
Published as a Tiny Paper at ICLR 2024

EXPLOITING TIME CHANNEL VULNERABILITY
OF LEARNED BLOOM FILTERS

Harman Singh Farwah
Northeastern University

Gangandeep Singh
University of Illinois Urbana-Champaign

Cheng Tan
Northeastern University

ABSTRACT

Neural network for computer systems—such as operating systems, databases, and
network systems—attract much attention. However, using neural networks in sys-
tems introduces new attacking surfaces. This paper makes the first attempt to study
the security factor of learned bloom filters, a promising neural network based data
structure in systems. We design and implement an attack that can efficiently re-
cover system owners’ data via a timing side channel.

1 INTRODUCTION

Neural networks for computer systems (NN4Sys) are promising. They offer unprecedented per-
formance in many computer system components, including database indexes (Kraska et al., 2018),
Internet congestion control (Jay et al., 2019), and memory allocator (Maas et al., 2020). However,
NN4Sys also brings new challenges in system security, as neural networks are black boxes and their
interactions with other system components introduce new attacking surfaces.

In this paper, we study an important data structure, bloom filter (Bloom, 1970), that has been used
in many systems, including storage systems, distributed systems, CDN caching, and search engines.
A bloom filter is a probabilistic data structure testing whether an element is in a pre-defined dataset.
Bloom filters allow false positives (it may say “yes” to a not-in-the-set element), but it has no false
negatives (it never returns false when the element is indeed in the set).

Learned bloom filter (Dai & Shrivastava, 2019; Kraska et al., 2018) uses a neural network to learn

traditional 
bloom filter

neural 
network

input

False True

True

predicted
False

predicted
True

Figure 1: An example
learned bloom filter

the dataset. The network is a binary classifier. It predicts input data
into True (in the dataset) or False (not in the dataset). To fulfill the
requirement of no false negatives, learned bloom filter adds a small tradi-
tional bloom filter to further check the data labeled as False by the net-
work. Figure 1 depicts a learned bloom filter. Kraska et al. (2018) have
shown that learned bloom filters outperform traditional bloom filters be-
cause the neural networks have prior knowledge of the data distribution
(due to training), but a traditional bloom filter has no prior knowledge.

Our observation: a timing side channel. Despite performing well,
learned bloom filters open a timing side channel; that is, for inputs be-
ing returned True, some of them are returned faster than others. This
is because the learned bloom filters return immediately when the neu-
ral network predicts True (i.e., the right-most True in Figure 1). Moreover, these fast trues are
semantically meaningful: they are the ones that the neural network has high confidence of being
True, meaning that the dataset (training data) likely has a cluster of data in this area. This tim-
ing side channel leaks the information about the training dataset, leading to our proposed attack.
Algorithm 1 shows the pseudocode for querying to a learned bloom filter.

An attack: recovering training dataset. Based on the above observation, an attacker can leverage
this side channel to efficiently recover the training dataset. The threat model is as follows: a learned
bloom filter is constructed from a training dataset, D. The learned bloom filter is deployed online
and anyone can issue a query. The attacker wants to recover the dataset D, but they do not have
access to the internals of the learned bloom filter. Instead, the attacker can query the learned bloom
filter via normal interfaces, and measure the response time of the learned bloom filter. The goal of
the attacker is to accurately reconstruct D with minimum number of queries.

1



Published as a Tiny Paper at ICLR 2024

2 METHODOLOGY

Measuring query latency. We used python’s built-in method time.perf counter ns() to
measure the latency of a single inference in nanoseconds (ns). Our objective is to empirically distin-
guish between FT and ST classifications. The similarity between inputs classified as ST and False
lies in their classification being handled by the conventional bloom filter. So, we used inference time
of all the inputs classified as False to calculate threshold between FT and ST.

Recovery via convex hulls. We develop a dataset recovery algorithm by convex hulls. The al-
gorithm’s inputs are the queries to the learned bloom filter and the corresponding output from the
learned bloom filter. The output is a set of partitions of the key space; Each partition is assigned
a label indicating whether the data belongs to the training dataset (True) or does not form part of
the dataset (False). Our algorithm entails creating clusters of empirical FT points, each confined
within a given radius. Once all the clusters are identified, we utilize the spatial.ConvexHull
method from the scipy package to create partitions enclosing each clusters.

3 EXPERIMENTAL EVALUATION

Dataset. We evaluate our approach on the (GeoLite2) dataset, which encompasses IPv4 networks
in CIDR format along with their corresponding countries.

Training. We consider the initial 3 octets of IPv4 addresses. This deliberate focus on a subset of
the address space was chosen due to the practicality and efficiency of training our neural network.
By narrowing our scope to these specific octets, we streamline the learning process and enhance the
manageability of the training dataset, allowing for more effective model training and evaluation.

Our learned bloom filter takes IP addresses as input, with IPs of “Japan” serving as the key set for
the learned bloom filter and positive set for training the neural network. To train the model, we
randomly select IP addresses from other countries to form the negative set. The learned model is
a feed-forward neural network with a sigmoid function as the final layer’s activation function and
Binary Cross Entropy as the loss function. The network is 5 layers deep and 128 neurons wide with
ReLU as an activation function for each layer. We implemented a traditional bloom filter with the
false positive rate (FPR) set to 1%.

Preliminary results. We randomly sample 100K points from the input space and calculate inference

Figure 2: Figure illustrates Ground
Truth IP addresses stored in a Learned
Bloom Filter, alongside empirical fast
true IP addresses. Convex hull parti-
tions are overlaid on top of the points.

time of each. For visualizing IP addresses, we trans-
formed the 1D representation of IPs into a 2D representa-
tion using the Hilbert curve (Moon et al., 2001). Hilbert
curve is a continuous fractal space-filling curve that maps
one-dimensional data to higher dimensions.

After inferring the test set, we get 6,131 points predicted
as true. The median time for true and false predictions are
90,917 ns and 92,625 ns, respectively. Using the median
time for false predictions as the threshold between ST and
FT, we identified 4,577 instances as Empirical FT (EFT).
Figure 2 shows the output of our search algorithm. Us-
ing empirical FT, we find cluster of points within a given
radius, which we then used to create convex hull parti-
tions. The partition of each convex hull represents any
point queried in it would be classified as belonging to the
training dataset.

4 SUMMARY

This paper is the first step towards studying the security
impact of learned bloom filters, a promising building block for computer systems. We observe
that learned bloom filters have a timing side channel that attackers can exploit. This vulnerability
leads to an attack that recovers the training dataset. Our proposed attack is just one example among
many potential attacks on NN4Sys. We hope this work illustrates the challenge and encourages the
research in defending attacks to NN4Sys.

2



Published as a Tiny Paper at ICLR 2024

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.

REFERENCES

Burton Bloom. Space/time trade-offs in hash coding with allowable errors. In Communications of
the ACM, 1970.

BPD. Boston police department. crime incident reports (2015-2018). https://www.kaggle.
com/datasets/AnalyzeBoston/crimes-in-boston.

Zhenwei Dai and Anshumali Shrivastava. Adaptive learned bloom filter (ada-bf): Efficient utiliza-
tion of the classifier. arXiv preprint arXiv:1910.09131, 2019.

GeoLite2. Maxmind geolite2 free geolocation data. https://dev.maxmind.com/geoip/
docs/databases/city-and-country.

Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar. A deep reinforce-
ment learning perspective on internet congestion control. In International Conference on Machine
Learning. PMLR, 2019.

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned index
structures. 2018.

Martin Maas, David G Andersen, Michael Isard, Mohammad Mahdi Javanmard, Kathryn S McKin-
ley, and Colin Raffel. Learning-based memory allocation for c++ server workloads. 2020.

B. Moon, H.V. Jagadish, C. Faloutsos, and J.H. Saltz. Analysis of the clustering properties of the
hilbert space-filling curve. IEEE Transactions on Knowledge and Data Engineering, 13(1):124–
141, 2001.

UrbanGB. Urbangb, urban road accidents coordinates labelled by the urban center in great britain.
https://doi.org/10.24432/C5CD0F.

A APPENDIX

A.1 ADDITIONAL DATASETS

We also tested our experiment on two additional datasets: Crimes in Boston (BPD) and Urban road
accidents in Great Britain (UrbanGB). These datasets provide latitude and longitude information
for each incident. In our learned bloom filter, we utilized latitude and longitude as a 2D input.
The latitude and longitude values from incidents in these datasets were utilized as the key set for
the learned bloom filter and constituted the positive set for our learned model. Figure 3 shows the
output of our search algorithm for both the datasets.

A.2 NEURAL NETWORK MODEL TRAINING METRICS

These metrics provide accuracy, precision and recall of the learned model for the given 3 datasets.

Dataset Accuracy Precision Recall
IP Address 0.9943 0.9941 0.9941

Crimes in Boston 0.9515 0.9232 0.9849
Urban road accidents in Great Britain 0.957 0.933 0.9847

3

https://www.kaggle.com/datasets/AnalyzeBoston/crimes-in-boston
https://www.kaggle.com/datasets/AnalyzeBoston/crimes-in-boston
https://dev.maxmind.com/geoip/docs/databases/city-and-country
https://dev.maxmind.com/geoip/docs/databases/city-and-country
https://doi.org/10.24432/C5CD0F


Published as a Tiny Paper at ICLR 2024

(a) Crimes in Boston (b) Urban Road Accidents in GB

Figure 3: Figure illustrates Ground Truth IP addresses (blue points) stored in a Learned Bloom
Filter, alongside empirical fast true IP addresses (red points). Convex hull partitions are overlaid on
top of the points.

(a) IP Address (b) Crimes in Boston (c) Urban Road Accidents in GB

Figure 4: Inference time histogram of slow true and fast True

A.3 RECOVERY METRICS

IP Address Crimes in Boston Road accidents
Points queried to LBF 100,000 10,000 30,000

Points classified as True by the Learned Bloom Filter 6,131 3,879 8,317
Points identified as EFT using Timing Threshold 4,577 3,782 8,050

Convex hull clusters generated using EFT 278 237 286

After generating convex hull clusters using Empirical Fast True(EFT), we have successfully reduced
the search space for an adversary to recover the training dataset. As stated earlier, Fast Trues are
the ones that the neural network has high confidence of being True, meaning that the dataset (train-
ing data) likely has a cluster of data in this area, thus an adversary can query points within these
generated convex hull clusters to recover the dataset.

A.4 TIMING VISUALIZATION FOR FAST TRUE AND SLOW TRUE

We asserted that the difference in inference time between Fast True and Slow True can be attributed
to the classification process, where the learned model handles Fast True and the conventional bloom
filter handles Slow True. To verify this assertion, we generated histograms showing the timing
inference of Slow True and Fast True across all three datasets, as illustrated in Figure 4. Here, we
can see the inference time difference between Fast True and Slow True values. Our ability to verify
this claim stemmed from having white-box access to the learned bloom filter system, allowing us to
discern whether the input was classified by the learned model or the conventional bloom filter. It is
worth noting that an attacker, with only black-box access to the system, would lack this insight.

4



Published as a Tiny Paper at ICLR 2024

A.5 PSEUDOCODE FOR QUERYING TO LEARNED BLOOM FILTER

Algorithm 1 Querying Learned Bloom Filter

procedure QUERY(inputPoint)
learnedModelOutput← learnedModel.predict(inputPoint)
if learnedModelOutput is False then

bloomFilterOutput← bloomFilter.query(inputPoint)
if bloomFilterOutput is False then return False
end if

end if
return True

end procedure

5


	Introduction
	Methodology
	Experimental Evaluation
	Summary
	Appendix
	Additional Datasets
	Neural Network Model Training Metrics
	Recovery Metrics
	Timing Visualization For Fast True And Slow True
	Pseudocode For Querying To Learned Bloom Filter


