.| (2024) or tensor-wise quantization by
varying the group size. When the group spans the entire tensor, it reduces to a simple refinement of
tensor-wise RTN.

3.4 END-TO-END FINETUNING

While VQ provides a compact initialization of the rounding matrix [, we observe that further
E2E finetuning can directly refine the codebook C, leading to better reconstruction of H and im-
proved quantization fidelity. Different from block-wise (Nagel et al [2020; Wu et al, [2025) or
layer-wise (Frantar et al} 2023} [Tseng et al.} 2024) reconstruction strategies, which optimize round-
ing decisions locally and are prone to sub-optimal minima, our E2E scheme jointly updates the
rounding parameters across all layers under a global objective. This enables cross-layer error com-
pensation and avoids local optima caused by independent block-level calibration.

Specifically, after the initialization of H and reparameterization with VQ, we freeze the original
weights and only update the codebook entries. During finetuning, a pretrained teacher model M is
used to provide reference logits. Given an input batch x, the quantized student model M produces
logits ¢, while the teacher produces y. We minimize the following objective:

L = KL(softmax(g/T) || softmax(y/T)) +X-  R(H) . ®)
——
distillation loss rounding regularizer

The distillation loss is computed by the KL-Divergence (Kullback & Leibler, [195T) between quan-
tized student M and full-precision teacher model M, where T is the temperature for distilla-
tion, and R(H ) encourages the relaxed rounding variables to approach hard {0, 1} decisions (e.g.,
R(H) =32, ;1 —[2H;; — 1/%]). During E2E finetuning, /3 is set as an annealing parameter which
decay through steps. An excessively large beta constant can make the rounding loss difficult to




Under review as a conference paper at ICLR 2026

converge, while an excessively small rounding loss may result in an overly sharp rounding matrix,
potentially leading to overfitting. The hyperparameter \ balances task fidelity and rounding conver-
gence. In Alg.[I] we show how do we implement VQRound’s end-to-end finetuning process.

3.5 PLUG-AND-PLAY REPLACEMENT

VQRound serves not only as a PTQ technique for adaptive rounding, but also as a plug-and-play
module that can be seamlessly incorporated into existing weight quantization frameworks. For in-
stance, when applied to GPTQ, the process begins by running GPTQ on the full-precision model
to estimate the layer-wise grid parameters, including channel-wise quantization factors(scale, zero
point), updated GPTQ weights, and propagated residuals as described in §3.3] Each linear layer is
then replaced with a VQ module whose forward pass reconstructs weights in GPTQ format while
initializing with the precomputed residuals.

4 EXPERIMENTS

We evaluate VQRound on a diverse set of language model families, including OPT (Zhang et al.,
2022), LLaMA (Touvron et al.l [2023a), and LLaMA2 (Touvron et al., [2023b)), which are widely
adopted in both large language model applications and quantization research (Frantar et al., [2023;
Egiazarian et al.| 2024). To further examine its robustness, we additionally report results on the re-
cent and more advanced Qwen3 model (Yang et al.,2025). We also validate the plug-and-play com-
patibility of VQRound by integrating it with existing quantization frameworks such as GPTQ (Fran-
tar et al.| [2023)) and QuaRot (Ashkboos et al., 2024), where it consistently improves performance.
Detailed experimental settings are provided in Appendix [A.8]

4.1 RESULTS

We conduct evaluations on WikiText2 (Merity et al., 2017) and C4 (Raffel et al., |2020) using per-
plexity as the primary metric. In addition, zero-shot evaluations are performed on WinoGrande (Sak-
aguchi et al.,2019), PiQA (Bisk et al.;,[2020), HellaSwag (Zellers et al.,2019), and ARC-Easy/ARC-
Challenge (Clark et al.,|2018), with accuracy used as the evaluation criterion.

As shown in Tab. [T, VQRound has shown comparable performance with GPTQ on both 4-bit and
3-bit quantization, and it even outperforms GPTQ on OPT-125M, 350M, and 6.7B. When combined
with GPTQ, VQRound generally improves quantization performance, outperforming GPTQ in most
settings. These results validate the effectiveness of our method for low-bit quantization and highlight
its plug-and-play compatibility with existing approaches. More results on the C4 dataset (Tab.
exhibit the same characteristics as WikiText2. Both results show that VQRound has good compen-
sation on RTN and GPTQ. Experiments on QuaRot (Tab. [2) further validate the rationality of our
plug-and-play design, confirming its seamless compatibility with existing quantization frameworks.

We further evaluate VQRound on the LLaMA and LLaMA?2 families (Tab.[3). At 4-bit precision, it
achieves results on par with GPTQ, while at 3-bit it consistently outperforms GPTQ (e.g., reducing
perplexity by 0.43 on LLaMA-7B and 0.99 on LLaMA2-7B). Under the extreme 2-bit setting where
GPTQ collapses, VQRound remains stable with perplexity below 100, demonstrating its robustness
and potential for ultra-low-bit quantization.

Table 1: OPT perplexity on Wikitext2. Lower is better. ~ Table 2: Our plug-and-play VQRound

L. OPT Model Size on QuaRot improves Wikitext2 per-
Precision Method h .
125M 350M 1.3B 2.7B 6.7B 13B plexity under W4A16 asymmetric
FP16 Baseline 2765 2200 14.63 1247 1086 10.13 quantization (Ashkboos et al.,[2024).
RTN 3729 2594 48.17 16.92 12.10 11.32 Method LLaMA LLaMA?2
. VQRound+RIN ~ 30.69 23.77 15.48 13.30 11.26 10.66 7B 7B
4 bits
GPTQ 3112 2424 15.47 12.87 11.39 10.31
VQRound+GPTQ 3039 23.02 15.38 12.77 11.13 10.37 FP16 5.68 547
RTN 1.3e3  64.57 1.3e4 1.6e4 5.8¢3 3.4e3 RTN 7.94 6.99
. VQRound+RIN ~ 47.02 33.63 22.67 18.57 13.72 12.28
3 bits GPTQ 5385 3379 20.97 16.88 14.86 11.61 QuaRot+RTN 746 676
VQRound+GPTQ 4610 28.03 19.13 15.55 12.45 11.37 QuaRot+VQRound  5.98 5.84
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Table 3: LLaMA family perplexity on Wikitext2 and C4.

- LLaMA-7B LLaMA-13B LLaMA2-7B LLaMA2-13B
Precision Method
WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2 C4
FP16 Baseline 5.68 7.34 5.09 6.80 5.47 7.26 4.88 6.73
RTN 6.29 8.12 5.53 7.23 6.12 8.17 5.21 7.14
4 bits VQRound+RTN 6.13 7.88 5.42 7.17 5.90 7.88 5.19 7.13
GPTQ 6.17 7.80 5.37 7.28 6.06 7.84 5.16 7.03
VQRound+GPTQ 6.08 7.78 5.40 7.10 5.85 7.79 5.18 7.06
RTN 25.61 30.86 11.78 14.46 542.0 527.2 10.69 13.87
3 bits VQRound+RTN 8.02 10.29 6.71 8.88 7.96 10.54 6.58 8.94
’ GPTQ 8.29 10.51 6.73 8.83 8.66 11.24 6.55 8.76
VQRound+GPTQ 7.86 9.95 6.46 8.47 7.67 10.05 6.33 8.57
RTN 1.1e5 1.1e5 5.7¢4 5.9e4 1.8e4 5.1e4 2.8¢e4 5.3e4
2 bits VQRound+RTN 65.41 43.52 47.57 31.53 84.07 56.67 68.27 38.54
GPTQ 1.0e4 872.7 3.7¢e3 809.7 7.5e3 1.7¢3 2.1e3 560.7
VQRound+GPTQ 64.82 37.49 34.62 25.20 73.08 45.13 48.29 29.68
Table 4: Qwen3 perplexity on Wikitext2 and C4.
Precision Method 0.68 178 4B 8B
WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2 Cc4
FP16 Baseline 20.96 30.31 16.67 22.36 13.64 19.83 9.72 15.42
RTN 37.39 51.69 28.26 32.45 17.47 24.57 12.01 18.48
4 bits VQRound+RTN 25.55 35.30 16.97 25.08 13.57 21.59 10.33 16.76
GPTQ 30.05 42.71 25.60 30.68 14.82 20.88 10.59 16.43
VQRound+GPTQ 24.72 34.28 17.00 24.15 13.73 20.93 10.18 16.28

As shown in Tab. ] VQRound demonstrates clear advantages on the Qwen3 family. It consistently
mitigates the degradation of RTN and complements GPTQ, yielding stable improvements across
model scales, with only negligible gaps in rare cases (e.g., C4 on Qwen3-4B). This confirms that

VQRound generalizes effectively to modern architectures.

We report zero-shot evaluation on five commonsense reasoning benchmarks in Tab. |5} As expected,
quantization introduces some degradation, yet VQRound achieves performance largely comparable
to GPTQ. Even for LLaMA2-13B, where the average gap to the full-precision model is the largest,
the difference remains within 2%. These results confirm that VQRound preserves strong general-

ization ability across downstream reasoning tasks.

Table 5: 4 bit zero-shot accuracy (%) on commonsense benchmarks. Higher is better.

Model Method WinoGrandet PiQA1 HellaSwag? ArcET ArcCT Average?
FP16 69.93 78.67 56.97 75.21 41.89 64.53
VQRound+RTN 70.01 77.53 55.36 73.86 39.25 63.20
LLaMA-7B GPTQ 69.93 77.86 55.99 74.12 39.51 63.48
VQRound+GPTQ 68.59 78.18 55.17 73.44 40.10 63.10
FP16 72.77 79.16 59.92 77.40 46.42 67.13
. VQRound+RTN 71.59 78.51 58.45 76.52 45.05 66.02
LLaMA-13B GPTQ 72.77 79.11 58.98 76.26 45.39 66.50
VQRound+GPTQ 72.85 78.84 58.78 75.72 45.65 66.37
FP16 69.06 78.07 57.13 76.30 43.43 64.80
VQRound+RTN 68.11 76.88 55.55 73.36 40.27 62.83
LLaMA2-7B GPTQ 68.59 76.88 55.87 75.13 41.13 63.52
VQRound+GPTQ 68.35 77.20 55.47 73.86 40.27 63.03
FP16 72.38 79.05 60.07 79.38 48.46 67.87
VQRound+RTN 72.22 78.94 59.21 77.65 45.90 66.78
LLaMA2-138 GPTQ 70.96 78.02 58.74 77.44 45.90 66.21
VQRound+GPTQ 72.14 78.73 59.14 78.11 45.39 66.70
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Table 6: Initialization Comparison on Perplexity. (a) Residual initialization comparison on different
weight integer calculation. (b) Rounding strategy comparison across LoORA Round with Kaiming or
SVD initialization, Kronecker product, and Vector codebook. For LoRA, we use rank=64.

(a) Residual initialization. (b) Rounding matrix initialization on OPT-125M.
it Method OPT Model Size Method Init Eval
125M 350M Soft Hard
Soft Hard Soft Hard LoRA (Kaiming) ~ 90.82  5665.40
: LoRA (SVD) 12811  35.08
W/s 2854 38.58 22.63 28.42 Kronecker 15647 566540

Waq/s 63.54 58.04 2395 2792

Vv 28.54 38.58
Wo/sw.H 46.11 4085 2342 2436 Q

Table 7: (a) Trainable parameters comparison between AdaRound and VQRound. OOM means out
of memory, and NAN means no result. (b) VQRound 4-bit results for different codebook settings on
OPT-1.3B. K stands for the total number of codebook centroids, and D is the length of each vector.

(a) Trainable parameters comparison. (b) Codebook setting comparison.
Model Trainable Params VQ/Ada Codebook Setting PPL
AdaRound VQRound  Ratio (%) WikiText2  C4
OPT-1.3B 1.21B 4.72M 0.39% K=22 D=4 15.84 17.10
OPT-2.7B 2.16B 6.29M 0.29% K=22 D=8 15.48 17.28
LLaMA-7B 6.48B 7.34M 0.11% K=2"%D=4 15.73 17.11
LLaMA-13B OOM 9.18M NAN K=2% D=3 16.13 17.23

4.2 ABLATION STUDY

We investigate the impact of different initialization strategies on model performance. As discussed in
§3.3]and §3.2] initialization plays a critical role in effective optimization. In our ablations, we exam-
ine alternative designs for both the residual and the rounding matrix (Fig.[2). For residual represen-
tation, we consider two factors: whether to incorporate the original full-precision weights Wrp and
whether to leverage Hessian information H. The results in Tab. [6a] show that Hessian-informed ini-
tialization consistently achieves lower reconstruction error than methods without Hessian guidance.
While including W p further reduces the initial error, it does not improve downstream optimization
and may even hinder convergence. Finally, as reported in Tab. [6bl VQ reparameterization substan-
tially outperforms LoRA Round and Kronecker-based initialization, underscoring its effectiveness
as a reparameterization method.

We investigate the trade-off between the codebook size K and the vector dimension D. As shown
in Tab. [7} the configuration with K = 2'2, D = 8 achieves the lowest perplexity on WikiText2. In
contrast, using a smaller D increases the memory footprint, while a larger K leads to more trainable
parameters, making K = 2'2, D = 8 a balanced choice between efficiency and performance.

5 CONCLUSION

In this work, we present VQRound, a vectorized reparameterization method for adaptive rounding in
post-training quantization. By reducing the number of learnable parameters to less than 0.2% of the
billion-parameter models while maintaining performance, VQRound achieves both efficiency and
effectiveness. A dedicated initialization strategy further stabilizes training by aligning the codebook
with the full-precision model, which is also critical for fast convergence. We provide theoretical and
empirical evidence demonstrating the superiority of vectorized reparameterization over alternatives
such as SVD and Kronecker decompositions. In addition, we introduce a lightweight fine-tuning
pipeline that globally optimizes codebooks with limited calibration data, making the approach highly
practical. Finally, VQRound is designed as a modular plug-and-play component, ensuring compat-
ibility with existing quantization frameworks and enabling integration with methods such as GPTQ
and QuaRot. Overall, VQRound advances the design of efficient rounding mechanisms for low-bit
quantization, offering a principled and versatile solution that combines theoretical rigor, empirical
performance, and practical usability.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENT RESULT

Table 8: C4 Perplexity in OPT model family. Lower is better.

Precision Method OPT Model Size
125M 350M 1.3B 2.7B 6.7B 13B
FP16 Baseline 26.56 22.59 16.07 14.34 12.71 12.06
RTN 33.91 26.21 24.51 18.43 14.36 13.36
4 bits VQRound+RTN 28.79 24.39 17.28 15.27 13.27 12.53
GPTQ 29.22 24.63 16.97 15.00 13.18 12.26
VQRound+GPTQ 28.72 23.44 16.80 14.87 13.01 12.29
RTN 834 55.49 5.2e3 1.1e4 5.3e3 3.1e3
3 bits VQRound+RTN 39.76 31.40 22.57 19.28 15.57 14.37
GPTQ 42.41 31.33 21.63 18.17 17.14 13.34

VQRound+GPTQ 38.87 27.13 20.02 17.16 14.25 13.18

A.2 ALGORITHM OF VQROUND END-TO-END (E2E) FINETUNING

Algorithm 1 VQRound end-to-end finetuning

Require: Teacher model M, Student model M; Frozen FP weights W, per-channel scale S, zero-point
Z; fixed VQ indices I = {i,}}_;; initial codebook C = {cx}£_,; calibration dataset D; temperature T’;
rounding regularizer R(-); regularization weight \; steps N; Anneal parameter ( Shigh, Siow)

Freeze all params of M except the codebook
Init Adam optimizer on C
fort < 1to N do
x < NextSample(D); Batch size = 1
H « Reshape([ciy, ..., ¢, ])
W <+ (clip(|[W/S| + H + Z, 0, Quax — Z))
J+— Ms(x; W);  y +— Me(x)
LKD — KL(softmax(g}/T) I softmax(y/T))
Bt Anneal(ﬁhi, Bio, t, N)
L+ Lxp + AR(H;Bt)
Update C + Adam(C, Ve¢)
end for

A.3 EXPLANATION OF LORA ROUND WITH SVD INITIALIZATION AND KRONECKER
ROUNDING

Low-rank Adaptation (LoRA): When we consider parameter-efficient reparameterization methods
such as low-rank adaptation (LoRA), the rounding matrix H is approximated via a multiplicative
form:

Higra = ABT, A e R™" BeRM". 9)

Denote the approximation error by Ero,ra := H — Hr,ra. We can initiate the low-rank approx-
imation of rounding matrix through SVD decomposition by defining H = k>1 akukv; with

o1>09>...and Hyopa = H, = 2221 akukv;. By the Eckart-Young-Mirsky theorem (Eckart
& Young, [1936), we have (Detailed proof in Appendix [A.5):

1/2
|ELorallr = |1H — Hyllp = (Zﬁ) : (10)

k>r
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also:
|Erorallz = ||1H — Hyll2 = 0741 (11)
Hence according to Eq. |3} we have:

||EL0RA||00 S Or41 (12)

We can absorb that the SVD method can optimally minimize the global error through the fixed
Frobenius norm promised by Eckart—Young—Mirsky theorem. Yet, its infinity norm is constrained
by the (r + 1)th largest singular value. In most LLMs, due to the widespread presence of outliers in
weights, even when decomposing the matrix at higher ranks as shown in Fig. 5] the singular values
remain highly significant in relatively high rank (e.g., » = 64). This prevents the element-wise error
during quantization from being confined within a low range.

Kronecker Product: Kronecker product can be used to approximate rounding matrix H by two
smaller matrices A € R®*¢ and B € R**¢ where m = a - b,n = ¢ - d, the rounding matrix can be
represented by:

Hkron =A®DB (13)

Kronecker product is a relatively complex matrix operation, thus we denote its result through Van
Loan-Pitsiantis rearrangement (Van Loan & Pitsianis, 1993): R(A ® B) = vec(A)vec(B)T. By
doing this, we can still optimize the Kronecker product according to SVD: R(H) = >} _, ORUKV
Due to the properties of this rearrangement:

1H|[r = [R(H)| (14)
Based on the conclusion from Eq. we found that its Frobenius norm satisfies:
||EKron||oo < ||EKron||F = HH - HK’I‘O’I’LHF = (Z Uk(R(H))2)1/2 (15)
E>2

Similarly, in the Kronecker product form, we can still only minimize the global error, its element-
wise error is not guaranteed.

A.4 PROOF OF EQUATION[3|

Proof. Part 1: Proof of || E|| < ||E||2

First, we recall the definitions of the two norms. The element-wise infinity norm is the maximum
absolute value of any element in the matrix:

[1E|]0o éH}?;L.X|Eij|

Let this maximum value be achieved at the entry E,.., such that || E||s = |Epcl|-

The spectral norm is defined as:

1E]]2 = max ||Ex]|2
Il 2=1

By its definition, for any vector v with ||v||; = 1, the inequality || Ev||s < ||E||2 must hold.

Let us choose a specific unit vector. Let e. € R" be the standard basis vector with a 1 in the c-th
position and zeros elsewhere. Clearly, ||e.||2 = 1.

The product Ee,. results in the c-th column of the matrix E. Let’s denote this column vector as
col.(E).
Elc
E2c
Fe. = .
Emc
Applying the definition of the spectral norm, we have:

1113 > || Becll3
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The squared Spectral-norm of the c-th column is the sum of the squared absolute values of its
elements:

m
[Becll3 =D |Eicl?
i=1

This sum includes the term |E,..|?, which is the square of the infinity norm. Since all terms in the
sum are non-negative:

S El? 2 |Erel? = (1E]|o)?
=1

Combining these inequalities, we get:
1EI > [|Becll3 = (|Elo)?
Taking the square root of both sides yields the desired result:
E[l2 = |||

Part 2: Proof of || E||2 < ||E||F

We start with the definitions. The spectral norm is the largest singular value of E:
[[E]l2 = 01(E)

The Frobenius norm is defined as the square root of the sum of the squared absolute values of all
elements:

m n
I|1El|lF = > 1B
i=1 j=1

A fundamental property of matrix norms is that the squared Frobenius norm of a matrix is equal to
the sum of its squared singular values. This arises from the fact that ||E||% = Tr(E¥ E), and the
trace of £ E is the sum of its eigenvalues, which are the squared singular values of E.

rank(E)

1EIF = D on(B)?

k=1
Let’s expand this sum:
HEH% = Jl(E)2 + JQ(E)Q + -+ Urank(E)(E)2
Substituting the definition of the spectral norm, ||E||2 = o1 (F):

rank(E)

IEIE =IEIE+ Y ow(B)?
k=2

Since all singular values are non-negative, their squares are also non-negative. Therefore, the sum
of the remaining squared singular values must be non-negative:

rank(E)

> on(E)? >0

k=2

This implies:
|EII% > |IE]l3

Taking the square root of both sides gives the second part of our inequality:
IE[|r = [|Ell2

Combining the results from Part 1 and Part 2, we have proven the complete inequality chain. [
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A.5 PROOF OF EQUATION[I0]AND EQUATION

Proof. We begin by defining the error matrix F,. = A — A,.

r

Er = ( E akukv£> — < E crk,uk,vf>
k=1 k=1

E O';gukvg

k=r+1

T T
= O0p41Up41V,p] T Opp2UrioVo o+ ...
This expression for the error matrix is the foundation for both proofs.

1. PROOF OF THE SPECTRAL NORM ERROR

The spectral norm of a matrix, ||M]||2, is defined as its largest singular value, o1 (M ). Our goal is to
find the singular values of the error matrix F,..

The expression derived above, E, = 3, 41 crk.ukvg. the singular values of the matrix E, are
precisely the set {0,411, 0742, ...,0n}. Thus, the largest singular value in this set is 0,11. By the
definition of the spectral norm:

IEll2 = 0712
This completes the first part of the proof.

2. PROOF OF THE FROBENIUS NORM ERROR

For our error matrix E,, = A — A, from Part 1, we have already identified the singular values of
E.tobe {oy11,0042,...,0n}. According to (Horn & Johnson, 2012):

N
A=Az = Y o
k=r+1

Taking the square root of both sides, we obtain the desired result:

N 1/2
1A= Arllr = ( > 02)

k=r+1

This completes the second part of the proof. O

A.6  PROOF OF EQUATION 4]

Proof. The proof is established by deriving matching upper (O) bounds on the infimal covering
radius, 7o, (C).

1. Upper Bound (O(N -1/ #)) We establish the upper bound via a constructive proof. We de-
sign a specific codebook C” and show its covering radius is O(N~1/%). The optimal codebook’s
performance must be at least as good.

Let the set € have a finite s-dimensional volume V = fQ dxz. We can tile this volume with N

identical, non-overlapping s-dimensional hypercubes, {S}4_,. The volume of each hypercube is
Vi = V/N.

Let L be the side length of these hypercubes. The volume of an s-dimensional hypercube is L°.
Thus:

1/s
L= % = L= <J‘\/[) =V/sNts (16)

As V is a constant, the side length scales as L = O(N~1/#).

16



Under review as a conference paper at ICLR 2026

We construct our codebook C” by placing one codeword c), at the center of each hypercube Sj,. For
any vector x € Sy, the quantizer maps it to ¢},. The fo, error is the maximum coordinate-wise
distance from x to the center. For a hypercube of side length L, this maximum distance is L /2.

The covering radius of this constructed codebook is therefore:
L
Too(C") = sup min ||z — ¢||so = max sup ||z — c}||oc = = = O(N7/?)
zeQ ceC’ k zESH, 2

Since the infimum is the greatest lower bound, it must be less than or equal to the error of this
particular construction:

. < N — —1/s
|5f£NrOO(C) <reo(C)=0O(N )

Conclusion From the upper bound, we have inf 7, (C) < O(N~1/#).

: _ —1/s
lcllnszroo(C) O(N—7)

Thus, inficimn [|Evglle = O(NTY#) since roo(C) = sup,eqmincec ||z — |l =
SUp,cq Mincec || Evg|leo This completes the proof based on the given assumptions.

O

A.7 PROOF OF EQUATION/[3]
Problem Setup Let the target matrix H € R™*" be defined as H = L + S, where:

L is a matrix with rank(L) = 7.
e S=M" eiejT is a matrix with a single non-zero entry M at position (i, j), where M >
1L l2.

We analyze the minimal Frobenius and infinity-norm error for three approximation methods: LoRA
(Hrora), Kronecker (H o), and VQ (Hy ).

Lemma 1 (Error Bound for LoRA). The minimal Frobenius error for the best rank-r approximation
of H is lower-bounded by the magnitude of the outlier:

mnl?(ﬂg[f)lgr I — Hrorallp = (M)
Proof. We have (Horn & Johnson, [2012)):
1ELorallr = (L — Hrora) + S|lr = |IL — Hl[r + [|S]|r + 2(L + H, 5)
Since S only has non-zero entry M on (i, j):
1ELorallr = 1L — Hl|p + [[S|F +2(L = H)ij - M
Also:
15117 = 1S + 180”8y " 4o = 02407 -+ [MPP oo = M
IL—H||p~0, L—-H>~0

because both L and H has rank r. Thus, the error |Eporallp ~0+ M +2(L—H);; - M ~ M
In general, the error must be dominated by the magnitude of the outlier, which implies the minimal
error is on the order of M O

Lemma 2 (Error Bound for Kronecker Product). Let p = rank(R(L)), where R(-) is the Van
Loan-Pitsianis rearrangement. The minimal Frobenius-norm error for the best p-term Kronecker
approximation of H is lower-bounded by the magnitude of the outlier:

min ||H — Hironl||lr = QM)

p-term
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Proof. The proof follows the same logic as Lemma [I] but in the rearranged space. A Kronecker
approximation Hy o, = A ® B is equivalent to a rank-1 approximation of the rearranged matrix
R(H). The best such approximation is given by the truncated SVD of R(H).

Let R be the best rank-1 approximation of R(H). The minimal squared Frobenius-norm error is
given by the Eckart-Young-Mirsky theorem:

min || H — Hicpon| [ = min |[R(H) — Rl = S o (R(H))? (17)

p-term
k>2

The sum of non-negative terms is always greater than or equal to its largest term. In this case, the
largest term in the sum is the first one, corresponding to k£ = 2.

> on(R(H))* > o2(R(H))? (18)

E>2

Therefore, we only need to show that the (2)-th singular value of R(H) is lower-bounded by the
magnitude of the outlier.

According to Van Loan-Pitsianis rearrangement’s property (Van Loan & Pitsianis,|1993)), we have:
R(H)=R(L+S)=R(L)+ R(S)

Here, we have rank(R(L)) = 1. R(S) is the rearrangement of a single-entry matrix, which is also
a single-entry matrix of the form M - ei/eJT,. Thus, R(S) is also a rank-1 matrix with spectral norm
[|R(S)||2 = M. Given that R(L) is a rank-1 matrix (02 (R(L)) = 0) and the perturbation R(S) has
a large norm (|| R(S)||2 = M), the 2-th singular value of their sum is lower-bounded by a significant
value related to the perturbation. For an incoherent perturbation, it can be shown that:

02(R(H)) = 02(R(L) + R(S5)) = QM) (19)
O

Lemma 3 (Error Bound for VQ). The minimal infinity-norm error for a VQ approximation of H
with a codebook of size N has an upper bound that is independent of the outlier magnitude M :

in ||H — Hyosl||leo = O(N~Y*
o | vasl| ( )

where s is the dimension of the VQ blocks.

This has been proved in Appendix[A.6|

Theorem 1 (Comparative Analysis). For a matrix with a large sparse outlier as defined, VQ offers
an asymptotically superior approximation in the infinity norm compared to LoRA and Kronecker
Product approximation.

tin | Bl < uin ||| ~ min [|Er

Proof. From Lemma (1| and Lemma [2] the minimal error for both LoRA and Kronecker is lower-
bounded by a large constant of order Q(M). From Lemma (3| the minimal error for VQ is upper-

bounded by a term O(N~1/%), which is independent of M and decreases as the codebook size N
increases.

For a sufficient outlier magnitude M (M > 1) and a reasonable codebook size N (in out experiment,
we set N = 212, S = 8), we have:

O(N~Y%) < Q(M)

The theorem follows directly by combining these bounds. VQ’s local adaptivity allows it to isolate
the outlier, while the global nature of LoORA and Kronecker approximation leads to their failure. [
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2;2 A.8 EXPERIMENT SETTING

974

975

976

977 To facilitate reproducibility, we detail the experimental settings and hyperparameters. For VQ ini-

078 tialization, a codebook of 4096 (2!2) centroids with vector dimension D = 8 is employed. Each

979 layer undergoes 100 iterations of K-Means clustering, providing a balance between search qual-

950 ity and initialization efficiency. During end-to-end fine-tuning, the codebook is optimized with the
Adam optimizer (Kingma & Bal, 2014). A unified hyperparameter configuration is adopted across

ot models: the learning rate is set to le — 2, the rounding regularization coefficient A to le — 2, and

982 the annealing schedule for 5 decreases from 20 to 2. Fine-tuning is conducted for 5000 steps, with

983 the first 10% used as a distillation-only warm-up phase to ensure stable convergence, after which

984 the rounding loss is incorporated into the training objective. All experiments are performed on 128

985 randomly sampled sequences from the C4 dataset (Raffel et al.| 2020) with length 2048. To acceler-
986 ate initialization, GPU-accelerated K-Means clustering is implemented using FAISS
987 [2025)). All experiments are conducted on a single NVIDIA RTX A6000 GPU.
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Singular Value Comparison
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Figure 5: Singular value distribution
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