
Selective Generation for
Controllable Language Models

Minjae Lee∗
GSAI

POSTECH
minjae.lee@postech.ac.kr

Kyungmin Kim∗

GSAI
POSTECH

kkm959595@postech.ac.kr

Taesoo Kim
SCS & SCP

GaTech
taesoo@gatech.edu

Sangdon Park
GSAI & CSE
POSTECH

sangdon@postech.ac.kr

Abstract

Trustworthiness of generative language models (GLMs) is crucial in their deploy-
ment to critical decision making systems. Hence, certified risk control methods such
as selective prediction and conformal prediction have been applied to mitigating the
hallucination problem in various supervised downstream tasks. However, the lack
of appropriate correctness metric hinders applying such principled methods to lan-
guage generation tasks. In this paper, we circumvent this problem by leveraging the
concept of textual entailment to evaluate the correctness of the generated sequence,
and propose two selective generation algorithms which control the false discovery
rate with respect to the textual entailment relation (FDR-E) with a theoretical guar-
antee: SGenSup and SGenSemi. SGenSup, a direct modification of the selective pre-
diction, is a supervised learning algorithm which exploits entailment-labeled data,
annotated by humans. Since human annotation is costly, we further propose a semi-
supervised version, SGenSemi, which fully utilizes the unlabeled data by pseudo-
labeling, leveraging an entailment set function learned via conformal prediction.
Furthermore, SGenSemi enables to use more general class of selection functions,
neuro-selection functions, and provides users with an optimal selection function
class given multiple candidates. Finally, we demonstrate the efficacy of the SGen
family in achieving a desired FDR-E level with comparable selection efficiency to
those from baselines on both open and closed source GLMs. Code and datasets are
provided at https://github.com/ml-postech/selective-generation.

1 Introduction

Generative language models (GLMs) [1, 2, 3, 4] have garnered significant attention for their ability
to generate human-level language [5] primarily due to underlying transformer architectures [6].
However, GLMs raise concerns about generating hallucinated facts [7], which is an undesirable
property when they are used as knowledge retrieval sources. This issue can be mitigated by fine-
tuning with human feedback [7, 8], but it remains expensive in terms of training and labeling costs.
Certified risk control methods such as selective prediction [9] and conformal prediction [10] are
promising cost-efficient alternatives, which have been applied to the hallucination mitigation in
various supervised downstream tasks [9, 10, 11, 12, 13, 14].

*Equal contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/ml-postech/selective-generation

LLM

: Where in the bible does it mention Sodom and Gomorrah?
: The book of Genesis mentions Sodom and Gomorrah.

: The story of Sodom and Gomorrah is found in Genesis 19.

NO

Selection Function
(Exact Match)

Selection Function
(Entailment)

YES

(I don't know.)

Is = ? Does imply ?

Two different selection function training () schemes, using existing
(left) and proposed (right) methods, respectively. Note LLM is frozen ().

Inference using an entailment-aware selective generator.
Here, a selective generator refers to an LLM and selection function pair.

LLM

Selection Function
(Entailment)

YES NO

: The objective of Tour de France is to determine the best
overall cyclist through a series of stages and challenges.

: What is the objective of Tour de France?
: The objective of Tour de France is bicycle race.

Figure 1: An overview and qualitative results of our proposed method. The key idea is to learn an
entailment-aware selective generator with an abstaining option that controls the rate of hallucination,
measured in a false discovery rate, on the generated sequence with a probabilistic guarantee.

The main bottleneck in applying such certified methods to language generation tasks is that provided
risk control guarantees require correctness labels during the learning process. Specifically, in
classification, high-quality correctness labels can be directly acquired by comparing true and predicted
labels using exact match (EM). However, this is not the case for language generation tasks, since
multiple valid answers can exist for the same question. As correctness metrics such as EM and
F1-score do not account for the multiple valid answers, directly applying them to language generation
tasks results in a significant gap between the true and measured correctness, which we call the metric
misalignment. Thus, a correctness evaluation metric that accounts for multiple answers is required.

In this paper, we resolve the metric misalignment problem by leveraging textual entailment to evaluate
the correctness of generated answers and define the false discovery rate with respect to the textual
entailment relation (FDR-E). Given two ordered sequences, a premise and a hypothesis, we say that
the premise entails the hypothesis if the hypothesis is true given the premise. Based on this notion
of entailment, we propose two selective generation algorithms, SGenSup and SGenSemi, which are
generalized versions of selective classification [9] to control the FDR-E by abstaining from returning
an answer when a GLM is uncertain of its answer.

In particular, SGenSup, a direct modification of [9], is a supervised selective generator learning
algorithm which requires entailment labels. This necessitates human annotations on textual entailment,
where a generated answer is the premise and a true answer is the hypothesis. As labeling is expensive
and SGenSup solely relies on entailment-labeled data, we propose a semi-supervised method, SGenSemi,
which enables the exploitation of entailment-unlabeled data in learning a selective generator by
pseudo-labeling textual entailment using an entailment set function learned via conformal prediction
[10]. Based on a entailment classifier originally developed for the natural language inference problem
[15, 16], the estimated entailment set function approximates a true entailment set function, which
returns all entailed answers if a true answer is given as a hypothesis.

Additionally, SGenSemi introduces the general class of selection functions for selective generation,
called neuro-selection functions. In selective prediction, learning a selective predictor is equivalent
to learning a selection function, which is an indicator function to decide whether to abstain from
returning a prediction. The standard selective prediction algorithm [9] considers the class of single-
threshold indicator functions using a pre-specified confidence-rate function. For the same risk level,
the better the confidence-rate function quantifies the model’s uncertainty, the less likely the selective
predictor is to abstain from making a prediction. We refer to this as selection efficiency henceforth.
As appropriate confidence calibration for language generation remains challenging, optimizing a
single-threshold indicator function with a poorly calibrated confidence-rate function leads to low
selection efficiency. Instead, we generalize the selection function by using a multiple-threshold
indicator function with trainable features. Furthermore, SGenSemi provides a user with an optimal
class of selection functions among possible candidates in terms of the FDR-E.

Finally, we empirically demonstrate the efficacy of SGenSemi over open and closed source GLMs,
where we consider SGenSup as one of our baselines as it is a direct modification of [9]. To validate

2

our method and its theoretical guarantee, we create a new dataset on textual entailment using the
Natural Questions (NQ) dataset [17] for each GLM. Given a question and answer pair, the textual
entailment is labeled by letting a generated answer as a premise and the true answer in declarative
form as a hypothesis. As communities lack human-annotated entailment-labeled data for language
generation, we believe that our dataset contributes to the hallucination evaluation of GLMs. For both
open and closed source GLMs, SGenSemi is effective in achieving a desired FDR-E level with better
selection efficiency compared to baselines.

1.1 Related Work
We introduce two main research directions to mitigate hallucination in GLMs.

Heuristics for hallucination mitigation. The hallucination in language generation usually refers to
the situation where a GLM generates wrong answers with high confidence, which hinders the reliable
deployment of GLMs. As fine-tuning methods are expensive, heuristics for hallucination mitigation
without tuning have been proposed [18, 19]. Notably, [19] proposes a performant hallucination
detection method, which quantifies the self-consistency among multiple generated answers for the
same question using textual entailment models to detect the hallucination. However, these methods
do not provide certified control over the occurrence of hallucinated contents.

Certified methods for hallucination mitigation. Conformal prediction outputs a prediction set that
is guaranteed to contain a true label with high probability, where a provided coverage guarantee is
model-agnostic under a mild assumption on a data [10]. Although this property enables the safe
deployment of complex models and has made conformal prediction popular [10, 12, 13, 20, 21, 22],
the constructed prediction sets in language generation are often less-informative due to an unbounded
label space, which frequently renders the coverage guarantee ineffective [23, 24]. To restrict the
prediction set to a moderate size, [23] constructs the prediction set over answers by sampling them
sequentially, while still satisfying the coverage guarantee. Still, post-selection of answers from
the prediction set is necessary for final decision making, which may result in the selection bias
[25, 26]. [27, 28] decompose generated answers into alignment-labeled sub-claims and return a set
of sub-claims that contains no contradiction with high probability via conformal prediction. Even
though the post-selection is unnecessary, it requires expensive alignment labels for every sub-claim.

Unlike conformal prediction, selective prediction directly manages target risk at a desired level
by introducing an abstaining option on unsure predictions. [9] proposes a selective prediction
method mainly for classification, which learns a threshold-based selection function that controls the
false discovery rate (FDR) to a desired level. [24] generalizes the selective prediction to language
generation. However, their theoretical guarantee is not focused on the target risk to control, but on a
consistency property of a surrogate loss function with respect to a true loss function in optimization
process. [29], concurrently published with our paper, proposes a certified selective generation method
for context-given language generation which controls the FDR. Unlike [9] which takes the number
of selected samples as constraint in learning the selection function, [29] set the power as constraint.
However, as [24] does, they require an additional calibration set for training an entailment scoring
function. Importantly, while existing selective generation methods are supervised learning methods,
we propose a semi-supervised learning algorithm that can fully leverage entailment-unlabeled data.

2 Background

While we consider general language generation tasks, we confine our scope to the open-ended
question-answering task and define the notation accordingly for the sake of clarity and for maintaining
consistency in descriptions on the experiment. Specifically, letW denote a token space constructed
using a tokenizer, such as Byte Pair Encoding [30], and let W∗ denote a token sequence space,
defined asW∗ := ∪∞i=0Wi. Let (x,y) ∈ X × Y be a question and answer sequence pair, where
X :=W∗ and Y :=W∗ refer to the token sequence spaces of questions and answers, respectively.
We assume the answer sequence is in a declarative form. Finally, xi:j refers to the sub-sequence of x
from the i-th to the j-th token.

2.1 Language Generation
Given a question as input, a GLM generates an answer through the sequential process called decoding,
which we call language generation. Here, we consider the greedy decoding, a deterministic generation
process described as follows. Let pM : X ×W → R≥0 denote a GLM which returns a next-token

3

distribution given the input sequence x, where
∑

w∈W pM (w | x) = 1 for all x ∈ X . A language
generator G : X → Y using greedy decoding sequentially generates tokens from the GLM as follows:
ŷi := argmaxw∈W pM (w | (x, ŷ1:i−1)) for i ≥ 2 and ŷ1 := argmaxw∈W pM (w | x). The
generator G returns a generated answer ŷ := G(x) and terminates the decoding process when the
end-of-sequence (EOS) token is returned. Here, the conditional probability of the answer ŷ is defined
as fM (x, ŷ) := pM (ŷ1 | x)

∏|ŷ|
i=2 pM (ŷi | (x, ŷ1:i−1)), commonly used as its uncertainty measure.

2.2 Selective Prediction
Selective prediction refuses to make a prediction by returning “I don’t know” (IDK) if the prediction
is uncertain. In classification, the selective classifier Ŝ consists of a pair of a classifier ŷ and a

selection function ŝ, and is defined as follows: Ŝ(x) :=

{
G(x) if ŝ(x) = 1

IDK otherwise
, where ŷ(x) :=

argmaxy∈Y f(x, y). Here, f(x, y) refers to an estimated likelihood of the given input x for being a
class y, determined by an underlying classification model f . Although the selection function can be
of arbitrary form, the common choice is a single threshold indicator function using the maximum
likelihood as the confidence-rate function, i.e., ŝ(x) := 1(f(x, ŷ) ≥ τ). Here, the confidence-rate
function is defined to quantify the uncertainty of the model’s prediction. Under the independent and
identically distributed (i.i.d.) assumption, [9] proposed the certified threshold learning algorithm
which controls the false discovery rate (FDR) with respect to the EM metric with the PAC guarantee,
where the FDR is defined as REM(Ŝ) := P{ŷ(x) ̸= y | Ŝ(x) ̸= IDK}. Since EM considers the
answer ŷ(x) to be correct when it is exactly the same as the reference answer y, it is an inappropriate
correctness metric for language generation problems that can have multiple valid sequences for the
same input. This results in learning a too conservative and vacuous selection function for language
generation, which is empirically verified by our experiments. Thus, we leverage the textual entailment
to evaluate the correctness of the generated sequence to alleviate the metric misalignment problem.

2.3 Textual Entailment
Natural language inference (NLI), also denoted as recognizing textual entailment, predicts whether
one sequence implies another. The former refers to a premise (p), and the latter refers to a hypothesis
(h). Since the release of two large-scale benchmarks of ordered sequence pairs labeled with textual
entailment [15, 16], a number of transformer-based entailment classifiers have been proposed and
shown impressive results. Each pair is classified into one of three categories: entailment if h is
true given p; contradiction if h is false given p; and neutral otherwise. In this paper, we define the
entailment scoring function as fE(G(x),y) := 1− pE(contradict | p = G(x),h = y) to estimate
and pseudo-label the correctness of G(x), where pE(contradict | p = G(x),h = y) is the likelihood
that G(x) contradicts y. While pseudo-labeling enables the full exploitation of unlabeled data to
learn a selection function, controlling the mislabeling error remains as a challenge.

2.4 Conformal Prediction
Conformal prediction [10] outputs a prediction set to quantify the uncertainty of a given model
with a model-agnostic correctness guarantee under minimal assumptions on data generating process.
Specifically, under the i.i.d. assumption, PAC conformal prediction [11] incorporates the interpretation
of tolerance regions [31] and training-conditional inductive conformal prediction [20] through the
lens of PAC learning theory [32]. In this paper, we adopt the PAC prediction set learning algorithm to
control the rate of mislabeling error in pseudo-labeled samples used to learn a selection function for
selective generation. See Section A.1 for detailed discussion on conformal prediction.

Scalar-parameterized Conformal Set. In this paper, we consider a conformal set C : X → 2Y

parameterized by a scalar [11, 33] as C(x) := {y ∈ Y | f(x, y) ≥ τ} , where τ ∈ H is a scalar
parameter to learn,H is a hypothesis space (e.g.,H a finely discretized non-negative real numbers),
and f : X × Y → R≥0 is called a scoring function. The scoring function corresponds to a target
model whose uncertainty is to be quantified, where the softmax output is a common choice in
classification. Specifically, f(x, y) measures the likelihood of y as a response given x as input.

PAC Guarantee. The PAC prediction set learning algorithm outputs a conformal set Ĉ which upper
bounds a miscoverage rate RMC(Ĉ) := P{y /∈ Ĉ(x)} to a desired level ε ∈ (0, 1), where the
miscoverage rate can be generalized to risk R01(Ĉ) := E{ℓ01(Ĉ,x, y)}, on any indicator losses
that are monotonic with respect to τ . The algorithm is probably approximately correct (PAC) in

4

the sense that it provides a calibration data-conditional guarantee at every risk and confidence level.
Specifically, it controls the risk to a desired level irrespective of which calibration data is used to learn
Ĉ with a desired confidence δ ∈ (0, 1) as follows: P{R01(Ĉ) ≤ ε} ≥ 1− δ, where the probability
is taken over the calibration set Z ∼ Dn to learn the conformal set. In this paper, we leverage the
PAC conformal set for a pseudo-labeling function such that the guarantee on the labeling quality
provides the overall PAC guarantee in semi-supervised selective generator learning algorithm.

Algorithm. The PAC conformal set learning algorithm ABinom : (X × Y)∗ → H [11, 20, 34] returns
the conformal set parameter τ̂ , where H is a finely-discretized R≥0. Specifically, the algorithm
returns τ̂ = maxτ∈H τ subject to UBinom(kτ ;n, δ) ≤ ε, where kτ :=

∑n
i=1 ℓ01(Ĉ,xi, yi). Letting

F (k;n, θ) be a cumulative distribution function of a binomial distribution with n trials and success
probability θ, UBinom(k;n, δ) := inf {θ ∈ [0, 1] | F (k;n, θ) ≤ δ} ∪ {1} is an upper binomial tail
bound that satisfiesP{R01(Ĉ) ≤ UBinom(kτ ;n, δ)} ≥ 1− δ, where δ is the desired confidence. Note
that we similarly denote a lower binomial tail bound by LBinom. If optimization in the algorithm
ABinom is infeasible, the algorithm returns τ̂ = 0, a vacuous conformal set. Thus, the algorithm is
PAC, and see Section A.1 for proof.

2.5 Calibration
In classification, calibration aims to adjust the classifier’s maximum likelihood response, or confi-
dence, to be correct. We say the classifier response f : X × Y → R≥0 is perfectly calibrated with
respect to a distributionD over X ×Y and a classifier ŷ ifP {y = ŷ(x) | f(x, ŷ(x)) = t} = t for all
t ∈ [0, 1] [35, 36]. Calibration aims to find the classifier response such that it is perfectly calibrated
asymptotically. In this paper, we make an interesting connection between calibration and selective
generation. In particular, given the definition of the perfect calibration for a language scoring function
fM , we formally provide a sufficient condition for a selective generator to control the FDR with
respect to the textual entailment relation at any desired risk level.

3 Problem: Selective Generation

Let x ∈ X be a question and y ∈ Y be an answer, assuming that each question has a desired answer.
Here, we assume (x,y)

i.i.d.∼ D′, where D′ is a data generating process of question-answering pairs.
Then, given a generator G : X → Y , we consider a selective generator Ŝ : X → Y ∪ {IDK} which
refuses to return G(x) if a selection function ŝ(x, G(x)) ∈ {0, 1} deems uncertain as follows:

Ŝ(x) :=

{
G(x) if ŝ(x, G(x)) = 1

IDK otherwise.
.

Our main goal is to learn a selective generator Ŝ to control a generalized false discovery rate (FDR)
with respect to a relation R as

RR(Ŝ) := P

{
(G(x),y) /∈ R

∣∣∣ Ŝ(x) ̸= IDK} . (1)

Here, the probability is taken over examples (x,y, e, v), where e := 1((G(x),y) ∈ R) is an ad-
ditional label to be annotated due to unknown R and v ∈ {0, 1} is a visibility flag of e for semi-
supervised learning. For the data generation of (x,y, e, v), we assume that a label e is observed
with an unknown success probability of pv, independent of the generative process of (x,y, e),
i.e., (x,y, e, v) ∼ D := D′ ·V, whereD′ is a distribution overX×Y×{0, 1} and V := Bernoulli(pv).
Note that the definition of e, D′ varies by generator G even with the same data generating distribution
of (x,y). In this paper, we design a learning algorithm A that returns a selective generator Ŝ to
control the generalized FDR with respect to R within a desired level ε ∈ (0, 1) with probability
at least 1 − δ ∈ (0, 1), i.e., P {RR(A(Z)) ≤ ε} ≥ 1 − δ. Here, the probability is taken over a
calibration set Z ∼ Dn. This guarantee is called a probably approximately correct (PAC) guarantee
[32]. Among selective generators that satisfies the PAC guarantee, we choose one that minimizes the
ratio of IDK-answers with the highest selection efficiency. The main challenge is to find a sample and
selection efficient PAC algorithm for any ε and δ along with designing a relation R for structured
labels, as in question-answering. Frequently, we may not obtain a PAC algorithm for any ε, so in this
paper, we use a relaxed notion of controllable instead of correct if the algorithm provides minimum
achievable risk beoyond a given ε.

5

4 Semi-Supervised Learning for Controllable Selective-Generation
In this paper, we leverage the textual entailment as the evaluation metric in language generation to
consider multiple valid answers in a principled way, and propose two selective generator learning
algorithms which control FDR with respect to the textual entailment: SGenSup and SGenSemi.

4.1 False Discovery Rate via Textual Entailment (FDR-E)
A textual entailment relation RE is an ordered subset of Y × Y where (y′,y) ∈ RE if y′ entails y.
In question-answering as an example, the generated answer G(x) is correct if the reference answer y
is a logical consequence of G(x). In other words, G(x) is valid if G(x) ∈ Etrue(y), where the true
entailment set function Etrue : Y → 2Y is defined as follows: Etrue(y) := {y′ ∈ Y | (y′,y) ∈ RE}.
Then, an FDR with respect to the entailment relation RE (FDR-E) that we aim to control is as follows:

RRE
(Ŝ) := P{G(x) /∈ Etrue(y) | Ŝ(x) ̸= IDK},

where the probability is taken over labeled examples, i.e., (x,y, e) ∼ D. Here, the label e is
specifically called an entailment label, i.e., e := G(x) ∈ Etrue(y). Then, for any G, D, V , and Ŝ, the
FDR-E can be decomposed as follows:

PDŜ
{G(x) /∈ Etrue(y)}︸ ︷︷ ︸

(A)

= PDŜ
{v = 1}︸ ︷︷ ︸
(B)

PDŜ
{e = 0}︸ ︷︷ ︸
(C)

+PDŜ
{v = 0}︸ ︷︷ ︸
(D)

PDŜ
{e = 0}︸ ︷︷ ︸
(E)

, (2)

where PDŜ
{·} := P{· | Ŝ(x) ̸= IDK). Note that as (x,y, e) and v are independent, (A), (C), and

(E) in (2) are of the same quantity, which is the target risk that we aim to find an upper bound.

4.2 FDR-E Bound for Supervised Learning
We first propose the supervised learning algorithm SGenSup (Algorithm 8), a direct modification of
[9] to language generation tasks. In particular, SGenSup is a supervised method in the sense that it
solely exploits labeled examples ZE := {(x,y, e) | (x,y, e, v) ∈ Z ∧ v = 1} to learn a selective
generator that controls the upper bound (C) in (2). Note that for supervised learning, we assume that
(B) in (2) is always 1, so we only consider the the upper bound (C) via the binomial tail bound as [9].

4.3 FDR-E Bound for Semi-Supervised Learning
As SGenSup requires human annotations for entailment labels and makes no use of abundant unlabeled
examples ZU := {(x,y) | (x,y, e, v) ∈ Z ∧ v = 0}, we further propose a novel semi-supervised
learning algorithm SGenSemi (Algorithm 5), which fully exploits both ZE and ZU while controlling
the FDR-E in (2). In particular, we (1) estimate a true entailment set Etrue via conformal prediction
with labeled examples ZE and then (2) use the estimated entailment set Ê to annotate pseudo-labels
on ZU . Finally, we (3) use both labeled and pseudo-labeled examples to learn a selective generator.
Interestingly, this heuristic-looking algorithm could be a rigorous algorithm that controls the FDR-E
of a selective generator, which will be described in the following sections.

4.3.1 FDR-E Decomposition
Ω

ΩEtrue
TD

ΩÊ
TD

FNER
FER

NER

Figure 2: Decomposition of a false discovery rate
with respect to an entailment set Etrue (FDR-E).
Here, ΩE

TD := {(x,y, e, v) | G(x) ∈ E(y)}.

SGenSemi leverages unlabeled examples by esti-
mating an entailment set as a pseudo-labeling
function. However, the estimation error intro-
duces wrong pseudo-labels. Here, we consider a
rigorous way to derive the FDR-E upper bound
by controlling the estimation error of the pseudo-
labeling function. In particular, two different
types of estimation errors of an estimated entail-
ment set Ê are illustrated in Figure 2, i.e., a false
negative entailment rate (FNER) and a false en-
tailment rate (FER). This results in the following
decomposition.
Lemma 1. (E) in (2) is decomposed as follows:

PDŜ
{e = 0}︸ ︷︷ ︸
(E)

= PDŜ
{e = 0, ê = 1}︸ ︷︷ ︸

FER

−PDŜ
{e = 1, ê = 0}︸ ︷︷ ︸

FNER

+PDŜ
{ê = 0}︸ ︷︷ ︸
NER

. (3)

6

Here, the first two terms are related to the entailment label estimation error and the last term is the
approximate FDR-E using pseudo-labels. As three terms are inter-related, we choose to control the
FER term to control (E) in (2) via conformal prediction in the following section.

4.3.2 Pseudo-labeling via Conformalized Entailment Set Learning
SGenSemi leverages the PAC conformal prediction for the entailment label estimation to control the
mislabeling error. Specifically, we estimate the true entailment set function Etrue via an estimated
entailment set Ê using ZE , where we use the entailment scoring function fE as a scoring function,
i.e., Ê(y) := {y′ ∈ Y | fE(y′,y) ≥ τE}. Here, the corresponding loss ℓ(Ê,x,y, e) := 1(e = 0 ∧
G(x) ∈ Ê(y)) is a monotonically non-increasing function with respect to τE , so we can use the PAC
conformal set learning algorithm. Given a desired risk εE and confidence δE level, the corresponding
algorithm AFER (i.e., Algorithm 1) returns the estimated entailment set function Ê which controls the
false entailment rate (FER) of pseudo-labeled examplesRFER(Ê) := PDŜ

{e = 0 ∧G(x) ∈ Ê(y)}
with the following PAC guarantee, where the probability is taken over training examples from DŜ .

P{RFER(Ê) ≤ εE} ≥ 1− δE . (4)

4.3.3 FDR-E Bound
We then bound the FDR-E for semi-supervised learning, i.e., (E) in (2), via the PAC guarantee by the
conformal set learning on ZE and the binomial tail bound on ZE and ZU . In particular, the FER is
upper-bounded by εE , the FNER is lower-bounded by the binomial tail bound using ZE , and NER is
upper-bounded by the binomial tail bound using ZU . These bounds hold with high probability, and
are therefore combined via a union bound, as in the following lemma. See Appendix G for a proof.

Lemma 2. Let ẐE := {(x,y, e) ∈ ZE | Ŝ(x) ̸= IDK} and ẐU := {(x,y) ∈ ZU | Ŝ(x) ̸= IDK}.
For any G, D, V , and Ŝ, if Ê := AFER(ẐE) satisfies PẐE

{RFER(Ê) ≤ εE} ≥ 1− δ′E/2, we have

PD{e = 0} ≤ εE − LBinom(k̂; |ẐE |, δ′E/2) + UBinom(l̂; |ẐU |, δ′S) =: USSL (5)

with probability at least 1 − δ′E − δ′S , where the probability is taken over Z. Here, k̂ :=∑
(x,y,e)∈ẐE

1(e = 1 ∧G(x) /∈ Ê(y)) and l̂ :=
∑

(x,y)∈ẐU
1(G(x) /∈ Ê(y)).

Notably, each of three bounds holds over a conditional distribution DŜ , but Lemma 2 relaxes this to
an unconditional distribution D for our final FDR-E guarantee.

Optimizing the FDR-E Bound (5). Lemma 2 introduces a hyper-parameter εE , which controls a
trade-off between the FER and other terms. To find a best trade-off, we optimize εE to minimize the
upper bound (5) among Q candidates of εE viaAUSSL-Opt, described in Algorithm 3. This optimization
algorithm can find a tighter FDR-E bound, as in the following lemma. See Appendix H for a proof.
Lemma 3. Let UOPT

SSL = minεEUSSL be the smallest bound of (5). Then,

PD{e = 0} ≤ UOPT
SSL (6)

with probability at least 1− δ′E − δ′S , where the probability is taken over Z.

Note that for semi-supervised learning, the upper bound of (B), (C), (D), and (E) in (2) should be
provided. The upper bound of (E) is provided in (5), which we denote by USSL. The upper bound of
(B), (C), and (D) are denoted by wSL, USL, and wSSL, respectively, each of which is computed by the
binomial tail bound. See Algorithm 4 and the proof of Theorem 1 for details.

4.4 Neuro-selection Functions
The FDR-E bounds for both supervised and semi-supervised learning are crucial for controlling
the final FDR-E of a selective generator given a selection function ŝ. But, the choice of the se-
lection function is critical for a good selection efficiency and here we discuss a better selection
function than the standard one, i.e., ŝ(x) := 1 (fM (x, G(x)) ≥ τS) for τS ∈ R≥0. In particu-
lar, certified selective classification [9] considers the single-threshold indicator function using the
maximum likelihood as the confidence rate function. For the language generation, the conditional
probability of the answer ŷ, i.e., fM1

(x, ŷ), would be a natural and commonly-used candidate.
However, as it is known to be poorly calibrated [37], an alternative would be a self-consistency

7

score, i.e., fM2(x, G(x)) := 1
K

∑K
k=1 fE(ỹk, G(x)), where ỹk are generated answers with the same

question x but different random seeds. It is empirically shown that the self-consistency score properly
quantifies uncertainty when a language model is uncertain of an answer [19]. The importance of
score calibration with respect to the true entailment relation is demonstrated in Lemma 4, which
provides the sufficient condition for the selective generation algorithm using the single-threshold
indicator function (Algorithm 5) to control the FDR-E at any level. See Appendix J for a proof.
Lemma 4. If we have access to Etrue and fM is perfectly calibrated with respect to Etrue, the FDR-E
is monotonically non-increasing in τS .

However, as [37] points out, calibrating the language scoring function remains an uneasy task, os it
is still an active research area. Therefore, we propose a general class of selection functions, neuro-
selection functions, which is the multiple-threshold indicator function using possibly learnable feature
map Φ : x 7→ Rv as follows: ŝ(x; Φ,W,b) := ∧ui=1(WΦ(x))i + bi ≥ 0, where W ∈ Ru×v

and b ∈ Ru×1 are linear proejction and bias terms, respectively. In this paper, we only consider
two specific sub-classes of neuro-selection functions, where the former reduces to learning the
single-threshold selection function using a scoring function (Algorithm 5) and the latter reduces to
learning the bi-threshold selection function using two scoring functions (Algorithm 6). Only the
bias term b is the learnable parameter for both algorithms, where the others set as hyperparameters.
Specifically, W = I1, Φ1(x) = [fM (x, G(x))], and b = −τS for Algorithm 5, while W = I2,
Φ2(x) = [fM1

(x, G(x)) fM2
(x, G(x))]T , and b = −[τS,1, τS,2]T for Algorithm 6 if two promising

scoring functions exist. Here, developing a selection function learning algorithm where W and Φ(·)
are also fully learning parameters is left as future work. In the following section, we introduce our
algorithm that chooses the optimal combination of scoring functions via neuro-selection functions.

4.5 Semi-Supervised Selective Generator Learning Algorithm with Model Selection
SGenSemi is a certified semi-supervised selective generator learning algorithm, which fully exploits
unlabeled data in learning a selection function via certified pseudo-labeling and uses a neuro-selection
function for choosing an optimal combination of scoring functions. In particular, SGenSemisolves the
following optimization problem over selective generatorsH such that Ŝ closely satisfies the equality
in the constraint, as described in Algorithm 7:

findŜ∈H Ŝ subj. to wSLUSL + wSSLUSSL ≤ εS , (7)

Here, Ŝ ∈ H has a selection function ŝ(x; Φ2(x), diag(w),b), where w ∈ {[1, 0]T , [0, 1]T , [1, 1]T }
and b ∈ R2

≤0. Note that SGenSemireturns an additional term Û , which is the FDR-E bound given
the selective generator Ŝ (i.e., Algorithm 4) and informs the infeasibility of the optimization. The
proposed Algorithm 7 satisfies the following controllability guarantee. See Appendix I for a proof.
Theorem 1. ASGenSemi satisfies the following controllable guarantee on the FDR-E, i.e.,

P

{
P{G(x) /∈ Etrue(y) | Ŝ(x) ̸= IDK} ≤ Û

}
≥ 1− δ, (8)

where the inner and outer probabilities are taken over (x,y, e, v) ∼ D and Z ∼ Dn, respectively, and
(Ŝ, Û) := ASGenSemi(Z). Here, δ := δW + δS + δE is a desired confidence level, where δW is for the
upper bounds on wSL and wSSL, δS is for (C) in (2) and the NER, and δE is for the FER and FNER.

Here, ASGenSemi is controllable in the sense that it upper bounds the FDR-E of a learned selective
generator to a desired level εS or at least to a minimum achievable level Û with confidence δ.

5 Experiments
We demonstrate the efficacy of our methods in controlling the FDR-E on pre-trained GLMs under
various setups. We use two GLMs, GPT-3.5-Turbo and Alpaca-7B, alongside the Natural Questions
(NQ) dataset to annotate entailment labels for question-answer pairs. Details on model configurations,
datasets, and additional experimental results can be found in Section A.3 and Appendix K.

Methods. We consider two heuristic semi-supervised algorithms, SGenH-SemiPL and SGenH-SemiPFL (Al-
gorithm 9) and an unsupervised learning algorithm [9] SGenEM (Algorithm 10) as baselines to
show the efficacy of our certified semi-supervised method SGenSemi (Algorithm 7). SGenH-SemiPL and
SGenH-SemiPFL exploit the unlabeled data by pseudo-labeling textual entailment based on a threshold
as a hyperparameter without any guarantee on mislabeling error. SGenH-SemiPFL additionally filters out

8

Table 1: Comparison results of semi-supervised methods. Here, |ZU | = 10K for GPT-3.5-turbo
and Alpaca-7B. The best results are highlighted in bold and results from methods that do not satisfy
desired FDR-E guarantees in learning are underlined.

Models GPT-3.5-turbo Alpaca-7B

Methods Heuristic Certified Heuristic Certified

SGenH-SemiPL SGenH-SemiPFL SGenEM SGen
Semi
NoMS SGen

Semi SGenH-SemiPL SGenH-SemiPFL SGenEM SGen
Semi
NoMS SGen

Semi

fM1

FDR-E 0.0958 0.0283 0.1338 0.0609 0.1708 0.0231 0.0068 0.0359 0.0359 0.0685
efficiency 0.4189 0.1719 0.5495 0.2829 0.7584 0.0915 0.0332 0.1580 0.1580 0.3173

fM2

FDR-E 0.1850 0.2035 0.0011 0.1817 0.1708 0.0698 0.0827 0.0773 0.0698 0.0685
efficiency 0.7922 0.8237 0.0218 0.7835 0.7584 0.3207 0.3675 0.2725 0.3200 0.3173

average efficiency 0.6056 0.4978 − − 0.7584 0.2061 0.2004 − − 0.3173

Table 2: Qualitative results by Alpaca7B.
Question x Who is the actor who plays Draco Mal-

foy?
When did the movie Benjamin Button
come out?

Correct Answer y
Thomas Andrew Felton plays Draco
Malfoy in the Harry Potter movies.

The movie Benjamin Button
come out December 25, 2008

Generated Answer G(x)
The actor who plays Draco Malfoy is

Tom Felton. (correct)

The movie The Curious Journey
of Benjamin Button was

released in 2008. (correct)

SGenEM [9] rejected rejected

SGenSemi(ours) accepted accepted

a pseudo-labeled sample if its entailment score is below a specific threshold. SGenEM is a certified
unsupervised method that takes the EM metric for measuring the correctness. We also report re-
sults on SGenSemiNoMS(Algorithm 5) for two different scoring functions ,fM1

and fM2
, used in SGenSemi.

SGenSemiNoMS is a certified semi-supervised learning algorithm using a single-threshold indicator function
given a scoring function. We also take SGenSup (Algorithm 8) as a baseline, since it is a direct
modification of [9] to the language generation problem.

Scoring Functions. We use the conditional probability of an answer as fM1
and the self-consistency

score [19] as fM2
, since our goal is to generate the sequence which is not only logically consistent to

the true answer but also linguistically correct.

Control Parameters. To control an FDR-E, we use two user-specified parameters (ε, δ), where
we use (0.25, 0.02) unless specified. For our methods (i.e., SGenSemi, SGenSemiNoMS, and SGenSemi-SupNoMS),
we have five control parameters (εS , δS , δE , δW), where we maps as follows: εS = ε, δS =
(δ − δW)/2, δE = (δ − δW)/2, δW = 10−5. For other methods without using entailment sets,
Algorithm 8, Algorithm 9, and Algorithm 10, we use ε and δ accordingly. Additionally, we use
Q = 5 for Algorithm 3.

FDR-E Guarantee and Efficiency. As can be seen in Table 1, our method SGenSemi can overall
achieve desired FDR-E guarantees with better efficiency compared to baselines. Depending on
the quality of scoring functions (e.g., fM1

), our variation SGenSemiNoMS may not find a selective gen-
erator that satisfies a desired FDR-E (denoted in the underlined FDR-E). The heuristic methods,
i.e., SGenH-SemiPL and SGenH-SemiPFL , do not provide theoretical guarantees on FDR-E. In Figure 1 and
Table 2, we can correctly predict even with the complicated answers, e.g., which have many equivalent
words, because we do not rely on the EM metric. We conducted 100 random experiments for each
method to show how well FDR-E is bounded under a desired FDR-E. As shown by the green boxes In
Figure 4, which are successfully bounded under εS = 0.25, we can see that the FDR-E for a learned
selective generator is well controlled below εS under the test environment. Among the certified
methods with theoretical guarantees, results appear to align well with the expected theoretical basis.

Why Entailment Labels. As expected and can be seen in Table 3 by comparing SGenEM and SGenSup,
a metric like EM cannot measure correctness correctly. Unlike classification, generative tasks can
have infinite number of true answers so it is not likely to have exact match. Instead, entailment labels
provide semantic correctness, so SGenSup can perform better and more efficient than SGenEM.

9

SGenSemiNoMS 10k SGenSemiNoMS 15k SGenSemiNoMS 20k SGenSemiNoMS 25k
Methods

0.00

0.05

0.10

0.15

0.20

0.25

0.30

FD
R-

E

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

ef
fic

ie
nc

y

S = 0.25 FDR-E efficiency

(a) SGenSemiNoMS on Alpaca7B

SGenSemi 10k SGenSemi 15k SGenSemi 20k SGenSemi 25k
Methods

0.00

0.05

0.10

0.15

0.20

0.25

0.30

FD
R-

E

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

ef
fic

ie
nc

y

S = 0.25 FDR-E efficiency

(b) SGenSemi on Alpaca7B

SGenSemiNoMS 1k SGenSemiNoMS 3k SGenSemiNoMS 5k SGenSemiNoMS 10k
Methods

0.00

0.05

0.10

0.15

0.20

0.25

0.30

FD
R-

E

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

ef
fic

ie
nc

y

S = 0.25 FDR-E efficiency

(c) SGenSemiNoMS on GPT-3.5-turbo

SGenSemi 1k SGenSemi 3k SGenSemi 5k SGenSemi 10k
Methods

0.00

0.05

0.10

0.15

0.20

0.25

0.30

FD
R-

E

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

ef
fic

ie
nc

y

S = 0.25 FDR-E efficiency

(d) SGenSemi on GPT-3.5-turbo

Figure 3: Efficiency results over different numbers of unlabeled samples. (a) and (b) use SGenSemiNoMS with
fM2

score. (c) and (d) use SGenSemi that has neuro-selection function. Both methods show increasing
performance as more unlabeled samples ZU are used. For each experiment, the values were measured
after averaging 10 random splits and an error bar means standard deviation.

Why Semi-Supervised Learning. We observe that our semi-supervised learning for selective
generation is effective. In particular, the fully supervised methods in Table 3 achieves the efficiency
of 0.7535 and 0.2959 for GPT-3.5 and Alpaca-7B, respectively, with the entire labeled samples ZE

(when they satisfy a ε-FDR-E guarantee). Compared to these, the proposed semi-supervised method
SGenSemi achieves the efficiency of 0.7584 and 0.3173 for GPT-3.5 and Alpaca-7B, respectively,
by only using 75% of labeled examples. Additionally, we observe that more unlabeled samples
are beneficial to achieving better efficiency as can be seen in Figure 3. This implies that if we
can approximate the entailment set well and the size of ZU is enough, we can enjoy our certified
pseudo-entailment labeling by the semi-supervised learning even with small ZE .

Why Model Selection. It is hard to manually find a well calibrated scoring function. But, given
multiple scoring functions, a neuro-selection function learns to choose right scoring functions that
achieves a desired FDR-E and maximizes selection efficiency. This is empiricially validated in
Table 1, as SGenSemi is better on average efficiency.

6 Conclusion
We propose selective generation, a generalized version of [9] for GLMs to handle semantic correctness
between two structured answers. To this end, we leverage logical entailment to define a new
entailment-based FDR (FDR-E) metric. As obtaining entailment labels are expensive, we propose
novel semi-supervised learning for selective generation by using entailment sets as a pseudo-labeling
function. To enhance the low selective efficiency due to inefficient scoring functions, we propose
neuro-selection functions for effectively optimizing scoring functions for better selective efficiency
and the FDR-E guarantee. The efficacy of our proposed algorithms SGenSemi and SGenSup are
theoretically and empirically justified.

Limitations. Our algorithm needs the i.i.d. assumption for a correctness guarantee, which can be
violated in practical situations. We leverage expensive entailment labels, where the labels are obtained
by considering logical entailment between a true answer and a generated answer. This limitation is
partially mitigated by proposing the semi-supervised method to propagate entailment-labeled samples
to samples without entailment labels. Also, our results show the empirical FDR-E is not much closely
bounded under ε, especially on Alpaca7B, which implies that we may need a tighter FDR-E bound.

10

Acknowledgements

This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No.RS-2019-II191906, Artificial
Intelligence Graduate School Program (POSTECH) (50%); RS-2024-00457882, Artificial Intelligence
Research Hub Project (25%); RS-2024-00509258, AI GUARDIANS: Development of Robust,
Controllable, and Unbiased Trustworthy AI Technology (25%)). Also, we appreciate valuable
comments by NeurIPS reviewers.

References
[1] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[2] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[3] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

[4] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

[5] OpenAI Team. ChatGPT. https://chat.openai.com/, 2021.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[7] Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck, Y-Lan Boureau, Kyunghyun Cho, and
Jason Weston. Don’t say that! making inconsistent dialogue unlikely with unlikelihood training.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 4715–4728, Online, July 2020. Association for Computational Linguistics.

[8] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback, 2022.

[9] Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. Advances
in neural information processing systems, 30, 2017.

[10] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic learning in a random world.
Springer Science & Business Media, 2005.

[11] Sangdon Park, Osbert Bastani, Nikolai Matni, and Insup Lee. Pac confidence sets for deep neural
networks via calibrated prediction. In International Conference on Learning Representations,
2020.

[12] Stephen Bates, Anastasios Angelopoulos, Lihua Lei, Jitendra Malik, and Michael I Jordan.
Distribution-free, risk-controlling prediction sets. arXiv preprint arXiv:2101.02703, 2021.

[13] Isaac Gibbs and Emmanuel Candès. Adaptive conformal inference under distribution shift,
2021.

11

https://github.com/tatsu-lab/stanford_alpaca

[14] Sangdon Park, Osbert Bastani, and Taesoo Kim. Acon2: Adaptive conformal consensus for
provable blockchain oracles, 2023.

[15] Samuel Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large
annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 632–642, 2015.

[16] Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of NAACL-HLT, pages 1112–1122,
2018.

[17] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

[18] Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham Neubig. How Can We Know When
Language Models Know? On the Calibration of Language Models for Question Answering.
Transactions of the Association for Computational Linguistics, 9:962–977, 09 2021.

[19] Potsawee Manakul, Adian Liusie, and Mark Gales. Selfcheckgpt: Zero-resource black-box
hallucination detection for generative large language models. In The 2023 Conference on
Empirical Methods in Natural Language Processing, 2023.

[20] Vladimir Vovk. Conditional validity of inductive conformal predictors. Machine learning,
92(2-3):349–376, 2013.

[21] Adam Fisch, Tal Schuster, Tommi Jaakkola, and Regina Barzilay. Few-shot conformal prediction
with auxiliary tasks, 2021.

[22] Sangdon Park, Edgar Dobriban, Insup Lee, and Osbert Bastani. PAC prediction sets for meta-
learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022.

[23] Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi S. Jaakkola, and
Regina Barzilay. Conformal Language Modeling, June 2024. arXiv:2306.10193 [cs].

[24] Christopher Mohri, Daniel Andor, Eunsol Choi, and Michael Collins. Learning to reject with a
fixed predictor: Application to decontextualization. arXiv preprint arXiv:2301.09044, 2023.

[25] Ying Jin and Emmanuel J. Candès. Selection by Prediction with Conformal p-values, May 2023.
arXiv:2210.01408 [stat].

[26] Ying Jin and Zhimei Ren. Confidence on the Focal: Conformal Prediction with Selection-
Conditional Coverage, March 2024. arXiv:2403.03868 [math, stat].

[27] Christopher Mohri and Tatsunori Hashimoto. Language models with conformal factuality
guarantees. arXiv preprint arXiv:2402.10978, 2024.

[28] John J. Cherian, Isaac Gibbs, and Emmanuel J. Candès. Large language model validity via
enhanced conformal prediction methods, June 2024. arXiv:2406.09714 [cs, stat].

[29] Yu Gui, Ying Jin, and Zhimei Ren. Conformal Alignment: Knowing When to Trust Foundation
Models with Guarantees, May 2024. arXiv:2405.10301 [cs, stat].

[30] Philip Gage. A new algorithm for data compression. C Users Journal, 12(2):23–38, 1994.

[31] Samuel S Wilks. Determination of sample sizes for setting tolerance limits. The Annals of
Mathematical Statistics, 12(1):91–96, 1941.

[32] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

12

[33] Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive
confidence machines for regression. In European Conference on Machine Learning, pages
345–356. Springer, 2002.

[34] Sangdon Park, Edgar Dobriban, Insup Lee, and Osbert Bastani. PAC prediction sets under
covariate shift. In International Conference on Learning Representations, 2022.

[35] Morris H DeGroot and Stephen E Fienberg. The comparison and evaluation of forecasters.
Journal of the Royal Statistical Society: Series D (The Statistician), 32(1-2):12–22, 1983.

[36] Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass
probability estimates. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 694–699. ACM, 2002.

[37] Yao Zhao, Mikhail Khalman, Rishabh Joshi, Shashi Narayan, Mohammad Saleh, and Peter J
Liu. Calibrating sequence likelihood improves conditional language generation. In The Eleventh
International Conference on Learning Representations, 2022.

[38] Dorottya Demszky, Kelvin Guu, and Percy Liang. Transforming question answering datasets
into natural language inference datasets. arXiv preprint arXiv:1809.02922, 2018.

[39] Jifan Chen, Eunsol Choi, and Greg Durrett. Can NLI Models Verify QA Systems’ Predictions?,
September 2021. arXiv:2104.08731 [cs].

13

A Discussion

A.1 Conformal Prediction

Conformal prediction [10] provides a promising way to quantify uncertainty of a model with a
correctness guarantee under minimal assumptions. Here, we consider PAC prediction sets [11], an
interpretation of tolerance region [31] and training-conditional inductive conformal prediction [20] in
the lens of PAC learning theory [32] (i.e., learning a “good” function within a function family from
data). This interpretation inspires us to generalize selective generation for GLMs via neural selection
functions.

Conformal Set Model. We consider a conformal (prediction) set model Ĉ : X → 2Y that measures
the uncertainty of a target model; in conformal prediction, this model is specifically called a scoring
function f : X ×Y → R≥0 that measures the conformity (or likelihood) of x for being y with respect
to f ; thus, f(x,y) is called a conformity score. In particular, we consider scalar parameterization
of a conformal set [11, 33] as follows: C(x) := {y ∈ Y | f(x,y) ≥ τ} , where τ ∈ R≥0 is a scalar
parameter.

Conformal Sets and Uncertainty. The output of the conformal set model is a set of labels, which
naturally represents the uncertainty of a scoring function on an example via the size of a conformal
set. In particular, if the scoring function f is unsure on its prediction on x (due to uncertainty on
a label distribution of x, i.e., aleatoric uncertainty, and due to uncertainty in the modeling of f ,
i.e., epistemic uncertainty), the conformal set is larger than it is when the scoring function is sure on
its prediction.

To be precise, we consider a true conformal set C∗(x) := {y ∈ Y | f(x,y) ≥ f(x,y∗)}, where
y∗ is the true label of x. In particular, the true conformal set is a minimal set that contains a true
label and labels with larger scores than the true label score; thus, the size of the true conformal set
intuitively measures the uncertainty of a scoring function on the given example, i.e., the scoring
function’s possibilities on making wrong predictions, instead of the true prediction.

The true conformal set clearly captures the uncertainty, but the true label is unknown in inference
time. Thus, the true conformal set is approximated via scalar parameterization [11, 33] as follows:

C(x) := {y ∈ Y | f(x,y) ≥ τ} , (9)
where τ ∈ R≥0 is a scalar parameter.

Correctness. As we desire to construct a conformal set close to the true conformal set, we define the
correctness of the conformal set based on its similarity to the true one. In particular, we wish to have
the smallest C(x) such that C∗(x) ⊆ C(x), or equivalently C(x) needs to have the smallest τ while
y ∈ C(x). This correctness definition is realized into two ways: a coverage guarantee [10] or a PAC
guarantee [20].

Assumption. We assume that samples are independent and identically distributed (i.i.d.), i.e., the
i.i.d. assumption. In particular, all samples for testing and learning prediction sets are independently
drawn from the same but known distribution D.

PAC guarantee. Under the i.i.d. assumption, we learn a conformal set Ĉ that includes the most
true labels (approximately correct). In particular, this means that the miscoverage of Ĉ is less than
a desired level ε ∈ (0, 1), i.e., RMC(Ĉ) := P{y /∈ Ĉ(x)} ≤ ε, where the probability is taken over
i.i.d. samples (x,y) ∼ D. This risk on micoverage can be generalized to be the risk on indicator
loss, R01(Ĉ) := EDℓ01(Ĉ,x,y). Here, the conformal set Ĉ is learned from a randomly drawn
calibration set, so we desire to construct Ĉ that has a desired error for the most of random calibration
sets (probably approximately correct), i.e., P{R01(Ĉ) ≤ ε} ≥ 1− δ, where δ ∈ (0, 1) is a desired
confidence level and the probability is taken over n i.i.d. calibration samples Z ∼ Dn, used to learn
Ĉ.

Algorithm. The PAC conformal prediction set method [11, 34] considers the following algorithm
ABinom : (X × Y)∗ → H to learn a conformal set model Ĉ, parameterized by τ̂ , where H is a
finely-discretized R≥0:

ABinom
1 : τ̂ = max

τ∈H
τ subj. to UBinom(kτ ;n, δ) ≤ ε, (10)

1ABinom returns τ̂ = 0 if it is infeasible.

14

where kτ :=
∑n

i=1 ℓ01(Ĉ,xi,yi). Here, UBinom is a binomial tail bound,
i.e., P {R01(C) ≤ UBinom(kτ ;n, δ)} ≥ 1 − δ for any C, where UBinom(k;n, δ) :=
inf {θ ∈ [0, 1] |F (k;n, θ)≤δ}∪{1} and F (k;n, θ) is a cumulative distribution function (CDF) of a
binomial distribution with n trials and success probability θ. This algorithm is PAC.
Theorem 2. ([11, 20, 34]) The algorithm ABinom is PAC, i.e., for any f , ε ∈ (0, 1), δ ∈ (0, 1), and
n ∈ Z≥0, we have P{R01(Ĉ) ≤ ε} ≥ 1 − δ, where the probability is taken over i.i.d. labeled
examples Z ∼ Dn, and Ĉ = ABinom(Z).

Here, we slightly generalize the known PAC guarantee to hold for any risk with indicator loss. See
Appendix F for a proof. Note that the PAC guarantee generally holds only if an enough number
of samples is provided (when we know a function family including a true function). However, we
consider PAC algorithms that hold for any number of samples due to the structural property of
prediction sets, i.e., a prediction set is always correct if τ = 0 (thus Ĉ(x) = Y), regardless of
the sample size. In other words, if the calibration samples are not sufficient, the prediction set is
constructed to return Y to satisfy the PAC guarantee.

A.2 Sample Space Decomposition

Given the generator G and the entailment set function Ê, the sample space Ω := X ×Y × E ×V can
be partitioned as follows:

Ω = {(x,y, e, v) | G(x) ∈ Etrue(y)}︸ ︷︷ ︸
Ω

Etrue
TD

∪{(x,y, e, v) | G(x) /∈ Etrue(y)}︸ ︷︷ ︸
Ω

Etrue
FD

= {(x,y, e, v) | e = 0}︸ ︷︷ ︸
Ω

Etrue
TD

∪{(x,y, e, v) | e = 1}︸ ︷︷ ︸
Ω

Etrue
FD

= {(x,y, e, v) | e = 1 and G(x) ∈ Ê(y)}︸ ︷︷ ︸
ΩÊ

TE

∪{(x,y, e, v) | e = 1 and G(x) /∈ Ê(y)}︸ ︷︷ ︸
ΩÊ

FNE︸ ︷︷ ︸
ΩTD

∪

{(x,y, e, v) | e = 0 and G(x) /∈ Ê(y)}︸ ︷︷ ︸
ΩÊ

TNE

∪{(x,y, e, v) | e = 0 and G(x) ∈ Ê(y)}︸ ︷︷ ︸
ΩÊ

FE︸ ︷︷ ︸
ΩFD

=
{
ΩÊ

TE ∪ ΩÊ
FE

}︸ ︷︷ ︸
ΩÊ

TD

∪
{
ΩÊ

FNE ∪ ΩÊ
TNE

}︸ ︷︷ ︸
ΩÊ

FD

.

Here, the short-hands are defined as follows:

• True discovery rate (TDR): P(ΩEtrue
TD)

• False discovery rate (FDR): P(ΩEtrue
FD)

• True entailment rate (TER): P(ΩÊ
TE)

• False non-entailment rate (FNER): P(ΩÊ
FNE)

• True non-entailment rate (TNER): P(ΩÊ
TNE)

• False entailment rate (FER): P(ΩÊ
FER)

A.3 Experiment Setup

A.3.1 Computing Environment

Our system environment consists of 4 NVIDIA A100 80GB with 128 CPUs.

A.3.2 Models and Datasets

We use two large language models (LLMs), GPT-3.5-Turbo and Alpaca-7B, for language generation.
We use deberta-v2-xxlarge-mnli as our entailment model.

15

For each GLM to annotate entailment labels for each question, answer, and generated answer pair,
we annotate entailment labels. Specifically, we consider the open-ended QA task, where the model
is prompted to generate the answer in a declarative form given a question. To validate our method
and its theoretical guarantee on controlling FDR-E, we create a dataset on textual entailment using
the Natural Questions (NQ) dataset [17] for each GLM. Based on the transformation method by
[38] that converts the question and answer pair in QA dataset into a declarative form, we manually
labeled textual entailment by letting the generated sequence as the premise and the reference answer
in declarative form as the hypothesis. Similar work can be found in [39], but they label the textual
entailment based on the extractive answer from the model. Approximately 7.3k (7,374) and 4.6k
(4,595) samples are labeled for Alpaca-7B and GPT-3.5-Turbo, respectively, and both are split into
calibration and test data at an 8:2 ratio. For semi-supervised learning algorithms that exploit unlabeled
data (Algorithm 7, Algorithm 9), at most 27k and 10k unlabeled samples are used to train a selective
generator, varying its size. Besides, semi-supervised learning algorithms use only 75% of the labeled
calibration data compared to what is used by supervised methods (Algorithm 8, Algorithm 10).

B Semi-supervised Selective Generation Algorithms (Certified)

Algorithm 1 Entailment Set Learning with a False Entailment Rate (FER) Guarantee
1: procedure ES(fE , ZE , εE , δE)
2: ZE ← SORTfE (ZE) (▷) In an increasing order of fE(yi, G(xi))
3: (i, i)← (1, |ZE |)
4: for i = 1 to ⌈log|ZE |⌉ do
5: k(i) ←

∑
(x,y,e)∈ZE

1(e = 0, fE(G(x),y) ≥ fE(G(x⌈(i+i)/2⌉),y⌈(i+i)/2⌉))

6: U ← UBinom(k
(i), |ZE |, δE)

7: if U ≤ εE then
8: i← i
9: else

10: i← i

11: return τE

Algorithm 2 USSL Computation (for Single εE)
1: procedure COMPUTE-USSL(fE , ZE , ZU , δS , εE , δE)
2: τE ← ES(fE ,ZE , εE , δE/2)
3: ℓ←

∑
(x,y,e)∈ZE

1(e = 1, fE(G(x),y) < τE)

4: k ←
∑

(x,y)∈ZU
1(fE(G(x),y) < τE)

5: USSL ← εE − LBinom(ℓ; |ZE |, δE/2) + UBinom(k, |ZU |, δS/2)
6: return USSL

Algorithm 3 Optimal USSL Search
1: procedure COMPUTE-U OPT

SSL(fE , ZE , ZU , δS , Q, δE)
2: ZE ← SORTfE (ZE) (▷) In an increasing order of fE(yi, G(xi))
3: (i, i)← (1, |ZE |)
4: εmax ←

∑
(x,y,e)∈ZE

1(e = 0)/|ZE |
5: HE ← {ε1 = εmax, . . . , εQ = 1/|Q|εmax}
6: UOPT

SSL ←∞
7: for i in {1, . . . , Q} do
8: U

(i)
SSL = Compute-USSL(fE ,ZE ,ZU , δS/Q, εi, δE/Q)

9: if U (i)
SSL ≤ UOPT

SSL then
10: UOPT

SSL ← U
(i)
SSL

11: return UOPT
SSL

16

Algorithm 4 FDR-E Bound Computation
1: procedure FDR-E-BOUND(fE , ZE , ZU , δS , Q, δE , δW)
2: wSL ← UBinom(|ZE |; |ZE |+ |ZU |, δW /2) (▷)Upper bound of (B) in (2)
3: kSL ←

∑
(x,y,e)∈ZE

1(e = 0)

4: USL ← UBinom(kSL; |ZE |, δS/2) (▷)Upper bound of (C) in (2)
5: wSSL ← UBinom(|ZU |; |ZE |+ |ZU |, δW /2) (▷)Upper bound of (D) in (2)
6: UOPT

SSL ← Compute−UOPTSSL (fE ,ZE ,ZU , δS/2, Q, δE/2) (▷)Upper bound of (E) in (2)
7: U ← wSLUSL + wSSLU

OPT
SSL

8: return U

Algorithm 5 Semi-supervised Selective Generator Learning (Single-threshold Selection Function)
1: procedure SGEN-SEMI(fM , fE , G, ZE , ZU , εS , δS , Q, δE , δW , return_bool = False)
2: ZU,E ← ZU ∪ ZE

3: ZU,E ← SORTfM (ZU,E) (▷) In an increasing order of fM (yi, G(xi))
4: (i, i)← (1,ZU,E)
5: Umin ←∞; τmin ← NULL
6: for i = 1 to ⌈log2 ZU,E⌉ do
7: τ

(i)
S ← fM (x⌈(i+i)/2⌉, G(x⌈(i+i)/2⌉))

8: Z
(i)
E ← {(x,y, e) ∈ ZE | fM (x, G(x)) ≥ τ

(i)
S }

9: Z
(i)
U ← {(x,y) ∈ ZU | fM (x, G(x)) ≥ τ

(i)
S }

10: U (i) ← FDR-E-BOUND(fE ,Z
(i)
E ,Z

(i)
U , δS

⌈log2 |ZU,E |⌉ , Q, δE
⌈log2 ZU,E⌉ ,

δW
⌈log2 ZU,E⌉)

11: if U (i) ≤ Umin then
12: Umin ← U (i); τmin ← τ

(i)
S

13: if U (i) ≤ εS then
14: i← i
15: else
16: i← i

17: τS ← τ
(i)
S

18: if Umin ≤ εS then
19: Û ← U (i)

20: Bounded← Success
21: else
22: Û ← Umin

23: τS ← τmin
24: Bounded← Fail
25: return (τS , Û , Bounded) if return_bool else (τS , Û).

17

Algorithm 6 Semi-supervised Selective Generator Learning (Double-threshold Selection Function)
1: procedure SGEN-SEMI2(fM1

, fM2
, fE , G, ZE , ZU , εS , δS , Q, δE , δW , return_bool =

False)
2: ZU,E ← ZU ∪ ZE

3: ZU1,E1
← SORTfM1

(ZU,E) (▷) In an increasing order of fM1
(yi, G(xi))

4: ZU2,E2
← SORTfM2

(ZU,E) (▷) In an increasing order of fM2
(yi, G(xi))

5: Umin ←∞; τmin ← NULL
6: (i, i)← (1, |ZU1,E1

|)
7: n_iters← ⌈log2 |ZU,E |⌉
8: for i = 1 to ⌈log2 |ZU,E |⌉ do
9: τ

(i)
S ← fM1(x⌈(i+i)/2⌉, G(x⌈(i+i)/2⌉))

10: U
(i)
min ←∞; τ

(i)
min ← NULL

11: (j, j)← (1, |ZU2,E2
|)

12: for j = 1 to ⌈log2 |ZU,E |⌉ do
13: τ

(j)
S ← fM2

(x⌈(j+j)/2⌉, G(x⌈(j+j)/2⌉))

14: Z
(i,j)
E ← {(x,y, e) ∈ ZE | ŝ(x;G, fM1

, fM2
, τ

(i)
S , τ

(j)
S) = 1}

15: Z
(i,j)
U ← {(x,y) ∈ ZU | ŝ(x;G, fM1 , fM2 , τ

(i)
S , τ

(j)
S) = 1}

16: U (i,j) ← FDR-E-BOUND(fE ,Z
(i,j)
E ,Z

(i,j)
U , δS

n_iters2 , Q, δE
n_iters2 ,

δW
n_iters2)

17: if U (i,j) ≤ U
(i)
min then

18: U
(i)
min ← U (i,j); τ

(i)
min ← (τ

(i)
S , τ

(j)
S)

19: if U (i,j) ≤ εS then
20: j ← j
21: else
22: j ← j

23: if U (i)
min ≤ Umin then

24: Umin ← U
(i)
min; τmin ← τ

(i)
min

25: if i ̸= ⌈log2|ZU,E |⌉ then
26: if U (i)

min ≤ εS then
27: i← i
28: else
29: i← i

30: else
31: τS ← (τ

(i)
S , τ

(j)
S)

32: if Umin ≤ εS then
33: Û ← U (i,j); Bounded← Success
34: else
35: Û ← Umin; τS ← τmin; Bounded← Fail
36: return (τS , Û , Bounded) if return_bool else (τS , Û)

18

Algorithm 7 Semi-supervised Selective Generator Learning with Model Selection
1: procedure SGEN-SEMI-MS(fM1

, fM2
, fE , G, ZE , ZU , εS , δS , Q, δE , δW)

2: MSuccess = {}; MFail = {}
3: (τS1

, Û1, Bounded1)← SGen-Semi(fM1
, fE , G, ZE , ZU , εS , δS/3, Q, δE/3, δW /3, return_bool = True)

4: (τS2
, Û2, Bounded2)← SGen-Semi(fM2

, fE , G, ZE , ZU , εS , δS/3, Q, δE/3, δW /3, return_bool = True)
5: (τS3

, Û3, Bounded3)← SGen-Semi2(fM1
, fM2

, fE , G, ZE , ZU , εS , δS/3, Q, δE/3, δW /3, return_bool = True)
6: M := {(τS1

, Û1, s1, Bounded1), (τS2
, Û2, s2, Bounded2), (τS3

, Û3, s3, Bounded3)}
7: (▷) si refers to the scoring function(s) used in each algorithm.
8: for (τS , Û , s, Bounded) inM do
9: if Bounded = Success then

10: MSuccess ←MSuccess ∪ {(τS , Û , s)}
11: else
12: MFail ←MFail ∪ {(τS , Û , s)}
13: ifMSuccess = {} then
14: return (τS , Û , s)← argmin(τS ,Û ,s)∈MFail

Û

15: else
16: return (τS , Û , s)← argmax(τS ,Û ,s)∈MSuccess

Û

19

C Supervised Selective Generation Algorithms (Certified)

Algorithm 8 Supervised Selective Generator Learning withRRE
(Ŝ) Control

1: procedure SG-SUP(fM , G, ZE , ε, δ)
2: (i, i)← (1, |ZE |)
3: Umin ←∞
4: for i = 1 to ⌈log2 |ZE |⌉ do
5: τ

(i)
S ← fM (x⌈(i+i)/2⌉, G(x⌈(i+i)/2⌉))

6: Z
(i)
E ← {(x,y) ∈ ZE | fM (x, G(x)) ≥ τ

(i)
S }

7: k(i) ←
∑

(x,y,e)∈ZE
1(e = 0)

8: U (i) ← UBinom(k
(i); |Z(i)

E |, δ/⌈log2 |ZU |⌉)
9: Umin ← min(Umin, U

(i))
10: if U (i) ≤ ε then
11: i← i
12: else
13: i← i

14: τS ← τ
(i)
S

15: return τS , Umin

20

D Semi-supervised Selective Generation Algorithms (Heuristic)

Algorithm 9 Semi-supervised Selective Generator Learning with Pseudo-entailment Labels
1: procedure SG-PSL-H-SEMI(fM , fE , G, ZE , ZU , ε, δ, τPL, FILTER)
2: if FILTER == TRUE then
3: ZU ← {(x,y) | fE(G(x),y) ≥ τPL or 1− fE(G(x),y) ≥ τPL}
4: ZU ← {(x,y, ẽ) | (x,y) ∈ ZU , ẽ = 1

(
fE(G(x),y) ≥ τPL

)
}

5: ZE ← {(x,y, ẽ) | (x,y, e) ∈ ZU , ẽ = e}
6: ZU,E ← SORTfM (ZE ∪ ZU)
7: (i, i)← (1, |ZU,E |)
8: Umin ←∞
9: for i = 1 to ⌈log2 |ZU,E |⌉ do

10: τ
(i)
S ← fM (x⌈(i+i)/2⌉, G(x⌈(i+i)/2⌉))

11: Z
(i)
U,E ← {(x,y) ∈ ZU,E | fM (x, G(x)) ≥ τ

(i)
S }

12: k(i) ←
∑

(x,y,ẽ)∈Z
(i)
U,E

1(ẽ = 0)

13: U (i) ← UBinom(k
(i); |Z(i)

U,E |, δ/⌈log2 |ZU,E |⌉)
14: Umin ← min(Umin, U

(i))
15: if U (i) ≤ ε then
16: i← i
17: else
18: i← i

19: τS ← τ
(i)
S

20: return τS , Umin

E Unsupervised Selective Generation Algorithms (Certified)

Algorithm 10 Unsupervised Selective Generator Learning withREM(Ŝ) Control [9]
1: procedure SG-EM(fM , G, ZE , ZU , ε, δ)
2: ZU,E ← ZU ∪ ZE

3: ZU,E ← SORTfM (ZU,E)
4: (i, i)← (1, |ZU,E |)
5: Umin ←∞
6: for i = 1 to ⌈log2 |ZU,E |⌉ do
7: τ

(i)
S ← fM (x⌈(i+i)/2⌉, G(x⌈(i+i)/2⌉))

8: Z
(i)
U,E ← {(x,y) ∈ ZU,E | fM (x, G(x)) ≥ τ

(i)
S }

9: k(i) ←
∑

(x,y)∈Z
(i)
U,E

1(G(x) ̸= y)

10: U (i) ← UBinom(k
(i); |Z(i)

U,E |, δ/⌈log2 |ZU,E |⌉)
11: Umin ← min(Umin, U

(i))
12: if U (i) ≤ ε then
13: i← i
14: else
15: i← i

16: τS ← τ
(i)
S

17: return τS , Umin

21

F Proof of Theorem 2

Let Cτ be a prediction set C with a parameter τ ,Hε := {τ ∈ H | R01(Cτ) > ε}, and τ∗ := infHε,
whereH is finely-discretized non-negative real values. Then, we have

P

{
R01(ABinom(Z)) > ε

}
≤ P

{
∃τ ∈ Hε, UBinom(kτ ;n, δ) ≤ ε

}
≤ P

{
UBinom(kτ∗ ;n, δ)≤ε

}
(11)

≤ P
{
R01(Cτ∗) > ε ∧ UBinom(kτ∗ ;n, δ) ≤ ε

}
≤ P

{
R01(Cτ∗) > UBinom(kτ∗ ;n, δ)

}
≤ δ, (12)

where the last equality in (11) holds as 1 (y /∈ Cτ (x)) and UB are non-decreasing in τ (i.e., Lemma
2 in [34]) and the last inequality in (12) is due to the property of the binomial tail bound UBinom.

G Proof of Lemma 2

Since (E) in (2) is decomposed into three terms in Lemma 1, we first find upper bounds on each of
the terms and take the union bound as follows. This will return a single upper bound on (E) in (2),
which we denote USSL.

FER Bound. First, recall that

RFER(Ê) := PDŜ
{e = 0 ∧G(x) ∈ Ê(y)}.

Learning Ê via AFER is equivalent to the PAC prediction set learning algorithm that considers the
optimization problem in (10), where the indicator loss is ℓ01(Ê,x,y, e) := 1(e = 0∧G(x) ∈ Ê(y))
and the target model is the entailment scoring function fE . Therefore, by Theorem 2, for any
nE := |ZE |, we have

PZE

{
RFER(Ê) ≤ εE

}
=

nE∑
m=1

PZE

{
RFER(Ê) ≤ εE

∣∣∣ |ẐE | = m
}
· PZE

{
|ẐE | = m

}
≥

nE∑
m=1

(1− δ′E/2) · PZE

{
|ẐE | = m

}
(13)

= 1− δ′E/2. (14)

Note that (13) holds as the PAC guarantee for conformal prediction holds for any number of samples.

The same bound holds with respect to Z. Specifically, letting ℓFER(ZE ,ZU) := 1(RFER(Ê) ≤ εE),
we have

PZ

{
RFER(Ê) ≤ εE

}
=

∫
ℓFER(ZE ,ZU) dP(Z)

=

∫
ℓFER(ZE ,ZU) dP(ZE)dP(ZU)

≥
∫

(1− δ′E/2)dP(ZU)

= 1− δ′E/2, (15)

where the second equality holds due to the i.i.d. assumption on the calibration data and the inequality
holds due to (14).

FNER Bound. Recall

RFNER(Ê) := PDŜ
{e = 1 ∧ ê = 0}.

22

Since our goal is to upper-bound −RFNER(Ê), we consider a lower boundRFNER(Ê) as follows for
any nE := |ZE |:

PZE

{
RFNER(Ê) ≥ Lbinom(k̂; |ẐE |, δ′E/2)

}
=

nE∑
m=1

PZE

{
RFNER(Ê) ≥ Lbinom(k̂; |ẐE |, δ′E/2)

∣∣∣ |ẐE | = m
}
·PZE

{|ẐE | = m}

≥
nE∑
m=1

(1− δ′E/2) ·PZE
{|ẐE | = m},

= 1− δ′E/2 (16)

where the inequality holds due to the binomial tail bound. The same bound holds when the probability
is taken over Z. First, let

ℓFNER(ZE ,ZU) := 1

(
RFNER(Ê) ≥ LBinom(k̂; |ẐE |, δ′E/2)

)
.

Then,

PZ{RFNER(Ê) ≥ LBinom(k̂; |ẐE |, δ′E/2)} =
∫

ℓFNER(ZE ,ZU)dP(Z)

=

∫
ℓFNER(ZE ,ZU)dP(ZE)dP(ZU)

≥
∫

(1− δ′E/2)dP(ZU)

= 1− δ′E/2, (17)

where the second equality holds due to the i.i.d. assumption and the inequality holds due to (16).

NER Bound. Recall

RNER(Ê) := PDŜ
{ê = 0} = PDŜ

{G(x) /∈ Ê(y)}.

Then, we upper boundRNER(Ê) as follows for any nU := |ZU |:

PZU

{
RNER(Ê) ≤ UBinom(l̂; |ẐU |, δ′S)

}
=

nU∑
m=1

PZU

{
RNER(Ê) ≤ UBinom(l̂; |ẐU |, δ′S)

∣∣∣ |ẐU | = m
}
·PZU

{|ẐU | = m}

≥
nU∑
m=1

(1− δ′S) ·PZU
{|ẐU | = m}

= 1− δ′S , (18)

where the inequality holds due to the binomial tail bound. Again, the same bound holds when the
probability is taken over Z. First, let

ℓNER(ZE ,ZU) := 1

(
RNER(Ê) ≤ UBinom(l̂; |ẐU |, δ′S)

)
Then,

PZ

{
RNER(Ê) ≤ UBinom(l̂; |ẐU |, δ′S)

}
=

∫
ℓNER(ZE ,ZU)dP(Z)

=

∫
ℓNER(ZE ,ZU)dP(ZU)dP(ZE)

≥
∫

(1− δ′S)dP(ZE)

= 1− δ′S , (19)

where the inequality holds due to (18).

Finally, taking the union bound of (15), (17), and (19) completes the proof.

23

H Proof of Lemma 3

Let U (i)
SSL be USSL for the i-th candidate of εE in Algorithm 3. Due to Lemma 2, the following holds:

PZ

{
PDŜ
{e = 0} > U

(i)
SSL)

}
≤ (δ′E + δ′S)/Q.

Since UOPT
SSL = min

i∈[Q]
U

(i)
SSL, we have

PZ

{
PDŜ
{e = 0} > UOPT

SSL

}
≤ PZ

{
∃ i ∈ {1, . . . , Q},PDŜ

{e = 0} > U
(i)
SSL

}
≤

Q∑
i=1

PZ

{
PDŜ
{e = 0} > U

(i)
SSL

}
≤ δ′E + δ′S ,

where the second inequality is due to a union bound. This completes the proof.

I Proof of Theorem 1

LetH be the calibration set-dependent hypothesis space of selective generators, where nH := |H|
is always calibration set independent. Letting U (i) be the FDR-E bound computed given the i-th
selective generator Si inH, we first describe how to derive an upper bound of the FDR-E for a given
hypothesis Si.

Since an upper bound of (E) in (2) is proved in Lemma 3, the remaining parts are (i) to derive
upper bounds on the others and (ii) to take the union bound. For proportions of the visibility of
textual entailment labels, i.e., (B) and (D) in (2), and the FDR-E for the supervised case only using
entailment-labeled examples, i.e., (C) in (2), the followings hold due to the binomial tail bound:

PZ

{
PDSi

{v = 1} ≤ UBinom
(
|ẐE |; |ẐE |+ |ẐU |, δW /(2× |H|)

)︸ ︷︷ ︸
:=w

(i)
SL

}
≥ 1− δW /(2× |H|);

PZ

{
PDSi

{v = 0} ≤ UBinom
(
|ẐU |; |ẐE |+ |ẐU |, δW /(2× |H|)

)︸ ︷︷ ︸
:=w

(i)
SSL

}
≥ 1− δW /(2× |H|);

PZ

{
PDSi

{e = 0} ≤ UBinom
(
|Ẑe=0

E |; |ẐE |, δS/(2× |H|)
)︸ ︷︷ ︸

:=U
(i)
SL

}
≥ 1− δS/(2× |H|),

where ẐE and ẐU are defined same as Lemma 2 does, and Ẑe=0
E := {(x,y, e) ∈ ẐE | e = 0}. Note

that the binomial tail bound is applied to filtered sets by the given selective generator (e.g., ẐE), but
we can use the same bound for the non-filtered set Z, by using the same marginalization technique
over the size of a filtered set, as in, e.g., (15).

Thus, by taking the union bound along with Lemma 3 when δ′E = δE and δ′S = δS/2,

PZ

{
RE(Si) ≤ U (i)

}
≥ 1− (δE + δS + δW)/|H|, (20)

where Ui := w
(i)
SLU

(i)
SL + w

(i)
SSLU

OPT(i)

SSL is the computed FDR-E bound a given selective generator Si.
Here, UOPT(i)

SSL refers to the smallest FDR-E bound of (E) in (2) given the i-th selective generator.

Since (20) holds for all Si ∈ H, and the final bound Û is chosen among them, this completes the
proof by taking an union bound, i.e.,

24

PZ

{
RE(Ŝ) > Û

}
≤ PZ {∃Si ∈ H,RE(Si) > Ui}

=

nH∑
k=1

dPZ {∃Si ∈ H,RE(Si) > Ui, |H| = k}

=

nH∑
k=1

PZ {∃Si ∈ H,RE(Si) > Ui | |H| = k}PZ {|H| = k}

≤
nH∑
k=1

k∑
i=1

PZ {RE(Si) > Ui | |H| = k}PZ {|H| = k}

≤
nH∑
k=1

k∑
i=1

(
δE + δS + δW

k

)
PZ {|H| = k}

= δE + δS + δW .

J Proof of Lemma 4

We say fM is perfectly calibrated with respect to D, G, Etrue if

PD{G(x) ∈ Etrue(y) | fM (x, G(x)) = t}) = t,∀t. (21)

The true discovery rate with respect to Etrue conditioned on fM (x, G(x)) ≥ τS , i.e., 1− FDR-E, is
as follows:

P{G(x) ∈ Etrue(y) | fM (x, G(x)) ≥ τS}

=

∫ 1

τS
P{G(x) ∈ Etrue(y) | fM (x, G(x)) = t}P{fM (x, G(x)) = t}dt∫ 1

τS
P{fM (x, G(x)) = t}dt

=

∫ 1

τS
tP{fM (x, G(x)) = t}dt∫ 1

τS
P{fM (x, G(x)) = t}dt

, (22)

where and (22) holds as fM is perfectly calibrated, i.e., (21).

Letting h(t) := P{fM (x, G(x)) = t}, H(t) :=
∫ 1

t
h(t′)dt′, i(t) := tP{fM (x, G(x)) = t}, and

I(t) :=
∫ 1

t
i(t′)dt′, since we have τS ≤

∫ 1
τS

tP{fM (x,G(x))=t}dt∫ 1
τS

P{fM (x,G(x))=t}dt ≤ 1, the following holds:

I(1)− I(τS) ≥ τS(H(1)−H(τS)).

Therefore,

d

dτS
P{G(x) ∈ Etrue(y) | fM (x, G(x)) ≥ τS} =

d

dτS

{
I(1)− I(τS)

H(1)−H(τS)

}

=
−h(τS)

[
τS(H(1)−H(τS))− (I(1)− I(τS))

]
(H(1)−H(τS))2

≥ 0.

This completes the proof.

Note that the classification problem can be reduced from the special case, i.e., Etrue(y) := EEM(y),
where Y :=W and EEM(y) := {y} = argmaxw∈W P(Y = w |X = x).

25

SGenSup SGenSemi Sup
NoMS

Method

0.00

0.05

0.10

0.15

0.20

0.25

FD
R-

E

S = 0.25

(a) supervised methods

SGenEM SGenH Semi
PL SGenH Semi

PFL SGenSemiNoMS SGenSemi

Method

0.00

0.05

0.10

0.15

0.20

0.25

FD
R-

E

S = 0.25

(b) unsupervised and semi-supervised methods

Figure 4: FDR-E box plots of methods for GPT-3.5-turbo. We randomly split the calibration ad test set
100 times for box plots. For supervised methods (a), we use all entailment labels, i.e., |ZE | = |Zcal

E |.
For (b), which includes an unsupervised method (SGenEM) and semi-supervised methods, we use
|ZE | = 0.75|Zcal

E |. All methods except for SGenSemiuse fM1 as a score function. The methods that do
not control εS FDR-E in learning at least once are drawn using red boxes but otherwise using green
boxes in Figure 4(a) and Figure 4(b). We draw the whisker plot to indicate 100δ% and 100(1− δ)%
quantiles. In both (a) and (b) with green boxes, as the top of the whisker is below of the dotted line,
we can see that the FDR-E is well controlled with probability at least δ, i.e., they satisfy the PAC
guarantee. The numbers of iterations that satisfy εS FDR-E in learning while running 100 iterations
are (a) SGenEM= 0, SGenSup= 100, SGenSemi-SupNoMS = 100 and (b) SGenH-SemiPL = 100, SGenH-SemiPFL = 100,
SGenSemiNoMS= 18, SGenSemi= 100.

K Additional Experiments

Table 3: Comparison results of fully supervised methods. Here, we use all entailment labels,
i.e., |ZE | = |Zcal

E | for GPT-3.5-turbo and Alpaca-7B. The best results are highlighted in bold,
results from methods that do not satisfy desired FDR-E guarantee are underlined. In GPT-3.5-turbo
and Alpaca-7B, the best efficiency values among methods that satisfy a desired FDR-E guarantee
are 0.7535 and 0.2959, respectively, which serve as the best achievable efficiency results of semi-
supervised methods.

Models GPT-3.5-turbo Alpaca-7B

Methods SGenSup SGenSemi-SupNoMS SGenSup SGenSemi-SupNoMS

fM1

FDR-E 0.1697 0.1066 0.0400 0.0231
efficiency 0.6474 0.4657 0.1769 0.0922

fM2

FDR-E 0.2209 0.0914 0.0983 0.0827
efficiency 0.8596 0.5408 0.4149 0.3675

average efficiency 0.7535 0.5033 0.2959 −

26

Table 4: Comparison results of semi-supervised methods. Here, |ZU | = 10K for GPT-3.5-turbo
and Alpaca-7B. The best results are highlighted in bold and results from methods that do not satisfy
desired FDR-E guarantee are underlined. We used QA2D dataset, filtered with only SQuAD, where
human transformed QA sentences exist. ε = 0.15.

Models GPT-3.5-turbo

Methods Heuristic Certified

SGenH-SemiPL SGenH-SemiPFL SGenEM SGen
Semi
NoMS SGen

Semi

fM1

FDR-E 0.0000 0.0000 0.0213 0.0962 0.0918
efficiency 0.0387 0.0227 0.4775 0.8608 0.8502

fM2

FDR-E 0.0053 0.0039 0.0111 0.0169 0.0918
efficiency 0.1300 0.0981 0.3910 0.2156 0.8502

average efficiency 0.0844 0.0604 − 0.5382 0.8502

Table 5: Comparison results of fully supervised methods. Here, we use all entailment labels,
i.e., |ZE | = |Zcal

E | for GPT-3.5-turbo and Alpaca-7B. The best results are highlighted in bold, results
from methods that do not satisfy desired FDR-E guarantee are underlined. We used QA2D dataset,
filtered with only SQuAD, where human transformed QA sentences exist. ε = 0.15.

Models GPT-3.5-turbo

Methods SGenSup SGenSemi-SupNoMS

fM1

FDR-E 0.1116 0.0454
efficiency 0.8956 0.6525

fM2

FDR-E 0.0459 0.0082
efficiency 0.3185 0.1532

average efficiency 0.6071 0.4029

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and

27

write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The theoretical guarantee and the proposed algorithm are illustrated in Sec-
tion 4. Detailed proofs and algorithmic descriptions can be found in the appendix. Experi-
mental results are illustrated in Section 5

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations due to assumptions made for the theoretical guarantee and the
expensive data labeling process are illustrated in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

28

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the correct and complete proofs with full set of assumptions made
for each theoretical result, which are illustrated in detail in the appendix. Furthermore, the
limitations of the theoretical guarantees induced by the assumptions are stated in Section 6.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Datasets, models, and hyperparameters used in implementing proposed algo-
rithms are all described in detail. See Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

29

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will provide the code to train and evaluate the proposed algorithm, which
reproduces the experiment results in the paper after the rebuttal process.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the details of our experiments including generation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: This paper includes holdout experiments to assess statistical significance and
provide error bars for the reported results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We wrote the details in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research is conducted with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

31

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]

Justification: The paper can measure the uncertainty of generative large language models,
which is crucial for decision making problems.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper cite the original papers such as dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

32

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: This paper will release code for running experiments and it is well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

33

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

34

	Introduction
	Related Work

	Background
	Language Generation
	Selective Prediction
	Textual Entailment
	Conformal Prediction
	Calibration

	Problem: Selective Generation
	Semi-Supervised Learning for Controllable Selective-Generation
	False Discovery Rate via Textual Entailment (FDR-E)
	FDR-E Bound for Supervised Learning
	FDR-E Bound for Semi-Supervised Learning
	FDR-E Decomposition
	Pseudo-labeling via Conformalized Entailment Set Learning
	FDR-E Bound

	Neuro-selection Functions
	Semi-Supervised Selective Generator Learning Algorithm with Model Selection

	Experiments
	Conclusion
	Discussion
	Conformal Prediction
	Sample Space Decomposition
	Experiment Setup
	Computing Environment
	Models and Datasets

	Semi-supervised Selective Generation Algorithms (Certified)
	Supervised Selective Generation Algorithms (Certified)
	Semi-supervised Selective Generation Algorithms (Heuristic)
	Unsupervised Selective Generation Algorithms (Certified)
	Proof of Theorem 2
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 1
	Proof of Lemma 4
	Additional Experiments

