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Abstract

In this essay, we discuss a sequence prediction-based approach to empower deep-
learning systems with intuitive physics reasoning capabilities. Our approach in-
volves pre-training a physics-informed model to predict future states based on
real-world observations. This model is then fine-tuned using reinforcement learn-
ing (RL) techniques, aligning it with RL’s success in training large language models.
Thus it is possible for our systems to better understand complex, dynamic environ-
ments. This approach holds potential across diverse domains, including robotics,
simulations, and autonomous systems.

1 Introduction

Intuitive physics reasoning has long been a fundamental challenge in the pursuit of creating machines
that can understand and interact with the physical world as adeptly as humans[1]. Developing
machine learning systems capable of predicting and comprehending the behavior of objects and the
environment based on underlying physical principles is essential for a wide range of applications,
including robotics, autonomous vehicles, simulations, and decision-making. In this context, this
essay discusses a sequence prediction-based approach that leverages the power of pre-training with
physics-informed models followed by fine-tuning using reinforcement learning (RL) techniques.

One of the most important controversial topics in intuitive physics is nature versus nurture. Actually,
evolution itself, which has inspired many deep learning works[4], can be deemed as a powerful
algorithm that provides a good base for our lifelong learning. From this perspective, when training a
machine agent, we may consider some two-stage approaches: a "nature" stage provides an algorithm
and a "nurture" stage applies the algorithm based on real-world observations, or the former provides
a well-initialized model for following learning or fine-tuning. Inspired by GPT-4.0[2] and RLHF[3],
we consider creating machine learning systems that can reason about and interact with the physical
world in a manner that combines the robustness of physics knowledge with the adaptability of RL, by
pre-training a model to predict future states in real-world observations, and then fine-tuning it using
RL. This essay briefly discusses this process, aiming to provide some insights for enhancing safety,
efficiency, and adaptability in real-world applications.

2 Methodology

Pre-training a physics-informed model to predict the next time state based on observations of the real
world and then using it as an intuitive physics engine for RL tasks, is a reasonable and promising
approach. It combines elements of predictive modeling, physics simulation, and reinforcement
learning (RL) to build a robust machine learning system for understanding and interacting with the
physical world.
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2.1 Pretraining with Physics-Informed Models

Pre-training a foundation model with knowledge of physics principles can provide a solid foundation
for understanding how objects and the physical world behave, which can be especially helpful in RL
tasks where the agent must interact with the environment effectively. One possible implementation
is training the foundation model on sequence prediction or recovery tasks for discretized physical
dynamics. We can use a neural network-based perception model to encode the observations into a
tensor sequence. To obtain an effective intuitive physics engine, we may include the states and actions
of the agent as a part of the sequence.

2.1.1 RL-Based Fine-Tuning

By including agents’ information in the sequence and treating interaction with the environment as a
sequence prediction task, we can frame the problem in a way that aligns with RL-based GPT training
paradigms. This allows us to leverage RL techniques for learning and optimizing the agent’s behavior
over time. Especially for tasks in which real-world observations or simulation results are hard to
collect, the framework allows us to utilize a reward model that enables the usage of some algorithms
with data efficiency, e.g., Proximal Policy Optimization (PPO)[5]. In addition, by incorporating the
violation of expectation paradigm into the reward model, we can encourage agents to learn and predict
physical interactions in a manner consistent with human intuition.

3 Benefits

Interaction Efficiency Since we construct an intuitive physics engine that approximates real-world
dynamics using a parametric neural network, the efficiency of interaction is directly ensured by the
efficiency of model inference and meets our expectations.

Transfer Learning Benefits Leveraging pre-trained models for physics understanding can offer
transfer learning benefits. One can apply the knowledge learned from one scenario to new, related
scenarios, making the system more adaptable and efficient in learning.

Sample Efficiency RL training paradigms, such as PPO and Reinforcement Learning from Human
Feedback (RLHF)[3], have shown promise in training large language models with limited interaction
data. This can be advantageous in scenarios where collecting real-world interaction data can be
expensive or dangerous.

Complex Environment and Various Signals The approach allows the agent to learn from interac-
tions and adapt its behavior over time and thus is well-suited for complex, dynamic environments
where the outcomes of actions are not always straightforward to predict. Also, RL-based optimization
allows non-differentiable signals and thus meets the requirement of diverse tasks.

4 Potential Problems

4.1 Optimization Problems

Challenges in Training Be aware that training RL models, especially large ones, can be compu-
tationally intensive and may require substantial resources. Proper reward design and exploration
strategies are critical to successful RL training.

Evaluation and Fine-Tuning After pre-training and RL training, it’s important to evaluate the
performance of our model and fine-tune it as needed. This may involve addressing biases, refining
the reward structure, and ensuring safety and robustness.

4.2 Other Considerations for Real-World Applications

Be mindful of ethical considerations, particularly in real-world applications. Ensuring that the AI
system’s behavior aligns with ethical principles and adheres to safety standards is essential. Consider
how to make the system’s reasoning and predictions interpretable, as understanding the model’s
behavior is crucial for trust, debugging, and accountability.
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