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Abstract
We address the challenge of explaining counter-
factual outcomes in multi-agent Markov decision
processes. In particular, we aim to explain the to-
tal counterfactual effect of an agent’s action on the
outcome of a realized scenario through its influ-
ence on the environment dynamics and the agents’
behavior. To achieve this, we introduce a novel
causal explanation formula that decomposes the
counterfactual effect by attributing to each agent
and state variable a score reflecting their respec-
tive contributions to the effect. First, we show that
the total counterfactual effect of an agent’s action
can be decomposed into two components: one
measuring the effect that propagates through all
subsequent agents’ actions and another related
to the effect that propagates through the state
transitions. Building on recent advancements in
causal contribution analysis, we further decom-
pose these two effects as follows. For the former,
we consider agent-specific effects – a causal con-
cept that quantifies the counterfactual effect of an
agent’s action that propagates through a subset
of agents. Based on this notion, we use Shapley
value to attribute the effect to individual agents.
For the latter, we consider the concept of structure-
preserving interventions and attribute the effect
to state variables based on their “intrinsic” contri-
butions. Through extensive experimentation, we
demonstrate the interpretability of our approach
in a Gridworld environment with LLM-assisted
agents and a sepsis management simulator.

1. Introduction
Applying counterfactual reasoning to retrospectively an-
alyze the impact of different actions in decision making
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scenarios is fundamental for accountability. For instance,
counterfactual reasoning can be employed to identify ac-
tual causes (Halpern, 2016; Triantafyllou et al., 2022), at-
tribute responsibility (Chockler & Halpern, 2004; Frieden-
berg & Halpern, 2019), generate explanations (Madumal
et al., 2020), evaluate fairness (Kusner et al., 2017; Huang
et al., 2022) and measure harm (Richens et al., 2022; Beck-
ers et al., 2022). To achieve such objectives, many studies
often rely on the notion of total counterfactual effects, which
quantifies the extent to which an alternative action would
have affected the outcome of a realized scenario.

In multi-agent sequential decision making, an agent’s ac-
tion typically affects the outcome indirectly. To illustrate
this, consider the problem of AI-assisted decision making
in healthcare (Lynn, 2019), where a clinician and their AI
assistant treat a patient over a period of time. Fig. 1a de-
picts a specific example, where treatment fails. We estimate
that if the clinician had not followed the AI’s recommenda-
tion at step 10 and administered vasopressors (V) instead of
mechanical ventilation (E), the treatment would have been
successful with an 82% likelihood. Therefore, the consid-
ered alternative action admits a high total counterfactual
effect. This effect, however, propagates through all subse-
quent actions of the clinician and the AI, as well as all the
changes in the patient’s state. This makes the interpretabil-
ity of the effect more nuanced, as the change from action
to outcome can be transmitted by multiple distinct causal
mechanisms. In this work, we ask:

How to explain an action’s total counterfactual effect in
multi-agent sequential decision making?

Much prior work in causality has focused on decomposing
causal effects (Pearl, 2001; Zhang & Bareinboim, 2018a;b)
under the rubric of mediation analysis (Imai et al., 2010;
2011; Hicks & Tingley, 2011; VanderWeele, 2016), which
aims to understand how effects propagate through causal
paths. However, such an approach would not yield inter-
pretability in multi-agent sequential decision making. There
can be exponentially many paths connecting an action to
the outcome, and not all of them have a clear operational
meaning to help explain the effect intuitively. We instead
posit that it is more natural to interpret the effect of an ac-
tion in terms of its influence on the agents’ behavior and the
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(a) Factual and Counterfactual Trajectory (b) Decomposition

Figure 1: Fig. 1a depicts (part of) a simulated scenario from the two-agent Sepsis environment in Section 6.2, where the
patient’s treatment fails. In the same figure, we have also included the values from a sampled counterfactual scenario (values
that are different are shown in orange), where the clinician’s action is fixed to override the AI’s action at step 10. Hence, the
patient receives treatment A&V instead of A&E. Plot 1b shows the results of our decomposition approach for this scenario.

environment dynamics. Therefore, we need to analyze how
the effect propagates through: (a) the subsequent agents’
actions and (b) the state transitions of the environment. In
the previous example, the total counterfactual effect of the
considered action can be decomposed as shown in Plot 1b.
This approach explains the effect by attributing a score to
each doctor (clinician and AI) and patient state, reflecting
their respective contributions to the overall effect.

Contributions. Focusing on Multi-Agent Markov Decision
Processes and Structural Causal Models, we provide a sys-
tematic approach to attributing the total counterfactual effect
of an agent’s action on the outcome of a given trajectory,
based on the following bi-level decomposition.

(Level 1) We first introduce a causal explanation formula,
which decomposes the total counterfactual effect of an
agent’s action into the total agent-specific effect and the
reverse state-specific effect. The former refers to the effect
that propagates through all subsequent agents’ actions, and
is formulated via the recently introduced notion of agent-
specific effects (Triantafyllou et al., 2024). The latter refers
to the effect that would have been lost or gained had the
action not been propagated through the state transitions, and
it is a special case of path-specific effects (Avin et al., 2005).

(Level 2a) To further decompose the total agent-specific
effect (tot-ASE), we propose an axiomatic framework based
on agent-specific effects for attributing the total effect to
individual agents. The set of axioms includes efficiency,
which requires that agents’ contributions sum up to tot-ASE.
We show how to operationalize Shapley value with agent-
specific effects, to obtain a method for decomposing tot-
ASE, which uniquely satisfies the set of proposed axioms.

(Level 2b) To further decompose the reverse state-specific
effect (r-SSE), we utilize the notion of intrinsic causal con-
tributions (ICC) (Janzing et al., 2024). ICC enables us to
quantify the informativeness of individual state variables

regarding the counterfactual outcomes needed for the com-
putation of r-SSE. We propose a method for decomposing
r-SSE that is efficient under a relatively mild assumption
that at least one state variable has non-zero ICC (i.e., is
informative about the counterfactual outcomes).

We experimentally validate the interpretability of our ap-
proach using two multi-agent environments: a grid-world
environment, where two RL actors are instructed by an LLM
planner to complete a sequence of tasks, and the sepsis man-
agement simulator from Fig. 1.1

1.1. Additional Related Work

This paper is related to works on mediation analysis and
especially to those that consider multiple (sequential) medi-
ators (Daniel et al., 2015; Steen et al., 2017; VanderWeele
& Vansteelandt, 2014; Chiappa, 2019). As mentioned ear-
lier, the main distinction between this line of work and ours
is that we analyze how effects propagate through agents
and state variables in an MMDP, instead of causal paths in
general SCMs. In a similar sense, our work also relates to
the areas of causal contributions (Janzing et al., 2024; Jung
et al., 2022; Heskes et al., 2020) and flow-based attribution
methods (Singal et al., 2021; Wang et al., 2021). The former
studies how to attribute a target effect to different causes (of-
ten model features) based on their degree of some notion of
contribution to that effect. The latter considers the problem
of assigning credit to the edges of a causal graph, instead of
the nodes, for explaining causal effects.

2. Background and Formal Framework
In this section, we present our formal framework, which is
adopted from (Triantafyllou et al., 2024) and builds on Multi-

1Code to reproduce our experiments is available at
https://github.com/stelios30/cf-effect-decomposition.git.

2

https://github.com/stelios30/cf-effect-decomposition.git


Counterfactual Effect Decomposition in Multi-Agent Sequential Decision Making

Agent Markov Decision Processes (MMDPs) (Boutilier,
1996) and Structural Causal Models (SCMs) (Pearl, 2009).
A table summarizing the notation is provided in Appendix B.
Appendix N provides a graphical illustration of all counter-
factual effects discussed in this section and the next.

2.1. Multi-Agent Markov Decision Processes

An MMDP is represented as a tuple ⟨S, {1, ..., n},A, T, h,
σ⟩, where: S is the state space; {1, ..., n} is the set of agents;
A = ×n

i=1Ai is the joint action space, with Ai being the
action space of agent i; T : S ×A× S → [0, 1] is the tran-
sition probability function; h is the finite time horizon; σ is
the initial state distribution.2 Each agent i ∈ {1, ..., n} has
a stationary decision-making policy πi, with the joint policy
of all agents represented as π. The probability of agents
jointly taking action at = (a1,t, ..., an,t) in state st at time
t is thus given by π(at|st) = π1(a1,t|st) · · ·πn(an,t|st),
while the probability of transitioning from state st to state
st+1 is determined by T (st+1|st,at). A sequence of such
state-action pairs {(st,at)}t∈{0,...,h−1} and final state sh
is called a trajectory. With τ(X), we denote the value of
variable X in trajectory τ .

2.2. MMDPs and Structural Causal Models

We utilize the MMDP-SCM framework (Triantafyllou et al.,
2024) to express an MMDP coupled with a joint policy π
as an SCM. Specifically, an MMDP-SCM ⟨V,U, P (u),F⟩
consists of:

(i) a tuple V = ⟨S0, A1,0, ..., An,0, ..., Sh⟩ of the ob-
served variables whose causal relations are modeled,
i.e., all state and action variables of the MMDP;

(ii) a tuple U = ⟨US0 , UA1,0 , ..., UAn,0 , ..., USh⟩ of mu-
tually independent unobserved noise variables which
capture any underlying stochasticity of the MMDP and
agents’ policies;

(iii) A joint probability distribution P (u) =
∏

ui∈u P (u
i)

over U;

(iv) A collection F of deterministic functions that deter-
mine the values of all observed variables in V via the
following structural equations

S0 := fS0(US0); St := fS(St−1,At−1, U
St);

Ai,t := fAi(St, UAi,t). (1)

Note that any context u ∼ P (u) induces a unique trajectory
τ , such that ∀X ∈ V it holds that τ(X) is the solution of
X , for the particular u, in the MMDP-SCM. Furthermore,

2For ease of notation, rewards are considered part of the states.

similar to general SCMs, the MMDP-SCM induces a di-
rected causal graph, which can be found in Appendix D.
Appendix C also describes the conditions under which the
observational distribution of an MMDP-SCM is consistent
with some MMDP and joint policy. In this paper, we focus
on categorical MMDP-SCMs.

2.3. Interventions and Counterfactuals

Consider an MMDP-SCMM . An intervention on the action
variable Ai,t of M corresponds to the process of modifying
the structural equation Ai,t := fAi(St, UAi,t) from Eq. 1.
More specifically, a hard intervention do(Ai,t := ai,t)
fixes the value of Ai,t to the constant ai,t, resulting in a
new MMDP-SCM denoted by Mdo(Ai,t:=ai,t). Similar to
(Correa et al., 2021), when random variables have subscripts
we will use square brackets to denote interventions.

Let now Z ∈ V and u ∼ P (u). We denote with
Zdo(Ai,t:=ai,t)(u) or Zai,t(u) for short, the solution of Z
for u in Mdo(Ai,t:=ai,t), and with Zai,t the random variable
induced by averaging over U. Typically, Zai,t(u) is re-
ferred to as the potential response of Z to do(Ai,t := ai,t).
A natural intervention do(Aj,t′ := Aj,t′[ai,t]) replaces the
structural equation of Aj,t′ inM with the potential response
of Aj,t′ to the (hard) intervention do(Ai,t := ai,t).

Given a trajectory τ and a response variable Y ∈ V,
the counterfactual probability P (Yai,t

= y|τ)M or
P (yai,t

|τ)M for short, measures the probability of Y taking
the value y in τ had Ai,t been set to ai,t. Subscript M here
implies that the probability is defined over the MMDP-SCM
M . When necessary, P (·|τ ;M) is used to denote that τ
was generated by M . Next, we define a standard causal
notion that is used to quantify the counterfactual impact of
intervention do(Ai,t := ai,t) on Y .3

Definition 2.1 (TCFE). Given an MMDP-SCM M and a
trajectory τ of M , the total counterfactual effect of inter-
vention do(Ai,t := ai,t) on Y ∈ V, relative to reference
τ(Ai,t), is defined as

TCFEai,t,τ(Ai,t)(Y |τ)M = E[Yai,t |τ ]M − E[Yτ(Ai,t)|τ ]M
= E[Yai,t

|τ ]M − τ(Y ).

Assumptions and counterfactual identifiability. Note that
there might be multiple MMDP-SCMs whose observational
distribution is consistent with some MMDP-joint policy
pair, but yield different counterfactuals, e.g., different val-
ues for TCFE. This means that without further assumptions,
counterfactuals cannot be identified from observations alone.
To enable counterfactual identifiability, we thus make the

3In this paper, we consider counterfactual effects mostly rela-
tive to the factual action τ(Ai,t). However, we note that generally
any valid action can be used as a reference value.
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following assumptions. First, we consider unobserved vari-
ables to be mutually independent. Second, we assume that
MMDP-SCMs satisfy the (weak) noise monotonicity condi-
tion introduced by (Triantafyllou et al., 2024). Note that the
latter assumption is not limiting for the MMDP distribution
or the agents’ policies, i.e., every MMDP can be consistently
represented by a noise-monotonic MMDP-SCM. What is
restricted instead is the expressivity of the model’s counter-
factual distribution. Details about noise monotonicity can
be found in Appendix E.

3. Decomposing Total Counterfactual Effect
The total counterfactual effect can inform us about the ex-
tent to which an alternative action would have affected the
outcome of a trajectory. However, this measure alone does
not provide any further insights on why or how that action
would have affected the outcome. In this section, we intro-
duce a novel causal explanation formula that decomposes
TCFE w.r.t. the two building blocks of an MMDP – its
states and its agents. First, based on prior work we define
two causal quantities for measuring how much of the total
counterfactual effect of an agent’s action on some response
variable is mediated by (a) all future agents’ actions and (b)
the subsequent MMDP’s state transitions.

Definition 3.1 (tot-ASE). Given an MMDP-SCM M and
a trajectory τ of M , the total agent-specific effect of inter-
vention do(Ai,t := ai,t) on Y ∈ V, relative to reference
τ(Ai,t), is defined as

ASE
{1,...,n}
ai,t,τ(Ai,t)

(Y |τ)M =

= E[Y |τ ;M ]Mdo(I) − E[Yτ(Ai,t)|τ ]M
= E[Y |τ ;M ]Mdo(I) − τ(Y ),

where I = {Ai′,t′ := Ai′,t′[ai,t]}i′∈{1,...,n},t′>t.

Definition 3.2 (SSE). Given an MMDP-SCM M and a
trajectory τ of M , the state-specific effect of intervention
do(Ai,t := ai,t) on Y ∈ V, relative to reference τ(Ai,t), is
defined as

SSEai,t,τ(Ai,t)(Y |τ)M =

= E[Yai,t |τ ;M ]Mdo(I) − E[Yτ(Ai,t)|τ ]M
= E[Yai,t

|τ ;M ]Mdo(I) − τ(Y ),

where I = {Ai′,t′ := Ai′,t′[τ(Ai′,t′ )]
}i′∈{1,...,n},t′>t.

In words, Definition 3.1 measures the difference between
the factual value of Y , i.e., τ(Y ), and the (expected) counter-
factual value of Y had all agents taken the actions that they
would naturally take under intervention do(Ai,t := ai,t) af-
ter time-step t. On the other hand, Definition 3.2 measures
the counterfactual effect of intervention do(Ai,t := ai,t) on
Y in a modified model where all subsequent agents’ actions

are fixed to their factual values, i.e., their actions in τ . Defi-
nition 3.1 is in line with the notion of agent-specific effects
introduced by (Triantafyllou et al., 2024) and revisited here
in Section 5, while SSE can be seen as a special case of
path-specific effects (Avin et al., 2005).

Perhaps counter to intuition, it does not hold that TCFE is
always decomposed into tot-ASE and SSE. An empirical
counter-example for this is provided in Section 6.1. How-
ever, by comparing Definitions 3.1 and 3.2, we observe that
the total agent-specific effect associated with the transition
from the factual action τ(Ai,t) to the counterfactual action
ai,t is closely related to the state-specific effect associated
with the reverse transition, i.e., the effect

SSEτ(Ai,t),ai,t
(Y |τ)M =

= E[Yτ(Ai,t)|τ ;M ]Mdo(I) − E[Yai,t
|τ ]M

= E[Y |τ ;M ]Mdo(I) − E[Yai,t
|τ ]M , (2)

where I = {Ai′,t′ := Ai′,t′[ai,t]}i′∈{1,...,n},t′>t. We will
refer to the latter as the reverse state-specific effect or r-SSE
for short, to clearly distinguish it from SSE. In words, r-
SSE measures the difference in the counterfactual value of
Y under intervention do(Ai,t := ai,t), assuming that the
state St+1 had not been affected by the intervention, but
all subsequent agents’ actions had. Based on this obser-
vation, we derive the following decomposition of the total
counterfactual effect.
Theorem 3.3. The total counterfactual effect, total agent-
specific effect and reverse state-specific effect obey the fol-
lowing relationship

TCFEai,t,τ(Ai,t)(Y |τ) =

=ASE
{1,...,n}
ai,t,τ(Ai,t)

(Y |τ)− SSEτ(Ai,t),ai,t
(Y |τ). (3)

Theorem 3.3 states that the total counterfactual effect of
do(Ai,t := ai,t) on Y equals to the effect that propagates
only through the agents minus the effect that would have
been lost or gained had the intervention not been propagated
through the states.

Connection to prior work. Our result is similar in principle
with the well-known causal mediation formula for arbitrary
SCMs (Pearl, 2001), which decomposes the total causal
effect of an intervention into the natural direct and indirect
effects. Thus, Theorem 3.3 can be viewed as an extension
of Theorem 3 from (Pearl, 2001), applied to the problem of
counterfactual effect decomposition in multi-agent MDPs.

Sepsis example. Going back to our example scenario from
the introduction, the result of our decomposition can be
interpreted as follows: (a) 45.6% of the TCFE is attributed
to how the AI and the clinician would have responded to the
intervention (tot-ASE ≈ 0.374); (b) the remaining 54.4% is
attributed to the influence that the intervention has on the
patient state (−r-SSE ≈ 0.446).
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4. Decomposing Reverse State-Specific Effect
In this section, we focus on further decomposing the re-
verse state-specific effect. More specifically, our goal is to
attribute to each state variable a score reflecting its contribu-
tion to r-SSE. Our approach utilizes the notion of intrinsic
causal contributions (ICC) introduced by (Janzing et al.,
2024). For general SCMs, the ICC of an observed variable
X to a target variable Y measures the reduction of uncer-
tainty in Y when conditioning on the noise variable UX . In
our work, we model uncertainty using the expected condi-
tional variance and modify the ICC definition to quantify
the influence of state variables on the variation of r-SSE.

Let k ∈ {0, ..., h}. We denote with USk the set
⟨USk , UA1,k , ..., UAn,k⟩ for k < h, and with USh the set
⟨USh⟩. We also denote with U<Sk the set of noise terms
associated with the observed variables preceding (chrono-
logically) Sk. Note that r-SSE essentially measures the
expected value of the difference ∆YI,ai,t = YI − Yai,t in
M , when noise terms U are sampled from the posterior
distribution P (u|τ). Thus, the ICC can be defined in our
context as follows

ICC(Sk → ∆YI,ai,t
|τ) = Unc<Sk −Unc≤Sk , (4)

where Unc<Sk = E[Var(∆YI,ai,t
|τ,U<Sk)|τ ],

where Unc≤Sk = E[Var(∆YI,ai,t |τ,U<Sk ,USk)|τ ],

and I = {Ai′,t′ := Ai′,t′[ai,t]}i′∈{1,...,n},t′>t. In words,
Eq. 4 measures the reduction of variance in ∆YI,ai,t

caused
by conditioning on the noise variables associated with state
Sk and the agents’ actions taken therein. Based on this, we
can now define our attribution method for r-SSE.

Definition 4.1 (r-SSE-ICC). Given an MMDP-SCM M
and a trajectory τ of M , r-SSE-ICC assigns to each state
variable Sk for k ∈ {0, ..., h} a contribution score for the
reverse state-specific effect SSEτ(Ai,t),ai,t

(Y |τ)M , equal to

ψSk
:=

ICC(Sk → ∆YI,ai,t |τ)M
Var(∆YI,ai,t

|τ)
· SSEτ(Ai,t),ai,t

(Y |τ)M ,

if the unconditional variance Var(∆YI,ai,t
|τ) > 0, and

equal to 0 otherwise.

According to Definition 4.1, the reverse state-specific effect
is allocated among state variables in proportion to their in-
trinsic contribution to the effect. Intuitively, this means that
the influence of a state variable to the r-SSE is represented by
the relative degree to which we can more precisely estimate
the effect if we could also predict the counterfactual value of
that state under the interventions do(I) and do(Ai,t := ai,t).
Thus, if knowing what would have happened in state Sk is
pivotal for the accuracy of our counterfactual prediction
then contribution score ψSk

would be high, whereas if it has
small influence then ψSk

would be closer to zero. In the

case where we can exactly compute SSEτ(Ai,t),ai,t
(Y |τ)M

without conditioning on any noise term, e.g., if environment
and policies are deterministic, then our approach does not
decompose the r-SSE any further.

Algorithm. Appendix G includes an algorithm for the
approximation of the expected conditional variance of
∆YI,ai,t

. Our algorithm follows the standard abduction-
action-prediction methodology for counterfactual inference
(Pearl, 2009): it samples conditioning and non-conditioning
noise variables independently from the posterior distribu-
tion, estimates the noise-conditional variance for r-SSE and
returns the average value.

Causal interpretation. The attribution method described in
Definition 4.1 relies on do interventions that are performed
only on agents’ actions, meaning that the causal mechanisms
of the environment remain intact. Conditioning on noise
terms can be considered as a form of structure-preserving
interventions, i.e., interventions that depend on the values of
the parents of the exposure variable (here previous state and
actions), and do not perturb the observed distribution. For a
more detailed discussion on the causal meaning of ICC we
refer the reader to Section 3.1 in (Janzing et al., 2024).

Plain ICC. Since there is a unique causal order among the
state variables of an MMDP-SCM, the time order, there is no
arbitrariness due to order-dependence. Thus, we consider
the “plain” ICC for our approach instead of the Shapley
based symmeterization used in (Janzing et al., 2024).

Finally, we show that r-SSE-ICC fully allocates r-SSE
among the states following the intervention.

Theorem 4.2. Let tY denote the time-step of response
variable Y and ψ be the output of r-SSE-ICC for the
reverse state-specific effect SSEτ(Ai,t),ai,t

(Y |τ)M . If
Var(∆YI,ai,t

|τ) > 0, then it holds that
∑

k∈[t+1,tY ] ψSk
=

SSEτ(Ai,t),ai,t
(Y |τ)M .

Sepsis example. The result of the r-SSE-ICC method in the
Sepsis example can be interpreted as follows: if we knew the
counterfactual state of the patient at step 13, following the
intervention at step 10, we could estimate the reverse state-
specific effect with almost no uncertainty. While, knowing
the exact counterfactual value for any of the previous states
would not lead to a comparable reduction in uncertainty.

5. Decomposing Total Agent-Specific Effect
In this section, we focus on further decomposing the total
agent-specific effect. More specifically, our goal is to at-
tribute to each agent a score reflecting its contribution to
tot-ASE. Our approach is based on a well-established solu-
tion concept in cooperative game theory, the Shapley value
(Shapley, 1953), and it utilizes the notion of agent-specific
effects introduced by (Triantafyllou et al., 2024).
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Definition 5.1 (ASE). Given an MMDP-SCM M , a non-
empty subset of agents N in M and a trajectory τ of M ,
the N-specific effect of intervention do(Ai,t := ai,t) on
Y ∈ V, relative to reference τ(Ai,t), is defined as

ASEN
ai,t,τ(Ai,t)(Y |τ)M =

= E[Y |τ ;M ]Mdo(I) − E[Yτ(Ai,t)|τ ]M
= E[Y |τ ;M ]Mdo(I) − τ(Y ),

where I = {Ai′,t′ := τ(Ai′,t′)}i′ /∈N,t′>t ∪ {Ai′,t′ :=
Ai′,t′[ai,t]}i′∈N,t′>t}.

In contrast to the total ASE, the N-specific effect quantifies
the counterfactual effect of an intervention that propagates
only through a subset of agents in the system, the effect
agents, instead of all agents. Compared to Definition 3.1,
here the actions of the non-effect agents are set to their fac-
tual values. In the context of agent-specific effects studied
here, Shapley value can be defined as follows.

Definition 5.2 (ASE-SV). Given an MMDP-SCM M and
a trajectory τ of M , ASE-SV assigns to each agent j ∈
{1, ..., n} a contribution score for the total agent-specific
effect ASE{1,...,n}

ai,t,τ(Ai,t)
(Y |τ)M , equal to

ϕj :=
∑

S⊆{1,...,n}\{j}

wS ·
[
ASE

S∪{j}
ai,t,τ(Ai,t)

(Y |τ)M

−ASES
ai,t,τ(Ai,t)(Y |τ)M

]
,

where coefficients wS are set to wS = |S|!(n−|S|−1)!
n! .

Next, we define a number of desirable properties for the
attribution of the total agent-specific effect. These prop-
erties are inspired from the game theory literature (Jain &
Mahdian, 2007; Shoham & Leyton-Brown, 2008; Young,
1985) and translated to our setting.

Efficiency: The total sum of agents’ contribution scores is
equal to tot-ASE.

Invariance: Agents who do not contribute to tot-ASE are
assigned a zero contribution score.

Symmetry: Agents who contribute equally to tot-ASE are
assigned the same contribution score.

Contribution monotonicity: The contribution score as-
signed to an agent depends only on its marginal contribu-
tions to tot-ASE and monotonically so.

We formally state these properties in Appendix F. We now
restate in the setting of agent-specific effects studied here
an existing uniqueness result for Shapley value.

Theorem 5.3. (Young, 1985) ASE-SV is a unique attribu-
tion method for the total agent-specific effect that satisfies
efficiency, invariance, symmetry and contribution mono-
tonicity.

Sepsis example. ASE-SV attributes tot-ASE to both the AI
and the clinician. As illustrated in Plot 1b, a larger portion of
the effect is attributed to how the AI would have responded
to the intervention.

6. Experiments
In this section, we empirically evaluate our approach to
counterfactual effect decomposition using two environ-
ments, Gridworld and Sepsis. We refer the reader to Ap-
pendix J for more details on our experimental setup and
implementation, and to Appendix K for additional results.
Throughout both experiments, we use 100 posterior sam-
ples for estimating counterfactual effects and 20 additional
ones for the conditional variance. Additional experiments
evaluating the estimation error of our results as well as
their robustness to the noise monotonicity assumption are
provided in Appendix L and Appendix M, respectively.

6.1. Gridworld with LLM-assisted RL agents

Environment. We consider the gridworld depicted in
Fig. 2a, where two actors, A1 and A2, are tasked with
delivering objects. In the beginning of each trajectory, two
randomly sampled objects spawn in each of the boxes lo-
cated on the rightmost corners of the gridworld. The color
of each object determines its value. Colored cells indicate
areas of large stochastic penalty, which is significantly re-
duced when actors carry an object of matching color. Cells
denoted with stars are delivery locations. If an object is
delivered to the location with the matching color, then its
value is rewarded.

Implementation. We adopt a Planner-Actor-Reporter
system akin to (Dasgupta et al., 2023). Planner is imple-
mented using a pre-trained LLM and few-shot learning, to
provide actors with instructions. More specifically, Planner
can instruct actors to: examine a box, pickup an object and
deliver that object to a specific destination. Furthermore,
we assume an optimal Reporter whose task is to report to
Planner the necessary information about the state of the
environment. In particular, Reporter provides information
about the boxes’ contents and which objects were picked up
by the actors. Finally, the two actors are trained with deep
RL to follow the Planner’s instructions.

Setup. For our demonstration purposes, we consider the
(factual) trajectory illustrated in Fig. 2a. We intervene on the
pickup action of actor A2 forcing it to disobey Planner and
choose the green object. The resulting counterfactual trajec-
tory can be seen in Fig. 2a as well. Additional results from
a second experiment, where we intervene on the Planner’s
action, can be found in Appendix K.1.

Counterfactual effects. To measure the total counterfac-
tual effect in this scenario, we estimate the value of the total
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Figure 2: 2a depicts the actors’ movements in both the factual and counterfactual trajectory used in our experiments. Initially,
both A1 and A2 (represented by solid circles) are instructed to pickup the pink object and deliver it to the pink delivery
location. In the counterfactual trajectory, A2 is forced to pickup the green object instead, prompting Planner to issue an
alternative instruction for delivery to the green location. This intervention does not affect A1’s behavior. A textual depiction
of both trajectories is provided in Appendix K.1. Plot 2b shows the values of various counterfactual effects computed on the
trajectory’s discounted total reward. The minus sign indicates that the negative of these values are plotted. Plot 2c shows
the contribution ratios attributed to all state variables by r-SSE-ICC. Averages and standard errors are reported for 5 seeds.

reward collected in the counterfactual trajectory, and sub-
tract from it the observed return. For the total agent-specific
effect (Definition 3.1), we need to isolate the effect of the
intervention that propagates only through the agents (A1,
A2 and Planner). Compared to TCFE, we thus estimate the
return of the counterfactual trajectory in which the stochas-
tic penalties are realized as ifA2 carries the pink object. For
the state-specific effect (Definition 3.2), we have to isolate
the effect of the intervention that propagates only through
states. Therefore, we estimate the return of the counterfac-
tual trajectory in which agents take their factual actions, but
stochastic penalties are realized as if A2 carries the green
object. For the reverse SSE (Eq. 2), it suffices to com-
pute the difference between the returns of the counterfactual
trajectories considered for tot-ASE and TCFE.

Causal explanation formula. Plot 2b indicates that TCFE
is not decomposed into tot-ASE and SSE. Theorem 3.3, on
the other hand, is empirically validated in this scenario.

ASE-SV. According to Plot 2b, the ASE-SV attributes zero
scores to both A1 and Planner, while assigning the full tot-
ASE to A2. A1’s lack of contribution to the effect is due
to its unresponsiveness to A2’s actions. Although the Plan-
ner does respond to A2, it is unable to directly influence
the environment’s state. As a result, the effect of our inter-
vention on the total reward does not propagate through the
Planner’s actions. These represent two distinct mechanisms
by which agents can be excluded from contributing to the
total agent-specific effect.

r-SSE-ICC. Plot 2c shows that r-SSE-ICC pinpoints four
state variables with non-zero contributions to the reverse
state-specific effect. As expected, the time-steps of these
variables coincide with the time-steps at whichA2 traverses
the colored cells in the counterfactual trajectory, as these are

the only sources of stochasticity in the environment. More-
over, we observe that the scores attributed to the four states
decrease over time. Since penalties are sampled indepen-
dently, this can be interpreted as follows: the uncertainty
over the counterfactual penalty estimates is greater in earlier
time-steps. The latter can be confirmed by comparing the
penalty distributions from Table 2 in Appendix J.

6.2. Sepsis

Environment. The two-agent variant of the sepsis treatment
setting (Triantafyllou et al., 2024) we consider here involves
a clinician and an AI agent who take sequential actions in
a turn-based manner for treating an ICU patient. At each
round, the AI recommends one of 8 possible treatments,
which is then reviewed and potentially overridden by the
clinician. The likelihood of the clinician overriding the AI’s
treatment at any given state is modeled by a parameter µ,
which is varied in our experiment. Intuitively, µ serves as a
proxy for the clinician’s level of trust in the AI’s recommen-
dations: higher values of µ correspond to greater levels of
trust. If the AI’s action is not overridden, then its selected
treatment is applied. Otherwise, a new treatment selected
by the clinician is applied. The outcome of a trajectory is
deemed successful if the patient is kept alive for 20 rounds
or gets discharged earlier.

Evaluation of ASE-SV. We generate 600 trajectories with
unsuccessful outcomes. We then measure the total coun-
terfactual effect of all possible alternative actions on the
final state of these trajectories and keep those that exhibit
TCFE ≥ 0.8. Through that process, 8728 alternative ac-
tions are selected for the evaluation of ASE-SV. For all se-
lected actions, we compute their total agent-specific effect,
clinician-specific effect and AI-specific effect. As expected,
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Figure 3: Plots 3a and3b show the average percentage decomposition of -r-SSE and scores ϕcl and ϕai attributed by ASE-SV
w.r.t. TCFE, for interventions on the actions of AI and clinician, respectively, while varying trust parameter µ. Plot 3c shows
the Gini coefficient distribution over the scores attributed to state variables by the r-SSE-ICC method. The x-axis displays
how many rounds after the considered intervention the trajectory terminates.

the sum of the two individual effects does not equal the total
one, with discrepancies of up to 95%. In contrast, in our
experiments, ASE-SV always attributes the effect efficiently
to the clinician and AI, as supported by Theorem 5.3.

Plots 3a and 3b show the average percentage composition
of the reverse state-specific effect and the agent scores at-
tributed by ASE-SV w.r.t. the total counterfactual effect, for
different trust levels. Plot 3a (resp. Plot 3b) considers the
average over all selected AI (resp. clinician) actions. Results
reveal that our method demonstrates a trend similar to the
one described in (Triantafyllou et al., 2024). In particular,
the amount of tot-ASE attributed to the clinician (resp. AI)
decreases (resp. increases) as the level of trust rises, eventu-
ally reaching zero (resp. full) when the clinician completely
trusts the AI’s recommendations. This observation is intu-
itive, since the clinician is expected to contribute less to the
effect as it acts more infrequently in the environment, while
at the same time the AI is expected to contribute more as
it assumes greater agency. Thus, we conclude that ASE-
SV can efficiently attribute tot-ASE without sacrificing the
conceptual power of agent-specific effects.

Evaluation of r-SSE-ICC. We consider the same setup
as before and categorize all selected actions based on the
difference between the round that they were taken and the
final round of their respective trajectory. For instance, if the
action we consider was taken by the AI at the third round of a
trajectory with 8 rounds in total then the round difference for
that action is 5. For our analysis, we maintain actions with
round difference between 4 and 10. For all selected actions,
we compute their reverse state-specific effect together with
its variance. We keep those with absolute r-SSE ≥ 0.1 and
variance ≥ 0.01, which yields a total of 437 alternative
actions for the evaluation of r-SSE-ICC.

For each selected action and its reverse state-specific effect,
we compute the contribution scores assigned to all state

variables by the r-SSE-ICC method. We are interested in
seeing how spread the scores are across the states, i.e., if
our method attributes the effect equally or if it assigns larger
scores to few states. To achieve this, we depict the Gini
coefficient distribution (Gini, 1936) of these scores for vari-
ous round differences in Plot 3c.4 Our results indicate that,
independently of the trajectory size, r-SSE-ICC pinpoints
for most trajectories only a small subset of state variables
with significant (intrinsic) contribution to the reverse state-
specific effect. In practice, this means that for this setting we
actually need to infer the counterfactual values of only a few
key states in each trajectory in order to accurately estimate
r-SSE. This is an interesting observation, as it implies that
given a set of trajectories, r-SSE-ICC can reveal aspects of
the underlying counterfactual distribution.

7. Discussion
In this paper, we introduce a causal explanation framework
tailored to multi-agent MDPs. Specifically, we decompose
the total counterfactual effect of an agent’s action by attribut-
ing it to the agents’ behavior or environment dynamics. Our
experimental results demonstrate that our decomposition
provides valuable insights into the distinct roles that agents
and environment play in influencing the effect. To the best
of our knowledge, this is the first work that looks into the
problem of counterfactual effect decomposition in the con-
text of multi-agent sequential decision making. While our
findings are promising, there are several directions for future
exploration, which we outline below.

Computational complexity. The computational complex-
ity of our decomposition approach mainly depends on the

4In measuring the Gini coefficient we consider only the state
variables that follow the intervention, and correspond to time-steps
at which it was the AI’s turn to take action. These are the only
states that can be attributed a non-zero contribution by r-SSE-ICC.
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total number of agents and the length of the MMDP’s time
horizon. In our experiments, we use a relatively small num-
ber of agents and a horizon of a few dozen time-steps. We
believe that many interesting multi-agent settings belong
to this regime, e.g., human-AI collaboration. Nevertheless,
there are settings in which computational complexity consid-
erations can be important, and we see this as an interesting
future research direction to explore. In Appendix I, we
analyze the computational complexity of the ASE-SV and
r-SSE-ICC methods, and discuss potential mitigation strate-
gies for when the number of agents or the time horizon are
prohibitively large. We also discuss how agents’ capabilities
can affect the computational complexity of our approach.

Causal assumptions. Making causal assumptions in order
to enable counterfactual identifiability is quite common in
the literature. There is a plethora of works at the intersection
of decision making and counterfactual reasoning that as-
sumes exogeneity alongside causal properties, such as weak
(Triantafyllou et al., 2024) or strong (Tsirtsis & Rodriguez,
2024) noise monotonicity, counterfactual stability (Oberst
& Sontag, 2019), or access to the ground-truth causal model
(Richens et al., 2022). However, these assumptions are often
violated in practice. Extending the applicability of our pro-
posed approach to non-identifiable domains would therefore
be of significant practical value. For instance, our effect
decomposition approach could utilize bounds on counter-
factual probabilities instead of relying on point estimates,
albeit on the expense of efficiency. Such bounds can be ob-
tained from observational data through partial identification
methods (Manski, 1990; Zhang et al., 2022).

Applications to accountable decision making. We deem
the problem of decomposing counterfactual effects partic-
ularly relevant for multi-agent decision-making settings
where accountability is paramount. Our approach can be ap-
plied in these settings, by integrating it into existing causal
tools for retrospectively analyzing decision-making failures.
For instance, consider methods for blame attribution in
multi-agent systems (Halpern & Kleiman-Weiner, 2018;
Friedenberg & Halpern, 2019). Typically, these methods
first identify the agents’ actions that were critical to the out-
come, i.e., those that, had they been different, would have
likely prevented failure. Next, they assess the agents’ epis-
temic states, determining to what extent each agent could or
should have predicted the consequences of acting differently.
Our approach can enhance these methods by offering a more
granular notion of blame. In the Sepsis scenario described
in Section 1, for example, the clinician may be expected to
predict how their actions directly affect the patient’s state,
but may not be expected to predict the AI’s responses, espe-
cially if they have never worked with the current version of
the model before. According to the output of our decompo-
sition approach (Plot 1b), the clinician would then receive
73.5% of the total blame for their action, rather than bearing

full responsibility. We see significant potential in combining
our approach with existing works on blame attribution and
related concepts in accountable decision making, offering
practical benefits across various multi-agent domains.

Impact Statement
This paper aims to advance the field of Machine Learning,
particularly in accountable multi-agent sequential decision-
making. Our approach to decomposing counterfactual ef-
fects can be integrated into existing causal tools for ret-
rospectively analyzing decision-making failures, offering
deeper insights into accountability (see Section 7 for an
example on blame attribution). While our work has poten-
tial societal implications, we do not find any that require
specific emphasis here.
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A. List of Appendices
In this section, we provide a brief description of the content provided in the appendices of the paper.

• Appendix B contains a table that summarizes the most important notation used in the paper.

• Appendix C provides additional information on MMDP-SCMs.

• Appendix D contains the causal graph of the MMDP-SCM from Section 2.2.

• Appendix E provides additional information on noise monotonicity.

• Appendix F formally states the properties defined in Section 5 for the ASE-SV method.

• Appendix G outlines an algorithm for approximating the conditional variance from Eq. 4.

• Appendix H contains the proofs of Theorems 3.3 and 4.2.

• Appendix I provides a discussion on the computational complexity of the ASE-SV and r-SSE-ICC methods.

• Appendix J provides additional information on the experimental setup and implementation details.

• Appendix K includes additional experimental results.

• Appendix L includes additional experiments assessing the estimation error of our empirical results.

• Appendix M includes additional experiments assessing the robustness of our empirical results to the noise monotonicity
assumption.

• Appendix N provides a graphical illustration of all counterfactual effects introduced in Sections 2 and 3 using the
Sepsis example from (Triantafyllou et al., 2024).
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B. Notation Summarization Table

Table 1: Summarizes the most important notation used in the paper.

Notation Meaning
M MMDP-SCM

P (·)M Probability defined over M
{1, ..., n} Set of agents

h Time horizon
St, st ∈ S State variable and value at time-step t

Ai,t, ai,t ∈ Ai Action variable and value of agent i at time-step t
τ , τ(X) Trajectory and value of variable X in τ

P (·|τ ;M ′)M Probability conditioned on trajectory τ generated by M ′

U, u Vector of noise variables and vector of noise values
P (u), P (u|τ) Prior and posterior noise distributions
do(Ai,t := ai,t) Hard intervention on Ai,t

Mdo(Ai,t:=ai,t) Modified MMDP-SCM
Y Response/Outcome variable
Yai,t Potential response of Y to do(Ai,t := ai,t)

do(Y := Yai,t
) Natural intervention on Y

P (yai,t
|τ)M Counterfactual probability of Y = y under do(Ai,t := ai,t)

TCFEai,t,τ(Ai,t)(Y |τ)M Definition 2.1: Total counterfactual effect (TCFE)
I A set of interventions on action variables

ASE
{1,...,n}
ai,t,τ(Ai,t)

(Y |τ)M Definition 3.1: Total agent-specific effect (tot-ASE)
SSEai,t,τ(Ai,t)(Y |τ)M Definition 3.2: State-specific effect (SSE)
SSEτ(Ai,t),ai,t

(Y |τ)M Equation 2: Reverse state-specific effect (r-SSE)
∆YI,ai,t

Difference in potential responses YI − Yai,t

ICC(Sk → ∆YI,ai,t |τ) Equation 4: Intrinsic causal contribution (ICC)
ψSk

Score assigned to state Sk by the r-SSE-ICC (Definition 4.1)
ASEN

ai,t,τ(Ai,t)(Y |τ)M Definition 5.1: Agent-specific effect (ASE)
ϕi Score assigned to agent i by the ASE-SV (Definition 5.2)

C. Additional Information on MMDP-SCMs
Consider an MMDP-SCM M = ⟨V,U, P (u),F⟩. For the observational distribution of M , P (V), to be consistent with
an MMDP ⟨S, {1, ..., n},A, T, h, σ⟩ and a joint policy π, functions in F and noise distribution P (u) need to satisfy the
following conditions for every (s,a, s′) triplet and time-step t:

∫
uS0 :fS0 (uS0 )=s

P (uS0) = P (S0 = s|σ);
∫
uSt :fS(s,a,uSt )=s′

P (uSt) = T (s′|s,a);∫
uAi,t :fAi (s,uAi,t )=ai

P (uAi,t) = πi(ai|s). (5)

The first two conditions in Eq. 5 guarantee that M induces the initial state distribution and state transition dynamics of the
MMDP. The third condition makes sure that the action variables in M agree with the joint policy π.

D. Causal Graph of MMDP-SCM
This section contains the causal graph of the MMDP-SCM described in Section 2.2. The causal graph is shown in Fig. 4.
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Figure 4: The causal graph of an MMDP-SCM with n agents and horizon h. Exogenous variables are omitted.

E. Additional Information on Noise Monotonicity
In this section, we define the (weak) noise monotonicity property for categorical SCMs. It has been shown that noise
monotonicity enables counterfactual identifiability. For more details on noise monotonicity and its connection to the
identifiability problem, we refer the interested reader to (Triantafyllou et al., 2024).

Definition E.1 (Noise Monotonicity). Given an SCM M with causal graph G, we say that variable V i ∈ V is noise-
monotonic in M w.r.t. a total ordering ≤i on dom{V i}, if for any pai ∈ dom{Pai(G)} and ui1, u

i
2 ∼ P (U i) s.t. ui1 < ui2,

it holds that f i(pai, ui1) ≤i f
i(pai, ui2).

Essentially, noise monotonicity assumes that all observed variables in an SCM, or MMDP-SCM in our paper, are monotonic
w.r.t. their corresponding noise variable (for some specified total ordering). Note that noise monotonicity is not limiting
for the MMDPs or agents’ policies. In simple words, what noise monotonicity assumption restricts is the expressivity of
counterfactual distributions. There can be many MMDP-SCMs whose observational distribution is consistent with the
MMDP, but admit different counterfactual distributions. Theorem 4.3 in (Triantafyllou et al., 2024) shows that by limiting
the class of possible MMDP-SCMs to the ones that satisfy noise monotonicity, counterfactual identifiability is guaranteed.

F. Properties for ASE-SV
In this section, we formally state the properties defined in Section 5 for the ASE-SV method.

Efficiency: The total sum of agents’ contribution scores is equal to the total agent-specific effect. Formally,∑
j∈{1,...,n}

ϕj = ASE
{1,...,n}
ai,t,τ(Ai,t)

(Y |τ)M .

Invariance: Agents who do not marginally contribute to the total agent-specific effect are assigned a zero contribution score.
Formally, if for every S ⊆ {1, ..., n}\{j}

ASE
S∪{j}
ai,t,τ(Ai,t)

(Y |τ)M −ASES
ai,t,τ(Ai,t)(Y |τ)M = 0,

then ϕj = 0.

Symmetry: Agents who contribute equally to the total agent-specific effect are assigned the same contribution score.
Formally, if for every S ⊆ {1, ..., n}\{j, k}

ASE
S∪{j}
ai,t,τ(Ai,t)

(Y |τ)M −ASES
ai,t,τ(Ai,t)(Y |τ)M = ASE

S∪{k}
ai,t,τ(Ai,t)

(Y |τ)M −ASES
ai,t,τ(Ai,t)(Y |τ)M ,

then ϕj = ϕk.

Contribution monotonicity: The contribution score assigned to an agent depends only on its marginal contributions to the
total agent-specific effect and monotonically so. Formally, let M1 and M2 be two MMDP-SCMs with n agents, if for every
S ⊆ {1, ..., n}\{j}

ASE
S∪{j}
ai,t,τ(Ai,t)

(Y |τ)M1 −ASES
ai,t,τ(Ai,t)(Y |τ)M1 ≥ ASE

S∪{j}
ai,t,τ(Ai,t)

(Y |τ)M2 −ASES
ai,t,τ(Ai,t)(Y |τ)M2 ,

then ϕM1
j ≥ ϕM2

j .
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G. Algorithm for Conditional Variance
In this section, we present our approach for approximating the expected conditional variance from Eq. 4. Algorithm
1 estimates E[Var(∆YI,ai,t |τ,U<Sk)|τ ]M . To estimate the conditional variance E[Var(∆YI,ai,t |τ,U<Sk ,USk)|τ ]M , it
suffices to modify Algorithm 1 to sampling conditioning noise variables from P (u<Sk ,uSk |τ) and non-conditioning ones
from P (u≥Sk+1 |τ).

Algorithm 1 Estimates E[Var(∆YI,ai,t
|τ,U<Sk)|τ ]M

Input: MMDP-SCM M , trajectory τ , action variable Ai,t, action ai,t, response variable Y , state variable Sk, number of
conditioning/non-conditioning posterior samples H1/H2

1: h1 ← 0, h2 ← 0
2: µ1 ← 0, µ2 ← 0
3: while h1 < H1 do
4: ucond ∼ P (u<Sk |τ) # Sample conditioning noise variables
5: h1 ← h1 + 1
6: c1 ← 0, c2 ← 0
7: while h2 < H2 do
8: unon ∼ P (u≥Sk |τ) # Sample non-conditioning noise variables
9: h2 ← h2 + 1

10: u = (ucond,unon)
11: τ cf ∼ P (V|u)

Mdo(Ai,t:=ai,t) # Compute counterfactual trajectory
12: ycf ← τ cf(Y )
13: I ← {Ai′,t′ := τ cf(Ai′,t′)}i′∈{1,...,n},t′>t

14: yI ∼ P (Y |u)Mdo(I) # Compute response to natural intervention
15: c1 ← c1 + (yI − ycf)
16: c2 ← c2 + (yI − ycf)2

17: end while
18: µ1 ← µ1 + ( c1

H2
)2

19: µ2 ← µ2 +
c2
H2

20: h2 ← 0
21: end while
22: return µ2−µ1

H1

H. Proofs
H.1. Proof of Theorem 3.3

Proof. Eq. 3 follows directly from Definition 2.1, Definition 3.1 and Eq. 2:

TCFEai,t,τ(Ai,t)(Y |τ)M = E[Yai,t
|τ ]M − τ(Y )

= E[Yai,t
|τ ]M − τ(Y ) + E[Y |τ ;M ]Mdo(I) − E[Y |τ ;M ]Mdo(I)

= ASE
{1,...,n}
ai,t,τ(Ai,t)

(Y |τ)M − SSEτ(Ai,t),ai,t
(Y |τ)M ,

where I = {Ai′,t′ := Ai′,t′[ai,t]}i′∈{1,...,n},t′>t.
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H.2. Proof of Theorem 4.2

Proof. It holds that∑
k∈[t+1,tY ]

ψSk
=

E[Var(∆YI,ai,t
|τ,U<St+1)|τ ]M − E[Var(∆YI,ai,t

|τ,U<StY ,UStY )|τ ]M
Var(∆YI,ai,t

|τ)
· SSEτ(Ai,t),ai,t

(Y |τ)M

=
E[Var(∆YI,ai,t |τ,U<St+1)|τ ]M − E[Var(∆YI,ai,t |τ,U)|τ ]M

Var(∆YI,ai,t
|τ)

· SSEτ(Ai,t),ai,t
(Y |τ)M

=
E[Var(∆YI,ai,t

|τ,U<St+1)|τ ]M
Var(∆YI,ai,t |τ)

· SSEτ(Ai,t),ai,t
(Y |τ)M .

First step holds because E[Var(∆YI,ai,t
|τ,U<Sk ,USk)|τ ]M = E[Var(∆YI,ai,t

|τ,U<Sk+1)|τ ]M , for every k ∈ {t +
1, ..., tY − 1}. The second step follows from the fact that noise terms associated with observed variables which (chronologi-
cally) proceed tY do not influence the value of ∆YI,ai,t . The third step holds because the expected conditional variance
satisfies calibration, i.e., E[Var(∆YI,ai,t

|τ,U)|τ ]M = 0.

Let now X be any ancestor of St+1 in the causal graph of M , apart from Ai,t. Note that X is not affected by interventions
do(I) and do(Ai,t := ai,t). Therefore, the solution of X in the MMDP-SCMs Mdo(I) and Mdo(Ai,t:=ai,t) will be equal to
its factual value in τ , i.e, τ(X), for every context u sampled from the posterior P (u|τ). Furthermore, Ai,t is fixed to ai,t in
Mdo(Ai,t:=ai,t), while it is also not affected by do(I). It follows that conditioning on the noise terms associated with X or
Ai,t does not reduce the variance of ∆YI,ai,t

. Therefore, it holds that

E[Var(∆YI,ai,t
|τ,U<St+1)|τ ]M = Var(∆YI,ai,t

|τ),

which concludes our proof.

I. Discussion on Computational Complexity
In this section, we analyze the computational complexity of the ASE-SV (Definition 5.2) and r-SSE-ICC (Definition 4.1)
methods, and discuss potential mitigation strategies for when the number of agents or the length of the time horizon are
prohibitively large. We conclude the section with a discussion about the effect of agents’ capabilities on the computational
complexity of our approach.

I.1. Computational Complexity of ASE-SV

The number of agent-specific effect evaluations required by the exact ASE-SV calculation grows exponentially with the
number of agents n. One potential mitigation strategy for this problem is to adapt to our setting sampling based approaches
that efficiently approximate Shapley value without violating efficiency, i.e., attributing the entire effect. (Jia et al., 2019)
propose such an algorithmic approach, which requires O(n(log n)2) evaluations for any bounded utility. This means that
their algorithm is applicable to ASE-SV in settings where the value of agent-specific effects is bounded, as is the case in
both our experiments.

I.2. Computational Complexity of r-SSE-ICC

Computing the contribution scores assigned by the r-SSE-ICC method to all state variables requires O(h), where h denotes
the time horizon, executions of Algorithm 1. When we deal with long-horizon MMDPs, this linear dependence on the
number of time-steps can slow down our method. One intuitive strategy to reduce the number of computations in this case
is by grouping together state variables from consecutive time-steps. That way, the r-SSE-ICC method would attribute the
effect to sets of consecutive state variables instead of individual ones. If the time horizon (between action and outcome) is
partitioned in groups of the same fixed size k, except maybe for the last one, then the modified r-SSE-ICC method would
require O(hk ) executions of Algorithm 1.

In settings where it is reasonable to assume or empirically verify that r-SSE-ICC is sparse, in the sense that only a
few state variables have significant (intrinsic) contributions to the effect, as it is the case in both our experiments,
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then we are able to further reduce the number of Algorithm 1 executions. More specifically, we can utilize the
fact that the expected noise-conditional variance measure satisfies monotonicity, i.e., E[Var(∆YI,ai,t |τ,U<Sk)|τ ]M ≥
E[Var(∆YI,ai,t |τ,U<Sk ,USk)|τ ]M . If we know, for example, that for most of the times there is at most one state variable
with non-negligible (intrinsic) contribution to the effect, we can simply use a binary search approach to pinpoint that state.
This can reduce the complexity of r-SSE-ICC to O(log(h)) executions.

I.3. Effect of Agents’ Capabilities on Computational Complexity

The complexity of decision-making agents affects the computational complexity of our decomposition approach, assuming
that increased capabilities imply increased inference time. The reasoning is the following: our approach to estimating
counterfactual effects involves sampling trajectories from the posterior distribution and then averaging the values of the
response variable across these trajectories. Sampling a trajectory from the posterior distribution generally requires to prompt
each agent once for every counterfactual state in which they need to act.

For reference, in the Gridworld environment, more than 90% of the time required to sample one counterfactual trajectory is
spent on the inference of the LLM agent, while the remaining ∼ 10% is shared between the two RL agents.5 Consequently,
if we were to use an LLM agent with reduced cognitive capabilities, and hence less inference time, then the scalability of
our approach in this experiment would significantly improve.

J. Experimental Setup and Implementation
In this section, we provide additional information on the experimental setup and implementation.

J.1. Gridworld

Setup. Our setup is an adaptation of the Planner-Actor-Reporter system from (Dasgupta et al., 2023). The Planner is
tasked with understanding the high-level steps necessary for the completion of a task and then breaking it down to a sequence
of instructions. Actors are RL agents pre-trained to complete a set of simple instructions in the environment. Lastly, the
Reporter is tasked with translating environment observations into a textual representation comprehensible by the Planner.

Environment. We consider the gridworld environment depicted in Fig. 2a with two actors, A1 and A2. There are two
boxes located on the rightmost corners, each of which contains two objects. Each object has a color that determines its
value, in particular, pink > green > yellow. The object’s color is randomly sampled at the beginning of each trajectory.
Objects can be picked up and carried by the actors – each actor can pick up only one object, and only one object can be
picked up from each box. Grey-colored cells represent walls. Blank cells indicate areas of small negative cost. Colored
cells indicate areas of larger stochastic penalty, which is significantly reduced when actors carry an object of a matching
color. Penalties induced by cells of the same color share the same means, but might differ in their underlying distributions.
Moreover, in expectation, pink cells inflict higher penalties than green ones, and green cells higher than yellow ones. Cells
denoted with stars are delivery locations. If an object is delivered to the location with the matching color, then the object’s
value is rewarded. The objective in this environment is to maximize the combined total return of both actors. The full reward
specification can be found in Table 2.

Instructions. The Gridworld environment supports a simplified set of 8 instructions: examine box 1, examine box 2,
pickup pink, pickup green, pickup yellow, goto pink, goto green and, goto yellow. We pre-train both actors to learn a
goal-conditioned policy for executing each of the available instructions. During training, we sample a new instruction
at the beginning of each trajectory. Additionally, we initialize an actor according to the instruction and randomize over
its valid observation space. For example, for the instruction goto pink, we initialize the actor to its respective position
(under/above the first/second box for A1 and A2 respectively) and randomly select the object it’s carrying. The actor is
rewarded positively whenever it completes the instruction.

Actors. Actors A1 and A2 spawn on the same fixed locations at the beginning of each trajectory. Apart from movement
actions, actors can also perform pickup actions when located next to a box. The policies are represented via neural network
parameters and are learned using double deep Q-learning (Mnih et al., 2015; Van Hasselt et al., 2016). Both agents take as
their input concatenated, one-hot encoded vectors, which include their instruction, their current position and the color of the

5Raw values and additional details on the time compute of our experiments are included on the README file of our code, which can
be found at https://github.com/stelios30/cf-effect-decomposition.git.
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Table 2: Reward specification for Gridworld. An empty distribution column implies a deterministic reward issued upon
entering the cell. For the green corridor, penalties are specified on a per-cell basis, identified by their zero-based indices into
the associated row and column.

Cell Values Distribution
All -0.2 -

Pink Penalty [-30, -50, -70] [1/3, 1/3, 1/3]

Pink Penalty (Reduced) [-5, -15, -25] [1/3, 1/3, 1/3]

Pink Delivery +180 -

Green Penalty C2,4 [-30, -40, -50] [0.3, 0.4, 0.3]

Green Penalty C2,4 (Reduced) [-5, -10, -15] [0.3, 0.4, 0.3]

Green Penalty C2,5 [-30, -40, -50] [0.25, 0.5, 0.25]

Green Penalty C2,5 (Reduced) [-5, -10, -15] [0.25, 0.5, 0.25]

Green Penalty C2,6 [-30, -40, -50] [0.2, 0.6, 0.2]

Green Penalty C2,6 (Reduced) [-5, -10, -15] [0.2, 0.6, 0.2]

Green Penalty C2,7 [-30, -40, -50] [0.15, 0.7, 0.15]

Green Penalty C2,7 (Reduced) [-5, -10, -15] [0.15, 0.7, 0.15]

Green Delivery +150 -

Yellow Penalty [-25, -30, -35] [1/3, 1/3, 1/3]

Yellow Penalty (Reduced) [-2.5, -5, -7.5] [1/3, 1/3, 1/3]

Yellow Delivery +90 -

object they are carrying. We provide a full list of hyperparameters in Table 3. The hyperparameter optimization method was
performed by randomly sampling 50 candidates from the specified ranges and selecting the combination that yielded the
best test reward, averaged over all instructions.

Planner and Reporter. Planner is implemented using a pre-trained LLama 2.7B model (Touvron et al., 2023) and few-shot
learning, to provide actors with instructions. More specifically, Planner can instruct actors to: examine a box, pickup an
object and deliver that object to a specific destination. Furthermore, we assume an optimal Reporter whose task is to report
to the Planner the necessary information about the state of the environment. In particular, the Reporter provides information
about the boxes’ contents and which objects were picked up by the actors (see Trajectories 1 and 2 for an illustrative
example).

J.2. Sepsis

Our experimental setup and implementation closely follow that of (Triantafyllou et al., 2024).

J.3. Compute Resource

All experiments were run on a 64bit Debian-based machine having 2x12 CPU cores clocked at 3GHz with access to 1 TB of
DDR3 1600MHz RAM and an NVIDIA A40 GPU. The software stack relied on Python 3.9.13, with installed standard
scientific packages for numeric calculations and visualization (we provide a full list of dependencies and their exact versions
as part of our code).
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Table 3: Hyperparameters used for the Gridworld actors’ policies.

Parameter name Parameter value Tuning Range
Discount 0.99 [0.99, 0.9, 0.8]

Target Update Freq. 1000 [500, 1000, 1500]

Batch size 512 [256, 512, 1024, 2048]

Hidden Dim 128 [64, 128, 256]

Hidden Depth 3 [2, 3]

Learning Rate 1e-4 [1e-5, 5e-5, 1e-4, 5e-4, 1e-3]

Num. Estimation Step 1 [1, 3, 5, 10, 15]

0 5 10 15 20 25
Effect Value

TCFE

total ASE

SSE

r-SSE

1-SE

2-SE

Planner-SE

(a) Counterfactual Effects

Figure 5: Gridworld: Plot 5a shows the values of various counterfactual effects computed on the trajectory’s total collected
reward for the case when we intervene on the Planner’s action at Step 2, forcing it to instruct A2 to pick up the green object
instead of the pink one. Averages and standard errors are reported for 5 different seeds.

K. Additional Experimental Results
K.1. Gridworld

Additional experiment. We repeat the experiment from Section 6.1, but instead of intervening on A2’s pickup action we
intervene on the Planner’s action. In particular, we intervene on the Planner’s action at Step 2, forcing it to instruct A2 to
pick up the green object instead of the pink one. The total counterfactual effect of this intervention is equal to that of the
intervention on A2’s action. However, the result of our decomposition approach for these two effects is different.

According to Plot 5a, the TCFE in this scenario is fully attributed to how the agents would respond to the intervention, and
more specifically to the response of agent A2. Both the SSE and the r-SSE in this scenario are zero. This result is intuitive,
as the Planner is not able to influence the state transitions directly, and hence the effect of its actions do not propagate
through the environment dynamics. In contrast, the actions of A2 can influence the outcome through both the environment
and future agent actions, and hence the decomposition of their effect is more nuanced (see Plot 2b).

Trajectories. We provide a textual depiction of the factual (Trajectory 1) and counterfactual (Trajectory 2) trajectories from
Fig. 2a. We also provide a textual depiction of the counterfactual trajectory from the experiment described above (Trajectory
3).

K.2. Sepsis

Fig. 6 illustrates the distribution of the r-SSE contribution scores computed by the r-SSE-ICC method in Section 6.2. Due to
the use of a finite number of samples for estimating these scores, some negative values may be erroneously attributed. These
cases have been excluded from the plots.
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Gridworld Trajectory 1 : Factual
Box 1: (PINK, YELLOW); Box 2: (PINK, GREEN)

Step: 0; Reporter: A1 respawn; A2 respawn;
Planner: (examine box 1, examine box 2); Reward 0.0;

Step: 1; Actors (A1, A2): up, down; Reward: −0.4 (A1: −0.2, A2: −0.2);

Step: 2; Reporter: A1 (PINK YELLOW); A2 (PINK GREEN);
Planner: (pickup pink, pickup pink); Reward 0.0;

Step: 3; Actors (A1, A2): pickup pink, pickup pink; Reward: −0.4 (A1: −0.2, A2: −0.2);

Step: 4; Reporter: A1 has PINK; A2 has PINK;
Planner: (goto pink, goto pink); Reward 0.0;

Step: 5; Actors (A1, A2): down, up; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 6; Actors (A1, A2): left, up; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 7; Actors (A1, A2): left, up; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 8; Actors (A1, A2): left, left; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 9; Actors (A1, A2): left, left; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 10; Actors (A1, A2): left, left; Reward: −25.4 (A1: −25.2, A2: −0.2);
Step: 11; Actors (A1, A2): left, left; Reward: −25.4 (A1: −25.2, A2: −0.2);
Step: 12; Actors (A1, A2): left, left; Reward: −40.4 (A1: −15.2, A2: −25.2);
Step: 13; Actors (A1, A2): left, left; Reward: −30.4 (A1: −5.2, A2: −25.2);
Step: 14; Actors (A1, A2): up, left; Reward: −25.4 (A1: −0.2, A2: −25.2);
Step: 15; Actors (A1, A2): left, left; Reward: −25.4 (A1: −0.2, A2: −25.2);
Step: 16; Actors (A1, A2): left, left; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 17; Actors (A1, A2): left, up; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 18; Actors (A1, A2): NULL, left; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 19; Actors (A1, A2): NULL, left; Reward: −0.4 (A1: −0.2, A2: −0.2);

Step: 20; Goal Reward: 360.0; Total Reward: 183.2;
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Gridworld Trajectory 2 : Counterfactual (A2’s action)
Box 1: (PINK, YELLOW); Box 2: (PINK, GREEN)

Step: 0; Reporter: A1 respawn; A2 respawn;
Planner: (examine box 1, examine box 2); Reward 0.0;

Step: 1; Actors (A1, A2): up, down; Reward: −0.4 (A1: −0.2, A2: −0.2);

Step: 2; Reporter: A1 (PINK YELLOW); A2 (PINK GREEN);
Planner: (pickup pink, pickup pink); Reward 0.0;

Step: 3; Actors (A1, A2): pickup pink, pickup green; Reward: −0.4 (A1: −0.2, A2: −0.2);

Step: 4; Reporter: A1 has PINK; A2 has GREEN;
Planner: (goto pink, goto green); Reward 0.0;

Step: 5; Actors (A1, A2): down, up; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 6; Actors (A1, A2): left, left; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 7; Actors (A1, A2): left, left; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 8; Actors (A1, A2): left, up; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 9; Actors (A1, A2): left, left; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 10; Actors (A1, A2): left, left; Reward: −25.4 (A1: −25.2, A2: −0.2);
Step: 11; Actors (A1, A2): left, left; Reward: −35.4 (A1: −25.2, A2: −10.2);
Step: 12; Actors (A1, A2): left, left; Reward: −30.4 (A1: −15.5, A2: −15.2);
Step: 13; Actors (A1, A2): left, left; Reward: −20.4 (A1: −5.2, A2: −15.2);
Step: 14; Actors (A1, A2): up, left; Reward: −15.4 (A1: −0.2, A2: −15.2);
Step: 15; Actors (A1, A2): left, left; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 16; Actors (A1, A2): left, left; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 17; Actors (A1, A2): left, left; Reward: −0.4 (A1: −0.2, A2: −0.2);

Step: 18; Goal Reward: 330.0; Total Reward: 199.0;
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Gridworld Trajectory 3 : Counterfactual (Planner’s action)
Box 1: (PINK, YELLOW); Box 2: (PINK, GREEN)

Step: 0; Reporter: A1 respawn; A2 respawn;
Planner: (examine box 1, examine box 2); Reward 0.0;

Step: 1; Actors (A1, A2): up, down; Reward: −0.4 (A1: −0.2, A2: −0.2);

Step: 2; Reporter: A1 (PINK YELLOW); A2 (PINK GREEN);
Planner: (pickup pink, pickup green); Reward 0.0;

Step: 3; Actors (A1, A2): pickup pink, pickup green; Reward: −0.4 (A1: −0.2, A2: −0.2);

Step: 4; Reporter: A1 has PINK; A2 has GREEN;
Planner: (goto pink, goto green); Reward 0.0;

Step: 5; Actors (A1, A2): down, up; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 6; Actors (A1, A2): left, left; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 7; Actors (A1, A2): left, left; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 8; Actors (A1, A2): left, up; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 9; Actors (A1, A2): left, left; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 10; Actors (A1, A2): left, left; Reward: −25.4 (A1: −25.2, A2: −0.2);
Step: 11; Actors (A1, A2): left, left; Reward: −35.4 (A1: −25.2, A2: −10.2);
Step: 12; Actors (A1, A2): left, left; Reward: −25.4 (A1: −15.2, A2: −10.2);
Step: 13; Actors (A1, A2): left, left; Reward: −15.4 (A1: −5.2, A2: −10.2);
Step: 14; Actors (A1, A2): up, left; Reward: −15.4 (A1: −0.2, A2: −15.2);
Step: 15; Actors (A1, A2): left, left; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 16; Actors (A1, A2): left, left; Reward: −0.4 (A1: −0.2, A2: −0.2);
Step: 17; Actors (A1, A2): left, left; Reward: −0.4 (A1: −0.2, A2: −0.2);

Step: 18; Goal Reward: 330.0; Total Reward: 209.0;
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(e) Round Difference 8
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(f) Round Difference 9
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(g) Round Difference 10

Figure 6: Sepsis: Plots 6a - 6g show the average contribution ratios attributed to the different state variables by the r-SSE-ICC
method. Results are grouped based on the round difference of the selected actions (see Section 6.2 for an explanation). We
plot the contributions only for state variables corresponding to rounds that follow the intervention All other contributions
are zero. Averages and standard errors are reported for the 437 alternative actions chosen for the evaluation of r-SSE-ICC
following the process described in Section 6.2.
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(c) r-SSE Attribution

Figure 7: Plots 7a, 7b, and 7c replicate the empirical results from Plots 2b, 5a, and 2c, respectively, while additionally
including the corresponding ground-truth values for all quantities. Estimated values from the original plots are shown in
blue, while the ground-truth values are depicted in green.

L. Additional Experiments Evaluating Estimation Error
To approximate counterfactual effects across all experiments presented in Section 6 and Appendix K, we employ posterior
sampling-based methods akin to Algorithm 1. This is a standard approach to counterfactual inference ((Pearl, 2009)). In
this section, we present additional experiments to evaluate the estimation error and support the reliability of our empirical
findings.

L.1. Gridworld

Fig. 7 reproduces Plots 2b, 2c and 5a, now including the ground-truth values of all estimated quantities for comparison.
Notably, the ground-truth values (green) consistently lie within the standard error bounds of the estimated quantities (blue).
The ground-truth counterfactual distribution for this experiment was obtained through direct computation.

L.2. Sepsis

Compared to the Gridworld environment, acquiring ground-truth values for counterfactual quantities in the Sepsis setting is
significantly more challenging. Instead, we analyze the standard error distributions by repeating the experiment across 10
different seeds. Specifically, for each alternative action selected for the evaluation of ASE-SV and r-SSE-ICC in Section 6.2,
we perform the evaluation process 10 times and compute the empirical standard error for all estimated quantities: TCFE,
tot-ASE, SSE, r-SSE, ϕcl, ϕai, and r-SSE-ICC. Fig. 8 illustrates the resulting standard error distributions.6

The plots from Fig. 8 reveal minimal variability in the estimates of our causal explanation formula across seeds, with only
a very small number of outliers. These results reinforce the reliability of our findings from Section 6.2 and support the
robustness of our effect decomposition approach in the Sepsis experiment.

M. Additional Experiments Evaluating Robustness to Noise Monotonicity
Throughout all experiments in this paper, we assume that noise monotonicity holds (see Appendix E for a formal definition)
w.r.t. a chosen set of total orderings. In the Gridworld experiment, we design the environment such that penalty variables are
noise-monotonic w.r.t. the numerical ordering – all other variables in this experiment are deterministic. In the Sepsis experi-
ment, however, we lack access to the underlying causal model and rely solely on observational distributions. Consequently,
the choice of total orderings for noise monotonicity in this experiment may influence the results. In this section, we present
additional experiments to evaluate the robustness of the empirical findings from Section 6.2 to variations in the choice of the
total orderings. We note that a similar evaluation was conducted in (Triantafyllou et al., 2024).

6We chose to plot standard error distributions grouped by the absolute average means of their estimates over other metrics of relative
dispersion, such as Coefficient of Variation, due to the fact that for many of our estimates their mean value centers close to zero.
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(c) SSE
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(d) r-SSE
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(e) ϕai
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(f) ϕcl
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Figure 8: Box Plots 8a-8f show the standard error distributions of all counterfactual estimates from Section 6.2 over all 8728
alternative actions selected for the evaluation of ASE-SV in that section. Box Plot 8g shows the standard error distribution
of the scores assigned by the r-SSE-ICC method for a similar set of alternative actions as the one used in Section 6.2 for the
evaluation of r-SSE-ICC. Among the multiple standard errors associated with each alternative action (one for each score
assigned to a state variable), we report the one with the largest value. Standard errors and absolute mean values are measured
across 10 different seeds.
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(c) Gini Coefficient: Ord1
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(d) Decomp. AI: Ord2
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(e) Decomp. CL: Ord2
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(f) Gini Coefficient: Ord2
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(g) Decomp. AI: Ord3
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(h) Decomp. CL: Ord3
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(i) Gini Coefficient: Ord3
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(j) Decomp. AI: Ord4
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(k) Decomp. CL: Ord4
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(l) Gini Coefficient: Ord4
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(m) Decomp. AI: Ord5
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(o) Gini Coefficient: Ord5

Figure 9: Repeats plots from Fig. 3 for 5 additional total orderings.
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We repeat our experiments from Section 6.2 for 5 randomly selected additional total orderings. The results from these
experiments are depicted in Fig. 9. From the plots corresponding to any of these total orderings, we can draw similar
conclusions to the ones we drew from Fig. 3, especially from the plots that show the average percentage decomposition. We
can conclude then that the empirical findings in Section 6.2 are robust to the uncertainty over the underlying total orderings.

N. Graphical Illustration of Counterfactual Effects from Sections 2 and 3
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Figure 10: Depicts all counterfactual estimates appearing in Definitions 2.1 (TCFE), 3.1 (tot-ASE), 3.2 (SSE) and Equation
2 (r-SSE) using the Sepsis example from the introduction section of (Triantafyllou et al., 2024). The decision-making
setting of this example is the same as the one from Section 1 and Section 6.2, but restricted to only two time-steps. We
repeat the premise of the example and necessary notation for completeness. Squares in the graphs denote agents’ actions,
A for AI and H for clinician. Circles S are patient states, while SA include both S and A, i.e., SA = (S,A). Y denotes
the patient outcome after two time-steps. Edges that are striked through represent deactivated edges. Exogenous arrows
represent interventions on A0 that fix its value to one of two actions, Treatment C or Treatment E. In the considered
scenario, the former represents the action that was observed in the factual scenario (τ ), while the latter is the alternative
treatment (ai,t) whose counterfactual effect, on Y , we analyze. A cyan colored node signifies that the node is set to the
action that the agent took in the factual scenario, i.e., under treatment C. A magenta colored node signifies that the node
is set to the (counterfactual) action that the agent would have naturally taken under intervention E. Lastly, in Plot 10b
I = {Ai′,t′ := Ai′,t′[ai,t]}i′∈{1,...,n},t′>t (Definition 3.1), while in Plot 10c I = {Ai′,t′ := Ai′,t′[τ(Ai′,t′ )]

}i′∈{1,...,n},t′>t

(Definition 3.2).
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