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ABSTRACT

Large language models (LLMs) quantization predominantly relies on round-to-
nearest (RTN) operations as the atomic operation to map floating point (FP)
weights into quantization grids. Applied at tensor-, group-, or channel-level gran-
ularities, such non-element-wise rounding is sub-optimal, as it prevents error can-
cellation across elements. Adaptive rounding addresses this by assigning each
weight an optimized rounding parameter, but existing methods introduce an aux-
iliary matrix of equal size to the weights, substantially inflating computation and
memory costs. Thus, we propose VQRound, which re-parameterizes the rounding
matrix via vector quantization (VQ) into a compact codebook, drastically reducing
trainable variables while preserving quantization fidelity. We identify the critical
role of the initialization of the rounding matrix, as a proper scheme minimizes the
deviation from the FP model and facilitates efficient tuning of the rounding param-
eters. Beyond naive layer- or block-wise optimization, we introduce a lightweight
end-to-end finetuning pipeline that requires only 128 samples and enables global
optimization of codebooks across all layers. Moreover, VQRound can be used as
a plug-and-play replacement for atomic rounding, complementing existing quan-
tization techniques to further enhance accuracy. Experiments on billion-parameter
models, including OPT, LLaMA, and Qwen, show that VQRound achieves com-
petitive performance under 4-bit, 3-bit, or even 2-bit quantization with as few as
0.2% of the learnable parameters of prior adaptive rounding methods.

1 INTRODUCTION

Large language models (LLMs) have pushed the boundaries of natural language processing, but
their rapid growth in parameters and context length comes with prohibitive compute and memory
costs (Kwon et al., 2023). Low-bit weight quantization has emerged as a crucial tool to reduce model
size and inference latency while preserving task performance, enabling more scalable and efficient
deployment of LLMs. Existing methods such as GPTQ (Frantar et al., 2023) and QuaRot (Ashkboos
et al., 2024) can achieve near lossless 4-bit quantization on large models. However, most quantiza-
tion pipelines treat various components (e.g., rounding strategy, grouping schemes, outlier handling)
in isolation, which complicates their integration and limits overall efficiency.

A fundamental atomic operation in all quantization algorithms is rounding, which maps each
floating-point weight to a nearby quantized value. The prevailing approach is round-to-nearest
(RTN), which can be applied at the tensor, group, or channel level (Egiazarian et al., 2024; Fran-
tar et al., 2023; Liu et al., 2025; Tseng et al., 2024). While simple, RTN independently rounds
each weight and is theoretically suboptimal for minimizing global error. Nagel et al. (2020) pointed
out that the task loss increase induced by quantization can be approximated by a quadratic form
∆w⊤ ·H(w) ·∆w. When H has non-zero off-diagonal entries, the quantization error of different
weights interacts via cross terms ∆wi∆wj . In such cases, the optimal rounding decision for one
weight depends on the rounding of others, meaning that strictly local (per-weight) rounding cannot
exploit cross-element error cancellation. This insight motivates adaptive rounding that assign each
weight an optimized rounding direction to jointly minimize the overall quantization error.

Several prior works proposed adaptive rounding schemes (Hubara et al., 2020; Nagel et al., 2020;
Kim et al., 2024; Lee et al., 2024; 2025) by introducing a learnable rounding matrix that determines,
for each weight, whether to round up or down from the nearest quantization bin. While effective
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Figure 1: Left: Convergence behavior of Adaround and VQRound on OPT-350M under same steps;
Right: WikiText2 perplexity of LLaMA-7B and LLaMA2-7B under 3-bit quantization.

on smaller networks (e.g., 4-bit CNN quantization in AdaRound (Nagel et al., 2020), these methods
scale poorly to LLMs because the rounding matrix is the same size as the weight matrix. This
not only inflates memory and computation overhead, but also creates a huge solution space that is
difficult to optimize (Shao et al., 2024; Ding et al., 2025). As a result, existing adaptive rounding
approaches struggle to converge or yield marginal gains when applied to billion-parameter models.
In practice, due to the difficulty of globally optimizing so many rounding parameters, many PTQ
methods still resort to layer-wise or block-wise calibration (Nagel et al., 2020; Ding et al., 2025;
Frantar et al., 2023), which breaks the problem into smaller subproblems at the cost of potentially
losing global error cancellation benefits.

In this work, we address these limitations with VQRound, a new adaptive rounding framework tai-
lored for large LLMs. The key idea is a vectorized reparameterization of the rounding matrix using
vector quantization (VQ). Instead of assigning an independent learnable parameter to each weight,
we represent the entire rounding matrix via a compact codebook. Each small group of weights is
associated with a code from this codebook, whose entries encode rounding decisions. This design
drastically shrinks the number of trainable parameters typically to around 0.2% of billion-parameter
models, what naive per-weight rounding would require, thereby reducing the optimization com-
plexity. Crucially, we find that proper initialization of the rounding codebook is vital for efficient
convergence. By initializing the codebook such that the resulting quantized weights closely approx-
imate the original full-precision weights, we minimize the initial quantization error and provide a
strong starting point for subsequent fine-tuning. This careful initialization helps avoid bad local
minima and accelerates the learning of rounding parameters. We demonstrate both theoretically
and empirically that the proposed method is superior to other efficient reparameterization methods
such as singular value decomposition (SVD) (Ding et al., 2025) and Kronecker product decomposi-
tion (Edalati et al., 2022).

Beyond the parameter reduction, VQRound introduces a lightweight end-to-end (E2E) fine-tuning
stage to fully exploit cross-layer interactions. Instead of optimizing rounding in each layer indepen-
dently, we jointly fine-tune all codebooks across the network using only a small calibration dataset
(128 samples). In contrast to prior block-wise reconstructions, our E2E approach treats the quantized
model’s error holistically, yielding better accuracy with negligible data or compute overhead.

Moreover, VQRound is also designed as a plug-and-play component that can integrate with existing
quantization workflows. Because it focuses solely on replacing the atomic rounding operation, it
can complement orthogonal techniques such as group-wise quantization, outlier suppression (e.g.,
weight clipping or rotation), and error compensation. Practically, one can insert VQRound into a
standard PTQ pipeline (in place of RTN) to boost accuracy without modifying other parts of the
algorithm. Our experiments on diverse LLMs (including, OPT (Zhang et al., 2022), LLaMA (Tou-
vron et al., 2023a), LLaMA2 (Touvron et al., 2023b) and Qwen-3 (Yang et al., 2025)) show that
VQRound consistently improves low-bit (4-bit, 3-bit, even 2-bit) quantization performance.

In summary, the main contributions of this paper are as follows:

• We propose VQRound, a novel vectorized reparameterization of the rounding matrix that dras-
tically reduces the number of learned parameters (to around 0.2% of billion-parameter models)
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while preserving fidelity. A careful initialization scheme is used to ensure the rounding codebook
starts close to the full-precision model, which is critical for fast convergence.

• We theoretically analyze why the vectorized reparameterization method is superior to other effi-
cient reparameterization methods, such as SVD and Kronecker product decomposition. Empiri-
cal results also support the theoretical analysis.

• We develop a lightweight end-to-end fine-tuning pipeline that globally optimizes all rounding
codebooks using minimal calibration data.

• VQRound is designed as a modular drop-in replacement for standard rounding operations, mak-
ing it compatible with and complementary to existing quantization frameworks.

2 RELATED WORK

2.1 ATOMIC ROUNDING

Rounding is the atomic operation in almost all LLM quantization algorithms (in contrast, vec-
tor quantization addresses a sphere packing problem via K-means clustering or nearest-neighbor
search Egiazarian et al. (2024); Tseng et al. (2024). Thus, rounding is not needed). Delicate quanti-
zation methods typically employ round-to-nearest (RTN) as the atomic operation at different gran-
ularities, i.e., per-tensor, per-group, per-channel, or even element-wise. Despite its central role, few
studies investigate how to optimize rounding itself for efficient and accurate LLM quantization. Re-
cent work shows that stochastic rounding (Croci et al., 2022) and adaptive rounding (Gupta et al.,
2015) can effectively cancel out quantization error, yielding better solutions than RTN.

In particular, adaptive rounding replaces rigid nearest-neighbor rounding with learnable or opti-
mized rounding functions that minimize task-relevant reconstruction loss. Early works such as
AdaRound (Nagel et al., 2020) demonstrated that optimized rounding enables 4-bit quantization of
CNNs, while subsequent methods like AdaQuant (Hubara et al., 2020) and BRECQ (Li et al., 2021)
extended the framework with more flexible formulations, error metrics, and data-aware objectives.
However, these do not show that adaptive rounding is ripe for scaling up in LLM quantization. Even
though existing efforts such as (Lee et al., 2024) and (Lee et al., 2025) have made attempts to apply
adaptive rounding in LLMs, the problems that will arise in scaling up are unavoidable. For example,
(Shao et al., 2024) mentioned that the rounding matrix is hard to optimize in LLM due to its huge
solution space. What’s more, the reconstruction is usually block-by-block (Wu et al., 2025), which
would bring potentially high costs on large models.

2.2 VECTOR QUANTIZATION

Beyond model quantization, vector quantization has been widely adopted as a discrete represen-
tation learning mechanism in generative modeling. VQ-VAE (van den Oord et al., 2017) learns a
discrete latent codebook that supports high-fidelity reconstruction and autoregressive priors, while
VQ-GAN (Esser et al., 2021) couples a learned codebook in order to synthesize high-resolution im-
ages. In embodied AI, UniAct (Zheng et al., 2025) introduces a universal action space and action
tokenizer that discretizes continuous robot controls into transferable action tokens.

VQ has emerged as a powerful alternative to scalar quantization for compressing large models.
Unlike scalar methods that treat weights independently, VQ learns a codebook of representative
vectors and maps groups of parameters to code indices. Recent methods adapt VQ to LLMs.
AQLM (Egiazarian et al., 2024) performs input-adaptive multi-codebook quantization. VPTQ (Liu
et al., 2024) introduces a second-order optimization framework. QuIP# (Tseng et al., 2024) com-
bines Hessian-aware compression with task-aware reconstruction. While effective at very low bit-
widths, these approaches typically require expensive Hessian estimation or multi-codebook cluster-
ing, making them computationally and memory intensive for PTQ. Different from the previous work,
we use VQ to reparameterize the rounding matrix, which proves to be both efficient and accurate.

3 METHODOLOGY

In this section, we introduce the details of VQRound, which dramatically improves the efficiency of
adaptive rounding. We utilize a vector codebook to reparameterize the rounding matrix as illustrated

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

𝑊! ∈ 𝑅"×$
INT

𝐻 ∈ 𝑅"×$
𝐻! ∈ 𝑅"×$

𝐻% ∈ 𝑅$×&

𝑊! ∈ 𝑅"×$
INT

Full-size Round Matrix Low-rank Round Adapter

+ +

𝑊! ∈ 𝑅"×$
INT

+

Adaround LoRA Round VQRound(Ours)

Residual

Reconstructed Round Matrix

Codebook 𝒞 ∈ 𝑅'×(
Code Index

𝐶%
𝐶&

𝐶'(%
𝐶)

%𝑊–𝑓𝑙𝑜𝑜𝑟 %𝑊 𝐻)*)+
(-, /) ∈ [0, 1]

𝜎!"(⋅)

𝑛

m

ℎ* ∈ 𝑅%×ℓ

𝐻 = Reshape(concat(ℎ!, … , ℎ"))𝐻 = 𝐻# ⋅ 𝐻$

… …

Trainable

Frozen
…

…

…

…

① Rounding Initialization

② Clustering → 𝒞(⋅)

③ Rounding Reconstruction

…
…

𝑛/D

𝑚 … …

ℎ1)*)+ ∈ 𝑅2×(

…

𝑖𝒉𝟐(𝒏/6)

𝑖𝒉(𝒏/6)𝑖$7 𝑖$8
𝑖$(&/()*+ 𝑖$(&/()*,

𝑖$9 𝑖$9:7 𝑖$;

…

𝒉(&/()ℎ"
𝒉𝟐(𝒏/()ℎ(&/()<2ℎ(&/()<=

ℎ,ℎ- ℎ-<2

ℎ"

Figure 2: Comparison of different rounding strategies (Adaround (Nagel et al., 2020), LoRA Round
and VQRound). Rounding matrix is initialized by the residual of quantized matrix Ŵ and its floored
floor(Ŵ ) and σ−1(·) is the inverse rectified sigmoid transform. In VQRound, only the codebook
C ∈ RN×ℓ needs to be updated, more parameter-efficient than Adaround and LoRA Round.

in Fig. 2. In §3.2, we discuss the rationale for this approach and its optimality over other reparam-
eterization methods. To cope with the suboptimal localized optimization of traditional adaptive
rounding methods, we introduce an end-to-end finetuning approach that enables globally optimal
quantization in a one-time finetuning stage in §3.4. In §3.5, we explain that VQRound can be used
as a plug-and-play replacement for RTN.

Notation. We denote the weight matrix by W , its quantized form by WQ (or simply Q), the j-th
column of W by Wj , and the submatrix consisting of columns from the j-th onward (inclusive) by
Wj:. Matrices are denoted by uppercase letters while scalars are represented by lowercase letters.
The Hessian matrix is denoted by H throughout this paper.

3.1 PRELIMINARIES

We follow standard uniform affine weight quantization. For a weight matrix W ∈Rm×n and b-bit
integers, the quantized integer tensor WQ under RTN is

WQ = clip(round(
W

s
) + z, qmin, qmax), (1)

where s is the (per-tensor, -group or -channel) scale, z is the zero-point, and qmin, qmax denote the
valid integer range. RTN independently rounds each entry of W/s to its nearest integer.

Adaptive rounding. To enable error cancellation, adaptive rounding replaces the rigid RTN decision
with a learnable rounding matrix H∈ [0, 1]m×n that controls the up/down rounding of each entry:

WQ = clip

(⌊W
s

⌋
+ H + z, qmin, qmax

)
, Ŵ = s (WQ − z). (2)

Here Hij = 0 forces a round down (e.g., ⌊2.3⌋ = 2), while Hij = 1 rounds up (since ⌊2.3⌋+1 = 3).
H is initialized as the quantization residual, constrained to the interval [0, 1], and gradually annealed
toward binary values 0, 1. At the inference stage, the resulting binary matrix provides deterministic
rounding decisions. Classical adaptive rounding, however, learns H as a dense matrix of the same
size as W , which is impractical for LLMs.

Element-wise Error. In matrix approximation, the Frobenius norm ∥E∥F =
(∑

i,j |Eij |2
)1/2

measures the global energy of the error. For LLM quantization, however, such an energy-based
metric can be misleading. The weight distributions in LLMs are often heavy-tailed, meaning that
even if ∥E∥F is small, a few large local errors can still occur and dominate the degradation in model
performance. Let H be the target (full-precision) rounding matrix, Ĥ its approximation (quantized
rounding matrix), and E = H − Ĥ the error. We emphasize the element-wise worst-case error,
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defined as ∥E∥max ≜ maxi,j |Eij |, and relate it to more global norms. For any matrix E, we have:

∥E∥max ≤ ∥E∥2 ≤ ∥E∥F , (3)

where ∥·∥2 denotes the spectral norm. The first inequality follows from evaluating x⊤Ey on canon-
ical basis vectors, and the second is the standard relationship between spectral and Frobenius norms
(see Appendix A.4 for a proof). Thus, controlling ∥E∥max is at least as stringent as controlling
∥E∥2, and it also implies a bound on ∥E∥F . In practice, prioritizing a small ∥E∥max (i.e., minimiz-
ing the worst-case per-weight error) curbs outlier rounding decisions and has been found to correlate
better with downstream performance (e.g. lower perplexity in language modeling).

3.2 VECTORIZED REPARAMETERIZATION

Optimizing a full rounding matrix H ∈ [0, 1]m×n assigns one learnable variable to every weight
and is therefore impractical at billion scale: the search space is O(mn) and the memory/compute
footprint grows accordingly, making adaptive rounding pipelines slow or even infeasible on large
LLMs. To address this, we propose a vectorized reparameterization of the rounding matrix that
is far more parameter-efficient than AdaRound. In particular, we reparameterize H using vector
quantization (VQ), so that only a small codebook of vectors is learned.

We divide H into L vectors of length D, {hℓ ∈ RD}Lℓ=1 (so L · D = mn), and learn a codebook
C = {c1, . . . , cK} ⊂ RD with K ≪ L. Each vector is assigned to its nearest centroid

iℓ = arg min
k∈{1,...,K}

∥hℓ − ck∥22, hVQ
ℓ = ciℓ ,

yielding the VQ-based reconstruction of the rounding matrix HVQ = reshape
(
[ ci1 , . . . , ciL ]

)
. In

forward passes, the substitution is a table lookup; only the codebook vectors {ck} are trainable.
This reduces the number of learned parameters from O(mn) to O(KD) and the stored assignment
to L⌈log2 K⌉ bits, while preserving local flexibility within each block.

Let EVQ = H−HVQ be the quantization error after applying the codebook. Because each block hℓ is
replaced by a single centroid ciℓ , the worst-case error over all weights is bounded by the largest error
within any block: ∥EVQ∥∞ = maxℓ ∥hℓ − ciℓ∥∞. We can further prove that under mild regularity
assumptions on the block distribution (see Appendix A.6), the minimum achievable worst-case error
decays polynomially with the codebook size K and exponentially with the block dimension D, i.e.,

inf
|C|=K

∥EVQ∥∞ = O
(
K−1/D

)
. (4)

Larger codebooks (or smaller block sizes D) enable finer local adjustments, directly reducing the
worst-case error ∥E∥∞. In contrast, low-rank approximations such as SVD or Kronecker decom-
position minimize the global energy metric ∥E∥F , which satisfy Eq. 3 but provide no guarantee on
element-wise deviations. As a result, they may achieve small ∥E∥F yet leave large local residu-
als, especially under heavy-tailed weight distributions. Our VQ-based reparameterization explicitly
controls ∥E∥∞, making it more robust to outliers. Empirically, we observe significantly smaller
element-wise residuals after VQ initialization than with SVD or Kronecker decomposition (Fig. 4).

We can also prove a formal inequality to compare the best achievable worst-case error under our VQ
approach versus low-rank methods (details in Appendix A.3 and A.7). In particular, we show that
for a given budget of N parameters, the minimum ∥ · ∥∞ error attainable with a codebook of size N
is asymptotically smaller than what any rank-constrained method can achieve:

min
|C|=N

∥EV Q∥∞ ≲ O(N−1/s) < min ∥ELoRA/Kron∥∞ ≤ σr+1; σr+1 → σ2(Kronecker) (5)

by defining the LoRA and Kronecker rounding approximation as:

HLoRA = AB⊤, A ∈ Rm×r, B ∈ Rn×r, (6)

HKron = A⊗B, A ∈ Ra×c, B ∈ Rb×d, (7)

where m = a × b, n = c × d. Through the above approach, we have transformed the optimization
of a rounding matrix with the same weight into the optimization of a vector codebook C, thereby
achieving a reduction in parameters. For codebook initialization-based clustering, we perform a
K-means search on the codebook of each layer.
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Figure 3: Initialization of rounding matrix based on residual before inverse rectified sigmoid.

3.3 ROUNDING INITIALIZATION

We find that the initialization of the rounding matrix is decisive for adaptive rounding: with identical
training schedules, different initializations can lead to remarkably different final perplexities. Be-
cause rounding parameters determine whether each weight rounds up or down, a poor starting point
can induce unstable optimization, slow convergence, and suboptimal rounding patterns that accu-
mulate large quantization error. An effective initialization should (i) reduce inference error from the
outset and (ii) explicitly control the worst-case element-wise deviation, i.e., ∥E∥∞ for E = H − Ĥ ,
so that each entry is already oriented toward a correct descent direction.

Hessian-aware residual initialization. We visualize our initialization scheme for channel-wise
quantization with error compensation in Fig.3. At each step we (i) quantize the current column by
RTN, (ii) form its residual, (iii) propagate a Hessian-scaled correction to the unprocessed columns,
and (iv) convert the corrected residual to the initial rounding matrix through the inverse sigmoid as
shown in Fig.2. This Hessian-aware initialization substantially reduces the initial deviation from
the FP weights, stabilizes optimization, and yields better final quantization. Note that this initializa-
tion strategy naturally generalizes to group-wise Huang et al. (2024) or tensor-wise quantization by
varying the group size. When the group spans the entire tensor, it reduces to a simple refinement of
tensor-wise RTN.

3.4 END-TO-END FINETUNING

While VQ provides a compact initialization of the rounding matrix H , we observe that further
E2E finetuning can directly refine the codebook C, leading to better reconstruction of H and im-
proved quantization fidelity. Different from block-wise (Nagel et al., 2020; Wu et al., 2025) or
layer-wise (Frantar et al., 2023; Tseng et al., 2024) reconstruction strategies, which optimize round-
ing decisions locally and are prone to sub-optimal minima, our E2E scheme jointly updates the
rounding parameters across all layers under a global objective. This enables cross-layer error com-
pensation and avoids local optima caused by independent block-level calibration.

Specifically, after the initialization of H and reparameterization with VQ, we freeze the original
weights and only update the codebook entries. During finetuning, a pretrained teacher model Mt is
used to provide reference logits. Given an input batch x, the quantized student model Ms produces
logits ŷ, while the teacher produces y. We minimize the following objective:

L = KL
(
softmax(ŷ/T ) ∥ softmax(y/T )

)︸ ︷︷ ︸
distillation loss

+λ· R(H)︸ ︷︷ ︸
rounding regularizer

. (8)

The distillation loss is computed by the KL-Divergence (Kullback & Leibler, 1951) between quan-
tized student Ms and full-precision teacher model Mt, where T is the temperature for distilla-
tion, and R(H) encourages the relaxed rounding variables to approach hard {0, 1} decisions (e.g.,
R(H) =

∑
i,j [1− |2Hij − 1|β ]). During E2E finetuning, β is set as an annealing parameter which

decay through steps. An excessively large beta constant can make the rounding loss difficult to
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converge, while an excessively small rounding loss may result in an overly sharp rounding matrix,
potentially leading to overfitting. The hyperparameter λ balances task fidelity and rounding conver-
gence. In Alg. 1, we show how do we implement VQRound’s end-to-end finetuning process.

3.5 PLUG-AND-PLAY REPLACEMENT

VQRound serves not only as a PTQ technique for adaptive rounding, but also as a plug-and-play
module that can be seamlessly incorporated into existing weight quantization frameworks. For in-
stance, when applied to GPTQ, the process begins by running GPTQ on the full-precision model
to estimate the layer-wise grid parameters, including channel-wise quantization factors(scale, zero
point), updated GPTQ weights, and propagated residuals as described in §3.3. Each linear layer is
then replaced with a VQ module whose forward pass reconstructs weights in GPTQ format while
initializing with the precomputed residuals.

4 EXPERIMENTS

We evaluate VQRound on a diverse set of language model families, including OPT (Zhang et al.,
2022), LLaMA (Touvron et al., 2023a), and LLaMA2 (Touvron et al., 2023b), which are widely
adopted in both large language model applications and quantization research (Frantar et al., 2023;
Egiazarian et al., 2024). To further examine its robustness, we additionally report results on the re-
cent and more advanced Qwen3 model (Yang et al., 2025). We also validate the plug-and-play com-
patibility of VQRound by integrating it with existing quantization frameworks such as GPTQ (Fran-
tar et al., 2023) and QuaRot (Ashkboos et al., 2024), where it consistently improves performance.
Detailed experimental settings are provided in Appendix A.8.

4.1 RESULTS

We conduct evaluations on WikiText2 (Merity et al., 2017) and C4 (Raffel et al., 2020) using per-
plexity as the primary metric. In addition, zero-shot evaluations are performed on WinoGrande (Sak-
aguchi et al., 2019), PiQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), and ARC-Easy/ARC-
Challenge (Clark et al., 2018), with accuracy used as the evaluation criterion.

As shown in Tab. 1, VQRound has shown comparable performance with GPTQ on both 4-bit and
3-bit quantization, and it even outperforms GPTQ on OPT-125M, 350M, and 6.7B. When combined
with GPTQ, VQRound generally improves quantization performance, outperforming GPTQ in most
settings. These results validate the effectiveness of our method for low-bit quantization and highlight
its plug-and-play compatibility with existing approaches. More results on the C4 dataset (Tab. 8)
exhibit the same characteristics as WikiText2. Both results show that VQRound has good compen-
sation on RTN and GPTQ. Experiments on QuaRot (Tab. 2) further validate the rationality of our
plug-and-play design, confirming its seamless compatibility with existing quantization frameworks.

We further evaluate VQRound on the LLaMA and LLaMA2 families (Tab. 3). At 4-bit precision, it
achieves results on par with GPTQ, while at 3-bit it consistently outperforms GPTQ (e.g., reducing
perplexity by 0.43 on LLaMA-7B and 0.99 on LLaMA2-7B). Under the extreme 2-bit setting where
GPTQ collapses, VQRound remains stable with perplexity below 100, demonstrating its robustness
and potential for ultra-low-bit quantization.

Table 1: OPT perplexity on Wikitext2. Lower is better.

Precision Method OPT Model Size
125M 350M 1.3B 2.7B 6.7B 13B

FP16 Baseline 27.65 22.00 14.63 12.47 10.86 10.13

4 bits

RTN 37.29 25.94 48.17 16.92 12.10 11.32
VQRound+RTN 30.69 23.77 15.48 13.30 11.26 10.66

GPTQ 31.12 24.24 15.47 12.87 11.39 10.31
VQRound+GPTQ 30.39 23.02 15.38 12.77 11.13 10.37

3 bits

RTN 1.3e3 64.57 1.3e4 1.6e4 5.8e3 3.4e3
VQRound+RTN 47.02 33.63 22.67 18.57 13.72 12.28

GPTQ 53.85 33.79 20.97 16.88 14.86 11.61
VQRound+GPTQ 46.10 28.03 19.13 15.55 12.45 11.37

Table 2: Our plug-and-play VQRound
on QuaRot improves Wikitext2 per-
plexity under W4A16 asymmetric
quantization (Ashkboos et al., 2024).

Method LLaMA LLaMA2
7B 7B

FP16 5.68 5.47

RTN 7.94 6.99
QuaRot+RTN 7.46 6.76
QuaRot+VQRound 5.98 5.84
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Table 3: LLaMA family perplexity on Wikitext2 and C4.

Precision Method LLaMA-7B LLaMA-13B LLaMA2-7B LLaMA2-13B

WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2 C4

FP16 Baseline 5.68 7.34 5.09 6.80 5.47 7.26 4.88 6.73

4 bits

RTN 6.29 8.12 5.53 7.23 6.12 8.17 5.21 7.14
VQRound+RTN 6.13 7.88 5.42 7.17 5.90 7.88 5.19 7.13

GPTQ 6.17 7.80 5.37 7.28 6.06 7.84 5.16 7.03
VQRound+GPTQ 6.08 7.78 5.40 7.10 5.85 7.79 5.18 7.06

3 bits

RTN 25.61 30.86 11.78 14.46 542.0 527.2 10.69 13.87
VQRound+RTN 8.02 10.29 6.71 8.88 7.96 10.54 6.58 8.94

GPTQ 8.29 10.51 6.73 8.83 8.66 11.24 6.55 8.76
VQRound+GPTQ 7.86 9.95 6.46 8.47 7.67 10.05 6.33 8.57

2 bits

RTN 1.1e5 1.1e5 5.7e4 5.9e4 1.8e4 5.1e4 2.8e4 5.3e4
VQRound+RTN 65.41 43.52 47.57 31.53 84.07 56.67 68.27 38.54

GPTQ 1.0e4 872.7 3.7e3 809.7 7.5e3 1.7e3 2.1e3 560.7
VQRound+GPTQ 64.82 37.49 34.62 25.20 73.08 45.13 48.29 29.68

Table 4: Qwen3 perplexity on Wikitext2 and C4.

Precision Method 0.6B 1.7B 4B 8B

WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2 C4

FP16 Baseline 20.96 30.31 16.67 22.36 13.64 19.83 9.72 15.42

4 bits

RTN 37.39 51.69 28.26 32.45 17.47 24.57 12.01 18.48
VQRound+RTN 25.55 35.30 16.97 25.08 13.57 21.59 10.33 16.76

GPTQ 30.05 42.71 25.60 30.68 14.82 20.88 10.59 16.43
VQRound+GPTQ 24.72 34.28 17.00 24.15 13.73 20.93 10.18 16.28

As shown in Tab. 4, VQRound demonstrates clear advantages on the Qwen3 family. It consistently
mitigates the degradation of RTN and complements GPTQ, yielding stable improvements across
model scales, with only negligible gaps in rare cases (e.g., C4 on Qwen3-4B). This confirms that
VQRound generalizes effectively to modern architectures.

We report zero-shot evaluation on five commonsense reasoning benchmarks in Tab. 5. As expected,
quantization introduces some degradation, yet VQRound achieves performance largely comparable
to GPTQ. Even for LLaMA2-13B, where the average gap to the full-precision model is the largest,
the difference remains within 2%. These results confirm that VQRound preserves strong general-
ization ability across downstream reasoning tasks.

Table 5: 4 bit zero-shot accuracy (%) on commonsense benchmarks. Higher is better.

Model Method WinoGrande ↑ PiQA ↑ HellaSwag ↑ ArcE ↑ ArcC ↑ Average ↑

LLaMA-7B

FP16 69.93 78.67 56.97 75.21 41.89 64.53
VQRound+RTN 70.01 77.53 55.36 73.86 39.25 63.20

GPTQ 69.93 77.86 55.99 74.12 39.51 63.48
VQRound+GPTQ 68.59 78.18 55.17 73.44 40.10 63.10

LLaMA-13B

FP16 72.77 79.16 59.92 77.40 46.42 67.13
VQRound+RTN 71.59 78.51 58.45 76.52 45.05 66.02

GPTQ 72.77 79.11 58.98 76.26 45.39 66.50
VQRound+GPTQ 72.85 78.84 58.78 75.72 45.65 66.37

LLaMA2-7B

FP16 69.06 78.07 57.13 76.30 43.43 64.80
VQRound+RTN 68.11 76.88 55.55 73.36 40.27 62.83

GPTQ 68.59 76.88 55.87 75.13 41.13 63.52
VQRound+GPTQ 68.35 77.20 55.47 73.86 40.27 63.03

LLaMA2-13B

FP16 72.38 79.05 60.07 79.38 48.46 67.87
VQRound+RTN 72.22 78.94 59.21 77.65 45.90 66.78

GPTQ 70.96 78.02 58.74 77.44 45.90 66.21
VQRound+GPTQ 72.14 78.73 59.14 78.11 45.39 66.70
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Table 6: Initialization Comparison on Perplexity. (a) Residual initialization comparison on different
weight integer calculation. (b) Rounding strategy comparison across LoRA Round with Kaiming or
SVD initialization, Kronecker product, and Vector codebook. For LoRA, we use rank=64.

(a) Residual initialization.

Init Method
OPT Model Size

125M 350M

Soft Hard Soft Hard

W/s 28.54 38.58 22.63 28.42
WQ/s 63.54 58.04 23.95 27.92

WQ/s w. H 46.11 40.85 23.42 24.36

(b) Rounding matrix initialization on OPT-125M.

Method Init Eval

Soft Hard

LoRA (Kaiming) 90.82 5665.40
LoRA (SVD) 128.11 35.08

Kronecker 156.47 5665.40
VQ 28.54 38.58

Table 7: (a) Trainable parameters comparison between AdaRound and VQRound. OOM means out
of memory, and NAN means no result. (b) VQRound 4-bit results for different codebook settings on
OPT-1.3B. K stands for the total number of codebook centroids, and D is the length of each vector.

(a) Trainable parameters comparison.

Model Trainable Params VQ/Ada

AdaRound VQRound Ratio (%)

OPT-1.3B 1.21B 4.72M 0.39%
OPT-2.7B 2.16B 6.29M 0.29%
LLaMA-7B 6.48B 7.34M 0.11%
LLaMA-13B OOM 9.18M NAN

(b) Codebook setting comparison.

Codebook Setting PPL

WikiText2 C4

K = 212, D = 4 15.84 17.10
K = 212, D = 8 15.48 17.28
K = 216, D = 4 15.73 17.11
K = 216, D = 8 16.13 17.23

4.2 ABLATION STUDY

We investigate the impact of different initialization strategies on model performance. As discussed in
§3.3 and §3.2, initialization plays a critical role in effective optimization. In our ablations, we exam-
ine alternative designs for both the residual and the rounding matrix (Fig. 2). For residual represen-
tation, we consider two factors: whether to incorporate the original full-precision weights WFP and
whether to leverage Hessian information H. The results in Tab. 6a show that Hessian-informed ini-
tialization consistently achieves lower reconstruction error than methods without Hessian guidance.
While including WFP further reduces the initial error, it does not improve downstream optimization
and may even hinder convergence. Finally, as reported in Tab. 6b, VQ reparameterization substan-
tially outperforms LoRA Round and Kronecker-based initialization, underscoring its effectiveness
as a reparameterization method.

We investigate the trade-off between the codebook size K and the vector dimension D. As shown
in Tab. 7, the configuration with K = 212, D = 8 achieves the lowest perplexity on WikiText2. In
contrast, using a smaller D increases the memory footprint, while a larger K leads to more trainable
parameters, making K = 212, D = 8 a balanced choice between efficiency and performance.

5 CONCLUSION

In this work, we present VQRound, a vectorized reparameterization method for adaptive rounding in
post-training quantization. By reducing the number of learnable parameters to less than 0.2% of the
billion-parameter models while maintaining performance, VQRound achieves both efficiency and
effectiveness. A dedicated initialization strategy further stabilizes training by aligning the codebook
with the full-precision model, which is also critical for fast convergence. We provide theoretical and
empirical evidence demonstrating the superiority of vectorized reparameterization over alternatives
such as SVD and Kronecker decompositions. In addition, we introduce a lightweight fine-tuning
pipeline that globally optimizes codebooks with limited calibration data, making the approach highly
practical. Finally, VQRound is designed as a modular plug-and-play component, ensuring compat-
ibility with existing quantization frameworks and enabling integration with methods such as GPTQ
and QuaRot. Overall, VQRound advances the design of efficient rounding mechanisms for low-bit
quantization, offering a principled and versatile solution that combines theoretical rigor, empirical
performance, and practical usability.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. In NeurIPS, 2024.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning
about physical commonsense in natural language. In AAAI, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
Challenge. arXiv preprint arXiv:1803.05457, 2018.

Matteo Croci, Massimiliano Fasi, Nicholas J Higham, Theo Mary, and Mantas Mikaitis. Stochastic
rounding: implementation, error analysis and applications. Royal Society Open Science, 9(3):
211631, 2022.

Xin Ding, Xiaoyu Liu, Zhijun Tu, Yun Zhang, Wei Li, Jie Hu, Hanting Chen, Yehui Tang, Zhiwei
Xiong, Baoqun Yin, and Yunhe Wang. CBQ: Cross-block quantization for large language models.
In ICLR, 2025.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
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A APPENDIX

A.1 ADDITIONAL EXPERIMENT RESULT

Table 8: C4 Perplexity in OPT model family. Lower is better.

Precision Method OPT Model Size

125M 350M 1.3B 2.7B 6.7B 13B

FP16 Baseline 26.56 22.59 16.07 14.34 12.71 12.06

4 bits

RTN 33.91 26.21 24.51 18.43 14.36 13.36
VQRound+RTN 28.79 24.39 17.28 15.27 13.27 12.53
GPTQ 29.22 24.63 16.97 15.00 13.18 12.26
VQRound+GPTQ 28.72 23.44 16.80 14.87 13.01 12.29

3 bits

RTN 834 55.49 5.2e3 1.1e4 5.3e3 3.1e3
VQRound+RTN 39.76 31.40 22.57 19.28 15.57 14.37
GPTQ 42.41 31.33 21.63 18.17 17.14 13.34
VQRound+GPTQ 38.87 27.13 20.02 17.16 14.25 13.18

A.2 ALGORITHM OF VQROUND END-TO-END (E2E) FINETUNING

Algorithm 1 VQRound end-to-end finetuning
Require: Teacher model Mt, Student model Ms; Frozen FP weights W, per-channel scale S, zero-point

Z; fixed VQ indices I = {iℓ}Lℓ=1; initial codebook C = {ck}Kk=1; calibration dataset D; temperature T ;
rounding regularizerR(·); regularization weight λ; steps N ; Anneal parameter (βhigh, βlow)
Freeze all params ofMs except the codebook
Init Adam optimizer on C
for t← 1 to N do

x← NextSample(D); Batch size = 1
Ĥ ← Reshape([ ci1 , . . . , cil ])

Ŵ ←
(
clip(⌊W/S⌋+ Ĥ + Z, 0, Qmax − Z)

)
ŷ ←Ms(x; Ŵ ); y ←Mt(x)
LKD ← KL

(
softmax(ŷ/T ) ∥ softmax(y/T )

)
βt ← Anneal

(
βhi, βlo, t, N

)
L ← LKD + λR(Ĥ;βt)
Update C ← Adam(C,∇C)

end for

A.3 EXPLANATION OF LORA ROUND WITH SVD INITIALIZATION AND KRONECKER
ROUNDING

Low-rank Adaptation (LoRA): When we consider parameter-efficient reparameterization methods
such as low-rank adaptation (LoRA), the rounding matrix H is approximated via a multiplicative
form:

HLoRA = AB⊤, A ∈ Rm×r, B ∈ Rn×r. (9)

Denote the approximation error by ELoRA := H − HLoRA. We can initiate the low-rank approx-
imation of rounding matrix through SVD decomposition by defining H =

∑
k⩾1 σkukv

⊤
k with

σ1 ≥ σ2 ≥ . . . and HLoRA = Hr =
∑r

k=1 σkukv
⊤
k . By the Eckart-Young-Mirsky theorem (Eckart

& Young, 1936), we have (Detailed proof in Appendix A.5):

∥ELoRA∥F = ∥H −Hr∥F =

(∑
k>r

σ2
k

)1/2

. (10)
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also:
∥ELoRA∥2 = ∥H −Hr∥2 = σr+1 (11)

Hence according to Eq. 3, we have:

∥ELoRA∥∞ ≤ σr+1 (12)

We can absorb that the SVD method can optimally minimize the global error through the fixed
Frobenius norm promised by Eckart–Young–Mirsky theorem. Yet, its infinity norm is constrained
by the (r+ 1)th largest singular value. In most LLMs, due to the widespread presence of outliers in
weights, even when decomposing the matrix at higher ranks as shown in Fig. 5, the singular values
remain highly significant in relatively high rank (e.g., r = 64). This prevents the element-wise error
during quantization from being confined within a low range.

Kronecker Product: Kronecker product can be used to approximate rounding matrix H by two
smaller matrices A ∈ Ra×c and B ∈ Rb×d where m = a · b, n = c · d, the rounding matrix can be
represented by:

Hkron = A⊗B (13)

Kronecker product is a relatively complex matrix operation, thus we denote its result through Van
Loan-Pitsiantis rearrangement (Van Loan & Pitsianis, 1993): R(A ⊗ B) = vec(A)vec(B)⊤. By
doing this, we can still optimize the Kronecker product according to SVD: R(H) =

∑r
k=1 σkukv

⊤
k .

Due to the properties of this rearrangement:

∥H∥F = ∥R(H)∥F (14)

Based on the conclusion from Eq. 10, we found that its Frobenius norm satisfies:

∥EKron∥∞ ≤ ∥EKron∥F = ∥H −HKron∥F = (
∑
k≥2

σk(R(H))2)1/2 (15)

Similarly, in the Kronecker product form, we can still only minimize the global error, its element-
wise error is not guaranteed.

A.4 PROOF OF EQUATION 3

Proof. Part 1: Proof of ||E||∞ ≤ ||E||2
First, we recall the definitions of the two norms. The element-wise infinity norm is the maximum
absolute value of any element in the matrix:

||E||∞ ≜ max
i,j

|Eij |

Let this maximum value be achieved at the entry Erc, such that ||E||∞ = |Erc|.
The spectral norm is defined as:

||E||2 ≜ max
||x||2=1

||Ex||2

By its definition, for any vector v with ||v||2 = 1, the inequality ||Ev||2 ≤ ||E||2 must hold.

Let us choose a specific unit vector. Let ec ∈ Rn be the standard basis vector with a 1 in the c-th
position and zeros elsewhere. Clearly, ||ec||2 = 1.

The product Eec results in the c-th column of the matrix E. Let’s denote this column vector as
colc(E).

Eec =


E1c

E2c

...
Emc


Applying the definition of the spectral norm, we have:

||E||22 ≥ ||Eec||22

14
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The squared Spectral-norm of the c-th column is the sum of the squared absolute values of its
elements:

||Eec||22 =

m∑
i=1

|Eic|2

This sum includes the term |Erc|2, which is the square of the infinity norm. Since all terms in the
sum are non-negative:

m∑
i=1

|Eic|2 ≥ |Erc|2 = (||E||∞)2

Combining these inequalities, we get:

||E||22 ≥ ||Eec||22 ≥ (||E||∞)2

Taking the square root of both sides yields the desired result:

||E||2 ≥ ||E||∞

Part 2: Proof of ||E||2 ≤ ||E||F
We start with the definitions. The spectral norm is the largest singular value of E:

||E||2 = σ1(E)

The Frobenius norm is defined as the square root of the sum of the squared absolute values of all
elements:

||E||F =

√√√√ m∑
i=1

n∑
j=1

|Eij |2

A fundamental property of matrix norms is that the squared Frobenius norm of a matrix is equal to
the sum of its squared singular values. This arises from the fact that ||E||2F = Tr(EHE), and the
trace of EHE is the sum of its eigenvalues, which are the squared singular values of E.

||E||2F =

rank(E)∑
k=1

σk(E)2

Let’s expand this sum:

||E||2F = σ1(E)2 + σ2(E)2 + · · ·+ σrank(E)(E)2

Substituting the definition of the spectral norm, ||E||2 = σ1(E):

||E||2F = ||E||22 +
rank(E)∑
k=2

σk(E)2

Since all singular values are non-negative, their squares are also non-negative. Therefore, the sum
of the remaining squared singular values must be non-negative:

rank(E)∑
k=2

σk(E)2 ≥ 0

This implies:
||E||2F ≥ ||E||22

Taking the square root of both sides gives the second part of our inequality:

||E||F ≥ ||E||2

Combining the results from Part 1 and Part 2, we have proven the complete inequality chain.
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A.5 PROOF OF EQUATION 10 AND EQUATION 12

Proof. We begin by defining the error matrix Er = A−Ar.

Er =

(∑
k=1

σkukv
T
k

)
−

(
r∑

k=1

σkukv
T
k

)
=
∑

k=r+1

σkukv
T
k

= σr+1ur+1v
T
r+1 + σr+2ur+2v

T
r+2 + . . .

This expression for the error matrix is the foundation for both proofs.

1. PROOF OF THE SPECTRAL NORM ERROR

The spectral norm of a matrix, ||M ||2, is defined as its largest singular value, σ1(M). Our goal is to
find the singular values of the error matrix Er.

The expression derived above, Er =
∑

k=r+1 σkukv
T
k . the singular values of the matrix Er are

precisely the set {σr+1, σr+2, . . . , σN}. Thus, the largest singular value in this set is σr+1. By the
definition of the spectral norm:

||E||2 = σr+1

This completes the first part of the proof.

2. PROOF OF THE FROBENIUS NORM ERROR

For our error matrix Er = A − Ar, from Part 1, we have already identified the singular values of
Er to be {σr+1, σr+2, . . . , σN}. According to (Horn & Johnson, 2012):

||A−Ar||2F =

N∑
k=r+1

σ2
k

Taking the square root of both sides, we obtain the desired result:

||A−Ar||F =

(
N∑

k=r+1

σ2
k

)1/2

This completes the second part of the proof.

A.6 PROOF OF EQUATION 4

Proof. The proof is established by deriving matching upper (O) bounds on the infimal covering
radius, r∞(C).

1. Upper Bound (O(N−1/s)) We establish the upper bound via a constructive proof. We de-
sign a specific codebook C ′ and show its covering radius is O(N−1/s). The optimal codebook’s
performance must be at least as good.

Let the set Ω have a finite s-dimensional volume V =
∫
Ω
dx. We can tile this volume with N

identical, non-overlapping s-dimensional hypercubes, {Sk}Nk=1. The volume of each hypercube is
Vk = V/N .

Let L be the side length of these hypercubes. The volume of an s-dimensional hypercube is Ls.
Thus:

Ls =
V

N
=⇒ L =

(
V

N

)1/s

= V 1/sN−1/s (16)

As V is a constant, the side length scales as L = O(N−1/s).
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We construct our codebook C ′ by placing one codeword c′k at the center of each hypercube Sk. For
any vector x ∈ Sk, the quantizer maps it to c′k. The ℓ∞ error is the maximum coordinate-wise
distance from x to the center. For a hypercube of side length L, this maximum distance is L/2.

The covering radius of this constructed codebook is therefore:

r∞(C ′) = sup
x∈Ω

min
c∈C′

||x− c||∞ = max
k

sup
x∈Sk

||x− c′k||∞ =
L

2
= O(N−1/s)

Since the infimum is the greatest lower bound, it must be less than or equal to the error of this
particular construction:

inf
|C|=N

r∞(C) ≤ r∞(C ′) = O(N−1/s)

Conclusion From the upper bound, we have inf r∞(C) ≤ O(N−1/s).

inf
|C|=N

r∞(C) = O(N−1/s)

Thus, inf |C|=N ∥EV Q∥∞ = O(N−1/s) since r∞(C) = supx∈Ω minc∈C′ ||x − c||∞ =
supx∈Ω minc∈C′ ∥EV Q∥∞ This completes the proof based on the given assumptions.

A.7 PROOF OF EQUATION 5

Problem Setup Let the target matrix H ∈ Rm×n be defined as H = L+ S, where:

• L is a matrix with rank(L) = r.

• S = M · eieTj is a matrix with a single non-zero entry M at position (i, j), where M ≫
||L||2.

We analyze the minimal Frobenius and infinity-norm error for three approximation methods: LoRA
(HLoRA), Kronecker (HKron), and VQ (HV Q).

Lemma 1 (Error Bound for LoRA). The minimal Frobenius error for the best rank-r approximation
of H is lower-bounded by the magnitude of the outlier:

min
rank(Ĥ)≤r

||H −HLoRA||F = Ω(M)

Proof. We have (Horn & Johnson, 2012):

∥ELoRA∥F = ∥(L−HLoRA) + S∥F = ∥L−H∥F + ∥S∥F + 2⟨L+H,S⟩

Since S only has non-zero entry M on (i, j):

∥ELoRA∥F = ∥L−H∥F + ∥S∥F + 2(L−H)ij ·M

Also:

||S||2F = |S11|2 + |S12|2 + · · ·+ |Sij |2 + · · · = 02 + 02 + · · ·+ |M |2 + · · · = |M |2

∥L−H∥F ≃ 0, L−H ≃ 0

because both L and H has rank r. Thus, the error ∥ELoRA∥F ≃ 0 +M + 2(L −H)ij ·M ≃ M
In general, the error must be dominated by the magnitude of the outlier, which implies the minimal
error is on the order of M

Lemma 2 (Error Bound for Kronecker Product). Let p = rank(R(L)), where R(·) is the Van
Loan-Pitsianis rearrangement. The minimal Frobenius-norm error for the best p-term Kronecker
approximation of H is lower-bounded by the magnitude of the outlier:

min
p-term

||H −HKron||F = Ω(M)
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Proof. The proof follows the same logic as Lemma 1, but in the rearranged space. A Kronecker
approximation HKron = A ⊗ B is equivalent to a rank-1 approximation of the rearranged matrix
R(H). The best such approximation is given by the truncated SVD of R(H).

Let R̂ be the best rank-1 approximation of R(H). The minimal squared Frobenius-norm error is
given by the Eckart-Young-Mirsky theorem:

min
p-term

||H −HKron||2F = min ||R(H)− R̂||2F =
∑
k≥2

σk(R(H))2 (17)

The sum of non-negative terms is always greater than or equal to its largest term. In this case, the
largest term in the sum is the first one, corresponding to k = 2.∑

k≥2

σk(R(H))2 ≥ σ2(R(H))2 (18)

Therefore, we only need to show that the (2)-th singular value of R(H) is lower-bounded by the
magnitude of the outlier.

According to Van Loan-Pitsianis rearrangement’s property (Van Loan & Pitsianis, 1993), we have:

R(H) = R(L+ S) = R(L) +R(S)

Here, we have rank(R(L)) = 1. R(S) is the rearrangement of a single-entry matrix, which is also
a single-entry matrix of the form M · ei′eTj′ . Thus, R(S) is also a rank-1 matrix with spectral norm
||R(S)||2 = M . Given that R(L) is a rank-1 matrix (σ2(R(L)) = 0) and the perturbation R(S) has
a large norm (||R(S)||2 = M ), the 2-th singular value of their sum is lower-bounded by a significant
value related to the perturbation. For an incoherent perturbation, it can be shown that:

σ2(R(H)) = σ2(R(L) +R(S)) = Ω(M) (19)

Lemma 3 (Error Bound for VQ). The minimal infinity-norm error for a VQ approximation of H
with a codebook of size N has an upper bound that is independent of the outlier magnitude M :

min
|C|=N

||H −HV Qs||∞ = O(N−1/s)

where s is the dimension of the VQ blocks.

This has been proved in Appendix A.6

Theorem 1 (Comparative Analysis). For a matrix with a large sparse outlier as defined, VQ offers
an asymptotically superior approximation in the infinity norm compared to LoRA and Kronecker
Product approximation.

min
V Q

||E||∞ < min
Kron

||E||F ≈ min
LoRA

||E||F

Proof. From Lemma 1 and Lemma 2, the minimal error for both LoRA and Kronecker is lower-
bounded by a large constant of order Ω(M). From Lemma 3, the minimal error for VQ is upper-
bounded by a term O(N−1/s), which is independent of M and decreases as the codebook size N
increases.

For a sufficient outlier magnitude M (M > 1) and a reasonable codebook size N (in out experiment,
we set N = 212, S = 8), we have:

O(N−1/s) < Ω(M)

The theorem follows directly by combining these bounds. VQ’s local adaptivity allows it to isolate
the outlier, while the global nature of LoRA and Kronecker approximation leads to their failure.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.8 EXPERIMENT SETTING

To facilitate reproducibility, we detail the experimental settings and hyperparameters. For VQ ini-
tialization, a codebook of 4096 (212) centroids with vector dimension D = 8 is employed. Each
layer undergoes 100 iterations of K-Means clustering, providing a balance between search qual-
ity and initialization efficiency. During end-to-end fine-tuning, the codebook is optimized with the
Adam optimizer (Kingma & Ba, 2014). A unified hyperparameter configuration is adopted across
models: the learning rate is set to 1e − 2, the rounding regularization coefficient λ to 1e − 2, and
the annealing schedule for β decreases from 20 to 2. Fine-tuning is conducted for 5000 steps, with
the first 10% used as a distillation-only warm-up phase to ensure stable convergence, after which
the rounding loss is incorporated into the training objective. All experiments are performed on 128
randomly sampled sequences from the C4 dataset (Raffel et al., 2020) with length 2048. To acceler-
ate initialization, GPU-accelerated K-Means clustering is implemented using FAISS (Douze et al.,
2025). All experiments are conducted on a single NVIDIA RTX A6000 GPU.

A.9 FIGURE
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Figure 4: Quantization Initialization Error between different reparameterization methods. The error
is computed by sigmoid(Hinit) − sigmoid(Hreconstruct) so that the error is in [0,1]. Higher per-
centage of the low sigmoid error interval reveals lower initialization error.
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Figure 5: Singular value distribution

A.10 USE OF LLM

This paper was written with the assistance of the LLM. There are some sentences or paragraphs
revised with the support of the LLM. Whereas they have been fully reviewed and verified by the
author. The authors accept the academic responsibility for the content of this work, including the
parts where the LLM provided assistance.

20


	Introduction
	Related Work
	Atomic Rounding
	Vector Quantization

	Methodology
	Preliminaries
	Vectorized Reparameterization
	Rounding Initialization
	End-to-End Finetuning
	Plug-and-Play Replacement

	Experiments
	Results
	Ablation Study

	Conclusion
	Appendix
	Additional Experiment Result
	Algorithm of VQRound end-to-end (E2E) finetuning
	Explanation of LoRA Round with SVD initialization and Kronecker rounding
	Proof of  equation 3
	Proof of  equation 10 and equation 12
	Proof of equation 4
	Proof of equation 5
	Experiment setting
	Figure
	Use of LLM


