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ABSTRACT

Recent contrastive multimodal vision-language models like CLIP have demon-
strated robust open-world semantic understanding, becoming the standard im-
age backbones for vision-language applications due to their aligned latent space.
However, this practice has left powerful unimodal encoders for both vision and
language underutilized in multimodal applications which raises a key question:
Is there a plausible way to connect unimodal backbones for zero-shot vision-
language tasks? To this end, we propose a novel approach that aligns vision
and language modalities using only projection layers on pretrained, frozen uni-
modal encoders. Our method exploits the high semantic similarity between em-
bedding spaces of well-trained vision and language models. It involves selecting
semantically similar encoders in the latent space, curating a concept-rich dataset
of image-caption pairs, and training simple MLP projectors. We evaluated our ap-
proach on 12 zero-shot classification datasets and 2 image-text retrieval datasets.
Our best model, utilizing DINOv2 and All-Roberta-Large text encoder, achieves
76% accuracy on ImageNet with a 20-fold reduction in data and 65 fold reduction
in compute requirements. The proposed framework enhances the accessibility of
model development while enabling flexible adaptation across diverse scenarios,
offering an efficient approach to building multimodal models by utilizing existing
unimodal architectures. Code and datasets will be released upon acceptance.

1 INTRODUCTION

Contrastive multimodal vision-language models have demonstrated impressive zero-shot capabili-
ties Radford et al. (2021); Jia et al. (2021); Zhai et al. (2023). These advancements have facilitated
the use of language as an API for vision tasks, with captions functioning as adaptive classes, en-
abling a wide range of applications. The typical objective function InfoNCE, maximizes mutual
information between the global summary vector of an image and its representation. However, the
use of pooling functions to create global representations poses challenges for granular tasks like seg-
mentation, which require pixel-level features. Notably, across various vision-centric benchmarks,
unimodal models such as DINOv2 significantly outperform CLIP-like models Tong et al. (2024a;b).
As the field progresses, there is an increasing demand for multimodal systems that can efficiently
adapt to new modalities and tasks without extensive retraining. This evolution highlights the need
for more flexible and efficient approaches to multimodal learning.

While efforts have been made to develop more efficient CLIP-like models, they often compromise
on performance or still demand significant resources. For instance, LiT Zhai et al. (2022) achieves
comparable performance to CLIP but still requires training on 256 TPU cores with over 4 billion
image-caption pairs. Smaller-scale attempts like LiLT Khan & Fu (2023) show promise in retrieval
tasks but struggle with zero-shot classification accuracy.

In this paper, we propose an alternative approach to vision-language multimodal alignment that
strives to address these challenges. Our method builds upon the recent findings suggesting seman-
tic similarities between well-trained unimodal vision and language embeddings Maniparambil et al.
(2024); Huh et al. (2024). By leveraging these semantic similarities, we explore the potential of cre-
ating efficient CLIP-like models by training lightweight projection layers between unimodal frozen
models.

This approach has two practical benefits compared to CLIP-like models:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Accessible development: Training only projection heads with a dense dataset significantly reduces
the computational requirements compared to full model training. This approach not only decreases
the environmental impact of developing foundation models but also makes their creation more ac-
cessible to the broader research community (see Section 5.5 for detailed comparisons).

Flexible adaptation to diverse scenarios: By connecting unimodal encoders through lightweight
projectors, our method enables the utilization of specific features from each encoder in a multimodal
context. Examples include: (1) Creating multilingual vision-language models for low-resource lan-
guages by aligning DINOv2 with a multilingual text encoder using a small set of image-caption pairs
in the target language (Section 5.3), as well as (2) Enabling image-paragraph retrieval by aligning
visual encoders with long-context language models like BERT-large, overcoming the token limit
constraints of standard CLIP models (Section 5.4).

Our framework consists of three key components:

1. Encoder Pair Selection: We identify semantically similar vision and language encoders
using the Centered Kernel Alignment (CKA) metric.

2. Dataset Curation: We develop a method to collect a dense, concept-rich dataset of image-
caption pairs from uncurated sources. We argue that alignment is sensitive to concept
coverage, and carefully select samples that cover most of the target concepts.

3. Lightweight Projector Training: We train simple MLP projectors between the embedding
spaces of frozen unimodal models using contrastive loss.

We evaluate our approach on zero-shot transfer to 12 different classification datasets and 2 image-
text retrieval datasets. Our best projector between unimodal models, utilizing DINOv2 and All-
Roberta-Large-v1, achieves 76% accuracy on ImageNet, surpassing CLIP’s performance while us-
ing approximately 20 times less data and 65 times less compute. We also demonstrate our frame-
work’s versatility across tasks like zero-shot domain transfer, multilingual classification, zero-shot
semantic segmentation, and image-paragraph retrieval.

Our main contributions lie not in a specific model, but in demonstrating a new framework for vision-
language alignment. In summary, we demonstrate that CLIP-like performance can be achieved by
training only projection layers, using a curated, concept-rich dataset to enable efficient projector
training with significantly less data and compute.

2 CKA VS EASE OF ALIGNMENT

Previous studies Huh et al. (2024); Maniparambil et al. (2024) have shown that well-trained vision
and language encoders exhibit high semantic similarity using Centered Kernel Alignment (CKA)
Kornblith et al. (2019), which measures the similarity of induced graphs of concepts across different
hidden representation spaces (see Section 2.1 for CKA). A layerwise analysis in Maniparambil et al.
(2024) reveals that most of this similarity is concentrated in the final projection layer. Additionally,
model stitching methods Lenc & Vedaldi (2015); Bansal et al. (2021); Merullo et al. (2022) demon-
strate that different network regions can be stitched together using linear layers. Inspired by this, we
investigate whether semantically similar encoder embedding spaces can be aligned through a simple
projection transformation, using toy examples to validate the underlying concept.

2.1 CKA PRELIMINARY

Centered Kernel Alignment (CKA) Kornblith et al. (2019) measures the similarity of induced
graphs of concepts in each encoder space and can act as a guide for encoder pairs selection that are
amenable to alignment as we demonstrate in section 4. We define CKA as follows: Given two sets of
vectors X and Y , CKA measures the similarity of these vectors in their respective high-dimensional
feature spaces. The kernel matrices K and L are derived from the data sets X and Y , respectively,
and represent the inner products between the vectors in these spaces. The entries of K and L are
computed as:

Kij = k(xi,xj), Lij = l(yi,yj)

2
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where k and l are kernel functions applied to the vectors xi,xj ∈ X and yi,yj ∈ Y , respectively.
Common choices for these kernel functions include linear kernels, where k(xi,xj) = x⊤

i xj , or
Gaussian kernels, where k(xi,xj) = exp(−γ∥xi − xj∥2) for some γ > 0.

The CKA coefficient, CKA(K,L), is defined as:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K) · HSIC(L,L)

where HSIC stands for Hilbert-Schmidt Independence Criterion Gretton et al. (2005); Ma et al.
(2020), which measures the dependence between the sets of vectors. This measure is invariant to
orthogonal transformations and isotropic scaling of the data, making it robust for comparing different
models.

2.2 CKA AND EASE OF ALIGNMENT TOY EXAMPLE

We define the ease of alignment as the minima of the training loss after convergence. We examine
how CKA correlates with the minimum CLIP loss when transforming one vector set to match an-
other using a Linear layer. Since CLIP loss lacks a closed-form solution, we applied SGD for 500
iterations per instance, recording the final loss value as the minimum. We fixed the temperature at
0.07 and the learning rate at 0.01, choosing 500 iterations because the loss value showed minimal
change beyond this point.
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openai_clip-vit-large-patch14-336
llmrails_ember-v1
sentence-t5-large

Figure 1: CLIP Loss minima vs CKA for different encoder pairs on a toy image, caption pair
dataset. We plot the CLIP loss after 500 iterations vs CKA for different image, text encoders and
find that a negative correlation exists between CKA and ease of alignment.

Ease of Alignment with real embeddings: We investigate whether an inverse relationship exists
between the minima of CLIP Loss and CKA when the embeddings are from real data and real
encoders. We consider 35 different sentence encoders and 25 different vision encoders and sample
3000 different image,caption pairs from the COCO validation set and pass them through all possible
encoder combinations to produce 600 different sets of A and B. We then calculate CKA and compute
the minima of CLIP Loss after 500 iterations for these A, B and plot them in Figure 1 with CKA
on the x axis and minima of CLIP loss on the y axis in a log scale. We see that for real-world
embeddings of images and captions, there is a strong inverse relationship between CKA and the
minima of the CLIP loss providing further evidence that encoders with high CKA could have similar
similarity structures making them easy to align using simple projections. More toy examples in A.1
.
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3 FRAMEWORK

Our framework consists of three main components: (1) Encoder Pair Selection, (2) Dataset Curation,
and (3) Lightweight Projector Training.

3.1 ENCODER PAIR SELECTION

Inspired by Section 2 we use CKA for selecting the most semantically similar encoder pairs for
multimodal alignment. We opted for a linear kernel in the CKA computation after observing that
the trends in results were largely consistent between linear and RBF kernels, while the linear ker-
nel offers superior computational efficiency. We measure the CKA between encoder spaces by
constructing sets of vision embeddings and text embeddings on the COCO validation set of 5000
image, caption pairs. The COCO validation set is chosen as the reference set for its high semantic
alignment between the image content and the caption description. We ablate the use of CKA for
encoder pair selection in 4.1 and find a positive correlation between CKA and transfer performance
to downstream datasets.

3.2 DATASET CURATION
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Figure 2: Overview of our concept-balanced dataset cura-
tion process. Images for each concept are acquired from cu-
rated datasets and mapped to CLIP embeddings and averaged to
construct Image Prototypes for each concept. Captions of the un-
curated dataset are mapped to CLIP’s joint embedding space and
2000 samples are picked per concept on the basis of the closest
caption embeddings to each concept image prototype.

By only training the projec-
tion layers to align embedding
spaces, our approach requires
significantly less data compared
to training a CLIP model from
scratch. To achieve high-quality
alignment, it is essential to
use a small but well-curated
dataset featuring image-caption
pairs with a strong semantic cor-
respondence between the im-
ages and the text. Addition-
ally, the dataset must encom-
pass a wide range of concepts
to facilitate robust zero-shot do-
main transfer capabilities. With
these requirements in mind, our
dataset curation process is struc-
tured into three key steps:

Concept Image Prototypes: Firstly, we collect ∼ 3000 unique concepts from class names of Im-
ageNet, and several other datasets (see A.10.1). Then, we embedded 128 image samples for each
concept from the corresponding dataset using CLIP VIT-Large’s vision encoder and average them
to obtain the concept image prototypes.

Concept Level Collection: To create a class-balanced dataset, we first collect image-caption pairs
from LAION400M, a large, uncurated source dataset. We then embed all captions using CLIP
ViT-Large’s text encoder and compute the caption-image prototype similarity for each concept. To
ensure diversity, we retrieve 2,000 samples per concept, starting with the less common concepts. As
a proxy to establish the commonality of a concept in the pool, we use the average cosine similar-
ity of the top 25,000 captions closest to each concept prototype. This process results in LAION-
CLASS-Collected, a high-quality dataset of 6M samples with broad concept coverage. The detailed
algorithm is illustrated in Fig 2, and A.5 details the implementation and compute requirements for
our collection process.

Retrieval Datasets: The LAION-CLASS-Collected dataset offers high concept diversity, but
LAION itself is uncurated, with many captions poorly aligned with their images Fan et al. (2024);
Nguyen et al. (2024); Chen et al. (2023b). While concept coverage is crucial for strong zero-shot
classification, image quality, text diversity, and image-caption alignment are key for effective zero-
shot image-text retrieval. In contrast, datasets like CC3M Sharma et al. (2018), CC12M Changpinyo
et al. (2021), and SBU Ordonez et al. (2011) feature higher-quality images and better image-caption

4
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alignment than LAION. By combining these, we create a 20M MIX-CLASS-Collected dataset that
balances concept coverage with image-text similarity, enhancing both retrieval performance and
zero-shot domain transfer across various classification tasks. We examine the impact of each data
source on task performance in Sec 4.3.

3.3 PROJECTOR ARCHITECTURE

Vision encoder

CLS 
token

CLS
Proj. Vision Local Proj.

Text encoder

Mean 
pooling

Final image 
embedding

Text Local Proj.
CLS
Proj.

Final text 
embedding

Contrastive loss

Mean 
pooling

person trying to reach a Frisbee in a field 
with high brown grass.

CLS 
token

person trying to

Text Global
Proj. Token

Projection
layer

Linear layer

Relu activation

Frozen

Figure 3: Lightweight Projector Architecture. We train
only Projection Layers to align modalities. Separate projec-
tors are applied on both the local tokens and the CLS token
for each encoder and then combined in a residual manner.

We train lightweight projectors using
contrastive loss between adapted im-
age and text embeddings while keep-
ing the unimodal encoders frozen.
Figure 3 shows our projector ar-
chitecture/configuration. We use a
lightweight Token Projector Mukhoti
et al. (2023) with linear and non-
linear branches in a residual config-
uration for both local tokens and the
CLS token of each encoder. The pro-
jector’s weights are shared for local
tokens and separate for the CLS to-
ken. Adapted local tokens are aver-
aged and added to the adapted CLS
token to form a global embedding,
capturing both global and local en-
coder information.

For sentence-transformer architec-
tures, Token Projectors are applied to the tokens, followed by a 2-layer MLP as a global Text
Projector, as the text embeddings need further adaptation to become more aligned with the vision
embeddings. All projector choices are thoroughly ablated in Section 4.2. Training information and
hyperparameters are detailed in A.6.

4 ABLATION EXPERIMENTS

We present a set of ablations to validate different components of our pipeline empirically: CKA for
encoder selection 4.1, the projector architecture and configuration 4.2, the alignment datasets, and
the impact of class-collected data 4.3. We evaluate on downstream tasks like 0-shot domain transfer
to Imagenet classification and COCO / Flickr30k image-text retrieval scores.

4.1 EFFECTIVENESS OF CKA FOR ENCODER PAIR SELECTION
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Figure 4: Unimodal performance does
not track alignment performance

We train our projector configurations on various combina-
tions of unimodal encoders using the COCO dataset and
evaluate image/text retrieval accuracies on the Flickr30k
test set, plotting these against CKA scores in Figure 5.
The CKA, calculated on the COCO image-caption pairs,
shows a strong correlation with retrieval accuracy, indi-
cating that higher semantic similarity, as measured by
CKA, predicts better alignment in image/text retrieval.
Our findings suggest that CKA can effectively predict
which encoder pairs will align well with projector train-
ing. The DINOv2-Large and CLIP-ViT-Large-text com-
bination achieves the highest retrieval score, but cer-
tain unimodal pairs, like DINOv2-Large and All-Roberta-
Large-v1 (CKA = 0.69), perform nearly as well. This indicates that these unimodal encoders are
highly effective for vision-language alignment, leading us to choose the DINOv2-Large and All-
Roberta-Large-v1 pair for larger-scale experiments. Image Retrieval performance is illustrated in
A.4.
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CKA vs. Text Retrieval R@1
Text Encoders

all-roberta-large-v1
all-MiniLM-L6-v1
para-MiniLM-L3-v2
para-distilroberta-base-v2
para-multi-mpnet-base-v2
all-distilroberta-v1
msmarco-bert-base-dot-v5
all-mpnet-base-v1
msmarco-distilbert-dot-v5
all-MiniLM-L6-v2
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Vision Encoders & Size
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ViT-AugReg-IN21k

ConvNeXT-IN21k
ConvNeXT-IN1k
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Size: Base
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Size: Giant

Figure 5: Retrieval performance vs. CKA for different
encoder pairs. Text retrieval accuracies on Flickr30k are
compared to CKA, calculated on the COCO val set. Models
are trained on the COCO train set. A clear correlation exists
between CKA and alignment quality, as reflected in the re-
trieval accuracies.

V Proj. V Proj. T Proj. T Proj. INet
Local CLS Local Global 0-shot

mlp identity identity identity 68.81
token identity identity identity 68.84
token identity identity mlp 70.90
token identity patch identity 71.85
token identity token mlp 72.15
identity token token mlp 75.53
token token token mlp 76.12

Table 1: Projector ablations.
Data Source N ImageNet I2T T2I

LAION-CLASS-Collected 6M 76.12 52.70 42.48
CC3M, CC12M, SBU 14M 54.17 85.30 72.44
Both 20M 75.04 81.32 71.38
Both longer training 20M 76.30 87.54 74.17

Table 2: Ablation of Alignment
Training Data.

Unimodal Performance Does Not Reflect Alignment Quality: We perform the same ablation as
above using DINOv2 and 14 different text encoders from the Sentence Transformers library Reimers
& Gurevych (2019). In Fig. 4, we plot Flickr30k text retrieval accuracies against text encoder
performance averaged over sentence embedding (STS) tasks (14 datasets) and semantic search (SS)
tasks (6 datasets). The results show that text encoder performance does not predict alignment quality,
suggesting that CKA, rather than unimodal performance, can be used to identify encoder pairs that
easily align. Further ablations are discussed in A.4.

4.2 IMPACT OF PROJECTOR ARCHITECTURES

We ablate our projector combinations for the DINOv2 and All-Roberta-Large-v1 encoders by train-
ing the projectors to convergence on the LAION-Class-Collected dataset and evaluating the per-
formance on ImageNet 0-shot domain transfer. An MLP applied solely to the local vision tokens
achieved 68.81% accuracy, while a Token projection Mukhoti et al. (2023) performed slightly better.
Therefore, we used the Token projector for all tokens, both visual and textual. Adding projectors
to the text side, targeting both text tokens and a global projector on the averaged local tokens (rows
3, 4, and 5), resulted in performance improvements. These projectors help transform the unimodal
text encoder’s language-only representations to be more similar to the visual representations. Intro-
ducing projectors to the CLS token (row 6) of the visual encoder led to a significant performance
increase from 72.15% to 75.13%. Using both CLS and patch projectors in tandem yielded the best
performance at 76.12%. This improvement is attributed to DINOv2’s dual training objectives: the
image-level DINO Caron et al. (2021) objective on the CLS token and the patch-level iBOT Zhou
et al. (2021) objective on the patch tokens learning effective global and local features.

4.3 IMPACT OF CLASS-COLLECTED DATA / RETRIEVAL DATA

In this section, we ablate the different components of our alignment data. Specifically, we compare
the high concept coverage LAION-CLASS-Collected dataset with the higher image-caption quality
retrieval datasets: CC3M, CC12M, and SBU. Our experiments show that aligning DINOv2 and
All-Roberta-Large-v1 on the high concept coverage dataset results in a high ImageNet zero-shot
domain transfer accuracy of 76.1 %, though the retrieval accuracies are lower, at 52.7%/42.2%. In
contrast, training with the higher image-caption quality retrieval datasets results in high image and
text retrieval scores on the Flickr30k val set (85.3% and 72.4%, respectively). However, the limited
concept coverage of these datasets leads to a much lower ImageNet accuracy of 54.1%. Combining
both types of datasets yields both high ImageNet accuracy and high image/text retrieval accuracies.
To ensure that the extra data is adequately utilized, we train for an additional 30 epochs. This
approach results in our best-performing model, achieving an ImageNet accuracy of 76.30% and
Flickr retrieval scores of 87.54%/74.17% (last row).
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Model N ImageNet ImageNetv2 Caltech Pets Cars Flowers Food Aircrafts SUN CUB UCF101

LAION-CLIP VIT-L 400M 72.7 65.4 92.5 91.5 89.6 73.0 90.0 24.6 70.9 71.4 71.6
OpenAI-CLIP VIT-L 400M 75.3 69.8 92.6 93.5 77.3 78.7 92.9 36.1 67.7 61.4 75.0
LiT L16L 112M 75.7 66.6 89.1 83.3 24.3 76.3 81.1 15.2 62.5 58.7 60.0
DINOv2-MpNet (Ours) 20M 74.8 68.0 91.8 91.7 71.0 75.8 87.5 23.0 71.9 63.2 71.0
DINOv2-ARL(Ours) 20M 76.3 69.2 92.8 92.1 73.9 78.4 89.1 28.1 72.6 66.1 73.2

Table 3: 0-shot domain transfer to classification datasets. We compare the performance of our
DINOv2-ARL projector model, trained on a 20M dataset, against CLIP models from OpenAI and
LAION across various datasets. Despite the smaller training size, our model achieves a 76.3%
accuracy on ImageNet, outperforming comparably sized CLIP models.

5 RESULTS

We evaluate the alignment between vision and text encoders across benchmarks commonly used for
CLIP-like models, including zero-shot image classification, image retrieval, localization, multilin-
gual classification/retrieval, and dense caption image-text retrieval. We demonstrate that aligning
unimodal vision-language encoders can match or exceed the performance of large CLIP models,
despite using smaller datasets and less compute. Additionally, our alignment framework is flexible,
enabling the use of specialized encoders for specific tasks, such as aligning multilingual text en-
coders for multilingual or low-resource image classification/retrieval, or long-context text encoders
for dense image/caption retrieval. Furthermore, aligning DINOv2 with a text encoder improves
image localization beyond CLIP’s vision encoder due to DINOv2’s superior localization features.

5.1 0-SHOT CLASSIFICATION AND RETRIEVAL

Model Flickr COCO
I2T T2I I2T T2I

LAION-CLIP VIT-L 87.6 70.2 59.7 43.0
OpenAI-CLIP VIT-L 85.2 64.9 56.3 36.5
LiT L16L 73.0 53.4 48.5 31.2
DINOv2-MpNet (Ours) 84.6 71.2 58.0 42.6
DINOv2-ARL (Ours) 87.5 74.1 60.1 45.1

Table 4: Image, Text Retrieval on COCO/Flickr30k.
Our model shows comparable text retrieval scores and
significantly better image retrieval results.

Model Pascal Pascal
VOC Context

OpenAI-CLIP-VIT-L* 23.46 14.25
SPARC 27.36 21.65
DINOv2-ARL 31.37 24.61

Table 5: 0-shot semantic segmenta-
tion mean IOU. The table shows signifi-
cant improvements by DINOv2-ARL, even
without fine-grained alignment loss. * uses
MaskCLIP trick.

Tables 3 and 4 report our model’s performance on zero-shot domain transfer to image classification
datasets and zero-shot image-text retrieval on the Flickr30k and COCO datasets, respectively. Sim-
ilar to Maniparambil et al. (2023) we use classwise Visually Descriptive Text (VDT) prompts to en-
able the unimodal-text encoder in our DINOv2-ARL projector model to better identify the zero-shot
classes of the downstream datasets. Detailed descriptions of the evaluation datasets can be found in
the A.10, highlighting dataset domains, sizes, and prompt descriptions. We see that despite being
trained on a 20M dataset our DINOv2-ARL projector model achieves an ImageNet accuracy of 76.3
% which is 1 % and 3.6 % better than comparably sized CLIP models from OpenAI Radford et al.
(2019) and LAION Schuhmann et al. (2021) respectively. Our DINOv2-ARL model demonstrates
competitive performance across various datasets compared to LAION and OpenAI CLIP models.
The relative performance of these models varies depending on the specific dataset. For example,
on the Stanford Cars dataset, LAION-400m Schuhmann et al. (2021) CLIP outperforms OpenAI
CLIP by a significant margin of over 12%. Conversely, for the Aircrafts dataset, both OpenAI CLIP
and our DINOv2-ARL model show superior performance compared to LAION-400m CLIP. We be-
lieve this to be due to the differences in concept coverage for these particular datasets between the
LAION400m, OpenAI WIT, and our MIX-CLASS-Collected datasets.

In zero-shot text retrieval, our model slightly outperforms or matches the next best CLIP model,
LAION400M-CLIP VIT-L, with scores of 87.5% vs 87.6% on Flickr and 59.7% vs 60.1% on COCO.
For image retrieval, our models show a significant advantage, achieving scores of 74.1% vs 70.2%
on Flickr and 45.1% vs 43.0% on COCO. This improvement is likely due to the superior quality of
the unimodal features produced by the DINOv2 and All-Roberta-Large-v1 encoders, compared to
those of the multi-modal vision and text embeddings in the CLIP models.
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5.2 0-SHOT LOCALIZATION

One key advantage of leveraging frozen unimodal vision and text encoders is the enhancement
provided by unimodal features. Specifically, the DINOv2 vision encoder’s robust localization ca-
pabilities enhance the joint embedding space of the DINOv2-ARL model when trained solely with
projectors. We assess this through zero-shot segmentation performance, similar to the Bica et al.;
Mukhoti et al. (2023), as shown in Table 5. Our approach involves computing cosine similarities be-
tween each patch and all the ground truth classes and subsequently upscaling to the target size. Each
patch is then classified into a corresponding class. Consistent with previous studies, the intersection
over union (IoU) is computed solely for the foreground classes. In the zero-shot segmentation pro-
cess of CLIP models, we employ a technique similar to Zhou et al. (2022) to alleviate the opposite
visualization problem in CLIP models Li et al. (2023). The patch embeddings from the penultimate
layer are passed through the value layer and output MLP of the final self-attention block, followed by
projection into the joint embedding space using the vision projector. Meanwhile, our DINOv2-ARL
model considers patch embeddings projected into the joint embedding space by the patch projector
and augments them with the projected CLS token in a residual manner.

Our DINOv2-ARL model demonstrates superior performance compared to jointly trained dual en-
coder models like OpenAI’s CLIP, achieving over 8% improvement on Pascal VOC and over 10%
on Pascal Context. Notably, models utilizing a fine-grained alignment loss like SPARC Bica et al.
show improvements over CLIP. However, our DINOv2-ARL model outperforms SPARC by 4% on
VOC and 3% on Context datasets. This underscores that the strong localization abilities of DINOv2
patch embeddings are retained even without training with a fine-grained alignment loss. We hypoth-
esize that the localization performance could benefit from the quality of patch embeddings and a
more precise localization alignment. Exploring fine-grained losses like SPARC with projector-only
CLIP models presents an exciting direction for enhancing localization capabilities in VLMs.

5.3 MULTI-LINGUAL RESULTS

model classification retrieval
EN DE FR JP RU average EN DE FR JP RU average

nllb-clip-base@v1 25.4 23.3 23.9 21.7 23.0 23.5 47.2 43.3 45.0 37.9 40.6 42.8
M-CLIP/XLM-Roberta-Large-Vit-B-32 46.2 43.3 43.3 31.6 38.8 40.6 48.5 46.9 46.1 35.0 43.2 43.9
M-CLIP/XLM-Roberta-Large-Vit-L-14 54.7 51.9 51.6 37.2 47.4 48.6 56.3 52.2 51.8 41.5 48.4 50.0
xlm-roberta-base-ViT-B-32@laion5b 63.0 55.8 53.8 37.3 40.3 50.0 63.2 54.5 55.7 47.1 50.3 54.2
nllb-clip-large@v1 39.1 36.2 36.0 32.0 33.9 35.4 59.9 56.5 56.0 49.3 50.4 54.4
M-CLIP/XLM-Roberta-Large-Vit-B-16Plus 48.0 46.1 45.4 32.9 40.3 42.5 63.2 61.4 59.3 48.3 54.8 57.4

ViT-L-14@laion400m 72.3 48.2 49.9 2.7 4.5 35.5 64.5 26.7 38.3 1.4 1.7 26.5
openai/clip-vit-large-patch14 75.6 46.7 49.6 6.6 3.5 36.4 59.4 19.9 28.5 4.1 1.3 22.6
DINOv2-MpNet (Ours) 73.4 61.6 58.3 43.2 49.3 57.1 70.7 60.6 60.6 45.6 52.7 58.0

Table 6: Multilingual Classification and Image-Caption Retrieval. Performance comparison
of DINOv2-MpNet with various CLIP models and multilingual baselines on multilingual ImageNet
and XTD datasets. Despite being trained only on English data, DINOv2-MpNet outperforms models
trained on multiple languages. The upper half of the tables shows multilingual-trained models, while
the lower half lists models trained only on English data.

Our framework supports flexible swapping of text encoders, enabling multi-lingual capabilities
through multi-lingual encoders, particularly beneficial for low-resource languages. We demonstrate
this by aligning DINOv2-Large with paraphrase-multilingual-v2, chosen for its high CKA com-
patibility, using only English image-caption pairs. We then evaluated our model’s performance on
multi-lingual image retrieval using the XTD dataset Aggarwal & Kale (2020b) and classification
using the ImageNet dataset. For classification, we translated VDT prompts to the languages be-
ing considered using the nllb-200-distilled-600M Costa-jussà et al. (2022) model and applied them
uniformly across all models.

Multi-lingual classification and retrieval results for five representative languages, are presented in
Table 6. Detailed results are in Tables A.4, A.3. The lower section lists models trained exclusively
with English captions, specifically the CLIP-VIT-L models trained on the WIT dataset Radford et al.
(2021) and the LAION400M dataset Schuhmann et al. (2021). The upper sections feature models
trained with translated captions, such as CLIP models based on LAION5B Schuhmann et al. (2022),
M-CLIP models Chen et al. (2023a), and NLLB-CLIP models Visheratin (2023).
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Our DINOv2-MpNet, trained solely on English image-caption pairs, outperforms other English-only
CLIP models by over 31% in average retrieval performance across five languages and by 6% in En-
glish. While English CLIP models perform well on Latin script languages, their performance drops
for non-Latin languages like RU and JP due to the English-only tokenizer. In contrast, our DINOv2-
MpNet remains competitive across both Latin and non-Latin languages, even against models trained
on multilingual data. Notably, it outperforms the laion5b-trained xlm-roberta-base-VitB32 by 0.6%,
despite using only 20 million English image-caption pairs compared to the 5B multilingual pairs
in LAION5B. In classification tasks, DINOv2-MpNet surpasses the LAION400m-trained ViT-L on
English Imagenet, delivering significantly better results (over 20% on average) across five languages.
Among multilingual models, it exceeds both nllb-clip and M-CLIP models, surpassing the next best
M-CLIP/XLM-Roberta-Large-Vit-L-14 by over 8%, despite not using any multilingual text data. It
also outperforms the LAION5B-trained CLIP model by 7% despite its use of multilingual image-
caption pairs. This underscores the efficiency of our training approach, achieving highly performant
models with significantly fewer image-caption pairs, and suggests that further training on translated
pairs could enhance DINOv2-MpNet’s performance, particularly in low-resource languages.
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Figure 6: Retrieval performance comparison be-
tween DINOv2-ARL encoder pair and OpenAI
CLIP as the maximum token length increases.
The vertical green line indicates the standard
CLIP token limit of 77.

Model Data SS Trainable / Total Compute IN 0-shot
OpenAI CLIP 400M 12.8B 427M / 427M 21,845 72.7%
LAION400M CLIP 400M 12.8B 427M / 427M 25,400 75.3%
DINOv2-ARL 20M 0.6B 11.5M / 670M 400 76.3%

Table 7: Compute requirements, Dataset size,
and Number of trainable parameters are or-
ders of magnitude lower when using projec-
tors to align semantically similar encoders.
By using projectors to align semantically sim-
ilar encoders, compute requirements drop 65-
fold, dataset size shrinks by 20 times, and only
1% of total parameters are trainable while out-
performing other CLIP models. Compute mea-
sured in GPU hours on an A100 (80 GB) GPU.

5.4 DENSELY CAPTIONED IMAGES (DCI) DATASET AND LONG-TEXT RETRIEVAL

The Densely Captioned Images (DCI) dataset Urbanek et al. (2024) offers a unique approach to
image-text datasets, featuring 7,805 natural images with richly annotated, mask-aligned descriptions
averaging over 1,000 words per image. This level of detail provides an opportunity to explore the
limits of vision-language models in processing long-term textual information in relation to visual
content. While DCI includes its own benchmarks using summarized captions, our focus is on image-
text and text-image retrieval tasks using the entire dataset without summarization or subcropping,
allowing us to investigate the long-text retrieval capabilities of our framework.

To demonstrate the advantages of processing longer captions, we conducted an experiment varying
the maximum token length allowed by the tokenizer. As shown in Figure 6, our DINOv2-ARL
encoder pair achieves comparable performance to OpenAI CLIP at the standard limit of 77 tokens.
However, our approach’s strength becomes evident as we extend beyond this limit, with consistent
improvement in retrieval accuracy up to approximately 200-300 tokens. These results highlight
our framework’s ability to effectively utilize longer, more detailed captions for improved retrieval,
capturing nuanced details and context that may be lost when constrained to shorter text sequences.

5.5 TRAINING COMPUTE

We report the Alignment Training compute requirements for different models in 7. We see that
aligning pre-trained vision, language encoders to get a competitive CLIP like model requires only 50
hours of training with 8 A100 GPUS which is almost a 65 fold reduction in the amount of training
compute. This makes the development of multi-modal models accessible to the wider research
community as well as reducing the environmental impact of training highly performant multi-modal
models by reusing strong publicly available uni-modal models. Since we only need to train 11.5M
of the total 670M parameters (about 1 %) we can train with a much smaller and denser dataset
reducing the data requirements to 20M which is 20 fold decrease in dataset requirement compared
to CLIP models from LAION and OpenAI making our framework useful for training performant
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multi-modal models in various domains like mutli-modal systems for low-resource languages, 3D
model search systems, fMRI to Image model mapping systems and many more. Despite the reduced
compute and data requirements for alignment our model outperforms both CLIP models compared
on domain transfer to Imagenet as well as image, text retrieval.

6 RELATED WORKS

Multimodal Pretraining: The CLIP models from OpenAI Radford et al. (2021) and ALIGN Jia
et al. (2021) pioneered using web-scale image-caption data to align image and text modalities via
an InfoNCE Oord et al. (2018) loss, optimizing mutual information between embeddings. LAION
Schuhmann et al. (2021; 2022) replicated this approach in the open domain, open-sourcing pre-
training datasets. While these models excel in zero-shot tasks, they demand substantial compu-
tational resources, around 20k GPU hours. Taking advantage of the recent improvements in the
representation quality of unimodal encoders such as DINOv2 Oquab et al. (2023) (vision) and Sen-
tence Transformer Reimers & Gurevych (2019) (language) models, Zhai et al. (2022) reduce the
training cost by locking the image encoder and training only the text encoder to achieve competitive
performance. Similarly, Khan & Fu (2023) further aligned frozen uni-modal encoders using pro-
jection layers, BitFit Zaken et al. (2021), and trainable adapters, but their approach is sub-optimal
compared to CLIP, likely due to smaller datasets used and random encoder pair selection. In con-
trast, in this work, we strive to identify the best encoder pairs for alignment first and then scale up
projector-only training to improve the multimodal alignment.

Representational Similarity: Recent studies show that the semantic similarity between vision and
language model embeddings is high for several model pairs. Maniparambil et al. (2024) reports that
this similarity, measured by Centered Kernel Alignment Kornblith et al. (2019), increases with more
training data for vision models. Similarly, Huh et al. (2024) finds that better-performing language
models have higher semantic similarity to the DINOv2 Oquab et al. (2023) vision model. These
similarities have been leveraged for 0-shot and multi-lingual retrieval tasks using strong uni-modal
encoders without additional training Maniparambil et al. (2024); Moschella et al. (2022), though
scalability is an issue. Additionally, Merullo et al. (2022) demonstrates that a simple linear mapping
allows a frozen language model to interpret visual input, provided the visual encoder aligns with
language concepts (e.g., CLIP). Similarly, Dwivedi & Roig (2019); Dwivedi et al. (2020) also uses
representational similarity metrics to identify pre-trained models for effective transfer to downstream
tasks. These findings suggest that a simple projection transformation separates the embedding spaces
of well-trained vision and language models, motivating our work on developing CLIP models using
projection layers between semantically similar encoder pairs.

Automatic Data Curation: Our dataset curation pipeline draws on various approaches in Vision-
Language dataset construction Radford et al. (2021); Gadre et al. (2024); Xu et al. (2024). Radford
et al. (2021) used image metadata to gather high-quality image-caption pairs, while Schuhmann et al.
(2021) replicated the CLIP dataset by filtering with pretrained vision encoders. Recent methods like
Gadre et al. (2024) employ CLIP-based filtering and ad hoc filtering techniques, and Xu et al. (2024)
mimics CLIP’s data collection via metadata retrieval. Similarly, Oquab et al. (2023) uses a pretrained
vision encoder to curate web images most similar to images in curated datasets. Our approach
is similar, constructing concept image prototypes from few-shot labeled examples and retrieving
relevant web images from the LAION-400M pool using CLIP caption embeddings, avoiding the
computational cost of generating vision embeddings for the entire dataset.

7 CONCLUSION

Our research introduces a paradigm shift in vision-language alignment, demonstrating that state-
of-the-art performance can be achieved with a fraction of the resources traditionally required. By
leveraging the latent compatibility of well-trained unimodal encoders, we have unlocked a new
direction in efficient multimodal AI development.

Future work in this area could explore fine-grained alignment techniques, optimize projection archi-
tectures, and expand to other modalities beyond vision and language. By democratizing multimodal
AI research, our framework has the potential to accelerate innovation and reshape approaches to
multimodal AI development.
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A APPENDIX

A.1 TOY EXAMPLE USING RANDOM LATENT MODEL

Similar to Sec. 2.2 here we investigate whether semantically similar encoder embedding spaces can
be aligned through a simple projection transformation, using a random latent model.

0.2 0.3 0.4 0.5 0.6
CKA

0

5

10

15

20

25

30

Lin
ea

r t
ra

ns
fo

rm
at

io
n,

 C
LI

P 
lo

ss

CKA vs CLIP loss

Figure A.1: CLIP Loss minima are negatively
correlated to CKA. We plot CKA vs CLIP Loss
for random instances of A and B.

# Init Z with random values scaled to
↪→ [-1, 1]

Z = 2 * rand(n, d) - 1

# Define non-linear transforms T1 and
↪→ T2

T1, T2 = NLTransform(d, d),
↪→ NLTransform(d, d)

# Sample random weights w1 and w2
w1, w2 = rand(1), rand(1)

# Compute A and B using transforms
A = T1(Z) + w1 * rand(n, d)
B = T2(Z) + w2 * rand(n, d)

Figure A.2: Code for initializing A and B
from a latent world model Z. Random in-
stances of A, B are generated using random
non-linear transformations of latent vector Z
denoting a representation of the real world.

In our experiment, we generated 103 instances of two vector sets, A and B, each containing 32
vectors of 16 dimensions. Following the approach in Maniparambil et al. (2024); Huh et al. (2024),
we modeled the world using a latent distribution Z, with Image and Text representations (A and B)
as random independent non-linear transformations from Z with additive noise. For each sampled
pair of A and B matrices, we calculated the CKA and the minimum CLIP loss. The non-linear
transform was defined as a randomly initialized 2-layer MLP with ReLU non-linearity and hidden
dimensions significantly larger than the input dimensions, ensuring it could universally approximate
the non-linear transformation Hornik et al. (1989). Figure A.2 was used to generate each instance.

Figure A.1 illustrates the results of this experiment, showing a clear negative correlation between
CKA and minima of the CLIP loss. As CKA increases, indicating greater similarity between the
similarity structures of A and B, the minima of CLIP loss consistently decreases. Despite arising
from a simplified experiment, the observed strong inverse relationship between CKA and CLIP loss
provides empirical support for using CKA as a predictor of alignment potential between embedding
spaces. Since CLIP loss is lower-bounded by mutual information, and mutual information is cor-
related with HSIC, higher CKA suggests a stronger alignment between embeddings. This implies
that the achievable minima of CLIP loss is lower when the embedding spaces already have a higher
CKA, reflecting greater mutual information and ease of alignment.
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A.2 CKA VS GRAPH STRUCTURE
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Figure A.3: TSNE visualizations of encoder outputs for six COCO detection classes. Left: DINOv2
(vision), Right: All-Roberta-Large-v1 (text).

To visually demonstrate how CKA represents similarities in graph structures across different encoder
spaces, we conducted an experiment using the MSCOCO validation set. We examined encoder out-
puts for DINOv2 and All-Roberta-Large-v1, before and after projection, focusing on relationships
between formed clusters in both domains. For each cluster, we identify COCO detection class and
COCO image-caption pairs where the image contained only the respective class among its detection
annotations. We then extracted encoder outputs for these samples from both vision and text en-
coders, before and after applying our projection layers, and applied the TSNE algorithm to visualize
their structure in a lower-dimensional space. For each visualization, we pick 6 classes to highlight
the shape similarities between graphs of encoder spaces.

Figure A.3 shows the resulting TSNE visualizations for the six selected classes across four condi-
tions: vision pre-projection, vision post-projection, text pre-projection, and text post-projection. The
visualizations reveal striking similarities in cluster shapes and relative positions across the different
encoder spaces, particularly before projection. This visual similarity aligns with our quantitative
CKA results, providing an intuitive illustration of how CKA captures structural similarities between
different embedding spaces.

A.3 COMPARISON TO LILT

Tables A.1 and A.2 report the zero-shot domain classification and retrieval performance of LiLT
models Khan & Fu (2023). The vision encoder is initialized with the DeiT base model Touvron
et al. (2021), and the text encoder is from SimCSE Gao et al. (2021). The LilTDA-base model
is trained by duplicating and appending the last transformer layer, while only unlocking the last
encoder and projector layers. The LilTLwA-base model introduces trainable layerwise adapters for
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Model N ImageNet ImageNetv2 Caltech Pets Cars Flowers Food Aircrafts SUN CUB UCF101

LAION-CLIP VIT-L 400M 72.7 65.4 92.5 91.5 89.6 73.0 90.0 24.6 70.9 71.4 71.6
OpenAI-CLIP VIT-L 400M 75.3 69.8 92.6 93.5 77.3 78.7 92.9 36.1 67.7 61.4 75.0
LiT L16L 112M 75.7 66.6 89.1 83.3 24.3 76.3 81.1 15.2 62.5 58.7 60.0
LilTDA-base 0.5M 15.9 12.9 37.6 7.2 1.6 1.1 13.3 1.7 25.6 2.3 19.1
LilTLwA-base 0.5M 14.4 12.1 42.3 4.8 1.3 2.1 12.3 1.6 26.5 1.4 26.6
DINOv2-MpNet (Ours) 20M 74.8 68.0 91.8 91.7 71.0 75.8 87.5 23.0 71.9 63.2 71.0
DINOv2-ARL(Ours) 20M 76.3 69.2 92.8 92.1 73.9 78.4 89.1 28.1 72.6 66.1 73.2

Table A.1: 0-shot domain transfer to classification datasets. We compare the performance of
our DINOv2-ARL projector model, trained on a 20M dataset, against CLIP models from OpenAI
and LAION across various datasets. Despite the smaller training size, our model achieves a 76.3%
accuracy on ImageNet, outperforming comparably sized CLIP models.

both the vision and text encoders. LiLT public checkpoints are trained on 500k image-caption pairs
from the COCO dataset. However, LiLT’s performance lags behind CLIP models and our DINOv2-
ARL projector model, primarily due to suboptimal encoder pairs and limited concept coverage in
the COCO training set for alignment.

A.4 ENCODER PAIRS ABLATIONS

Model Flickr COCO
I2T T2I I2T T2I

LAION-CLIP VIT-L 87.6 70.2 59.7 43.0
OpenAI-CLIP VIT-L 85.2 64.9 56.3 36.5
LiT L16L 73.0 53.4 48.5 31.2
LilTDA-base 47.6 34.46 41.4 29.1
LilTLwA-base 56.8 41.7 47.0 33.7
DINOv2-MpNet (Ours) 84.6 71.2 58.0 42.6
DINOv2-ARL (Ours) 87.5 74.1 60.1 45.1

Table A.2: Image, Text Retrieval on
COCO/Flickr30k. Our model shows
comparable text retrieval scores and sig-
nificantly better image retrieval results.

Similar to Sec 4.1, we train our projector configurations
on various combinations of unimodal encoders using the
COCO dataset and evaluate image/text retrieval accura-
cies on the Flickr30k test set, plotting these against CKA
scores. In Fig. A.4 both the Image and Text retrieval ac-
curacies shows a strong correlation with CKA suggesting
that CKA can effectively predict which encoder pairs will
align well with projector training.

A naive approach to choosing the best encoder pair is to
chose the unimodal encoders with highest performance
in their respective modalities, but it’s not straightforward
which benchmarks can be more predictive of ease of
alignment. To demonstrate this, we consider the same ablation as above, but with DINOv2 and
14 different text encoders from the SentenceTransformers Reimers & Gurevych (2019) library. We
consider 2 types of text model benchmarks. 1. Sentence Embedding task or Semantic Textual Sim-
ilarity (STS) is the task of evaluating how similar two texts are in terms of meaning. These models
take a source sentence and a list of sentences and return a list of similarity scores. The task is
evaluated using Spearman’s Rank Correlation. We average over 14 datasets reported in Reimers &
Gurevych (2019; 2024). 2. Semantic Search (SS) is the task of retrieving relevant documents or
passages based on the semantic content of a query. Rather than relying solely on keyword matching,
semantic search models generate embeddings for both the query and the documents, allowing for re-
trieval based on contextual and conceptual similarity and is evaluated using Normalized Discounted
Cumulative Gain (nDCG), which measure the relevance of retrieved documents in ranked lists. We
average over 6 datasets reported in Reimers & Gurevych (2019; 2024).

In Fig A.5, we see that there is a clear correlation (pearson corr.=0.81, p=4e-4) between downstream
Flickr30k performance and CKA on the COCO val set, suggesting that CKA is a better predictor
of ease of alignment. The average unimodal performance (pearson corr.=0.47, p=0.08), as well as
the semantic search (SS) performance (pearson corr.=0.13, p=0.65), are not predictive of the ease
of alignment. Meanwhile, Sentence Task Similarity (STS) tasks are more predictive of downstream
alignment (pearson corr.=0.72, p=0.003) but still worse than CKA and it’s not intuitive which uni-
modal performance is to be considered.

A.5 DATA CURATION IMPLEMENTATION DETAILS

We streamline our class collection process by precomputing CLIP text embeddings for LAION-
400M and CLIP image prototype embeddings for various concepts, allowing us to run different
collection methods without needing to recompute embeddings. The embedding process takes just
12 hours on two nodes with 4 A6000 GPUs each. Class-level collection is performed using GPU-
accelerated PyTorch code on a single GPU, completing in under an hour. While image-to-image-
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Encoder Legend
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Figure A.4: Retrieval performance vs. CKA for different encoder pairs. Text/Image retrieval
accuracies on Flickr30k are compared to CKA, calculated on the COCO val set. Models trained on
COCO train set. A clear correlation exists between CKA and alignment quality (Pearson correlation
= 0.92, p = 2.1e-7), as reflected in retrieval accuracies.
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Figure A.5: Retrieval performance vs. text model performance for DINOv2 and different text
encoders. Text/Image retrieval accuracies on Flickr30k are compared different text encoder tasks
performance. CKA is more closely correlated with retrieval performance than text encoder down-
stream task performance on sentence embedding tasks, semantic search tasks. Models trained on
COCO train set.

prototype collection, as in Oquab et al. (2023), could yield higher-quality results, it demands sig-
nificantly more GPU resources due to the need to create CLIP embeddings for all LAION-400M
images. We find that caption-image-concept similarity performs well for image classification ac-
curacy. To support efficient multi-modal model training, we release the LAION-CLASS-Collected
parquets for research use.

A.6 PROJECTOR TRAINING DETAILS

We use the standard CLIP loss with a learnable temperature parameter to train the projectors while
keeping the vision and text encoders frozen. For our largest experiments on the 20M MIX-CLASS-
Collected dataset, we use an effective batch size of 16k and train for 30 epochs. Training is done with
a cosine learning rate scheduler, ramping up to 1e-3 in the first epoch. Additional hyperparameters
are detailed in the table in the appendix. The training process takes 50 hours on a node with 8 A100
GPUs.

A.7 MULTI-LINGUAL FULL RESULTS

Another significant advantage of using only Projectors to align modalities is the ability to swap the
text encoder with multi-lingual encoders trained on various languages, thus potentially extending a
CLIP model to accommodate any language. This feature is particularly beneficial for low-resource
languages. We demonstrate the feasibility of this approach by training projectors to align the DI-
NOv2 visual encoder with the paraphrase-multilingual-v2 text encoder, using a dataset consisting
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solely of English image-caption pairs. We selected this specific text encoder as it showed the highest
compatibility in terms of CKA with DINOv2. Subsequently, we evaluated the performance of our
model on multi-lingual image retrieval using the XTD dataset Aggarwal & Kale (2020a) and on
multi-lingual image classification using the ImageNet dataset. For multi-lingual classification, we
translate our VDT prompts Maniparambil et al. (2023) to the languages being considered using the
nllb-700M model Costa-jussà et al. (2022) and then use the same prompts for all the models being
considered including ours.

For both multi-lingual classification and retrieval tasks, our comparisons are structured into two cat-
egories as delineated in Table A.4 and Table A.3. The lower sections of each of these tables list
models trained exclusively with English captions, more specifically the CLIP-VIT-L models from
OpenAI and LAION trained on 400 million image caption pairs of WIT dataset and LAION400M
dataset respectively. The upper sections of these tables feature models trained with translated cap-
tions, including those employing contrastive training with multi-lingual image-caption pairs such as
CLIP-models based on the LAION5B multi-lingual dataset, which contains image-caption pairs in
over 100 languages. We also compare against, M-CLIP Chen et al. (2023a) models that are trained
using English and translated captions to align a multi-lingual text encoder with CLIP’s original text
encoder through contrastive learning, thereby enhancing performance on multi-lingual tasks. Addi-
tionally we also compare against the NLLB-CLIP Visheratin (2023) models developed through LiT
Zhai et al. (2022) techniques, coupling a frozen CLIP visual encoder with an unfrozen multi-lingual
text encoder using translated captions from the smaller LAION-COCO dataset. We compare against
only model sizes of up to ViT-Large for fair comparison.

Retrieval results: Our model DINOv2-MpNet trained only on English image,caption pairs outper-
forms all other CLIP models trained only on English image caption pairs, by a large margin of over
43 % on average retrieval performance over 10 languages. We also outperform the next best per-
forming English CLIP model trained on LAION400m English caption retrieval by over 6 percent.
On Latin script languages the CLIP models have decent performance while it falls significantly for
non Latin languages like JP, KO, PL, RU, TR, and ZH. This is mainly because these models were
trained using an English only tokenizer which results in unknown token for most characters of these
languages. However our DINOv2-MpNet projector model maintains competitive performance on
all languages both Latin script and non Latin script even when compared against models specifi-
cally trained using multi-lingual data (Upper half of the table). Amongst the multi-lingual trained
CLIP models we perform better than laion5b trained xlm-roberta-base-VitB32 by 4.5 percent. It is
to be noted here that we only use 20 million Image caption pairs for alignment while LAION5B
has over 5B image-caption pairs from over 100 languages and multi-lingual webli has over 30B
image-caption pairs from over 100 languages. It is to be noted that our DINOv2-Mpnet is also
competitive with M-CLIP model XLM-Roberta-Large-Vit-B-16Plus(56.1 vs 57.7) which has been
trained using translated English sentences of over 175 million data points to over 100 languages,
and 3M translated image, caption pairs from CC3m.

Classification results: We see a similar trend when we compare our DINOv2-MpNet projector
model against CLIP baselines(lower section), and multi-lingual baselines (upper section) on multi-
lingual imagenet classification in Table. Our model showcases competitive performance to that of
OpenAI-clip model while beating LAION400m trained ViT-Large on english Imagenet, while per-
forming significantly better on all other languages considered (over 24 percent better on 8 language
average). When compared with models trained with multi-lingual data, our model outperforms both
nllb-clip models as well as M-CLIP models, beating the next best performing model M-CLIP/XLM-
Roberta-Large-Vit-L-14 by over 3 percent despite not training using any multi-lingual text data. We
believe that training using translated image-caption pairs of our dataset would further improve the
performance of our method, and we leave this as a future work. The main advantage of training us-
ing our methods is that we can get highly porformant CLIP-like models using much lesser amount of
image-caption pairs, (more than 20x lesser) resulting in quick adaptation to low resource languages
given that a multi-lingual text encoder exists for that language.
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model EN DE ES FR IT JP KO PL RU TR ZH average

nllb-clip-base@v1 47.2 43.3 44.1 45.0 44.7 37.9 39.4 45.5 40.6 41.2 41.1 42.3
M-CLIP/XLM-Roberta-Large-Vit-B-32 48.5 46.9 46.4 46.1 45.8 35.0 36.9 48.0 43.2 45.7 45.4 43.9
M-CLIP/XLM-Roberta-Large-Vit-L-14 56.3 52.2 52.7 51.8 53.6 41.5 42.5 54.1 48.4 52.7 53.5 50.3
xlm-roberta-base-ViT-B-32@laion5b 63.2 54.5 54.6 55.7 55.7 47.1 43.8 55.5 50.3 48.2 50.8 51.6
nllb-clip-large@v1 59.9 56.5 56.7 56.0 55.5 49.3 51.7 57.4 50.4 56.0 52.3 54.2
M-CLIP/XLM-Roberta-Large-Vit-B-16Plus 63.2 61.4 59.8 59.3 61.0 48.3 49.8 64.0 54.8 59.6 58.8 57.7
ViT-L-14@laion400m e31 64.5 26.7 31.4 38.3 26.6 1.4 0.4 4.8 1.7 4.1 1.0 13.6
openai/clip-vit-large-patch14 59.4 19.9 26.6 28.5 19.2 4.1 0.3 3.9 1.3 2.6 0.7 10.7
DINOv2-MpNet (Ours) 70.7 60.6 59.0 60.6 60.7 45.6 49.8 58.3 52.7 55.8 57.9 56.1

Table A.3: Multilingual image-caption retrieval performance on XTD dataset. DINOv2-MpNet
outperforms many baselines despite English-only training. Upper: multilingual-trained models;
Lower: English-only trained models.

model EN AR ES FR DE JP ZH RU average

nllb-clip-base@v1 25.4 20.4 23.9 23.9 23.3 21.7 20.3 23.0 22.4
nllb-clip-large@v1 39.1 30.1 36.5 36.0 36.2 32.0 29.0 33.9 33.4
M-CLIP/XLM-Roberta-Large-Vit-B-32 46.2 33.4 43.7 43.3 43.3 31.6 29.1 38.8 37.6
M-CLIP/XLM-Roberta-Large-Vit-B-16Plus 48.0 35.1 46.6 45.4 46.1 32.9 31.3 40.3 39.7
xlm-roberta-base-ViT-B-32@laion5b 63.0 29.0 53.4 53.8 55.8 37.3 26.8 40.3 42.3
M-CLIP/XLM-Roberta-Large-Vit-L-14 54.7 40.0 51.9 51.6 51.9 37.2 35.2 47.4 45.0

ViT-L-14@laion400m e32 72.3 6.4 44.7 49.9 48.2 2.7 2.3 4.5 22.7
openai/clip-vit-large-patch14 75.6 6.7 46.2 49.6 46.7 6.6 2.2 3.5 23.1
DINOv2-MpNet (Ours) 73.4 38.0 56.8 58.3 61.6 43.2 33.3 49.3 48.6

Table A.4: Multi-lingual classification. Classification performance comparison of DINOv2-MpNet
and various CLIP models and multilingual baselines on multilingual ImageNet. Our DINOv2-
MpNet model trained only on English data outperforms even models trained on multi-lingual data.
The upper half of the table lists models trained on multiple languages, while the lower half lists
models trained only on English data. The models are evaluated on translations of the labels and the
prompts made using nllb-200-distilled-600M translation model. Costa-jussà et al. (2022)

A.8 DATASET SCALE
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Figure A.6: Performance scales with higher
amounts of randomly sampled LAION data
The performance scales with higher amounts of
randomly sample data from LAION400M, but
very slowly, highlighting the need for a densely
covered and high quality dataset when training
projectors only to align modalities.

Figure A.6 illustrates that while performance
scales with an increasing number of randomly
sampled data points from the LAION400M
dataset, the rate of improvement diminishes,
highlighting the critical need for densely cov-
ered and high-quality datasets when training
projectors to align modalities. Additionally,
the comparative performance of MIX-CLASS-
Collected data reveals that datasets curated with
more focused criteria can lead to better perfor-
mance gains than simply increasing the volume
of data. This underscores the importance of
prioritizing dataset quality over quantity, espe-
cially given the observed diminishing returns
when using larger data sizes for projector-based alignment.

A.9 SDCI BENCHMARK RESULTS

We evaluate our method on the Densely Captioned Images (DCI) dataset Urbanek et al. (2024),
which contains 7,805 images with mask-aligned descriptions averaging over 1,000 words each. To
accommodate current models’ token limits, the authors also provide sDCI, a summarized version
with CLIP-compatible 77-token captions generated by LLMs.

sDCI introduces several benchmarks:

• All SCM (Subcrop-Caption Matching): Matches captions to corresponding image sub-
crops.
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Model All SCM All Neg All Pick5-SCM All Pick5-Neg Base Neg All Hard-Negs
CLIP Baseline 40.06% 60.79% 11.21% 24.06% 67.56% 41.34%
DINOv2-ARL (Ours) 29.33% 64.36% 9.35% 21.39% 81.94% 61.10%

Table A.5: Performance comparison on DCI dataset benchmarks

• All Neg: Distinguishes between positive captions and LLM-generated negatives.
• All Pick5-SCM: Similar to All SCM, but uses multiple captions per subcrop.
• All Pick5-Neg: Distinguishes between multiple positive captions and a negative.
• Base Neg: Focuses on caption-negative distinction for full images only.
• All Hard-Negs: Uses the most challenging LLM-generated negatives.

We tested our DINOv2-ARL model on the sDCI dataset benchmarks. Table A.5 presents our results
alongside the CLip baseline. Our method demonstrates competitive performance compared to the
CLIP baseline across several DCI benchmarks.

In the Subcrop-Caption Matching tasks (All SCM and All Pick5-SCM), our model performs slightly
below the CLIP baseline. This suggests that there is room for improvement in our approach when it
comes to distinguishing between the different parts that compose an image.

However, our model shows notable improvements in the negative detection tasks. We outperform
CLIP on All Neg (64.36% vs. 60.79%), Base Neg (81.94% vs. 67.56%), and All Hard-Negs (61.10%
vs. 41.34%). These results demonstrate the potential of our method in aligning vision and language
models for a fine-grained understanding of image content, especially in scenarios requiring robust
discrimination between relevant and irrelevant captions. Future work could focus on improving the
model’s performance on sub-crop caption matching tasks while maintaining its strong capabilities
in negative detection.

A.10 0-SHOT CLASSIFICATION AND RETRIEVAL EVALUATION DATASETS

To evaluate the performance of our DINOv2-ARL projector model and compare it with baseline
CLIP models, we utilized a diverse set of datasets for zero-shot classification and retrieval tasks.
These datasets span various domains and challenge the models’ ability to generalize across different
visual concepts.

For zero-shot classification, we employed the following datasets:

• ImageNet Deng et al. (2009): A large-scale dataset with 1000 object categories, widely
used as a benchmark for image classification tasks. It contains over 1.2 million training
images and 50,000 validation images, with each image labeled with one of 1000 object
classes.

• ImageNetV2 Recht et al. (2019): A newer version of ImageNet designed to test the ro-
bustness of models trained on the original ImageNet. It features 10,000 new test images
collected using the same procedure as the original, but addressing certain biases in the
original dataset.

• Caltech101 Li et al. (2022): A dataset containing pictures of objects belonging to 101
categories, plus a background category. It includes about 40 to 800 images per category,
with most categories having about 50 images. The dataset is known for its high intra-class
variability.

• Oxford-IIIT Pet Parkhi et al. (2012): A 37-category pet dataset with roughly 200 images
for each class, featuring different breeds of cats and dogs. It includes pixel-level trimap
segmentations and breed-level labels for each image.

• Stanford Cars Krause et al. (2013): A dataset of 196 car classes, totaling 16,185 images.
Classes are at the level of Make, Model, Year (e.g., 2012 Tesla Model S). It includes 8,144
training images and 8,041 testing images, with bounding box annotations.
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• Oxford Flowers102 Nilsback & Zisserman (2008): A 102 category dataset consisting of
102 flower categories common to the UK. It contains 40 to 258 images per class and pro-
vides segmentation data for each image. The dataset is particularly challenging due to the
fine-grained nature of the categories.

• Food101 Bossard et al. (2014): A large dataset of 101 food categories, with 101,000 im-
ages. It features 1000 images per food class, with 250 test images and 750 training images
per class. The training images are not manually cleaned, adding a level of noise to the
dataset.

• FGVC Aircraft Maji et al. (2013): A fine-grained visual classification dataset with 10,200
images of aircraft, spanning 100 aircraft models. Each model is associated with a specific
variant, manufacturer, family, and collection. The dataset includes 6,667 training images
and 3,333 test images.

• SUN397 Rouach et al. (2020): A scene recognition dataset with 397 categories and 108,754
images, covering a large variety of environmental scenes under various lighting conditions.
It provides at least 100 images per class and has been used extensively for scene recognition
tasks.

• Caltech-UCSD Birds-200-2011 (CUB) Wah et al. (2011): A dataset for fine-grained image
classification with 200 bird species, containing 11,788 images. Each image has detailed
annotations including 15 part locations, 312 binary attributes, and 1 bounding box. It’s
widely used for fine-grained visual categorization research.

• UCF101 Soomro et al. (2012): An action recognition dataset with 101 action categories,
consisting of realistic action videos collected from YouTube. It contains 13,320 videos
from 101 action categories, with videos exhibiting large variations in camera motion, object
appearance and pose, illumination conditions, and more.

For zero-shot image-text retrieval, we used:

• Flickr30k Plummer et al. (2015): A dataset containing 31,783 images collected from Flickr,
each paired with 5 crowd-sourced captions. It focuses on describing the objects and actions
in everyday scenes. The dataset is split into 29,783 training images, 1000 validation images,
and 1000 test images.

• COCO Lin et al. (2014): A large-scale dataset for object detection, segmentation, and cap-
tioning, which we use for its image-caption pairs in the retrieval task. It features over
330,000 images, each with 5 captions. The dataset includes 80 object categories and in-
stance segmentation masks, making it versatile for various computer vision tasks.

These datasets comprehensively evaluate a model’s ability to perform zero-shot classification across
various domains and its capacity for cross-modal retrieval. By using this diverse set of benchmarks,
we can assess the generalization capabilities of our approach compared to existing CLIP models.
We use Visually Descriptive Class-Wise prompts from Maniparambil et al. (2023) to enable the
unimodal-text encoder in our DINOv2-ARL projector model to better identify the zero-shot classes
of the downstream datasets.

A.10.1 CONCEPT COVERAGE COLLECTION DATASETS

We use a few shot examples from 14 curated computer vision datasets to construct our Concept
Image prototypes to curate the images from our uncurated data pool. The 14 curated datasets are
described as follows.

• BirdSnap Berg et al. (2014): A fine-grained dataset consisting of 49,829 images of 500
North American bird species. The images are annotated with species labels, and the dataset
is primarily used for species classification and fine-grained recognition tasks.

• Caltech101 Li et al. (2022): A dataset containing pictures of objects belonging to 101
categories, plus a background category. It includes about 40 to 800 images per category,
with most categories having about 50 images. The dataset is known for its high intra-class
variability.
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• EuroSAT Helber et al. (2019): A satellite image dataset with 10 categories related to land
use classification (e.g., forests, rivers, residential areas). It contains 27,000 labeled images,
with 2700 images per class, widely used in remote sensing and geospatial tasks.

• FGVC Aircraft Maji et al. (2013): A fine-grained classification dataset with 10,000 images
of 100 aircraft model variants from 70 manufacturers. It is used for distinguishing between
visually similar objects in fine-grained recognition tasks.

• Flowers102 Nilsback & Zisserman (2008): A dataset containing 102 flower categories,
commonly used for fine-grained classification tasks. It has a total of 8,189 images, with 40
to 258 images per category, and is organized into a training, validation, and test set.

• Food101 Bossard et al. (2014): A dataset containing 101,000 images of 101 food cate-
gories. Each category has 750 training images and 250 test images, commonly used for
food classification and recognition tasks.

• GTSRB Stallkamp et al. (2012): The German Traffic Sign Recognition Benchmark dataset,
containing over 50,000 images of 43 different traffic sign classes. It is designed for multi-
class classification tasks in the context of traffic sign recognition.

• ImageNet Deng et al. (2009): A large-scale dataset with 1,000 object categories, widely
used as a benchmark for image classification tasks. It contains over 1.2 million training
images and 50,000 validation images, with each image labeled with one of 1,000 object
classes.

• Oxford Pets Parkhi et al. (2012): A dataset of 7,349 images, containing 37 categories of
pets (both cats and dogs). Each image is annotated with species and breed information,
commonly used for image classification and segmentation tasks.

• RESISC45 Cheng et al. (2017): A dataset of remote sensing images used for scene classifi-
cation, containing 31,500 images across 45 scene classes. Each class has 700 images with
variations in resolution, scale, and orientation.

• Stanford Cars Krause et al. (2013): A dataset with 16,185 images of 196 car models, anno-
tated by make, model, and year. The dataset is designed for fine-grained classification and
recognition tasks of vehicles.

• Pascal VOC 2007 Everingham et al. (2015): A dataset for object detection, segmentation,
and classification, containing 9,963 images of 20 object categories. It is widely used for
benchmarking models in computer vision tasks.

• SUN397 Rouach et al. (2020): A large-scale scene understanding dataset with 397 cate-
gories and 108,754 images. It covers a wide range of environments, from natural to man-
made scenes, commonly used for scene classification tasks.

• UCF101 Soomro et al. (2012): A video dataset consisting of 13,320 videos across 101
human action categories. It is widely used for action recognition tasks in video analysis
and computer vision research.
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