ReLU is all you need for NASWOT
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Abstract From LeNet to Transformers, the design of neural network architectures has been central
to the advancement of deep learning. Neural Architecture Search (NAS) aims to automate
the design of neural network architectures, which traditionally is a time-consuming task
and relies mainly on human intuition. Training-free heuristics such as NASWOT by Mellor
et al. (2021) have emerged as efficient methods for estimating architecture performance
without the need for training. However, NASWOT utilizes only the activation information
obtained from the ReLU activation to score the network. While this works well for ReLU-
dominated architectures such as CNNs, it does not utilize information from non-ReLU
activations. This limits its applicability to domains such as natural language processing,
which often rely on activations like sigmoid, tanh, and softmax along with ReLU. In this
work, we build upon the NASWOT idea and generalize it to support a broad range of
activation functions. Our generalized scoring function applies to any activation function
whose output can be bounded within finite limits. We evaluate our method on the NAS-
Bench-NLP and BERT Transformer benchmarks, expecting improvements over the original
NASWOT baseline in terms of correlation with perplexity and BLEU score. Surprisingly,
our results show minimal or no improvement, and even a decline in correlation for a few
cases. Further experiments reveal a high correlation among the information captured by
different activation functions, suggesting that diverse activations are encoding the same
information. Moreover, ReLU alone appears to retain the most predictive information. These
findings indicate that NASWOT remains effective within a subset of architectures, and that
ReLU alone may be sufficient for capturing the key characteristics relevant to training-free
performance prediction in such cases. The code for reproducing our experiments and results
is available at https://github.com/PritK99/Generalized-NASWOT.

1 Introduction

Performance estimation strategy Elsken et al. (2019) is a key component of NAS Zoph et al. (2018).
Instead of fully or partially training architectures, which is computationally expensive, NAS can
use heuristics to estimate performance without training. This is called as NAS without training.
One of the state-of-the-art training-free score function is NASWOT Mellor et al. (2021), which
demonstrates a strong correlation with actual performance on CNN-based benchmarks. It evaluates
architectures using ReLU activation patterns at initialization, encoding them as binary codes and
computing Hamming distances between them to measure the network’s discriminative capacity. A
kernel matrix is constructed from these distances, and the NASWOT score is the log-determinant
of this matrix. A higher score indicates stronger input separation, and this serves as a heuristic for
actual performance of the neural network.

One limitation of NASWOT is its dependence on the ReLU activation function. Domains such as
natural language processing use architectures like RNNs, LSTMs, GRUs, and Transformers, which
predominantly rely on activation functions such as sigmoid, tanh, and softmax. As a result, there is
a need to generalize NASWOT to support a broad class of activation functions. In this paper, we
generalize NASWOT to support a wider range of activation functions with bounded outputs. We
evaluate our generalized method on NLP benchmarks and compare it to the original NASWOT
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baseline. Surprisingly our experiments show little to no improvement and in some cases a decline
in performance. To understand this outcome we conduct further analysis and find that ReLU alone
is sufficient to capture the information used by NASWOT.

Methodology

We make some observations in the kernel matrix formula proposed by NASWOT Mellor et al. (2021).
Each term in the similarity kernel has two major components, one is a constant N4 and the other is
the hamming distance between binary activation codes. The constant N4 represents the maximum
possible hamming distance between any two binary codes. This concept makes the kernel matrix
a measure of similarity of the two binary codes. A natural and intuitive extension is to consider
metrics which are most suitable to capture the similarity between activations of other types. We
propose a generalized similarity term for the kernel matrix given by

1 1
kl,](l) :m_f(zl( )’ZJ( )) (1)

Here, m is the maximum possible value taken by the function f(z;,z;) and f is the function
which measures the distance between two activation codes z; and z;.

Our proposed algorithm then starts with considering a mini-batch of data D = {x;}¥, and
generating activation codes z; from the value of activation functions in a neural network at x; by
using a suitable mapping. This mapping is used to bound the activation values so that f (zi(l), z](.l))
has finite range and a defined value of m. For instance, NASWOT performs binary thresholding
for ReLU activation which shrinks the ReLU range from [0, co] to [0, 1] and makes the hamming
distance function f (zl.(l), zj(.l)) bounded to the range [0, N4]. It also provides unique codes for the
linear regions created by the ReLU splits. Similar mappings can be used for other ReLU variants
such as LeakyReLU and GELU.
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Figure 1: Partition regions for Sigmoid and Tanh

For smoother activation functions like sigmoid and tanh, we partition their output ranges into
multiple discrete intervals to capture their nonlinear structure. To determine the optimal number
of partitions, we use a subset of benchmark data as a validation set and experiment with 2, 4, 8,
and 16 partitions. Additionally, we test the use of Euclidean distances on the raw activation values,
effectively corresponding to infinite partitions. This validation set is separate from the test set used
in our experiments. We observe that NASWOT performs best with 4 partitions for Sigmoid and 8
for Tanh. These partitions are illustrated in Figure 1. The Softmax activation outputs a probability
distribution. Thus, we use the Jensen-Shannon divergence Lin (1991) to measure the similarity
between two softmax activations.

Using the generalized similarity term from Equation (1), we compute the layer-wise kernel
matrix K as:
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Here, m is the maximum value of the function f for the specific activation type, and K") is the

similarity kernel at layer I. We then aggregate the similarity kernels from all layers £ to form the
final kernel matrix K:
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Finally, we define our overall score using the NASWOT formulation:

s = log |K| (4)

Experimental Results

We evaluate our generalized NASWOT scoring function on NAS-Bench-NLP Klyuchnikov et al.
(2020) and the BERT-Transformer benchmark Serianni and Kalita (2023). We choose these NLP
based benchmarks because they include architectures such as RNNs and Transformers which use a
variety of activation functions.

NAS-Bench-NLP contains over 14,000 unique recurrent neural network architectures evaluated
on the Penn Treebank dataset for language modeling. The architectures in this benchmark vary in
RNN cell types, activation functions, and other hyperparameters. They use ReLU, sigmoid, and
tanh activations, and their performance is measured using perplexity scores. In this case, a stronger
negative correlation indicates better alignment with actual performance. This is because Perplexity
is a loss-like metric in language modeling, and lower values indicate better performance. The
BERT Transformer benchmark includes five hundred Transformer architectures pretrained on the
OpenWebText corpus. These models are sampled from the FlexiBERT search space, which contains
over ten million Transformer variants. The architectures use ReLU and softmax activations, and
performance is assessed using GLUE scores. For this benchmark, a stronger positive correlation
reflects better alignment with actual performance.

Table 1: Comparison across benchmarks and correlation metrics

NAS-Bench-NLP (]) ‘ BERT Transformer (7)
Score Function Kendall’s Tau Pearson Spearman ‘ Kendall’s Tau Pearson Spearman
NASWOT -0.27 -0.24 -0.43 0.47 0.59 0.69
Ours -0.31 0.05 -0.46 0.21 0.15 0.32

For our evaluation, we randomly sample 1,000 architectures from NAS-Bench-NLP and use all
500 architectures from the BERT-Transformer benchmark. We report results using three correlation
metrics which are Kendall Tau, Spearman rank correlation, and Pearson correlation. Table 1 presents
the results obtained by the generalized NASWOT method on both benchmarks and compares them
with the original NASWOT baseline. For NAS Bench NLP, including information from sigmoid
and tanh activations results in a trivial improvement in Kendall Tau and Spearman correlation.
However, Pearson correlation drops significantly, indicating that the relationship between the
NASWOT score and model performance is no longer linear. For the BERT Transformer benchmark,
including softmax information leads to a substantial 50% decline in performance across all three
metrics.
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Figure 2: Kendall’s Tau correlation for NAS-Bench-NLP and BERT Trasnformer

To understand the reasons behind the poor results, we analyzed the information captured by
each activation type and their combinations. We then computed the Kendall’s Tau correlation
between each pair of combinations to assess the uniqueness of the information they captured.
Figures 2 show the pairwise Kendall’s Tau correlations for both benchmarks.

In the case of NAS-Bench-NLP, we observe a very high correlation among all combinations,
indicating that they capture largely the same information. Similarly, for the BERT Transformer
benchmark, the correlations are moderate, suggesting some degree of redundancy across combina-
tions. The correlation patterns for Pearson and Spearman closely are similar to those of Kendall’s
Tau. Furthermore, in both benchmarks, ReLU alone achieves a strong correlation with ground
truth. For BERT-Transformer, ReLU outperforms all other combinations. This suggests that the
information obtained from ReLU activation is sufficient for the NASWOT score function.

To further support our analysis, we perform Principal Component Analysis (PCA) on the
activation-based features to assess how information is distributed across components. We observe
that the first principal component alone accounts for over 90% of the total variance, indicating
that most of the information captured by the various activation combinations lies along a single
dominant direction. This reinforces our claim that the activation combinations carry redundant
information and RelLU is sufficient to capture the relevant information used by NASWOT.

4 Conclusion

Our attempt to generalize NASWOT shows that ReLU alone is sufficient to capture the information
needed to measure the discriminative power of an untrained neural network. We suggest that future
work explore other sources of information, such as the rank of Jacobian matrices, which may help
improve or extend NASWOT. We hope our findings help guide further research on training-free
performance prediction methods.
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