

000 001 002 003 004 005 REVISITING ATOMIC ROUNDING WITH VECTORIZED 006 REPARAMETERIZATION FOR LLM QUANTIZATION 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

Paper under double-blind review
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Large language models (LLMs) quantization predominantly relies on round-to-nearest (RTN) operations as the atomic operation to map floating point (FP) weights into quantization grids. Applied at tensor-, group-, or channel-level granularities, such non-element-wise rounding is sub-optimal, as it prevents error cancellation across elements. Adaptive rounding addresses this by assigning each weight an optimized rounding parameter, but existing methods introduce an auxiliary matrix of equal size to the weights, substantially inflating computation and memory costs. Thus, we propose VQRound, which re-parameterizes the rounding matrix via vector quantization (VQ) into a compact codebook, drastically reducing trainable variables while preserving quantization fidelity. We identify the critical role of the initialization of the rounding matrix, as a proper scheme minimizes the deviation from the FP model and facilitates efficient tuning of the rounding parameters. Beyond naive layer- or block-wise optimization, we introduce a lightweight end-to-end finetuning pipeline that requires only 128 samples and enables global optimization of codebooks across all layers. Moreover, VQRound can be used as a plug-and-play replacement for atomic rounding, complementing existing quantization techniques to further enhance accuracy. Experiments on billion-parameter models, including OPT, LLaMA, and Qwen, show that VQRound achieves competitive performance under 4-bit, 3-bit, or even 2-bit quantization with as few as 0.2% of the learnable parameters of prior adaptive rounding methods.

1 INTRODUCTION

Large language models (LLMs) have pushed the boundaries of natural language processing, but their rapid growth in parameters and context length comes with prohibitive compute and memory costs (Kwon et al., 2023). Low-bit weight quantization has emerged as a crucial tool to reduce model size and inference latency while preserving task performance, enabling more scalable and efficient deployment of LLMs. Existing methods such as GPTQ (Frantar et al., 2023) and QuaRot (Ashkboos et al., 2024) can achieve near lossless 4-bit quantization on large models. However, most quantization pipelines treat various components (*e.g.*, rounding strategy, grouping schemes, outlier handling) in isolation, which complicates their integration and limits overall efficiency.

A fundamental atomic operation in all quantization algorithms is rounding, which maps each floating-point weight to a nearby quantized value. The prevailing approach is round-to-nearest (RTN), which can be applied at the tensor, group, or channel level (Egiazarian et al., 2024; Frantar et al., 2023; Liu et al., 2025; Tseng et al., 2024). While simple, RTN independently rounds each weight and is theoretically suboptimal for minimizing global error. Nagel et al. (2020) pointed out that the task loss increase induced by quantization can be approximated by a quadratic form $\Delta\mathbf{w}^\top \cdot \mathbf{H}(\mathbf{w}) \cdot \Delta\mathbf{w}$. When \mathbf{H} has non-zero off-diagonal entries, the quantization error of different weights interacts via cross terms $\Delta w_i \Delta w_j$. In such cases, the optimal rounding decision for one weight depends on the rounding of others, meaning that strictly local (per-weight) rounding cannot exploit cross-element error cancellation. This insight motivates adaptive rounding that assign each weight an optimized rounding direction to jointly minimize the overall quantization error.

Several prior works proposed adaptive rounding schemes (Hubara et al., 2020; Nagel et al., 2020; Kim et al., 2024; Lee et al., 2024; 2025) by introducing a learnable rounding matrix that determines, for each weight, whether to round up or down from the nearest quantization bin. While effective

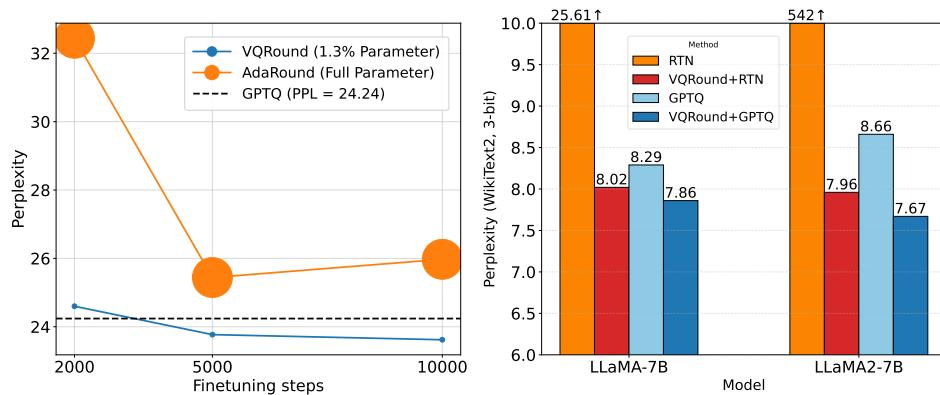


Figure 1: **Left:** Convergence behavior of Adarround and VQRound on OPT-350M under same steps; **Right:** WikiText2 perplexity of LLaMA-7B and LLaMA2-7B under 3-bit quantization.

on smaller networks (*e.g.*, 4-bit CNN quantization in AdaRound (Nagel et al., 2020), these methods scale poorly to LLMs because the rounding matrix is the same size as the weight matrix. This not only inflates memory and computation overhead, but also creates a huge solution space that is difficult to optimize (Shao et al., 2024; Ding et al., 2025). As a result, existing adaptive rounding approaches struggle to converge or yield marginal gains when applied to billion-parameter models. In practice, due to the difficulty of globally optimizing so many rounding parameters, many PTQ methods still resort to layer-wise or block-wise calibration (Nagel et al., 2020; Ding et al., 2025; Frantar et al., 2023), which breaks the problem into smaller subproblems at the cost of potentially losing global error cancellation benefits.

In this work, we address these limitations with VQRound, a new adaptive rounding framework tailored for large LLMs. The key idea is a vectorized reparameterization of the rounding matrix using vector quantization (VQ). Instead of assigning an independent learnable parameter to each weight, we represent the entire rounding matrix via a compact codebook. Each small group of weights is associated with a code from this codebook, whose entries encode rounding decisions. This design drastically shrinks the number of trainable parameters typically to around 0.2% of billion-parameter models, what naive per-weight rounding would require, thereby reducing the optimization complexity. Crucially, we find that proper initialization of the rounding codebook is vital for efficient convergence. By initializing the codebook such that the resulting quantized weights closely approximate the original full-precision weights, we minimize the initial quantization error and provide a strong starting point for subsequent fine-tuning. This careful initialization helps avoid bad local minima and accelerates the learning of rounding parameters. We demonstrate both theoretically and empirically that the proposed method is superior to other efficient reparameterization methods such as singular value decomposition (SVD) (Ding et al., 2025) and Kronecker product decomposition (Edalati et al., 2022).

Beyond the parameter reduction, VQRound introduces a lightweight end-to-end (E2E) fine-tuning stage to fully exploit cross-layer interactions. Instead of optimizing rounding in each layer independently, we jointly fine-tune all codebooks across the network using only a small calibration dataset (128 samples). In contrast to prior block-wise reconstructions, our E2E approach treats the quantized model’s error holistically, yielding better accuracy with negligible data or compute overhead.

Moreover, VQRound is also designed as a plug-and-play component that can integrate with existing quantization workflows. Because it focuses solely on replacing the atomic rounding operation, it can complement orthogonal techniques such as group-wise quantization, outlier suppression (*e.g.*, weight clipping or rotation), and error compensation. Practically, one can insert VQRound into a standard PTQ pipeline (in place of RTN) to boost accuracy without modifying other parts of the algorithm. Our experiments on diverse LLMs (including, OPT (Zhang et al., 2022), LLaMA (Touvron et al., 2023a), LLaMA2 (Touvron et al., 2023b) and Qwen-3 (Yang et al., 2025)) show that VQRound consistently improves low-bit (4-bit, 3-bit, even 2-bit) quantization performance.

In summary, the main contributions of this paper are as follows:

- We propose VQRound, a novel vectorized reparameterization of the rounding matrix that drastically reduces the number of learned parameters (to around 0.2% of billion-parameter models)

108 while preserving fidelity. A careful initialization scheme is used to ensure the rounding codebook
 109 starts close to the full-precision model, which is critical for fast convergence.
 110 • We theoretically analyze why the vectorized reparameterization method is superior to other effi-
 111 cient reparameterization methods, such as SVD and Kronecker product decomposition. Empiri-
 112 cal results also support the theoretical analysis.
 113 • We develop a lightweight end-to-end fine-tuning pipeline that globally optimizes all rounding
 114 codebooks using minimal calibration data.
 115 • VQRound is designed as a modular drop-in replacement for standard rounding operations, mak-
 116 ing it compatible with and complementary to existing quantization frameworks.

117

118 2 RELATED WORK

119

120 2.1 ATOMIC ROUNDING

121

122 Rounding is the atomic operation in almost all LLM quantization algorithms (in contrast, vec-
 123 tor quantization addresses a sphere packing problem via K-means clustering or nearest-neighbor
 124 search Egiazarian et al. (2024); Tseng et al. (2024). Thus, rounding is not needed). Delicate quanti-
 125 zation methods typically employ round-to-nearest (RTN) as the atomic operation at different gran-
 126 ularities, *i.e.*, per-tensor, per-group, per-channel, or even element-wise. Despite its central role, few
 127 studies investigate how to optimize rounding itself for efficient and accurate LLM quantization. Re-
 128 cent work shows that stochastic rounding (Croci et al., 2022) and adaptive rounding (Gupta et al.,
 129 2015) can effectively cancel out quantization error, yielding better solutions than RTN.

130

131 In particular, adaptive rounding replaces rigid nearest-neighbor rounding with learnable or opti-
 132 mized rounding functions that minimize task-relevant reconstruction loss. Early works such as
 133 AdaRound (Nagel et al., 2020) demonstrated that optimized rounding enables 4-bit quantization of
 134 CNNs, while subsequent methods like AdaQuant (Hubara et al., 2020) and BRECO (Li et al., 2021)
 135 extended the framework with more flexible formulations, error metrics, and data-aware objectives.
 136 However, these do not show that adaptive rounding is ripe for scaling up in LLM quantization. Even
 137 though existing efforts such as (Lee et al., 2024) and (Lee et al., 2025) have made attempts to apply
 138 adaptive rounding in LLMs, the problems that will arise in scaling up are unavoidable. For example,
 139 (Shao et al., 2024) mentioned that the rounding matrix is hard to optimize in LLM due to its huge
 140 solution space. What’s more, the reconstruction is usually block-by-block (Wu et al., 2025), which
 141 would bring potentially high costs on large models.

142

143 2.2 VECTOR QUANTIZATION

144

145 Beyond model quantization, vector quantization has been widely adopted as a discrete represen-
 146 tation learning mechanism in generative modeling. VQ-VAE (van den Oord et al., 2017) learns a
 147 discrete latent codebook that supports high-fidelity reconstruction and autoregressive priors, while
 148 VQ-GAN (Esser et al., 2021) couples a learned codebook in order to synthesize high-resolution im-
 149 ages. In embodied AI, UniAct (Zheng et al., 2025) introduces a universal action space and action
 150 tokenizer that discretizes continuous robot controls into transferable action tokens.

151

152 VQ has emerged as a powerful alternative to scalar quantization for compressing large models.
 153 Unlike scalar methods that treat weights independently, VQ learns a codebook of representative
 154 vectors and maps groups of parameters to code indices. Recent methods adapt VQ to LLMs.
 155 AQML (Egiazarian et al., 2024) performs input-adaptive multi-codebook quantization. VPTQ (Liu
 156 et al., 2024) introduces a second-order optimization framework. QuIP# (Tseng et al., 2024) com-
 157 bines Hessian-aware compression with task-aware reconstruction. While effective at very low bit-
 158 widths, these approaches typically require expensive Hessian estimation or multi-codebook cluster-
 159 ing, making them computationally and memory intensive for PTQ. Different from the previous work,
 160 we use VQ to reparameterize the rounding matrix, which proves to be both efficient and accurate.

161

162 3 METHODOLOGY

163

164 In this section, we introduce the details of VQRound, which dramatically improves the efficiency of
 165 adaptive rounding. We utilize a vector codebook to reparameterize the rounding matrix as illustrated

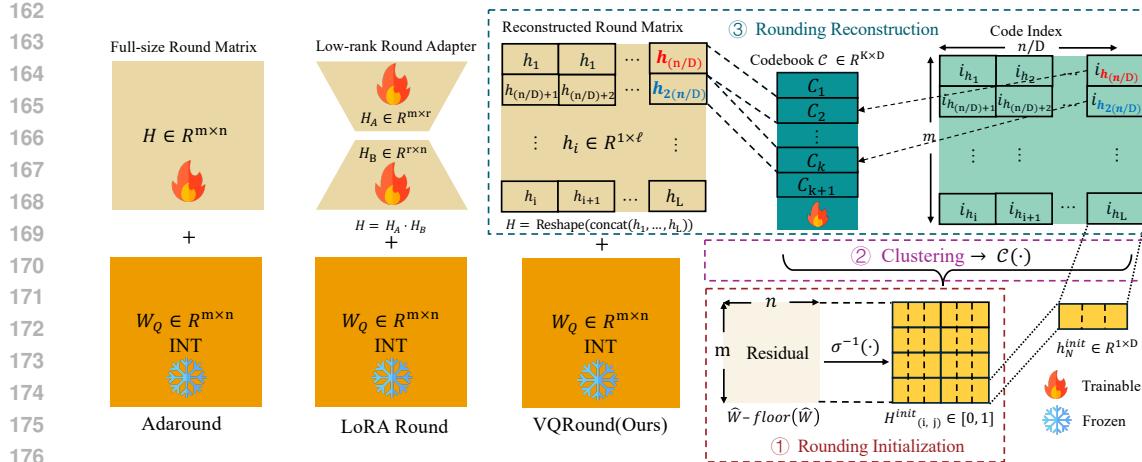


Figure 2: Comparison of different rounding strategies (Adaround (Nagel et al., 2020), LoRA Round and VQRound). Rounding matrix is initialized by the residual of quantized matrix \hat{W} and its floored $\text{floor}(\hat{W})$ and $\sigma^{-1}(\cdot)$ is the inverse rectified sigmoid transform. In VQRound, only the codebook $\mathcal{C} \in \mathbb{R}^{N \times \ell}$ needs to be updated, more parameter-efficient than Adaround and LoRA Round.

in Fig. 2. In §3.2, we discuss the rationale for this approach and its optimality over other reparameterization methods. To cope with the suboptimal localized optimization of traditional adaptive rounding methods, we introduce an end-to-end finetuning approach that enables globally optimal quantization in a one-time finetuning stage in §3.4. In §3.5, we explain that VQRound can be used as a plug-and-play replacement for RTN.

Notation. We denote the weight matrix by W , its quantized form by W_Q (or simply Q), the j -th column of W by W_j , and the submatrix consisting of columns from the j -th onward (inclusive) by $W_{j:}$. Matrices are denoted by uppercase letters while scalars are represented by lowercase letters. The Hessian matrix is denoted by \mathbf{H} throughout this paper.

3.1 PRELIMINARIES

We follow standard uniform affine weight quantization. For a weight matrix $W \in \mathbb{R}^{m \times n}$ and b -bit integers, the quantized integer tensor W_Q under RTN is

$$W_Q = \text{clip}(\text{round}(\frac{W}{s}) + z, q_{\min}, q_{\max}), \quad (1)$$

where s is the (per-tensor, -group or -channel) scale, z is the zero-point, and q_{\min}, q_{\max} denote the valid integer range. RTN independently rounds each entry of W/s to its nearest integer.

Adaptive rounding. To enable error cancellation, adaptive rounding replaces the rigid RTN decision with a learnable rounding matrix $H \in [0, 1]^{m \times n}$ that controls the up/down rounding of each entry:

$$W_Q = \text{clip}\left(\left\lfloor \frac{W}{s} \right\rfloor + H + z, q_{\min}, q_{\max}\right), \quad \hat{W} = s(W_Q - z). \quad (2)$$

Here $H_{ij} = 0$ forces a round *down* (e.g., $\lfloor 2.3 \rfloor = 2$), while $H_{ij} = 1$ rounds *up* (since $\lfloor 2.3 \rfloor + 1 = 3$). H is initialized as the quantization residual, constrained to the interval $[0, 1]$, and gradually annealed toward binary values 0, 1. At the inference stage, the resulting binary matrix provides deterministic rounding decisions. Classical adaptive rounding, however, learns H as a dense matrix of the same size as W , which is impractical for LLMs.

Element-wise Error. In matrix approximation, the Frobenius norm $\|E\|_F = (\sum_{i,j} |E_{ij}|^2)^{1/2}$ measures the global energy of the error. For LLM quantization, however, such an energy-based metric can be misleading. The weight distributions in LLMs are often heavy-tailed, meaning that even if $\|E\|_F$ is small, a few large local errors can still occur and dominate the degradation in model performance. Let H be the target (full-precision) rounding matrix, \hat{H} its approximation (quantized rounding matrix), and $E = H - \hat{H}$ the error. We emphasize the element-wise worst-case error,

216 defined as $\|E\|_{\max} \triangleq \max_{i,j} |E_{ij}|$, and relate it to more global norms. For any matrix E , we have:
 217

$$218 \quad \|E\|_{\max} \leq \|E\|_2 \leq \|E\|_F, \quad (3)$$

219 where $\|\cdot\|_2$ denotes the spectral norm. The first inequality follows from evaluating $x^\top E y$ on canonical
 220 basis vectors, and the second is the standard relationship between spectral and Frobenius norms
 221 (see Appendix A.4 for a proof). Thus, controlling $\|E\|_{\max}$ is at least as stringent as controlling
 222 $\|E\|_2$, and it also implies a bound on $\|E\|_F$. In practice, prioritizing a small $\|E\|_{\max}$ (i.e., minimizing
 223 the worst-case per-weight error) curbs outlier rounding decisions and has been found to correlate
 224 better with downstream performance (e.g. lower perplexity in language modeling).

225 **3.2 VECTORIZED REPARAMETERIZATION**

226 Optimizing a full rounding matrix $H \in [0, 1]^{m \times n}$ assigns one learnable variable to every weight
 227 and is therefore impractical at billion scale: the search space is $\mathcal{O}(mn)$ and the memory/compute
 228 footprint grows accordingly, making adaptive rounding pipelines slow or even infeasible on large
 229 LLMs. To address this, we propose a vectorized reparameterization of the rounding matrix that
 230 is far more parameter-efficient than AdaRound. In particular, we reparameterize H using vector
 231 quantization (VQ), so that only a small codebook of vectors is learned.

232 We divide H into L vectors of length D , $\{h_\ell \in \mathbb{R}^D\}_{\ell=1}^L$ (so $L \cdot D = mn$), and learn a codebook
 233 $\mathcal{C} = \{c_1, \dots, c_K\} \subset \mathbb{R}^D$ with $K \ll L$. Each vector is assigned to its nearest centroid
 234

$$235 \quad i_\ell = \arg \min_{k \in \{1, \dots, K\}} \|h_\ell - c_k\|_2^2, \quad h_\ell^{\text{VQ}} = c_{i_\ell},$$

236 yielding the VQ-based reconstruction of the rounding matrix $H_{\text{VQ}} = \text{reshape}([c_{i_1}, \dots, c_{i_L}])$. In
 237 forward passes, the substitution is a table lookup; only the codebook vectors $\{c_k\}$ are trainable.
 238 This reduces the number of learned parameters from $\mathcal{O}(mn)$ to $\mathcal{O}(KD)$ and the stored assignment
 239 to $L \lceil \log_2 K \rceil$ bits, while preserving local flexibility within each block.

240 Let $E_{\text{VQ}} = H - H_{\text{VQ}}$ be the quantization error after applying the codebook. Because each block h_ℓ is
 241 replaced by a single centroid c_{i_ℓ} , the worst-case error over all weights is bounded by the largest error
 242 within any block: $\|E_{\text{VQ}}\|_\infty = \max_\ell \|h_\ell - c_{i_\ell}\|_\infty$. We can further prove that under mild regularity
 243 assumptions on the block distribution (see Appendix A.6), the minimum achievable worst-case error
 244 decays polynomially with the codebook size K and exponentially with the block dimension D , i.e.,
 245

$$246 \quad \inf_{|\mathcal{C}|=K} \|E_{\text{VQ}}\|_\infty = \mathcal{O}(K^{-1/D}). \quad (4)$$

247 Larger codebooks (or smaller block sizes D) enable finer local adjustments, directly reducing the
 248 worst-case error $\|E\|_\infty$. In contrast, low-rank approximations such as SVD or Kronecker decom-
 249 position minimize the global energy metric $\|E\|_F$, which satisfy Eq. 3 but provide no guarantee on
 250 element-wise deviations. As a result, they may achieve small $\|E\|_F$ yet leave large local residuals,
 251 especially under heavy-tailed weight distributions. Our VQ-based reparameterization explicitly
 252 controls $\|E\|_\infty$, making it more robust to outliers. Empirically, we observe significantly smaller
 253 element-wise residuals after VQ initialization than with SVD or Kronecker decomposition (Fig. 4).

254 We can also prove a formal inequality to compare the best achievable worst-case error under our VQ
 255 approach versus low-rank methods (details in Appendix A.3 and A.7). In particular, we show that
 256 for a given budget of N parameters, the minimum $\|\cdot\|_\infty$ error attainable with a codebook of size N
 257 is asymptotically smaller than what any rank-constrained method can achieve:

$$258 \quad \min_{|\mathcal{C}|=N} \|E_{\text{VQ}}\|_\infty \lesssim O(N^{-1/s}) < \min \|E_{\text{LoRA/Kron}}\|_\infty \leq \sigma_{r+1}; \quad \sigma_{r+1} \rightarrow \sigma_2(\text{Kronecker}) \quad (5)$$

259 by defining the LoRA and Kronecker rounding approximation as:
 260

$$261 \quad H_{\text{LoRA}} = AB^\top, \quad A \in \mathbb{R}^{m \times r}, B \in \mathbb{R}^{n \times r}, \quad (6)$$

$$262 \quad H_{\text{Kron}} = A \otimes B, \quad A \in \mathbb{R}^{a \times c}, B \in \mathbb{R}^{b \times d}, \quad (7)$$

263 where $m = a \times b$, $n = c \times d$. Through the above approach, we have transformed the optimization
 264 of a rounding matrix with the same weight into the optimization of a vector codebook \mathcal{C} , thereby
 265 achieving a reduction in parameters. For codebook initialization-based clustering, we perform a
 266 K-means search on the codebook of each layer.

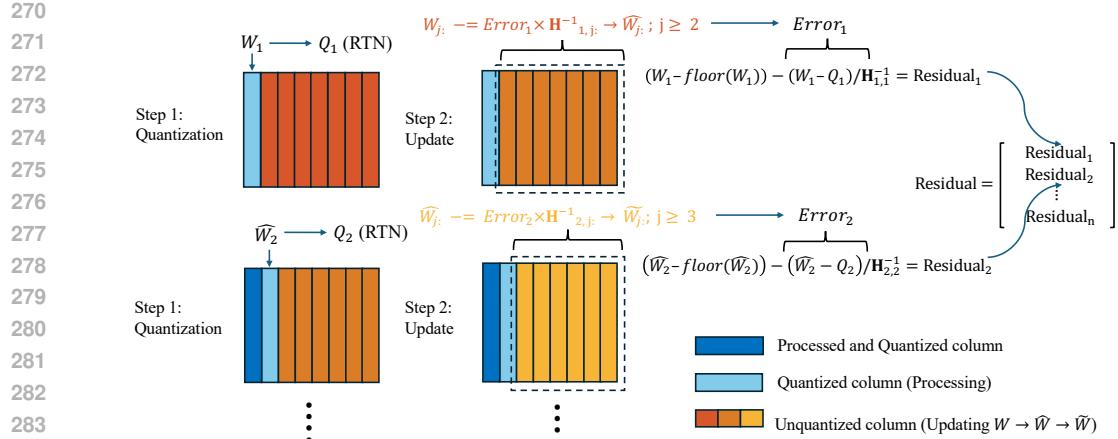


Figure 3: Initialization of rounding matrix based on residual before inverse rectified sigmoid.

3.3 ROUNDING INITIALIZATION

We find that the initialization of the rounding matrix is decisive for adaptive rounding: with identical training schedules, different initializations can lead to remarkably different final perplexities. Because rounding parameters determine whether each weight rounds up or down, a poor starting point can induce unstable optimization, slow convergence, and suboptimal rounding patterns that accumulate large quantization error. An effective initialization should (i) reduce inference error from the outset and (ii) explicitly control the worst-case element-wise deviation, *i.e.*, $\|E\|_\infty$ for $E = H - \hat{H}$, so that each entry is already oriented toward a correct descent direction.

Hessian-aware residual initialization. We visualize our initialization scheme for channel-wise quantization with error compensation in Fig.3. At each step we (i) quantize the current column by RTN, (ii) form its residual, (iii) propagate a Hessian-scaled correction to the unprocessed columns, and (iv) convert the corrected residual to the initial rounding matrix through the inverse sigmoid as shown in Fig.2. This Hessian-aware initialization substantially reduces the initial deviation from the FP weights, stabilizes optimization, and yields better final quantization. Note that this initialization strategy naturally generalizes to group-wise Huang et al. (2024) or tensor-wise quantization by varying the group size. When the group spans the entire tensor, it reduces to a simple refinement of tensor-wise RTN.

3.4 END-TO-END FINETUNING

While VQ provides a compact initialization of the rounding matrix H , we observe that further E2E finetuning can directly refine the codebook \mathcal{C} , leading to better reconstruction of H and improved quantization fidelity. Different from block-wise (Nagel et al., 2020; Wu et al., 2025) or layer-wise (Frantar et al., 2023; Tseng et al., 2024) reconstruction strategies, which optimize rounding decisions locally and are prone to sub-optimal minima, our E2E scheme jointly updates the rounding parameters across all layers under a global objective. This enables cross-layer error compensation and avoids local optima caused by independent block-level calibration.

Specifically, after the initialization of H and reparameterization with VQ, we freeze the original weights and only update the codebook entries. During finetuning, a pretrained teacher model \mathcal{M}_t is used to provide reference logits. Given an input batch x , the quantized student model \mathcal{M}_s produces logits \hat{y} , while the teacher produces y . We minimize the following objective:

$$\mathcal{L} = \underbrace{\text{KL}(\text{softmax}(\hat{y}/T) \parallel \text{softmax}(y/T))}_{\text{distillation loss}} + \lambda \cdot \underbrace{\mathcal{R}(H)}_{\text{rounding regularizer}}. \quad (8)$$

The distillation loss is computed by the KL-Divergence (Kullback & Leibler, 1951) between quantized student \mathcal{M}_s and full-precision teacher model \mathcal{M}_t , where T is the temperature for distillation, and $\mathcal{R}(H)$ encourages the relaxed rounding variables to approach hard $\{0, 1\}$ decisions (*e.g.*, $\mathcal{R}(H) = \sum_{i,j} [1 - |2H_{ij} - 1|^\beta]$). During E2E finetuning, β is set as an annealing parameter which decay through steps. An excessively large beta constant can make the rounding loss difficult to

324 converge, while an excessively small rounding loss may result in an overly sharp rounding matrix,
 325 potentially leading to overfitting. The hyperparameter λ balances task fidelity and rounding conver-
 326 gence. In Alg. 1, we show how do we implement VQRound’s end-to-end finetuning process.
 327

328 3.5 PLUG-AND-PLAY REPLACEMENT 329

330 VQRound serves not only as a PTQ technique for adaptive rounding, but also as a plug-and-play
 331 module that can be seamlessly incorporated into existing weight quantization frameworks. For in-
 332 stance, when applied to GPTQ, the process begins by running GPTQ on the full-precision model
 333 to estimate the layer-wise grid parameters, including channel-wise quantization factors(scale, zero
 334 point), updated GPTQ weights, and propagated residuals as described in §3.3. Each linear layer is
 335 then replaced with a VQ module whose forward pass reconstructs weights in GPTQ format while
 336 initializing with the precomputed residuals.
 337

338 4 EXPERIMENTS 339

340 We evaluate VQRound on a diverse set of language model families, including OPT (Zhang et al.,
 341 2022), LLaMA (Touvron et al., 2023a), and LLaMA2 (Touvron et al., 2023b), which are widely
 342 adopted in both large language model applications and quantization research (Frantar et al., 2023;
 343 Egiazarian et al., 2024). To further examine its robustness, we additionally report results on the re-
 344 cent and more advanced Qwen3 model (Yang et al., 2025). We also validate the plug-and-play com-
 345 patibility of VQRound by integrating it with existing quantization frameworks such as GPTQ (Fran-
 346 tar et al., 2023) and QuaRot (Ashkboos et al., 2024), where it consistently improves performance.
 347 Detailed experimental settings are provided in Appendix A.8.

348 4.1 RESULTS 349

350 We conduct evaluations on WikiText2 (Merity et al., 2017) and C4 (Raffel et al., 2020) using per-
 351 perplexity as the primary metric. In addition, zero-shot evaluations are performed on WinoGrande (Sak-
 352 aguchi et al., 2019), PiQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), and ARC-Easy/ARC-
 353 Challenge (Clark et al., 2018), with accuracy used as the evaluation criterion.

354 As shown in Tab. 1, VQRound has shown comparable performance with GPTQ on both 4-bit and
 355 3-bit quantization, and it even outperforms GPTQ on OPT-125M, 350M, and 6.7B. When combined
 356 with GPTQ, VQRound generally improves quantization performance, outperforming GPTQ in most
 357 settings. These results validate the effectiveness of our method for low-bit quantization and highlight
 358 its plug-and-play compatibility with existing approaches. More results on the C4 dataset (Tab. 8)
 359 exhibit the same characteristics as WikiText2. Both results show that VQRound has good compen-
 360 sation on RTN and GPTQ. Experiments on QuaRot (Tab. 2) further validate the rationality of our
 361 plug-and-play design, confirming its seamless compatibility with existing quantization frameworks.
 362

363 We further evaluate VQRound on the LLaMA and LLaMA2 families (Tab. 3). At 4-bit precision, it
 364 achieves results on par with GPTQ, while at 3-bit it consistently outperforms GPTQ (e.g., reducing
 365 perplexity by 0.43 on LLaMA-7B and 0.99 on LLaMA2-7B). Under the extreme 2-bit setting where
 366 GPTQ collapses, VQRound remains stable with perplexity below 100, demonstrating its robustness
 367 and potential for ultra-low-bit quantization.

368 Table 1: OPT perplexity on Wikitext2. Lower is better.

Precision	Method	OPT Model Size					
		125M	350M	1.3B	2.7B	6.7B	13B
4 bits	FP16	Baseline	27.65	22.00	14.63	12.47	10.86
		RTN	37.29	25.94	48.17	16.92	12.10
		VQRound+RTN	30.69	23.77	15.48	13.30	11.26
		GPTQ	31.12	24.24	15.47	12.87	11.39
3 bits		VQRound+GPTQ	30.39	23.02	15.38	12.77	11.13
		RTN	1.3e3	64.57	1.3e4	1.6e4	5.8e3
		VQRound+RTN	47.02	33.63	22.67	18.57	13.72
		GPTQ	53.85	33.79	20.97	16.88	14.86
		VQRound+GPTQ	46.10	28.03	19.13	15.55	12.45
							11.37

369 Table 2: Our plug-and-play VQRound
 370 on QuaRot improves Wikitext2 per-
 371 perplexity under W4A16 asymmetric
 372 quantization (Ashkboos et al., 2024).

Method	LLaMA	LLaMA2
	7B	7B
FP16	5.68	5.47
RTN	7.94	6.99
QuaRot+RTN	7.46	6.76
QuaRot+VQRound	5.98	5.84

378
379
380 Table 3: LLaMA family perplexity on Wikitext2 and C4.
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

Precision	Method	LLaMA-7B		LLaMA-13B		LLaMA2-7B		LLaMA2-13B	
		WikiText2	C4	WikiText2	C4	WikiText2	C4	WikiText2	C4
FP16	Baseline	5.68	7.34	5.09	6.80	5.47	7.26	4.88	6.73
4 bits	RTN	6.29	8.12	5.53	7.23	6.12	8.17	5.21	7.14
	VQRound+RTN	6.13	7.88	5.42	7.17	5.90	7.88	5.19	7.13
	GPTQ	6.17	7.80	5.37	7.28	6.06	7.84	5.16	7.03
	VQRound+GPTQ	6.08	7.78	5.40	7.10	5.85	7.79	5.18	7.06
3 bits	RTN	25.61	30.86	11.78	14.46	542.0	527.2	10.69	13.87
	VQRound+RTN	8.02	10.29	6.71	8.88	7.96	10.54	6.58	8.94
	GPTQ	8.29	10.51	6.73	8.83	8.66	11.24	6.55	8.76
	VQRound+GPTQ	7.86	9.95	6.46	8.47	7.67	10.05	6.33	8.57
2 bits	RTN	1.1e5	1.1e5	5.7e4	5.9e4	1.8e4	5.1e4	2.8e4	5.3e4
	VQRound+RTN	65.41	43.52	47.57	31.53	84.07	56.67	68.27	38.54
	GPTQ	1.0e4	872.7	3.7e3	809.7	7.5e3	1.7e3	2.1e3	560.7
	VQRound+GPTQ	64.82	37.49	34.62	25.20	73.08	45.13	48.29	29.68

395 Table 4: Qwen3 perplexity on Wikitext2 and C4.
396
397
398
399
400
401
402
403
404

Precision	Method	0.6B		1.7B		4B		8B	
		WikiText2	C4	WikiText2	C4	WikiText2	C4	WikiText2	C4
FP16	Baseline	20.96	30.31	16.67	22.36	13.64	19.83	9.72	15.42
4 bits	RTN	37.39	51.69	28.26	32.45	17.47	24.57	12.01	18.48
	VQRound+RTN	25.55	35.30	16.97	25.08	13.57	21.59	10.33	16.76
	GPTQ	30.05	42.71	25.60	30.68	14.82	20.88	10.59	16.43
	VQRound+GPTQ	24.72	34.28	17.00	24.15	13.73	20.93	10.18	16.28

405 As shown in Tab. 4, VQRound demonstrates clear advantages on the Qwen3 family. It consistently
406 mitigates the degradation of RTN and complements GPTQ, yielding stable improvements across
407 model scales, with only negligible gaps in rare cases (e.g., C4 on Qwen3-4B). This confirms that
408 VQRound generalizes effectively to modern architectures.

409 We report zero-shot evaluation on five commonsense reasoning benchmarks in Tab. 5. As expected,
410 quantization introduces some degradation, yet VQRound achieves performance largely comparable
411 to GPTQ. Even for LLaMA2-13B, where the average gap to the full-precision model is the largest,
412 the difference remains within 2%. These results confirm that VQRound preserves strong general-
413 ization ability across downstream reasoning tasks.

414 Table 5: 4 bit zero-shot accuracy (%) on commonsense benchmarks. Higher is better.
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Model	Method	WinoGrande↑	PiQA↑	HellaSwag↑	ArcE↑	ArcC↑	Average↑
LLaMA-7B	FP16	69.93	78.67	56.97	75.21	41.89	64.53
	VQRound+RTN	70.01	77.53	55.36	73.86	39.25	63.20
	GPTQ	69.93	77.86	55.99	74.12	39.51	63.48
	VQRound+GPTQ	68.59	78.18	55.17	73.44	40.10	63.10
LLaMA-13B	FP16	72.77	79.16	59.92	77.40	46.42	67.13
	VQRound+RTN	71.59	78.51	58.45	76.52	45.05	66.02
	GPTQ	72.77	79.11	58.98	76.26	45.39	66.50
	VQRound+GPTQ	72.85	78.84	58.78	75.72	45.65	66.37
LLaMA2-7B	FP16	69.06	78.07	57.13	76.30	43.43	64.80
	VQRound+RTN	68.11	76.88	55.55	73.36	40.27	62.83
	GPTQ	68.59	76.88	55.87	75.13	41.13	63.52
	VQRound+GPTQ	68.35	77.20	55.47	73.86	40.27	63.03
LLaMA2-13B	FP16	72.38	79.05	60.07	79.38	48.46	67.87
	VQRound+RTN	72.22	78.94	59.21	77.65	45.90	66.78
	GPTQ	70.96	78.02	58.74	77.44	45.90	66.21
	VQRound+GPTQ	72.14	78.73	59.14	78.11	45.39	66.70

432
 433 Table 6: Initialization Comparison on Perplexity. (a) Residual initialization comparison on different
 434 weight integer calculation. (b) Rounding strategy comparison across LoRA Round with Kaiming or
 435 SVD initialization, Kronecker product, and Vector codebook. For LoRA, we use rank=64.

(a) Residual initialization.				(b) Rounding matrix initialization on OPT-125M.			
Init Method	OPT Model Size				Method	Init Eval	
	125M		350M			Soft	Hard
	Soft	Hard	Soft	Hard			
W/s	28.54	38.58	22.63	28.42	LoRA (Kaiming)	90.82	5665.40
W_Q/s	63.54	58.04	23.95	27.92	LoRA (SVD)	128.11	35.08
W_Q/s w. \mathbf{H}	46.11	40.85	23.42	24.36	Kronecker	156.47	5665.40
					VQ	28.54	38.58

444 Table 7: (a) Trainable parameters comparison between AdaRound and VQRound. OOM means out
 445 of memory, and NAN means no result. (b) VQRound 4-bit results for different codebook settings on
 446 OPT-1.3B. K stands for the total number of codebook centroids, and D is the length of each vector.

(a) Trainable parameters comparison.				(b) Codebook setting comparison.			
Model	Trainable Params		VQ/Ada Ratio (%)	Codebook Setting	PPL		
	AdaRound	VQRound			WikiText2	C4	
OPT-1.3B	1.21B	4.72M	0.39%	$K = 2^{12}, D = 4$	15.84	17.10	
OPT-2.7B	2.16B	6.29M	0.29%	$K = 2^{12}, D = 8$	15.48	17.28	
LLaMA-7B	6.48B	7.34M	0.11%	$K = 2^{16}, D = 4$	15.73	17.11	
LLaMA-13B	OOM	9.18M	NAN	$K = 2^{16}, D = 8$	16.13	17.23	

456 4.2 ABLATION STUDY

457 We investigate the impact of different initialization strategies on model performance. As discussed in
 458 §3.3 and §3.2, initialization plays a critical role in effective optimization. In our ablations, we exam-
 459 ine alternative designs for both the residual and the rounding matrix (Fig. 2). For residual represen-
 460 tation, we consider two factors: whether to incorporate the original full-precision weights W_{FP} and
 461 whether to leverage Hessian information \mathbf{H} . The results in Tab. 6a show that Hessian-informed initia-
 462 lization consistently achieves lower reconstruction error than methods without Hessian guidance.
 463 While including W_{FP} further reduces the initial error, it does not improve downstream optimization
 464 and may even hinder convergence. Finally, as reported in Tab. 6b, VQ reparameterization substan-
 465 tially outperforms LoRA Round and Kronecker-based initialization, underscoring its effectiveness
 466 as a reparameterization method.

467 We investigate the trade-off between the codebook size K and the vector dimension D . As shown
 468 in Tab. 7, the configuration with $K = 2^{12}, D = 8$ achieves the lowest perplexity on WikiText2. In
 469 contrast, using a smaller D increases the memory footprint, while a larger K leads to more trainable
 470 parameters, making $K = 2^{12}, D = 8$ a balanced choice between efficiency and performance.

472 5 CONCLUSION

473 In this work, we present VQRound, a vectorized reparameterization method for adaptive rounding in
 474 post-training quantization. By reducing the number of learnable parameters to less than 0.2% of the
 475 billion-parameter models while maintaining performance, VQRound achieves both efficiency and
 476 effectiveness. A dedicated initialization strategy further stabilizes training by aligning the codebook
 477 with the full-precision model, which is also critical for fast convergence. We provide theoretical and
 478 empirical evidence demonstrating the superiority of vectorized reparameterization over alternatives
 479 such as SVD and Kronecker decompositions. In addition, we introduce a lightweight fine-tuning
 480 pipeline that globally optimizes codebooks with limited calibration data, making the approach highly
 481 practical. Finally, VQRound is designed as a modular plug-and-play component, ensuring compati-
 482 bility with existing quantization frameworks and enabling integration with methods such as GPTQ
 483 and QuaRot. Overall, VQRound advances the design of efficient rounding mechanisms for low-bit
 484 quantization, offering a principled and versatile solution that combines theoretical rigor, empirical
 485 performance, and practical usability.

486 REFERENCES
487

488 Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Pashmina Cameron, Martin
489 Jaggi, Dan Alistarh, Torsten Hoefer, and James Hensman. Quarot: Outlier-free 4-bit inference in
490 rotated llms. In *NeurIPS*, 2024.

491 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning
492 about physical commonsense in natural language. In *AAAI*, 2020.

493

494 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
495 Oyvind Tafjord. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
496 Challenge. *arXiv preprint arXiv:1803.05457*, 2018.

497

498 Matteo Croci, Massimiliano Fasi, Nicholas J Higham, Theo Mary, and Mantas Mikaitis. Stochastic
499 rounding: implementation, error analysis and applications. *Royal Society Open Science*, 9(3):
500 211631, 2022.

501 Xin Ding, Xiaoyu Liu, Zhijun Tu, Yun Zhang, Wei Li, Jie Hu, Hanting Chen, Yehui Tang, Zhiwei
502 Xiong, Baoqun Yin, and Yunhe Wang. CBQ: Cross-block quantization for large language models.
503 In *ICLR*, 2025.

504

505 Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvassy, Pierre-
506 Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. *arXiv*
507 preprint *arxiv:2505.09388*, 2025.

508 Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. *Psychome-
509 trika*, 1(3):211–218, 1936.

510

511 Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J. Clark, and Mehdi Reza-
512 gholizadeh. KronA: Parameter efficient tuning with kronecker adapter. In *NeurIPS*, 2022.

513

514 Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Alis-
515 tarh. Extreme compression of large language models via additive quantization. In *ICML*, 2024.

516

517 Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
518 synthesis. In *CVPR*, 2021.

519

520 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. OPTQ: Accurate post-training
521 compression for generative pretrained transformers. In *ICLR*, 2023.

522

523 Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
524 limited numerical precision. In *ICML*, 2015.

525

526 Roger A. Horn and Charles R. Johnson. *Matrix Analysis*. Cambridge University Press, 2nd edition,
527 2012. ISBN 9780521548236.

528

529 Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Qinshuo Liu, Xianglong Liu, Luca Benini,
530 Michele Magno, Shiming Zhang, and Xiaojuan Qi. SliM-LLM: Salience-driven mixed-precision
531 quantization for large language models. *arXiv preprint arXiv:2405.14917*, 2024.

532

533 Itay Hubara, Yuri Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Improving post train-
534 ing neural quantization: Layer-wise calibration and integer programming. *arXiv preprint arXiv:
535 2006.10518*, 2020.

536

537 Junhan Kim, Chungman Lee, Eulrang Cho, Kyungphil Park, Ho-young Kim, Joonyoung Kim, and
538 Yongkweon Jeon. Next-level post-training quantization of hyper-scale transformers. In *NeurIPS*,
539 2024.

540

541 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR*, 2014.

542

543 Solomon Kullback and Richard A Leibler. On information and sufficiency. *The annals of mathe-
544 matical statistics*, 22(1):79–86, 1951.

540 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 541 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 542 serving with pagedattention. In *SOSP*, 2023.

543

544 Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and Dongsoo Lee. FlexRound: Learnable rounding
 545 based on element-wise division for post-training quantization. *arXiv preprint arXiv:2306.00317*,
 546 2024.

547 Jung Hyun Lee, Jeonghoon Kim, June Yong Yang, Se Jung Kwon, Eunho Yang, Kang Min Yoo, and
 548 Dongsoo Lee. LRQ: Optimizing post-training quantization for large language models by learning
 549 low-rank weight-scaling matrices. In *NAACL*, 2025.

550

551 Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
 552 Gu. BRECQ: Pushing the limit of post-training quantization by block reconstruction. In *ICLR*,
 553 2021.

554 Yifei Liu, Jicheng Wen, Yang Wang, Shengyu Ye, Li Lyra Zhang, Ting Cao, Cheng Li, and Mao
 555 Yang. VPTQ: Extreme low-bit vector post-training quantization for large language models. In
 556 *EMNLP*, 2024.

557

558 Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
 559 namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. SpinQuant: LLM quantiza-
 560 tion with learned rotations. In *ICLR*, 2025.

561 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 562 models. In *ICLR*, 2017.

563

564 Markus Nagel, Rana Ali Amjad, Mart van Baalen, Christos Louizos, and Tijmen Blankevoort. Up
 565 or down? adaptive rounding for post-training quantization. In *ICML*, 2020.

566

567 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 568 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 569 transformer. In *JMLR*, 2020.

570 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An ad-
 571 versarial winograd schema challenge at scale. In *ACM*, 2019.

572

573 Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
 574 Peng Gao, Yu Qiao, and Ping Luo. OmniQuant: Omnidirectionally calibrated quantization for
 575 large language models. In *ICLR*, 2024.

576 Hugo Touvron, Thibaut Lavit, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 577 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 578 mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and efficient foundation
 579 language models. *arXiv preprint arXiv:2302.13971*, 2023a.

580

581 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 582 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foun-
 583 dation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

584

585 Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. QuIP#: Even
 586 better LLM quantization with hadamard incoherence and lattice codebooks. In *ICML*, 2024.

587

588 Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
 589 ing. In *NeurIPS*, 2017.

590

591 Charles F. Van Loan and Nicholas P. Pitsianis. Approximation with kronecker products. In M. S.
 592 Moonen and G. H. Golub (eds.), *Linear Algebra for Large Scale and Real-Time Applications*, pp.
 593 293–314. Kluwer Academic Publishers, 1993.

594

595 Zhubuanyu Wu, Shihe Wang, Jiayi Zhang, Jiaxin Chen, and Yunhong Wang. FIMA-Q: Post-training
 596 quantization for vision transformers by fisher information matrix approximation. In *CVPR*, 2025.

594 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 595 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 596 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 597 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 598 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 599 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 600 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 601 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 602 Qiu. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.

603 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
 604 Machine Really Finish Your Sentence? In *ACL*, 2019.

605 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
 606 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
 607 Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
 608 OPT: Open pre-trained transformer language models. *arXiv preprint arXiv:2205.01068*, 2022.

609 Jinliang Zheng, Jianxiong Li, Dongxiu Liu, Yinan Zheng, Zhihao Wang, Zhonghong Ou, Yu Liu,
 610 Jingjing Liu, Ya-Qin Zhang, and Xianyuan Zhan. Universal actions for enhanced embodied foun-
 611 dation models. In *CVPR*, 2025.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A APPENDIX**
649650 **A.1 ADDITIONAL EXPERIMENT RESULT**
651652 Table 8: C4 Perplexity in OPT model family. Lower is better.
653

655 Precision	656 Method	657 OPT Model Size					
		658 125M	659 350M	660 1.3B	661 2.7B	662 6.7B	663 13B
657 FP16	Baseline	26.56	22.59	16.07	14.34	12.71	12.06
	RTN	33.91	26.21	24.51	18.43	14.36	13.36
	VQRound+RTN	28.79	24.39	17.28	15.27	13.27	12.53
	GPTQ	29.22	24.63	16.97	15.00	13.18	12.26
664 4 bits	VQRound+GPTQ	28.72	23.44	16.80	14.87	13.01	12.29
	RTN	834	55.49	5.2e3	1.1e4	5.3e3	3.1e3
	VQRound+RTN	39.76	31.40	22.57	19.28	15.57	14.37
	GPTQ	42.41	31.33	21.63	18.17	17.14	13.34
666 3 bits	VQRound+GPTQ	38.87	27.13	20.02	17.16	14.25	13.18

668 **A.2 ALGORITHM OF VQROUND END-TO-END (E2E) FINETUNING**
669670 **Algorithm 1** VQRound end-to-end finetuning

671 **Require:** Teacher model \mathcal{M}_t , Student model \mathcal{M}_s ; Frozen FP weights \mathbf{W} , per-channel scale S , zero-point
672 Z ; fixed VQ indices $I = \{i_\ell\}_{\ell=1}^L$; initial codebook $\mathcal{C} = \{c_k\}_{k=1}^K$; calibration dataset \mathcal{D} ; temperature T ;
673 rounding regularizer $\mathcal{R}(\cdot)$; regularization weight λ ; steps N ; Anneal parameter $(\beta_{\text{high}}, \beta_{\text{low}})$
674 **Freeze** all params of \mathcal{M}_s except the codebook
675 **Init Adam optimizer** on \mathcal{C}
676 **for** $t \leftarrow 1$ to N **do**
677 $x \leftarrow \text{NextSample}(\mathcal{D})$; Batch size = 1
678 $\hat{H} \leftarrow \text{Reshape}([c_{i_1}, \dots, c_{i_L}])$
679 $\hat{W} \leftarrow (\text{clip}(\lfloor W/S \rfloor + \hat{H} + Z, 0, Q_{\text{max}} - Z))$
680 $\hat{y} \leftarrow \mathcal{M}_s(x; \hat{W})$; $y \leftarrow \mathcal{M}_t(x)$
681 $\mathcal{L}_{\text{KD}} \leftarrow \text{KL}(\text{softmax}(\hat{y}/T) \parallel \text{softmax}(y/T))$
682 $\beta_t \leftarrow \text{Anneal}(\beta_{\text{hi}}, \beta_{\text{lo}}, t, N)$
683 $\mathcal{L} \leftarrow \mathcal{L}_{\text{KD}} + \lambda \mathcal{R}(\hat{H}; \beta_t)$
684 **Update** $\mathcal{C} \leftarrow \text{Adam}(\mathcal{C}, \nabla_{\mathcal{C}})$
685 **end for**

686 **A.3 EXPLANATION OF LoRA ROUND WITH SVD INITIALIZATION AND KRONECKER
687 ROUNDING**
688

689 **Low-rank Adaptation (LoRA):** When we consider parameter-efficient reparameterization methods
690 such as low-rank adaptation (LoRA), the rounding matrix H is approximated via a multiplicative
691 form:

$$692 H_{\text{LoRA}} = AB^\top, \quad A \in \mathbb{R}^{m \times r}, \quad B \in \mathbb{R}^{n \times r}. \quad (9)$$

693 Denote the approximation error by $E_{\text{LoRA}} := H - H_{\text{LoRA}}$. We can initiate the low-rank approxi-
694 mation of rounding matrix through SVD decomposition by defining $H = \sum_{k \geq 1} \sigma_k u_k v_k^\top$ with
695 $\sigma_1 \geq \sigma_2 \geq \dots$ and $H_{\text{LoRA}} = H_r = \sum_{k=1}^r \sigma_k u_k v_k^\top$. By the Eckart-Young-Mirsky theorem (Eckart
696 & Young, 1936), we have (Detailed proof in Appendix A.5):

$$697 \quad \|E_{\text{LoRA}}\|_F = \|H - H_r\|_F = \left(\sum_{k>r} \sigma_k^2 \right)^{1/2}. \quad (10)$$

702 also:

703
$$\|E_{LoRA}\|_2 = \|H - H_r\|_2 = \sigma_{r+1} \quad (11)$$

704 Hence according to Eq. 3, we have:

705
$$\|E_{LoRA}\|_\infty \leq \sigma_{r+1} \quad (12)$$

706 We can absorb that the SVD method can optimally minimize the global error through the fixed
707 Frobenius norm promised by Eckart–Young–Mirsky theorem. Yet, its infinity norm is constrained
708 by the $(r+1)$ th largest singular value. In most LLMs, due to the widespread presence of outliers in
709 weights, even when decomposing the matrix at higher ranks as shown in Fig. 5, the singular values
710 remain highly significant in relatively high rank (e.g., $r = 64$). This prevents the element-wise error
711 during quantization from being confined within a low range.712 **Kronecker Product:** Kronecker product can be used to approximate rounding matrix H by two
713 smaller matrices $A \in \mathbb{R}^{a \times c}$ and $B \in \mathbb{R}^{b \times d}$ where $m = a \cdot b, n = c \cdot d$, the rounding matrix can be
714 represented by:

715
$$H_{kron} = A \otimes B \quad (13)$$

716 Kronecker product is a relatively complex matrix operation, thus we denote its result through Van
717 Loan–Pitsiantis rearrangement (Van Loan & Pitsianis, 1993): $R(A \otimes B) = \text{vec}(A)\text{vec}(B)^\top$. By
718 doing this, we can still optimize the Kronecker product according to SVD: $R(H) = \sum_{k=1}^r \sigma_k u_k v_k^\top$.
719 Due to the properties of this rearrangement:

720
$$\|H\|_F = \|R(H)\|_F \quad (14)$$

721 Based on the conclusion from Eq. 10, we found that its Frobenius norm satisfies:

722
$$\|E_{Kron}\|_\infty \leq \|E_{Kron}\|_F = \|H - H_{Kron}\|_F = \left(\sum_{k \geq 2} \sigma_k(R(H))^2 \right)^{1/2} \quad (15)$$

723 Similarly, in the Kronecker product form, we can still only minimize the global error, its element-
724 wise error is not guaranteed.725

A.4 PROOF OF EQUATION 3

726 *Proof. Part 1: Proof of $\|E\|_\infty \leq \|E\|_2$* 727 First, we recall the definitions of the two norms. The element-wise infinity norm is the maximum
728 absolute value of any element in the matrix:

729
$$\|E\|_\infty \triangleq \max_{i,j} |E_{ij}|$$

730 Let this maximum value be achieved at the entry E_{rc} , such that $\|E\|_\infty = |E_{rc}|$.

731 The spectral norm is defined as:

732
$$\|E\|_2 \triangleq \max_{\|\mathbf{x}\|_2=1} \|E\mathbf{x}\|_2$$

733 By its definition, for any vector \mathbf{v} with $\|\mathbf{v}\|_2 = 1$, the inequality $\|E\mathbf{v}\|_2 \leq \|E\|_2$ must hold.734 Let us choose a specific unit vector. Let $\mathbf{e}_c \in \mathbb{R}^n$ be the standard basis vector with a 1 in the c -th
735 position and zeros elsewhere. Clearly, $\|\mathbf{e}_c\|_2 = 1$.736 The product $E\mathbf{e}_c$ results in the c -th column of the matrix E . Let's denote this column vector as
737 $\text{col}_c(E)$.

738
$$E\mathbf{e}_c = \begin{pmatrix} E_{1c} \\ E_{2c} \\ \vdots \\ E_{mc} \end{pmatrix}$$

739 Applying the definition of the spectral norm, we have:

740
$$\|E\|_2^2 \geq \|E\mathbf{e}_c\|^2$$

756 The squared Spectral-norm of the c -th column is the sum of the squared absolute values of its
 757 elements:

$$758 \quad 759 \quad ||E\mathbf{e}_c||_2^2 = \sum_{i=1}^m |E_{ic}|^2 \\ 760$$

761 This sum includes the term $|E_{rc}|^2$, which is the square of the infinity norm. Since all terms in the
 762 sum are non-negative:

$$763 \quad 764 \quad \sum_{i=1}^m |E_{ic}|^2 \geq |E_{rc}|^2 = (||E||_\infty)^2 \\ 765$$

766 Combining these inequalities, we get:

$$767 \quad 768 \quad ||E||_2^2 \geq ||E\mathbf{e}_c||_2^2 \geq (||E||_\infty)^2$$

769 Taking the square root of both sides yields the desired result:

$$770 \quad 771 \quad ||E||_2 \geq ||E||_\infty \\ 772$$

773 **Part 2: Proof of $||E||_2 \leq ||E||_F$**

774 We start with the definitions. The spectral norm is the largest singular value of E :

$$775 \quad ||E||_2 = \sigma_1(E)$$

776 The Frobenius norm is defined as the square root of the sum of the squared absolute values of all
 777 elements:

$$778 \quad 779 \quad ||E||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |E_{ij}|^2} \\ 780 \quad 781 \quad 782$$

783 A fundamental property of matrix norms is that the squared Frobenius norm of a matrix is equal to
 784 the sum of its squared singular values. This arises from the fact that $||E||_F^2 = \text{Tr}(E^H E)$, and the
 785 trace of $E^H E$ is the sum of its eigenvalues, which are the squared singular values of E .

$$786 \quad 787 \quad ||E||_F^2 = \sum_{k=1}^{\text{rank}(E)} \sigma_k(E)^2 \\ 788 \quad 789$$

790 Let's expand this sum:

$$791 \quad ||E||_F^2 = \sigma_1(E)^2 + \sigma_2(E)^2 + \dots + \sigma_{\text{rank}(E)}(E)^2 \\ 792$$

793 Substituting the definition of the spectral norm, $||E||_2 = \sigma_1(E)$:

$$794 \quad 795 \quad ||E||_F^2 = ||E||_2^2 + \sum_{k=2}^{\text{rank}(E)} \sigma_k(E)^2 \\ 796 \quad 797$$

798 Since all singular values are non-negative, their squares are also non-negative. Therefore, the sum
 799 of the remaining squared singular values must be non-negative:

$$800 \quad 801 \quad \sum_{k=2}^{\text{rank}(E)} \sigma_k(E)^2 \geq 0 \\ 802 \quad 803$$

804 This implies:

$$805 \quad ||E||_F^2 \geq ||E||_2^2 \\ 806$$

807 Taking the square root of both sides gives the second part of our inequality:

$$808 \quad ||E||_F \geq ||E||_2 \\ 809$$

Combining the results from Part 1 and Part 2, we have proven the complete inequality chain. \square

810 A.5 PROOF OF EQUATION 10 AND EQUATION 12
811812 *Proof.* We begin by defining the error matrix $E_r = A - A_r$.

813
814
$$E_r = \left(\sum_{k=1}^r \sigma_k \mathbf{u}_k \mathbf{v}_k^T \right) - \left(\sum_{k=1}^r \sigma_k \mathbf{u}_k \mathbf{v}_k^T \right)$$

815
816
817
818
819
820

$$= \sum_{k=r+1}^N \sigma_k \mathbf{u}_k \mathbf{v}_k^T$$

$$= \sigma_{r+1} \mathbf{u}_{r+1} \mathbf{v}_{r+1}^T + \sigma_{r+2} \mathbf{u}_{r+2} \mathbf{v}_{r+2}^T + \dots$$

821 This expression for the error matrix is the foundation for both proofs.

822 1. PROOF OF THE SPECTRAL NORM ERROR
823824 The spectral norm of a matrix, $\|M\|_2$, is defined as its largest singular value, $\sigma_1(M)$. Our goal is to
825 find the singular values of the error matrix E_r .826 The expression derived above, $E_r = \sum_{k=r+1}^N \sigma_k \mathbf{u}_k \mathbf{v}_k^T$. the singular values of the matrix E_r are
827 precisely the set $\{\sigma_{r+1}, \sigma_{r+2}, \dots, \sigma_N\}$. Thus, the largest singular value in this set is σ_{r+1} . By the
828 definition of the spectral norm:

829
830
$$\|E\|_2 = \sigma_{r+1}$$

831 This completes the first part of the proof.

832 2. PROOF OF THE FROBENIUS NORM ERROR
833834 For our error matrix $E_r = A - A_r$, from Part 1, we have already identified the singular values of
835 E_r to be $\{\sigma_{r+1}, \sigma_{r+2}, \dots, \sigma_N\}$. According to (Horn & Johnson, 2012):
836

837
838
$$\|A - A_r\|_F^2 = \sum_{k=r+1}^N \sigma_k^2$$

839

840 Taking the square root of both sides, we obtain the desired result:
841

842
843
$$\|A - A_r\|_F = \left(\sum_{k=r+1}^N \sigma_k^2 \right)^{1/2}$$

844

845 This completes the second part of the proof. □
846847 A.6 PROOF OF EQUATION 4
848849 *Proof.* The proof is established by deriving matching upper (O) bounds on the infimal covering
850 radius, $r_\infty(C)$.
851852 **1. Upper Bound ($O(N^{-1/s})$)** We establish the upper bound via a constructive proof. We de-
853 sign a specific codebook C' and show its covering radius is $O(N^{-1/s})$. The optimal codebook's
854 performance must be at least as good.
855856 Let the set Ω have a finite s -dimensional volume $V = \int_{\Omega} dx$. We can tile this volume with N
857 identical, non-overlapping s -dimensional hypercubes, $\{\mathcal{S}_k\}_{k=1}^N$. The volume of each hypercube is
858 $V_k = V/N$.859 Let L be the side length of these hypercubes. The volume of an s -dimensional hypercube is L^s .
860 Thus:

861
862
$$L^s = \frac{V}{N} \implies L = \left(\frac{V}{N} \right)^{1/s} = V^{1/s} N^{-1/s} \tag{16}$$

863

As V is a constant, the side length scales as $L = O(N^{-1/s})$.

We construct our codebook C' by placing one codeword c'_k at the center of each hypercube \mathcal{S}_k . For any vector $x \in \mathcal{S}_k$, the quantizer maps it to c'_k . The ℓ_∞ error is the maximum coordinate-wise distance from x to the center. For a hypercube of side length L , this maximum distance is $L/2$.

The covering radius of this constructed codebook is therefore:

$$r_\infty(C') = \sup_{x \in \Omega} \min_{c \in C'} \|x - c\|_\infty = \max_k \sup_{x \in \mathcal{S}_k} \|x - c'_k\|_\infty = \frac{L}{2} = O(N^{-1/s})$$

Since the infimum is the greatest lower bound, it must be less than or equal to the error of this particular construction:

$$\inf_{|C|=N} r_\infty(C) \leq r_\infty(C') = O(N^{-1/s})$$

Conclusion From the upper bound, we have $\inf r_\infty(C) \leq O(N^{-1/s})$.

$$\inf_{|C|=N} r_\infty(C) = O(N^{-1/s})$$

Thus, $\inf_{|C|=N} \|E_{VQ}\|_\infty = O(N^{-1/s})$ since $r_\infty(C) = \sup_{x \in \Omega} \min_{c \in C'} \|x - c\|_\infty = \sup_{x \in \Omega} \min_{c \in C'} \|E_{VQ}\|_\infty$. This completes the proof based on the given assumptions. \square

A.7 PROOF OF EQUATION 5

Problem Setup Let the target matrix $H \in \mathbb{R}^{m \times n}$ be defined as $H = L + S$, where:

- L is a matrix with $\text{rank}(L) = r$.
- $S = M \cdot \mathbf{e}_i \mathbf{e}_j^T$ is a matrix with a single non-zero entry M at position (i, j) , where $M \gg \|L\|_2$.

We analyze the minimal Frobenius and infinity-norm error for three approximation methods: LoRA (H_{LoRA}), Kronecker (H_{Kron}), and VQ (H_{VQ}).

Lemma 1 (Error Bound for LoRA). *The minimal Frobenius error for the best rank- r approximation of H is lower-bounded by the magnitude of the outlier:*

$$\min_{\text{rank}(\hat{H}) \leq r} \|H - H_{LoRA}\|_F = \Omega(M)$$

Proof. We have (Horn & Johnson, 2012):

$$\|E_{LoRA}\|_F = \|(L - H_{LoRA}) + S\|_F = \|L - H\|_F + \|S\|_F + 2\langle L + H, S \rangle$$

Since S only has non-zero entry M on (i, j) :

$$\|E_{LoRA}\|_F = \|L - H\|_F + \|S\|_F + 2(L - H)_{ij} \cdot M$$

Also:

$$\|S\|_F^2 = |S_{11}|^2 + |S_{12}|^2 + \dots + |S_{ij}|^2 + \dots = 0^2 + 0^2 + \dots + |M|^2 + \dots = |M|^2$$

$$\|L - H\|_F \simeq 0, \quad L - H \simeq 0$$

because both L and H has rank r . Thus, the error $\|E_{LoRA}\|_F \simeq 0 + M + 2(L - H)_{ij} \cdot M \simeq M$. In general, the error must be dominated by the magnitude of the outlier, which implies the minimal error is on the order of M . \square

Lemma 2 (Error Bound for Kronecker Product). *Let $p = \text{rank}(R(L))$, where $R(\cdot)$ is the Van Loan-Pitsianis rearrangement. The minimal Frobenius-norm error for the best p -term Kronecker approximation of H is lower-bounded by the magnitude of the outlier:*

$$\min_{p\text{-term}} \|H - H_{Kron}\|_F = \Omega(M)$$

918 *Proof.* The proof follows the same logic as Lemma 1, but in the rearranged space. A Kronecker
 919 approximation $H_{Kron} = A \otimes B$ is equivalent to a rank-1 approximation of the rearranged matrix
 920 $R(H)$. The best such approximation is given by the truncated SVD of $R(H)$.

921 Let \hat{R} be the best rank-1 approximation of $R(H)$. The minimal squared Frobenius-norm error is
 922 given by the Eckart-Young-Mirsky theorem:

$$924 \min_{p\text{-term}} \|H - H_{Kron}\|_F^2 = \min \|R(H) - \hat{R}\|_F^2 = \sum_{k \geq 2} \sigma_k(R(H))^2 \quad (17)$$

927 The sum of non-negative terms is always greater than or equal to its largest term. In this case, the
 928 largest term in the sum is the first one, corresponding to $k = 2$.

$$930 \sum_{k \geq 2} \sigma_k(R(H))^2 \geq \sigma_2(R(H))^2 \quad (18)$$

932 Therefore, we only need to show that the (2)-th singular value of $R(H)$ is lower-bounded by the
 933 magnitude of the outlier.

935 According to Van Loan-Pitsianis rearrangement's property (Van Loan & Pitsianis, 1993), we have:

$$936 \quad R(H) = R(L + S) = R(L) + R(S)$$

938 Here, we have $rank(R(L)) = 1$. $R(S)$ is the rearrangement of a single-entry matrix, which is also
 939 a single-entry matrix of the form $M \cdot \mathbf{e}_i \mathbf{e}_j^T$. Thus, $R(S)$ is also a rank-1 matrix with spectral norm
 940 $\|R(S)\|_2 = M$. Given that $R(L)$ is a rank-1 matrix ($\sigma_2(R(L)) = 0$) and the perturbation $R(S)$ has
 941 a large norm ($\|R(S)\|_2 = M$), the 2-th singular value of their sum is lower-bounded by a significant
 942 value related to the perturbation. For an incoherent perturbation, it can be shown that:

$$944 \quad \sigma_2(R(H)) = \sigma_2(R(L) + R(S)) = \Omega(M) \quad (19)$$

946 \square

948 **Lemma 3** (Error Bound for VQ). *The minimal infinity-norm error for a VQ approximation of H
 949 with a codebook of size N has an upper bound that is independent of the outlier magnitude M :*

$$951 \min_{|C|=N} \|H - H_{VQs}\|_\infty = O(N^{-1/s})$$

953 where s is the dimension of the VQ blocks.

955 This has been proved in Appendix A.6

956 **Theorem 1** (Comparative Analysis). *For a matrix with a large sparse outlier as defined, VQ offers
 957 an asymptotically superior approximation in the infinity norm compared to LoRA and Kronecker
 958 Product approximation.*

$$960 \min_{VQ} \|E\|_\infty < \min_{Kron} \|E\|_F \approx \min_{LoRA} \|E\|_F$$

962 *Proof.* From Lemma 1 and Lemma 2, the minimal error for both LoRA and Kronecker is lower-
 963 bounded by a large constant of order $\Omega(M)$. From Lemma 3, the minimal error for VQ is upper-
 964 bounded by a term $O(N^{-1/s})$, which is independent of M and decreases as the codebook size N
 965 increases.

967 For a sufficient outlier magnitude M ($M > 1$) and a reasonable codebook size N (in our experiment,
 968 we set $N = 2^{12}$, $S = 8$), we have:

$$969 \quad O(N^{-1/s}) < \Omega(M)$$

971 The theorem follows directly by combining these bounds. VQ's local adaptivity allows it to isolate
 972 the outlier, while the global nature of LoRA and Kronecker approximation leads to their failure. \square

972 A.8 EXPERIMENT SETTING
973
974
975
976

977 To facilitate reproducibility, we detail the experimental settings and hyperparameters. For VQ ini-
978 tialization, a codebook of 4096 (2^{12}) centroids with vector dimension $D = 8$ is employed. Each
979 layer undergoes 100 iterations of K-Means clustering, providing a balance between search qual-
980 ity and initialization efficiency. During end-to-end fine-tuning, the codebook is optimized with the
981 Adam optimizer (Kingma & Ba, 2014). A unified hyperparameter configuration is adopted across
982 models: the learning rate is set to $1e - 2$, the rounding regularization coefficient λ to $1e - 2$, and
983 the annealing schedule for β decreases from 20 to 2. Fine-tuning is conducted for 5000 steps, with
984 the first 10% used as a distillation-only warm-up phase to ensure stable convergence, after which
985 the rounding loss is incorporated into the training objective. All experiments are performed on 128
986 randomly sampled sequences from the C4 dataset (Raffel et al., 2020) with length 2048. To acceler-
987 ate initialization, GPU-accelerated K-Means clustering is implemented using FAISS (Douze et al.,
988 2025). All experiments are conducted on a single NVIDIA RTX A6000 GPU.

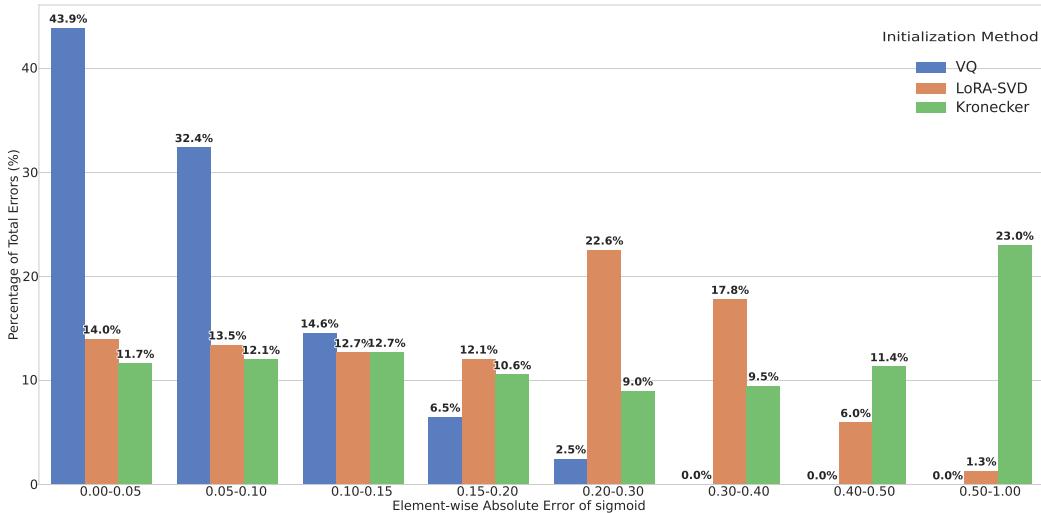
989
990
991
992
993
994
995 A.9 FIGURE
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 4: Quantization Initialization Error between different reparameterization methods. The error is computed by $\text{sigmoid}(H_{\text{init}}) - \text{sigmoid}(H_{\text{reconstruct}})$ so that the error is in $[0,1]$. Higher percentage of the low sigmoid error interval reveals lower initialization error.

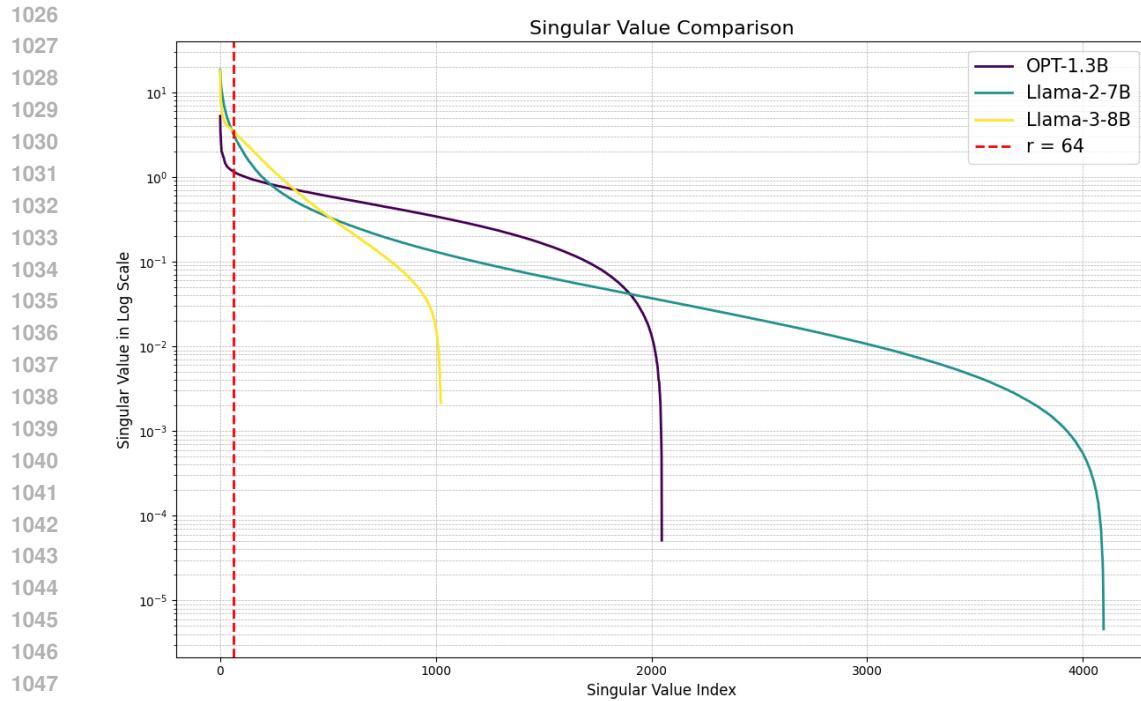


Figure 5: Singular value distribution

A.10 USE OF LLM

This paper was written with the assistance of the LLM. There are some sentences or paragraphs revised with the support of the LLM. Whereas they have been fully reviewed and verified by the author. The authors accept the academic responsibility for the content of this work, including the parts where the LLM provided assistance.