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Abstract. Graph neural networks (GNNs) are proficient machine learn-
ing models in handling irregularly structured data. Nevertheless, their
generic formulation falls short when applied to the analysis of brain
connectomes in Alzheimer’s Disease (AD), necessitating the incorpo-
ration of domain-specific knowledge to achieve optimal model perfor-
mance. The integration of AD-related expertise into GNNs presents a
significant challenge. Current methodologies reliant on manual design
often demand substantial expertise from external domain specialists to
guide the development of novel models, thereby consuming considerable
time and resources. To mitigate the need for manual curation, this pa-
per introduces a novel self-guided knowledge-infused multimodal GNN
to autonomously integrate domain knowledge into the model develop-
ment process. We propose to conceptualize existing domain knowledge
as natural language, and devise a specialized multimodal GNN frame-
work tailored to leverage this uncurated knowledge to direct the learning
of the GNN submodule, thereby enhancing its efficacy and improving
prediction interpretability. To assess the effectiveness of our framework,
we compile a comprehensive literature dataset comprising recent peer-
reviewed publications on AD. By integrating this literature dataset with
several real-world AD datasets, our experimental results illustrate the ef-
fectiveness of the proposed method in extracting curated knowledge and
offering explanations on graphs for domain-specific applications. Fur-
thermore, our approach successfully utilizes the extracted information
to enhance the performance of the GNN.

Keywords: Alzheimer’s Disease · Graph Neural Network · Multimodal.

1 Introduction

Graph neural networks (GNNs) have emerged as robust and versatile algorithms
for diverse machine learning tasks involving graph or irregularly structured data,
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Fig. 1. Illustration of designing AD-specific GNNs.

as evidenced by a plethora of studies [10, 21, 27, 6, 7, 2]. In recent years, there has
been a discernible surge in research endeavors aimed at extending the applicabil-
ity of GNNs towards addressing broader scientific and health-related challenges,
such as drug prediction [26, 14], precision medicine [24, 22], and protein structure
prediction [25, 19].

Despite the inherent capability of GNNs to capture crucial structural in-
formation within graphs, the direct application of generic GNNs to Alzheimer’s
Disease (AD) research is not straightforward. This is due to the distinctive prop-
erties of brain connectomes, such as fixed node numbers and orders of Regions
of Interest (ROIs), which are not typically incorporated in standard GNN archi-
tectures. The pursuit of this research direction mandates a collaborative effort
between neuroscientists and computer scientists to tailor GNNs specifically for
AD, as shown in Fig. 1(a). However, the imperative for frequent interaction with
domain experts contrasts with the overarching goal of minimizing manual inter-
vention in machine learning algorithm development. The efficacy of the model
may be constrained by the expertise and knowledge of the consulted experts,
while the training of reliable domain experts incurs significant time and cost.
Moreover, the scarcity of available experts poses further challenges, hindering
model development efforts. Furthermore, the opaque nature of GNNs compli-
cates the elucidation of decision-making processes, limiting the assistance that
human experts can provide. Besides, although there exist works incorporating
human knowledge with graph data in recommendation systems [13, 16] in recent
years, they cannot be directly extended to the domain of AD.

In an effort to reduce reliance on expert guidance in the development of GNNs
for AD, our objective is to leverage self-collected, coarse, and uncurated domain
knowledge instead of relying solely on meticulously curated expert knowledge.
This approach raises several pertinent research questions: (1) How can uncurated
domain knowledge, readily accessible through sources such as peer-reviewed pub-
lications on the internet, be effectively utilized by GNNs? (2) How can this
knowledge be identified, curated, and tailored to suit specific datasets and GNN
architectures? (3) How can such knowledge be effectively integrated into the
model design to enhance performance and interoperability?

To address these challenges, we propose a self-guided multimodal approach to
enhance graph representation learning for AD, as depicted in Fig. 1(b). Inspired
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by retrieval-augmented generation (RAG) [12, 1, 8, 15] techniques for foundation
models, we augment GNNs with extensive domain knowledge extracted from
a self-built literature dataset, employing an end-to-end methodology to auto-
matically discern graph-wise and knowledge-wise importance for guiding inter-
pretable predictions. Initially, we integrate multimodal inputs (i.e., graph and
natural language) and pretrain the multimodal GNN. Subsequently, we com-
pute the importance scores of brain substructures and external knowledge, rep-
resented by explainable mask values. Finally, we refine the pretrained model
through augmented brain connectomes guided by the masks to enhance perfor-
mance. Our method contributions can be summarized as follows:

* We propose an approach to automatically incorporate domain knowledge into
GNNs to minimize human intervention, leveraging an external source of coarse
and uncurated knowledge, and introducing a novel “soft” augmented retrieval
generation method for integration with relevant subjects.

* Our approach aims to concurrently enhance the utility and interpretability
of GNNs by identifying graph-wise and knowledge-wise explanations relevant
to predictions. Moreover, the extracted explanations are tailored to the given
dataset and GNNs thereby guiding graph augmentation for model fine-tuning.

* Experimental results on representative AD datasets demonstrate that our
method can effectively inject domain knowledge into GNNs, thereby improving
performance and facilitating the generation of customized explanations.

2 Method

Overview. To integrate external knowledge into GNNs, we will fuse the em-
beddings from graphs and external knowledge guided by their relevance to the
prediction. More specifically, we learn a pair of masks to characterize the rele-
vance and use the masked embeddings to fine-tune the prediction model.

We first formulate a multimodal GNN denoted as f , which accepts brain
connectome data g alongside natural language data K as inputs. In essence, this
entails augmenting canonical GNNs with external knowledge data. Subsequently,
we undertake the pretraining of f using gathered data. We then identify signifi-
cant substructures within brain connectomes and pertinent knowledge relevant
to prediction tasks. These are delineated by real-valued masks parameterized
by α and β. By computing the masks jointly, we facilitate a “soft” retrieval
mechanism from the knowledge data, wherein the masks function as explana-
tions for both graph-wise and knowledge-wise aspects of predictions made by
f . Ultimately, we refine the parameters of f through a process of fine-tuning,
leveraging graph augmentation in conjunction with the “soft” retrieval outcomes.
Specifically, we utilize the computed masks to guide edge sampling, thereby pre-
serving critical information while augmenting data diversity. The design overview
is shown in Fig. 2 and further elucidation of our approach follows.
Multimodal GNN equipped with external knowledge. We propose the
integration of canonical GNNs with external knowledge, culminating in a mul-
timodal GNN. Specifically, our multimodal GNN comprises a backbone GNN
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Fig. 2. Design overview of our approach.

denoted as fB and a fusion GNN denoted as fF . Given the graph data g, the
backbone GNN fB is employed to generate a node embedding EG

d = fB(g).
The uncurated domain knowledge K is represented as a collection of language
sequences, denoted as K = {k1, k2, ..., kN}, where each knowledge item ki corre-
sponds to a summarization of domain knowledge. For instance, the abstract of
a paper focusing on Alzheimer’s Disease (AD) can be considered as a language
sequence ki within the uncurated domain knowledge K for AD. To integrate
K with EG

d , we compute Ei
K = MLP (h(ki)),∀ki ∈ K, where a pretrained lan-

guage model h followed by a multi-layer perceptron MLP is utilized to generate
the language embedding. We denote the knowledge embeddings collectively as
EK = {Ei

K|i = idx(ki), ki ∈ K} with |K| = N . Utilizing EG
d and EK, a fusion

graph gf is constructed by connecting node G with feature EG
d to each node i

in K with feature Ei
K. This allows us to modify cross-modal edges to represent

retrieval. The final prediction ŷ for the target task is generated by the fusion
GNN fF , where ŷ = fF (gf ). Subsequently, following the forward propagation of
the multimodal GNN f as defined, the model can be trained end-to-end using
multimodal inputs g and K, leveraging any arbitrary loss function L specific to
the target task. The design of our multimodal GNN is illustrated in Fig. 2(a).
Graph-wise and knowledge-wise importance retrieval using masks.
Given the pretrained GNN, we aim to identify the importance score represented
by real-value masks of substructures in the graphs and the retrieved knowledge,
to indicate the crucial components contributing to the prediction, and the details
are shown in Fig. 2(b). Following the fashion in previous works, we define the
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explanation of predictions on the multimodal input g and K as a subgraph g̃
and a subset K̃. Since directly sampling them from g and K is computationally
prohibitive and indifferentiable, we parameterized the sampling process as two
types of learnable masks combined with Gumbel Softmax function [9], i.e., data
mask Md parameterized with α on the graph g and knowledge mask Mk parame-
terized with β on the fusion graph gf . More specifically, for a given mask M (Md

or Mk) parameterized with ϕ (α for Md or β for Mk), Gumbel Softmax func-
tion is applied to arbitrary entry within M as mi,j =

exp [(ϕi,j+gi,j)/τ ]
exp [(ϕi,j+gi,j)]+exp (g′

i,j)
,

where ϕi,j denotes the entry value indexed with (i, j) in M . gi,j and g′i,j are
two independent random noise sampled from Gumbel distribution Gumbel(0, 1)
controled by temperature τ .

Given graph g = (Vg,Wg), where Vg denotes the node set of g and Wg ∈
R|Vg|×|Vg| represents the weighted adjacency matrix of g, the matrix M ′

d sampled
from Md is applied to Wg to approximate the sampling of edges as W ′

g =
M ′

d ⊙ Wg, where ⊙ is the element-wise matrix multiplication. With W ′
g, we

sample g′ = (Vg,W
′
g), and calculate the node embedding as EG′

d = fB(g
′). Node

embedding EG′

d is then used together with the knowledge embedding EK to
construct the fusion graph gf = (Vf ,Af ), where Vf denotes the node set of gf
and Af ∈ R|Vf |−1 represents the unweighted adjacency matrix of gf , where all
the entries are one. Similarly, for fusion graph gf , we apply the sampled mask
M ′

k to Af to approximate the sampling of edges as A′
f = M ′

k ⊙Af and get the
sampled fusion graph g′f . The final prediction is calculated by fF (g

′
f ).

We define Lexp to learn the masks with hyperparameters λ1, λ2, λ3, λ4,

Lexp = λ1Lmask + λ2Lclf + λ3Lspas + λ4Ldisc. (1)

Lmask = −
∑C

c=1 1[ŷ = c] logPf (ŷ
′ = ŷ|g′, g′f ) denotes the disagreement between

the prediction ŷ made on the original inputs and the prediction ŷ′ made on the
sampled inputs. C is the class number in the target task. Lclf = −

∑C
c=1 1[y =

c] logPf (ŷ
′ = y|g′, g′f ) encourages the consistency between ŷ′ and the label

y. Lspas = 1
|Md|

∑
i,j σ(M

i,j
d ) + 1

|Mk|
∑

i,j σ(M
i,j
k ) controls the sparsity of the

two masks, where σ(·) represents the sigmoid function. |Md| and |Mk| are the

number of entries in Md and Mk, respectively. Ldisc =
∑

i,j
Lent(σ(M

i,j
d ))

|Md| +∑
i,j

Lent(σ(M
i,j
k ))

|Mk| promotes the discreteness of the two masks, where Lent(·) is
the binary entropy function.

This section only considers one pair of Md and Mk for simplicity. However,
we can generalize it to multiple pairs cases. For instance, if genders are provided,
we can define Mfemale = {Mfemale

d ,Mfemale
k } and Mmale = {Mmale

d ,Mmale
k },

and train each pair of masks separately.
Graph augmentation enhanced by retrieved importance. We propose a
graph augmentation method guided by the crucial components in prediction,
i.e., the learned masks, to fine-tune the pretrained multimodal GNN f , aim-
ing to enhance model performance. Specifically, during fine-tuning, we employ a
threshold T on σ(M) to guide edge sampling as follows: for any arbitrary entry
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value mi, we retain the corresponding edge when mi ≥ T ; otherwise, we ran-
domly sample the corresponding edge with a probability of 0.5 for each iteration.
A schematic illustration of this process is provided in Fig. 2(c), where m1 and
m2 are both less than T , while m3 and m4 exceed T . Consequently, edges 3
and 4 are retained across both iteration 1 and j, whereas edge 1 exists solely
in iteration 1, and edge 2 appears only in iteration j. This methodology can be
uniformly applied to all computed masks, thereby substantially increasing input
diversity to f concerning less significant edges, while retaining crucial edges for
prediction, as indicated by the entry values within the masks.

3 Experiments

Datasets and Settings. We evaluate our approach on two AD datasets, i.e.,
OASIS [11] and ADNI-D [17]. For each, we include two graph datasets in different
modalities, where one is derived from DTI imaging while the other one is derived
from fMRI imaging.

* OASIS 1 contains 815 subjects. 155 subjects are diagnosed with AD and the
others are seronegative controls. For each subject, there are 132 regions of
interest (ROIs) based on Harvard-Oxford Atlas [4] and AAL Atlas [20]. There
are 459 females, including 66 AD patients and 393 seronegative controls, and
356 males, including 89 AD patients and 267 seronegative controls.

* ADNI-D 2 contains 340 subjects. 154 patients are diagnosed with mild cogni-
tive impairment (MCI), which is the early stage of AD. The others are seroneg-
ative controls. For each subject, 85 ROIs are derived from T1-weighted MRI
using FreeSurfer (V6.5) [3]. There are 210 females, including 84 MCI patients
and 126 seronegative controls, and 130 males, including 70 MCI patients and
60 seronegative controls.

For domain knowledge K of AD, we collected 20,108 records related to AD
in the last 20 years from PubMed 3. Each record consists of the title and the ab-
stract of a paper. We use BERT-Large [5] to encode K. BERT-Large is pretrained
with whole word masking on the uncased version of the training corpus.

We evaluate GCN [10], GINE [27], and GAT [21] as the architecture of both
the backbone and fusion GNN within the multimodel GNN (MM-GNN). Given
the prior knowledge about the gender distribution of the dataset, we introduce
two pairs of masks for graph-wise and knowledge-wise importance retrieval,
where one is for males and the other is for females. Please refer to the sup-
plementary materials for training details.
Main Results. The proposed MM-GNN significantly outperforms the plain
version of GNN, and the MM-GNN with fine-tuning further improves the per-
formance. Table 1 reports the main results for the evaluation of our method. As
1 https://sites.wustl.edu/oasisbrains/home/oasis-3/
2 https://adni.loni.usc.edu/
3 https://pubmed.ncbi.nlm.nih.gov/
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Table 1. Main results.

Method OASIS (DTI) OASIS (fMRI) ADNI-D (DTI) ADNI-D (fMRI)
ACC AUC F1 ACC AUC F1 ACC AUC F1 ACC AUC F1

GCN 0.6466 0.5246 0.4840 0.6245 0.5376 0.5003 0.5765 0.4642 0.4619 0.5618 0.4978 0.5301
MM-GCN (ours) 0.7141 0.5220 0.5639 0.7387 0.5774 0.5962 0.6294 0.5629 0.6133 0.6235 0.5852 0.6111

MM-GCN-F (ours) 0.7362 0.5381 0.5805 0.7436 0.5774 0.5989 0.6471 0.5821 0.6406 0.6441 0.5936 0.6367
GINE 0.7448 0.5238 0.5332 0.6405 0.5476 0.5251 0.5765 0.5966 0.5242 0.5676 0.5862 0.5439

MM-GINE (ours) 0.7521 0.5777 0.6004 0.7558 0.5641 0.5939 0.6706 0.6286 0.6610 0.6765 0.6450 0.6671
MM-GINE-F (ours) 0.7926 0.5733 0.6245 0.7534 0.6030 0.6121 0.6853 0.6720 0.6774 0.6647 0.6716 0.6556

GAT 0.5975 0.5340 0.4925 0.6847 0.4809 0.5184 0.5529 0.5300 0.4617 0.5824 0.4994 0.4512
MM-GAT (ours) 0.7436 0.6098 0.5983 0.7632 0.5828 0.6040 0.6588 0.6164 0.6354 0.6559 0.6072 0.6252

MM-GAT-F (ours) 0.7460 0.6085 0.6022 0.7779 0.6008 0.6143 0.6706 0.6204 0.6557 0.6618 0.6102 0.6446

(a). MM-GCN: OASIS (DTI)
Female Male Female Male

Female Male Female Male
(c). MM-GAT: OASIS (DTI)

(b). MM-GCN: ADNI-D (DTI)

(d). MM-GAT: ADNI-D (DTI)

Fig. 3. Brain saliency maps identified by our approach. Top 10 salient ROIs are high-
lighted.

shown in Table 1, the performance can be improved significantly when the do-
main knowledge is injected into the inference of GNN. For example, on the two
datasets of ADNI-D, compared with vanilla GCN, 10.08%, 19.41% and 24.03%
relative improvement is gained in ACC, AUC and F1 on average, respectively.
Moreover, the performance can be further enhanced when fine-tuning the mul-
timodal GNN guided by the generated masks. For instance, on the two datasets
of ADNI-D, compared with plain MM-GCN, 3.06%, 2.43% and 4.32% relative
improvement can be achieved in ACC, AUC and F1 on average, respectively.
Qualitative Analysis on Graph-wise Masks. To analyze the generated
graph-wise masks, we calculate the importance score of each ROI based on the
graph-wise mask and highlight the top 10 salient ROIs on the brain saliency
maps in Fig. 3. Note that the color in each brain saliency map of Fig. 3 is ap-
plied to distinguish different ROIs only. As shown in Fig. 3, it is clear that the
salient ROIs are distinct for males and females, which is consistent with the
existing studies [18, 23]. Moreover, MM-GNNs with different architectures can
also show a distinct preference for their prediction even if they are trained on
the same dataset. For instance, MM-GCN and MM-GAT share 5 salient ROIs
and have 5 unique salient ROIs. Such kinds of insights are usually difficult for
human experts to extract but can be automatically captured by our approach.
Qualitative Analysis on Knowledge-wise Masks. Our approach can auto-
matically adapt its way to employ the domain knowledge to the change in the
gender, backbone and dataset. Fig. 4 shows the distribution of values within
the knowledge-wise masks, which can be interpreted as the distribution of im-
portance scores of domain knowledge. And we have several observations. First,
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Fig. 4. Distribution of importance scores of domain knowledge from our approach.

Table 2. Ablation study on the size of domain knowledge.

Method OASIS (DTI) OASIS (fMRI) ADNI-D (DTI) ADNI-D (fMRI)
ACC AUC F1 ACC AUC F1 ACC AUC F1 ACC AUC F1

MM-GCN (100%) 0.7141 0.5220 0.5639 0.7387 0.5774 0.5962 0.6294 0.5629 0.6133 0.6235 0.5852 0.6111
MM-GCN (10%) 0.6822 0.5367 0.4852 0.6405 0.5636 0.4921 0.5941 0.5191 0.5833 0.6118 0.5682 0.5656
MM-GCN (1%) 0.6613 0.5388 0.4993 0.6429 0.5573 0.5264 0.5912 0.5277 0.5871 0.6235 0.5610 0.5755

MM-GINE (100%) 0.7521 0.5777 0.6004 0.7558 0.5641 0.5939 0.6706 0.6286 0.6610 0.6765 0.6450 0.6671
MM-GINE (10%) 0.8184 0.5546 0.5115 0.7644 0.5294 0.5801 0.6676 0.6206 0.6479 0.6059 0.6806 0.5754
MM-GINE (1%) 0.8221 0.5206 0.5152 0.8221 0.5078 0.5244 0.6735 0.6184 0.6608 0.6206 0.6937 0.5933
MM-GAT (100%) 0.7436 0.6098 0.5983 0.7632 0.5828 0.6040 0.6588 0.6164 0.6354 0.6559 0.6072 0.6252
MM-GAT (10%) 0.7485 0.5665 0.5896 0.8184 0.5317 0.5012 0.6088 0.5578 0.5824 0.5559 0.4828 0.5475
MM-GAT (1%) 0.7718 0.5562 0.5893 0.8221 0.5176 0.5290 0.6324 0.5822 0.5860 0.6118 0.5470 0.5306

males and females have different ways to leverage the given domain knowledge
for inference. Second, different architectures of MM-GNN show different pat-
terns on the knowledge-wise mask. Compared with MM-GCN, MM-GAT tends
to have a more sparse distribution. Last, even when the domain is the same
(i.e., AD), our approach can propose different paradigms to leverage the domain
knowledge when the dataset is different.

Ablation Study on the Size of Domain Knowledge. We conducted the
ablation study on the size of the domain knowledge, where we randomly sampled
1% and 10% records from the complete set of domain knowledge K to train the
MM-GNN. The results are shown in Table 2 and we have two observations.
First, the performance improvement is minor and even suffers from degradation
when increasing the size of domain knowledge from about 200 (1%) to about
2,000 (10%). Second, the benefits from a larger set of domain knowledge become
obvious when increasing the size of domain knowledge to more than 20,000
(100%). Therefore, we can conclude that although the performance may have
little improvement when increasing the set of domain knowledge to a moderate
size, a noticeable boost in performance can be observed when increasing the size
of domain knowledge to a much larger size.



Self-guided Knowledge-injected GNN for AD 9

4 Conclusion

We introduce a self-guided approach to autonomously integrate domain knowl-
edge into GNNs to harness collected uncurated AD knowledge. Our approach
can effectively extract curated knowledge and explanations on graphs for AD and
guide the fine-tuning to improve the performance of GNNs. Extensive experi-
ments on real-world AD datasets demonstrate the effectiveness of our method.
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