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Abstract

Data quality is a critical driver of large language model performance, yet existing
model-based selection methods focus almost exclusively on English, neglecting
other languages that are essential in the training mix for multilingual LLMs. We
introduce MuRating, a scalable framework that transfers high-quality English data-
quality signals into a multilingual autorater, capable of handling 17 languages.
MuRating aggregates multiple English autoraters via pairwise comparisons to
learn unified document quality scores, then projects these judgments through
translation to train a multilingual evaluator on monolingual, cross-lingual, and
parallel text pairs. Applied to web data, MuRating selects balanced subsets of
English and multilingual content to pretrain LLaMA-architecture models of 1.2B
and 7B parameters. Compared to strong baselines, including QuRater, FineWeb2-
HQ, AskLLM, DCLM, our approach increases average accuracy on both English
benchmarks and multilingual evaluations. Extensive analyses further validate that
pairwise training provides greater stability and robustness than pointwise scoring,
underscoring the effectiveness of MuRating as a general multilingual data-selection
framework.

1 Introduction

Large Language Models (LLMs) have achieved remarkable performance across a wide range of tasks,
and recent studies have consistently emphasized the critical role of high-quality pretraining data in
driving these advances [5, 51, 7]. To improve data quality, various strategies have been adopted,
such as deduplication [31, 1], heuristic and rule-based filtering [51, 45], and domain-aware sampling
[65, 54]. While effective, these methods often rely heavily on manual heuristics and domain expertise,
lacking a unified or principled framework for evaluating and selecting pretraining data. Moreover,
they are typically applied as pre-defined or post-hoc filters, limiting their adaptability to downstream
performance. In response, model-based data selection approaches have emerged, aiming to learn data
quality judgments from examples or auxiliary supervision. These methods utilize different model
architectures and data selection criteria. For instance, DCLM [33] trains a FastText classifier [27]
using high-quality samples from OH2.5 and Reddit ELI5 as positive supervision, while treating
Common Crawl web data as negatives. Other approaches such as AskLLM [52], QuRater [64], and
the FineWeb-Edu [38] classifier employ prompt-based evaluation criteria using various LLMs to
assess the quality of input samples.
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Data selection beyond English remains an important challenge [13, 30]. While model-based data
selection methods have demonstrated effectiveness in improving training quality, they have been
developed almost entirely for English and are not explicitly designed or validated for non-English
languages, leaving a critical gap in multilingual data quality assessment. As LLMs are increasingly
applied in diverse linguistic contexts, there is a growing need for selection strategies that extend
beyond English. A recent attempt Fineweb2-HQ [39] train language-specific raters using benchmark
datasets as positive supervision and general pretraining corpora as negatives, following a strategy
similar to DCLM [33]. However, this approach uses benchmark-derived data, posing a risk of test set
contamination.

In this work, we introduce MuRating, a two-stage, translation-and-pairwise framework for multilin-
gual data-quality estimation. MuRating begins by aggregating multiple state-of-the-art English raters
via majority-vote pairwise comparisons, fitting a Bradley–Terry model [4] to learn a single, unified
quality scorer. Next, it translates scored English document pairs into each of 17 target languages and
construct monolingual, cross-lingual, and parallel pairs—projecting original preference labels onto
translated comparisons and assigning neutral labels to parallel translations. Here, parallel pairs consist
of identical content translated into two different languages, while cross-lingual pairs involve distinct
texts written in different languages. This design yields one multilingual evaluator that preserves
English-derived quality signals while remaining language-agnostic.

We apply MuRating framework to fine-tune a MuRater model to annotate English and multilingual
web documents and select top 10% data to pretrain LLaMA-architecture [17] models of 1.2B and 7B
parameters for validation. Compared to strong baselines—uniform sampling with 50% more data,
QuRater [64], AskLLM [52], FineWeb2-HQ [39]—our selection yields an average gain of 1 to 3.4
points on twelve English benchmarks and 1.8 points on a diverse multilingual suite. We further assess
translation fidelity via human evaluation, examine the impact of cross-lingual and parallel data, and
compare different score transfer approaches.

Our contributions are as follows: 2

• Unified English rater aggregation. We consolidate four distinct English quality raters via a
Bradley–Terry pairwise framework, producing a single, robust scoring model.

• Translation-based multilingual transfer. We show how to project English pairwise judgments
into monolingual, cross-lingual, and parallel pairs across 17 languages, enabling language-
agnostic quality evaluation.

• Scalable pretraining gains. The results from both 1.2B and 7B model experiments demon-
strate significant gains over state-of-the-art baselines across English and multilingual LLM
benchmarks.

2 Related Work

Data Selection. Data selection is essential in constructing high-quality pretraining corpora for LLMs
and typically falls into three main categories: deduplication, heuristic-based filtering, and LLM-
guided quality evaluation. Early-stage deduplication removes exact or near-duplicate documents to
minimize redundancy and enhance model generalization [31]. More advanced fuzzy and semantic
methods filter syntactically or semantically similar content [25, 1], which is crucial at scale to avoid
training instability and performance degradation [68, 51].

Heuristic filtering uses rules or lightweight models to exclude low-quality text, such as short, repetitive,
or toxic content [30, 62, 47, 55]. While handcrafted heuristics can be effective, they often have
limited generalization and inefficiency, prompting the use of simple classifiers, perplexity scores, or
importance sampling [7, 59, 66, 42, 36, 35]. However, these approaches may unintentionally favor
simplistic or repetitive content, which can diminish the diversity and informativeness of the dataset.

In contrast, LLM-guided quality scoring directly leverages language models to evaluate data along
dimensions like factuality and coherence [18, 52, 34]. Frameworks such as QuRating [64] and
FineWeb-Edu [38] prioritize educational content using multi-criteria assessment , while Dataman
[48] and FIRE [67] extend this to domain-aware or reliability-sensitive filtering. Despite their

2We open sourced the trained MuRater model at: https://github.com/aialt/MuRater
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Figure 1: Overview of the MuRating pipeline: English document pairs are first annotated using
various data selection methods and unified, then translated into multiple languages to create diverse
multilingual pairs. These are used to train the MuRater model, which scores large-scale web data.
The top 10% of scored data is selected to train an LLM, yielding superior performance compared to
state-of-the-art sampling baselines.

advancement, recent approaches depend heavily on GPT-style judgments, potentially introducing
model-specific biases.

Multilingual Pretraining. Efforts to construct multilingual datasets for multilingual LLM pretraining
have followed similar strategies to those used for English, incorporating deduplication and heuristic-
based filtering techniques. Prominent corpora such as mC4 [69], RedPajama [62], CulturalX [43],
HPTL [12], and FineWeb-2 [46] leverage these methods to scale multilingual resources, ranging
from a few dozen to thousands of languages, significantly enhancing cross-lingual performance in
multilingual LLM pretraining. To mitigate the issue of data scarcity for low-resource languages,
TransWeb-Edu [61] addresses this by translating high-quality English data into multiple languages.
In addition, EMMA-X [20] introduces an EM-inspired framework that jointly learns cross-lingual
semantic alignment and sentence representations from large-scale non-parallel multilingual data,
while CLIMB [19] enhances multilingual capability by dynamically adjusting the data-mix ratio
across languages. However, research on model-based data selection for multilingual LLM pretraining
remains limited. Recently, an initial approach [39] introduced a model-based selection method to
refine the FineWeb-2 dataset by training language-specific classifiers, using multilingual benchmark
datasets as positive examples and web corpus data as negative examples. However, this method relies
on the availability of high-quality samples from existing multilingual benchmarks, which may risk
contaminating downstream evaluation tasks with biased data.

3 Methodology

Our approach consists of two stages: (1) consolidating multiple English-language quality raters into
a single, unified scorer via pairwise comparisons, and (2) transferring the scorer to a multilingual
setting through translation-based alignment and cross-lingual regularization. We introduce a two-step
method: first, we integrate existing English corpus quality raters; second, we transfer their rating
capability to a multilingual setting.

3.1 Integration of English AutoRaters

To consolidate quality judgments from multiple pre-existing English raters, we employ a pairwise
comparison framework grounded in statistical preference modeling. Let (tA, tB) denotes a pair of
texts randomly sampled from a large corpus, and let N be the set of raters. Each rater n ∈ N assigns
a scalar score to both texts, denoted as Sn

A and Sn
B , reflecting the rater’s estimation of the quality of

tA and tB , respectively.
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We define a binary preference for each rater: if Sn
A > Sn

B , we consider that rater n prefers text tA
over tB , and vice versa. If the two scores are nearly identical (i.e., |Sn

A − Sn
B | < ϵ), we treat the

preference as ambiguous and discard the pair from the training dataset. Based on the remaining valid
preferences from all raters, we compute an empirical confidence score PA>B indicating how likely
tA is preferred over tB :

PA>B =
1

|N |
∑
n∈N

I[Sn
A > Sn

B ], PA>B ∈ [0, 1], where |Sn
A − Sn

B | ≥ ϵ. (1)

where I[·] is the indicator function that equals 1 when the condition is true and 0 otherwise. if This
score quantifies the relative preference strength of tA over tB across all raters.

To construct a large-scale preference dataset, we apply this scoring procedure across a wide set of
sampled text pairs. This process yields a judgment dataset: J = {(tA, tB , PA>B)} consisting of text
pairs and the estimated probability of preference.

To convert these pairwise comparisons into continuous scalar quality scores, we employ a learning
framework based on the Bradley-Terry model [4]. Let sθ(t) denote the learnable scalar quality
score of text t, parameterized by θ. We adopt a binary cross-entropy loss function, following
the formulation proposed in [64], which is analogous to the reward model training paradigm in
Reinforcement Learning from Human Feedback (RLHF) [44], but without incorporating user prompts
or conditioning on input queries:

Lθ = E
(tA,tB ,pB≻A)∈J

[
−pB≻A log σ(sθ(tB)−sθ(tA))−(1−pB≻A) log σ(sθ(tA)−sθ(tB))

]
, (2)

where σ(·) denotes the sigmoid function, and pB≻A = 1−PA>B is the empirical probability that tB
is preferred over tA. This formulation encourages the model to assign higher scores to texts that are
consistently preferred in the pairwise judgments.

After training, the model outputs a single scalar score representing the quality of each document.
These scores are treated as logits over the dataset and are used for quality-based sampling, where a
subset of high-quality texts is selected based on their relative scores.

3.2 Multilingual Data Quality Rater

3.2.1 Translation-Based Alignment of Multilingual Preferences

To extend data quality scoring from English to a set of target languages M , we adopt a translation-
based strategy. Building on the scored English text pairs introduced in the previous section, we
translate each document pair (tenA , tenB ) into a target language m ∈ M . For each pair, we compute a
confidence score PAen>Ben following Equation 1, and then directly transfer this preference to the
translated pair by assuming PAm>Bm ≈ PAen>Ben .

We also experimented with the reverse approach—translating multilingual pairs into English, scoring
them in English, and then projecting the scores back to the corresponding multilingual pairs. A
comparison between the two setups is presented in the experiment section 4.2.1.

This assumption is based on the premise that translation preserves both the semantic content and
the relative quality between text pairs. Prior work QuRating [64] highlights that pairwise com-
parisons offer increased stability when evaluating text quality. In multilingual settings, pointwise
scoring—where absolute quality scores are assigned to individual texts—is more susceptible to subtle
changes in tone or phrasing introduced during translation, which can compromise the consistency of
the supervision signal. In contrast, pairwise supervision is inherently more robust to such translation-
induced variations. As long as the relative ranking between the texts remains consistent (i.e., tenA
continues to be preferred over tenB after translation), the corresponding translated pair (tmA , tmB ) re-
mains a valid training example. This robustness makes pairwise comparisons a more reliable and
effective framework for training quality evaluation models in multilingual contexts.

3.3 Cross-Lingual and Language-Agnostic Alignment

While the previous section addressed only in-language supervision—i.e., training on text pairs
(tmA , tmB ) where both documents are in the same language m—this setup alone is insufficient to
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guarantee language-agnostic scoring behavior. To promote consistency in quality assessments across
languages, we augment our training dataset with both cross-lingual and parallel text pairs.

For cross-lingual pair construction, we generate mixed-language pairs by randomly translating tA
and tB into different target languages, resulting in pairs of the form (tmA , tm

′

B ) with m ̸= m′. The
original English pairwise preference score is then transferred to these cross-lingual pairs by assuming
PAm>Bm′ ≈ PAen>Ben .

For parallel pair construction, we build semantically equivalent pairs to explicitly regularize the
model’s behavior. Given a text tmA and its direct translation tm

′

A into another language m′, we form
the pair (tmA , tm

′

A ) and assign a neutral preference score, i.e., PAm>Am′ ≈ 0.5. This reflects the
expectation that both texts, despite being in different languages, convey identical semantic meaning
and should be treated as equally quality.

Formally, these neutral-pair constraints act as a regularization signal that aligns the model’s internal
representation of quality across languages:

Lparallel = E(tmA ,tm
′

A )∈J ′

[
− log σ

(
sθ(t

m
A )− sθ(t

m′

A )
)
− log σ

(
sθ(t

m′

A )− sθ(t
m
A )

)]
, (3)

where J
′

is the datasets of parallel pairs. This formulation encourages the model to minimize
score divergence between translations while still preserving the ability to differentiate documents of
genuinely different quality in the broader training set.

3.3.1 Multilingual Rater Objective

The final loss function is a combination of the original pairwise loss from same-language and
cross-language comparisons, along with the parallel text regularization term:

Ltotal = Lpairwise + λ · Lparallel, (4)

where Lpairwise means the loss calcuated by equation 2 for both monolingual and cross-lingual pairs,
λ is a tunable hyperparameter balancing cross-lingual consistency and discrimination. This joint
training approach allows us to construct a multilingual quality rater that is robust, consistent across
languages, and sensitive to relative quality differences.

3.3.2 Training the Rater Model

To construct a high-quality multilingual rater, we begin with 300,000 English text pairs anno-
tated using four rating methods. For GPT-4o-based annotation, we prompt the model in both
directions—(tA, tB) and (tB , tA)—multiple times to mitigate order bias, and compute the final con-
fidence score PA>B by averaging the predicted preference probabilities. For other raters (AskLLM
[52], FineWeb-Edu-Classifier [38], DCLM [33]), we collect their individual scores and derive pair-
wise preferences following Equation 1.

We then extend these English pairs into multilingual settings using GPT-4o for translation: 150,000
monolingual pairs, 150,000 cross-lingual pairs, and 75,000 parallel pairs (tmA , tm

′

A ), with language
proportions balanced across all target languages. The combined dataset—comprising English,
monolingual, cross-lingual, and parallel examples—forms the final MuRater training set. We adopt
QuRater’s training setup [64], applying a confidence margin to all but the parallel examples.

We fine-tune an encoder-based model following the BGE-M3 architecture [6], adding a linear head
to predict quality ratings. We choose BGE-M3 [6] for its strong multilingual representation ability
and lightweight design, which make it well-suited for large-scale multilingual scoring. The resulting
rater achieves over 93% accuracy on the validation set and 97% on the training set, demonstrating
strong multilingual preference modeling. The effect of translation quality and implementation details,
including tokenizer settings and hyperparameters, are provided in Appendix A.

4 Experiments

4.1 Experimental Setups

Dataset construction. We build on the deduplication and heuristic-filtering pipelines of FineWeb-2
[46] to assemble a large web-crawl corpus. It comprises 1.5 trillion English tokens plus 3 trillion
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tokens across 17 additional languages (Arabic, Chinese, Dutch, French, German, Indonesian, Italian,
Japanese, Korean, Portuguese, Russian, Spanish, Thai, Turkish, Vietnamese, Malay, Tagalog). We
then apply MuRater and other baselines to assign quality scores to every document. Although scoring
trillions of tokens is compute-intensive, it parallelizes efficiently across GPUs, and batching strategies
reduce overhead in practice. Corpus statistics are detailed in Appendix B.1.

Baselines. For the English experiments, we train and evaluate the model using only English pairwise
data, comparing it against several established data-quality raters: QuRater, which selects data based
on educational value [64]; AskLLM, which follows the prompt design in [52] using Flan-T5-XXL
[8]; the FineWeb-Edu Class ifier3, trained on 450K LLaMA3-70B-Instruct 4 labels to identify
educational content; and DCLM5, a fastText classifier trained on high quality dataset to differentiate
between informative and low-quality web content.

For the multilingual experiments, we extend the QuRater framework [64] to build QuRater-M, which
employs GPT-4o to annotate multilingual pairs via relative preference, following the same training
pipeline as its English counterpart. We further include datasets from HPTL [12] and FineWeb-2
[46] for comprehensive comparison, and evaluate against FineWeb2-HQ [39]. In addition, we
analyze the difference between MuRater(E) and MuRater(M): MuRater(M) scores multilingual
pairs that have been translated into English, whereas MuRater(E) starts from rated English data
and translates it into multilingual pair and cross-lingual pair form. Most multilingual evaluations
cover 17 languages plus English, while the experiment involving FineWeb2-HQ is restricted to
13 overlapping languages (Arabic, Chinese, Dutch, French, German, Indonesian, Italian, Japanese,
Portuguese, Russian, Spanish, Turkish, and Vietnamese) to ensure fair comparison.

Finally, we include a Uniform baseline for both settings, which randomly samples 50% more data
than the other methods, following the setup of QuRating [64]. Details are provided in Appendix B.2.

Training Setup. We train a randomly initialized language model based on the LLaMA architecture
[17] for a single epoch over the training corpus, with data presented in a randomly shuffled order. For
most experiments, the model comprises 1.2 billion parameters and employs a standard transformer
architecture [60] augmented with rotary position embeddings (RoPE) [56]. To accommodate the
multilingual setting, we extend the tokenizer vocabulary through retraining on the multilingual corpus.
Comprehensive architectural and tokenizer details are provided in Appendix B.3.

Building on this setup, we construct the training corpora for both English and multilingual experiments.
For the English setting, we select the top-scored 200 billion tokens from the full pool of 1.5 trillion
tokens across all baseline methods and MuRater. In the multilingual setup, we apply all methods to
score and select the top 10% of tokens within each language, yielding roughly 300 billion tokens
in total. These multilingual tokens are then combined with the 200 billion English tokens to form a
unified 500-billion-token pretraining corpus.

To further assess robustness and scalability under varied training conditions, we additionally conduct
experiments with a 7B-parameter model sharing the same LLaMA architecture as the 1.2B model.
This larger model is pretrained on 1T tokens, with 16.5% multilingual data selected by either MuRater
or QuRater-M, while the remaining 83.5%—comprising English, code, and math data—remains
identical across both setups. The multilingual portion follows the same language distribution as in the
main experiments, enabling a more comprehensive evaluation of generalization across heterogeneous
data sources.

Evaluation Benchmarks. We assess the performance of our pretrained models using the
lm-evaluation-harness framework [14]. For the English-only evaluation, we consider a suite
of ten tasks spanning multiple linguistic competencies. These include six reading comprehension
benchmarks—ARC-Easy, ARC-Challenge [10], SciQ [63], LogiQA [37], TriviaAQ[26] and BoolQ
[9]; four commonsense reasoning tasks—HellaSwag [70], PIQA [3], OpenBookQA [40] and Wino-
Grande [53]; and two World Knowledge tasks—Natural Questions (NQ) [29] and MMLU [23]. For
MMLU, we follow [2] and employ the lighteval variant to ensure more consistent and reliable
comparisons.

3https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier
4https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
5https://huggingface.co/mlfoundations/fasttext-oh-eli5
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For the multilingual evaluation, we utilize translated versions of several English benchmarks [21]
alongside multilingual-native datasets. Similar to English benchmarks, we divide the task into
three categories, including reading comprehension, commonsense reasoning, and world knowledge
understanding. Reading comprehension is evaluated using translated versions of ARC-Easy and
ARC-Challenge [10], StoryCloze [41], and XNLI [11], which assess contextual understanding and
inference. Commonsense reasoning is tested with HellaSwag [70], XCOPA [49], and XWinograd
[58], focusing on event causality, semantic plausibility, and everyday reasoning across languages.
World Knowledge evaluation includes MMLU [23], BMLAMA [50], and FLORES [16], which
examine factual knowledge, translation quality, and multilingual alignment.

To strengthen the evaluation of language-specific knowledge, we also incorporate localized MMLU
variants—CMMLU [32], VMLU6, IndoMMLU [28], JMMLU7, and AMMLU8—to construct a
region-specific multilingual extension of MMLU, denoted as MMLU_L and add to the world
knowledge category. Together, these benchmarks provide a comprehensive evaluation of cross-
lingual comprehension, commonsense inference, and knowledge-grounded reasoning, enabling a
holistic assessment of multilingual LLM performance. Detailed information of benchmark statistics
and language coverage is provided in Appendix C.

4.2 Main Results

4.2.1 Multilingual Results

Table 1: Results on multilingual benchmarks with different training setups. Best results within each
setting are shown in bold

Selection Method Reading Comprehension
(5 tasks)

Commonsense Reasoning
(2 tasks)

World Knowledge
(4 tasks)

Average
(11 tasks)

18 Languages Results

Uniform 53.16 54.58 38.25 48.66

HPLT-2 50.38 49.77 36.96 45.70

FineWeb-2 50.83 52.48 35.53 46.28

QuRater-M 54.58 54.87 38.12 49.19

MuRater(M) 54.91 55.48 39.68 50.02

MuRater(E) 56.05 56.42 40.40 50.96

13 Languages Results

FineWeb2-HQ 53.05 55.54 38.31 48.97

MuRater(E) 55.95 58.30 41.17 51.81

7B Model Results

QuRater-M 61.96 63.28 43.31 56.18

MuRater 62.78 64.40 44.50 57.23

As shown in Table 1 and Figure 2, MuRater substantially outperforms existing multilingual baselines
across nearly all evaluation categories and settings. Under the 18-language configuration, MuRater(E)
achieves the highest category-averaged scores in all three categories, outperforming all baselines.
These consistent gains highlight MuRater’s capacity to identify high-quality, semantically rich, and
educationally valuable text, even when faced with heterogeneous multilingual inputs. In particular,
the large improvements in reasoning-oriented benchmarks (e.g., ARC and MMLU) suggest that
MuRater selects examples with deeper conceptual structure and higher linguistic clarity, thereby
enhancing model comprehension and reasoning generalization.

The performance gap between MuRater(M) and MuRater(E) further highlights the advantages of
English-anchored training. MuRater(E) leverages English-rated pairs and projects the resulting
preferences into the multilingual space, providing more stable and transferable supervision signals.
We attribute this benefit to the broader topical and stylistic diversity of English corpora, which expose
the rater to richer linguistic variation and more representative pairwise patterns during training. As
a result, MuRater(E) learns to generalize beyond language corpus boundaries and more effectively

6https://vmlu.ai/
7https://huggingface.co/datasets/nlp-waseda/JMMLU
8https://huggingface.co/datasets/Hennara/ammlu
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capture shared semantic dimensions across languages, yielding stronger cross-lingual alignment and
greater robustness to translation-induced noise.

On the 13-language subset, MuRater(E) continues to outperform FineWeb2-HQ by roughly 3 points on
average, achieving leading results across all three evaluation dimensions. When scaled to the 7B model
trained on 1T tokens, MuRater maintains its superiority, reaching higher performance in all three
respective categories—demonstrating consistent gains across both model sizes and data distributions.
These results confirm that MuRater generalizes effectively to diverse linguistic environments and
evaluation conditions, offering a more scalable and reliable framework for multilingual data quality
estimation. Detailed results on each language are shown in Appendix D
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Figure 2: Performance of different selection methods on ARC-Challenge-ML, MMLU-ML, XWino-
grad, and the overall average across all tasks during training on 200B English + 300B multilingual
tokens.

4.2.2 English-only Results

Table 2: Performance of different selection method over all different downstream tasks. Best results
of each task category is marked in black. Detailed results are performed in Appendix D.

Selection Method Reading Comprehension
(6 tasks)

Commonsense Reasoning
(4 tasks)

World Knowledge
(2 tasks)

Average
(12 tasks)

Uniform (+50% data) 43.93 59.06 20.36 48.70

AskLLM 42.83 58.40 20.21 47.82

DCLM 46.00 58.99 22.37 50.23

FineWeb_Edu 45.71 57.49 22.00 49.49

QuRater 43.54 58.58 20.47 48.33

MuRater 47.13 59.95 22.53 51.23

The results in Table 2 indicate that our proposed rater successfully consolidates the strengths of
existing rating methodologies, leading to consistent improvements in pretrained model performance
across all categories of evaluation tasks. Baseline comparisons reveal that each selection method
exhibits distinct preferences for data, which translate into varying levels of effectiveness on different
downstream tasks. For instance, as shown in Figure 3, DCLM yields strong results on HellaSwag
but underperforms on ARC-Challenge. Conversely, QuRater achieves competitive performance on
ARC-Challenge but demonstrates poor results on TriviaQA. In contrast, our MuRater integrates
the advantages of these methods and achieves robust performance across nearly all benchmarks,
outperforming other data selection baselines by margins ranging from 1 to 3.4 percent. The model
trained with our rater consistently achieves superior results on all tasks throughout the training
process. This indicates more stable and efficient learning, further validating the effectiveness of our
data selection approach in enhancing the quality of LLM pretraining.

4.3 Ablation Study

4.3.1 Effectiveness of Cross-Lingual and Parallel Pair Integration

Incorporating cross-lingual pairs and parallel translations during training significantly improves the
consistency of quality scoring across languages. To validate this, we assess multilingual raters on
parallel corpora—semantically equivalent texts in different languages. As shown in Figure 4, our
alignment-based training produces models with lower mean squared error (MSE) and slopes closer to
one, indicating stronger cross-lingual consistency. In an ideal case, a language-agnostic rater would
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Figure 3: Performance of different selection methods on ARC-Challenge, HellaSwag, TriviaQA, and
the overall average across 12 tasks during training on 200B English tokens

assign identical scores to parallel texts across languages, resulting in a slope of one and minimal
MSE between their score sequences.

These findings highlight the importance of modeling interlingual relationships. By leveraging cross-
language comparisons and parallel data, the rater learns language-invariant quality standards, enabling
more reliable multilingual evaluation. A qualitative case study in Appendix E further supports this,
showing that high-rated texts consistently exhibit greater fluency, coherence, and instructional value
across languages. We further examine how the selected data is distributed across semantic domains
in different languages. Detailed results are provided in Appendix B.1.

(a) Arabic (b) Chinese (c) Korean

Figure 4: Scatter plots of scores assigned by multilingual raters to 10,000 parallel documents across
various languages. Green points represent ratings from raters trained with alignment using parallel
and cross-lingual pairs, while blue points indicate scores from unaligned raters.

4.3.2 Comparison Between Pairwise and Pointwise Score Transfer

We examine the relative effectiveness of pairwise versus pointwise judgment methods for transferring
English scoring capabilities to multilingual settings. Based on the translation quality evaluations, we
select two high-performing languages, Arabic and Spanish, for the study. Specifically, we translate
200 English text pairs into Arabic and 200 pairs into Spanish. Each dataset is then annotated by
GPT-4o using both pairwise and pointwise scoring strategies. For pointwise annotation, GPT-4o
assigns quality scores on a 1–10 scale. The scoring prompts of both methods explicitly instruct
GPT-4o to evaluate based on content quality alone, irrespective of language and are detailed in
Appendix A.6. Each text or pair is scored 20 times, and the average is used as the final score. Given
identical content across different languages, the ideal scenario is that a consistent model and prompt
should yield nearly identical scores, regardless of the language and score strategies.

As shown in Figure 5, pointwise scores exhibit considerable variability across languages, particularly
in the mid-quality range (scores between 3 and 6), despite relatively stable assessments at the high and
low ends. Ideally, all points should align closely with the y = x (slope = 1) line, which would indicate
identical score for semantically equivalent content across languages. In contrast, pairwise judgments
display strong cross-lingual consistency, with only minor deviations from this ideal alignment. These
observations suggest that while translation quality is generally adequate, subtle translation biases can
still influence absolute (pointwise) ratings. The pairwise approach, however, demonstrates greater
robustness to such variation, underscoring its effectiveness for reliably transferring English scoring
behavior to multilingual contexts.

9



(a) Arabic (Pointwise) (b) Spanish (Pointwise)

(c) Arabic (Pairwise) (d) Spanish (Pairwise)

Figure 5: Scatter plots of average scores assigned by GPT-4o to Arabic and Spanish parallel data.
Each point represents an average of 20 evaluations. Left: pointwise scoring. Right: pairwise scoring.

5 Conclusion

We introduced MuRating, a scalable multilingual data selection framework that aggregates mul-
tiple English raters via a Bradley–Terry pairwise model and transfers these judgments through
translation to train a single multilingual MuRater over monolingual, cross-lingual, and parallel
pairs. Applied to large web corpora, MuRater is used to pretrain both 1.2B- and 7B-parameter
LLaMA-architecture models and delivers consistent improvements over strong baselines (QuRater,
FineWeb2-HQ, AskLLM, DCLM) on multiple English and multilingual benchmarks. Ablation results
further demonstrate the effectiveness of incorporating cross-lingual and parallel pairs, and confirm
that pairwise supervision provides more stable multilingual scoring than pointwise methods. Analyses
across translation fidelity and data composition, together with results at two model scales, indicate
that MuRating is effective and scalable for large-scale multilingual data curation and yields reliable
performance gains across evaluation settings.

Limitations

Our current study focuses on 17 target languages excluding English, leaving substantial room for
broader linguistic coverage. The reliance on GPT-4o introduces potential biases and idiosyncrasies in-
herent to proprietary large language models. Moreover, since the English raters used in our framework
primarily focused on factual and informational content, our auto-rater exhibits limited performance
on narrative and creative domains. While the proposed approach performs well on language-specific
benchmarks, further research could explore language-specific rater designs or culturally aligned
data selection strategies to better capture the unique characteristics of each language. Future work
will also aim to incorporate higher-quality translations, expand to a wider range of languages, and
develop adaptive data sampling techniques to enrich the diversity and representativeness of the curated
multilingual corpus.
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the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide formulas that correctly numbered and cross-referenced in Section
3, which includes the integration of different rater signals and training objective of our rater
model MuRater.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We discuss the experiments details in section 4.1, including datasets, training
models, baselines and evaluation benchmarks we use. The hperparameter settings for our
method and baselines, as well as architectural details of the models, are provided in the main
text and/or an appendix. to facilitate reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to release the source of our prompts, code, and data used to facilitate
further research upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies training details including the number of epochs/timesteps,
and batch sizes for our method and baselines. Details on hyperparameter selection and
architectural of both pretrained LLM and MuRater model are provided in the experimental
sections and further elaborated in the appendix and supplemental materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Experiments of error bars are included, such as Figure 6. We take LLM
experiments based on previous work setup and ensure the statistical significance of our
experiment results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Information regarding the computational resources used for experiments, such
as the type of GPUs (e.g., NVIDIA H100) and CPUs, are provided in the appendix and
supplemental materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in this paper involves the development and simulation-
based evaluation of algorithms for mechanism design. For the translation qualtiy assessment,
we follow the ethics guidelines are provided details in teh appendix/supplementary materials.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the potential positive societal impacts of improving the
multilingual ability of LLMs. We also briefly acknowledge potential negative societal
impacts in the "Limitations and Future Work" section by analysing the computational cost
of our experiments.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[Yes]

Justification: We ensure the data we using to pretrain large language models follow the
guidelines. We follow the strategy to clear risk datasets. We provided more details about
this part in the appendix/ supplementary materials.

Guidelines:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credited existing assets through citations to their original publica-
tions in the bibliography.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces new assets, including a dataset and accompanying code.
Comprehensive documentation is provided alongside these assets, detailing aspects such as
data collection methods and preprocessing steps. We will release the code and data used for
MuRater upon publish.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer:[Yes]
Justification: The study involved translation quality assessment of human experts. All
participants were provided with detailed information about the study’s purpose, procedures,
potential risks, and their rights, including the right to withdraw at any time. Informed
consent was obtained from all participants prior to their involvement. The research protocol
was reviewed and approved by the Institutional Review Board (IRB) at our institution,
ensuring that ethical standards were upheld throughout the study. We include the detail in
the appendix/supplementary materials.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The study involved translation quality assessment of human experts. All
participants were provided with detailed information about the study’s purpose, procedures,
potential risks, and their rights, including the right to withdraw at any time. Informed
consent was obtained from all participants prior to their involvement. The research protocol
was reviewed and approved by the Institutional Review Board (IRB) at our institution,
ensuring that ethical standards were upheld throughout the study. We include the detail in
the appendix/supplementary materials.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: In this research, LLMs are integral to the core methodology. Specifically,
we employ GPT-4o to generate data selection signals and translation data to train our data
selection model, MuRater, which enhances the diversity and robustness of our dataset.
Additionally, we pretrain LLMs to verify the effectiveness of our method, which is the core
contribution of our paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of MuRater Model

A.1 Different Annotation Method

GPT annotation We adopt the educational value prompt criteria from QuRating [64] as our annotation
prompt for GPT-4o-08-06, as detailed below. This prompt is used to annotate a total of 300,000
document pairs. For each pair, we randomly extract a segment of n tokens—based on the LLaMA
tokenizer [59]—where n is sampled from a uniform distribution n ∼ Uniform[256, 512] in 50% of
cases, and fixed at 512 tokens otherwise. Annotation involves generating 20 predictions of either “A”
or “B” per criterion and document pair (in either order). The total cost of dataset creation amounts to
$9,740.

Pairwise Educational Value Prompt

Compare two text excerpts and choose the text which has more educational value, e.g., it
includes clear explanations, step-by-step reasoning, or questions and answers.
Aspects that should NOT influence your judgement:
1. Which language the text is written in
2. The length of the text
3. The order in which the texts are presented
Note that the texts are cut off, so you have to infer their contexts. The texts might have similar
quality, but you should still make a relative judgement and choose the label of the preferred
text.
[Option label a] ... text a ...
[Option label b] ... text b ...
Now you have to choose between either label a or label b. Respond only with a single word.

AskLLM We adopt the approach from [52] and use the following prompt to query Flan-T5-xxl [8]
for annotation 300,000 document pairs.

Ask-LLM prompt

### This is a pretraining . . . . datapoint. ###
Does the previous paragraph demarcated within ### and ### contain informative signal for
pre-training a large-language model? An informative datapoint should be well-formatted,
contain some usable knowledge of the world, and strictly NOT have any harmful, racist,
sexist, etc. content.
OPTIONS:
- yes
- no

Fineweb and DCLM For these two data selection methods, we directly use the open-sourced model
to annotate documents to obtain the scores.

A.2 Training details of MuRater and training accuracy

We adopt the XLM-RoBERTa architecture encoder model BGE-M3 [6] as the foundation of our
multilingual rating model, MuRater, and fine-tune it by appending a linear regression head to the
transformer output to predict quality scores. The fine-tuning process employs a confidence margin
threshold of 50%, defined as ϵ = |pA−pB | = |2pB≻A−1| for a prediction between text pairs (tA, tB)
[64]. Fine-tuning is conducted over 3 epochs with a batch size of 512 and a learning rate of 2× 10−5.
We set λ to 0.5. Performance on held-in and held-out sets is summarized in Table 3. Notably,
BGE-M3 supports over 100 languages and leverages large-scale multilingual unsupervised data to
learn a shared semantic space, making it particularly effective for multilingual and cross-lingual
retrieval and rating tasks.

A.3 Translation

The translation prompts is
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Evaluation Dataset Confidence Margin Accuracy

Training set (held-in) 50% 94.3%
80% 97.2%

Validation set (held-out) 50% 90.7%
80% 93.1%

Table 3: Prediction accuracy of MuRater on held-in and held-out datasets under different confidence
margins.

Translation Prompt

Please translate the following {lang} text into {lang2}. Your translations must convey all the
content in the original text and cannot involve explanations or other unnecessary information.
Please ensure that the translated text is natural for native speakers with correct grammar and
proper word choices.
Your translation must also use exact terminology to provide accurate information even for the
experts in the related fields.
The text is : {text}

We translate a total of 600,000 English document pairs evenly across 17 languages using the GPT-4o-
08-06 model, with the overall translation cost amounting to $18,720.

A.4 Human translation quality evaluation

To evaluate the translation quality of GPT-4o outputs, we employed professional human translators to
assess a selected subset of the generated texts. All evaluators possessed CEFR C1-level or higher
proficiency in both English and the respective target language. Each language translation was
reviewed by a single expert. Evaluators were compensated at a rate of $16 per hour, with each
assessment session lasting approximately 4 hours. the annotation criteria for translation quality is
shown below.

Annotation Criteria

5 points: The translation accurately reflects the meaning of the original text, is fluent, and
contains no errors.
4 points: The translation generally reflects the meaning of the original text, with most
sentences being fluent, but there are slight inaccuracies in the use of non-key terms or
non-idiomatic phrases.
3 points: The translation conveys the general idea of the original text, but contains sig-
nificant errors such as improper translation of key terms, incorrect word order, omissions,
mistranslations, or untranslated segments.
2 points: The translation is largely incomprehensible or unfaithful to the original text, with
serious errors including issues of order, logic, or severe grammatical mistakes.
1 point: The translation is completely incomprehensible or entirely unfaithful to the orig-
inal text, or it fails to convey the original meaning entirely, being obscure and difficult to
understand.
Please note that all sentences are excerpts from web content, so the last sentence of each
segment, which may be unclear, is not considered in the evaluation.

We ensured adherence to ethical standards in our human annotation process:

• Fair Compensation: All annotators received compensation at or above the minimum wage
standards of their respective regions.

• Informed Consent: Annotators were provided with clear instructions and information about
the annotation tasks. Participation was voluntary, and informed consent was obtained prior
to their involvement.
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• Institutional Review: Our study underwent review and received approval from the Institu-
tional Review Board (IRB) at our institution, ensuring that the research met ethical standards
for studies involving human participants.

• Transparency: Detailed information regarding the annotation are included in the supple-
mentary materials to promote transparency and reproducibility.

A.5 Translation Quality Asseement
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Figure 6: Translation average
scores of various languages.

We assess the quality of our translations through human evaluation.
Expert annotators are provided with 50 pairs of source and translated
texts and asked to rate translation quality on a scale mentioned
above. As shown in Figure 6, the overall translation quality of GPT-
4o is high, with most languages achieving average scores above 4.
Notably, performance on Japanese and Thai is comparatively lower,
though still above 3.5, suggesting acceptable translation quality for
these languages.

To further evaluate the robustness of our framework with respect to
translation quality, we conducted a supplementary experiment using
the open-sourced LLM Qwen 3-8B [57]. Qwen 3-8B achieves a
FLORES chrF score of 56, which is lower than GPT-4o’s score of
62 for the same language set. We employed both Qwen 3-8B and GPT-4o to translate our training
preference pairs and trained separate MuRater models based on each translation. Each MuRater was
then applied to score 10,000 multilingual documents per language. We compared the annotation
outputs between the two models using Pearson correlation and Kendall’s Tau.

Table 4: Agreement between MuRater models trained with translations from Qwen 3-8B vs. GPT-4o,
measured by Kendall’s Tau and Pearson correlation.

Language ja de es ar id pt th fr vi

Kendall’s Tau 0.8930 0.9005 0.8951 0.8645 0.8903 0.8964 0.8834 0.8924 0.8867
Pearson Corr. 0.9835 0.9854 0.9843 0.9793 0.9822 0.9848 0.9803 0.9831 0.9825

Language it ko ms tl ru tr zh nl

Kendall’s Tau 0.8851 0.8885 0.8427 0.8749 0.8942 0.8822 0.9044 0.8991
Pearson Corr. 0.9815 0.9821 0.9644 0.9755 0.9850 0.9818 0.9861 0.9843

As shown in Table 4, both metrics indicate consistently high agreement across all evaluated languages.
These findings suggest that even when relying on a weaker translation model such as Qwen 3-8B,
MuRater can still be effectively trained, provided that the relative preference information is preserved.
This demonstrates the robustness of our approach to moderate variations in translation quality.

A.6 Pointwise Score

The pointwise scoring prompt is provided below. We instruct GPT-4o to evaluate each text 10 times,
then compute the average of these scores to determine the final rating. The scoring range is from
grade_min = 1 to grade_max = 10.
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Pointwise prompt evaluation for educational value

I need to rate a text excerpt on a scale of {grade_min} to {grade_max} (inclusive) based on
its educational value, e.g., it includes clear explanations, step-by-step reasoning, or questions
and answers.
Aspects that should NOT influence your judgement: 1. Which language the text is written in
2. The length of the text
Note that the text is cut off, so you have to infer its context.
[Text] ... {text} ...
Now assign a number grade between {grade_min} to {grade_max} (inclusive). Respond only
with a single digit. The score for the quality of the text is:

B Experiment Setup Details

B.1 Dataset

We use the 16 recent snapshots from FineWeb-2 as our raw data before MuRater and other base-
lines annotation, namely CC-MAIN-2021-39, 2021-43, 2021-49, 2022-05, 2022-21, 2022-27,
2022-33, 2022-40, 2022-49, 2023-06, 2023-14, 2023-23, 2023-40, 2023-50, 2024-10, and
2024-18.

To analyze domain composition, we employ NVIDIA’s multilingual domain classifier9 to annotate
the domain distribution of our dataset. Figures 7–11 illustrate the domain shifts before and after
applying the MURATER-based selection. The results show that MURATER systematically prioritizes
World Knowledge domains such as People and Society, Health, and Science, which are typically
well-structured and rich in informational content—properties particularly beneficial for large language
model pretraining. However, the resulting domain distributions vary across languages, primarily
reflecting intrinsic differences in the domain composition of their respective source corpora.

We adopt the open-sourced FastText language identification model [27], which supports 176
languages and is widely used in large-scale multilingual data pipelines. For multilingual data
selection, we retain the top 10% of highest-scoring documents per language from the raw corpus,
preserving the natural data composition of Common Crawl and maintaining a distribution similar to
full set of FineWeb-2. The initial token ratio across languages is: ru (14.29%), es (12.83%),
ja (12.19%), de (12.19%), zh (9.26%), fr (8.98%), it (7.29%), pt (4.58%),
nl (4.53%), vi (3.21%), id (2.88%), ar (2.75%), tr (2.20%), th (1.51%), ko
(1.41%), tl (0.04%), ms (0.02%).

We then apply temperature-based sampling with τ = 3.33, following standard multilingual
pretraining practices [69]. The final token ratios used in training are: ru (8.08%), es (7.78%),
ja (7.62%), de (7.62%), zh (7.00%), fr (6.93%), it (6.50%), pt (5.71%), nl
(5.70%), vi (5.07%), id (4.86%), ar (4.78%), tr (4.52%), th (4.15%), ko
(4.11%), tl (2.75%), ms (2.62%).

Figure 7: Domain distribution of German corpus

9https://huggingface.co/nvidia/multilingual-domain-classifier
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Figure 8: Domain distribution of France corpus

Figure 9: Domain distribution of Japanese corpus

Figure 10: Domain distribution of Chinese corpus

Figure 11: Domain distribution of Thai corpus
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Model configuration Values
Attention head 16

Layers 24
Hiddent size 2048

Intermediate layer dimension 5504
maximum position embedding 4096

layer normalization epsilon 1× 10−5

Training Hyperparameters Values
Batch size 3072

Sequence length 4096
Optimizer AdamW

Learning rate 4.3× 10−4

Learning rate schedule Cosine decay to 10% of inital value
Traning steps Varied based on the total token budget

Precision bf16(mxied-precision training)
Table 5: Model configuration and Training Hyperparameters for pretraining LLms

B.2 Baselines

We follow the same annotation procedure for the English datasets of QuRater, AskLLM, DCLM, and
FineWeb-Edu as described in Appendix A. For QuRater-M, we apply the same prompting approach
(also detailed in Appendix A) and instruct GPT-4o to annotate 300,000 multilingual pairs, focusing
exclusively on content regardless of the language. We then fine-tune the multilingual QuRater baseline
using both English and multilingual data, leveraging the BGE-M3 model [6] and the identical training
hyperparameters outlined in Appendix A.

B.3 Model Architecture

We utilize a transformer architecture based on the LLaMA-2 model [59], configured to contain
approximately 1.2 billion parameters. Models are randomly initialized before pretraining. The
detailed information for the model configuration and training hyperparamters is shown in Table 5. We
preprocess our training corpus to train a custom Byte-Pair Encoding (BPE) tokenizer using the BBPE
algorithm, yielding a vocabulary of 250,000 tokens for use in our training experiments. The main
experiments is conducted using 64 NVIDIA H100 GPUs, with an average runtime of approximately
70 hours per experiment.

C Evaluation Benchmarks

All task evaluations are conducted using the lm-evaluation-harness framework [14]. For English
in-context learning tasks, we use the following benchmakrs:

• ARC-Easy and ARC-Challenge [10] (25-shot): Multiple-choice science questions from
grade school exams, assessing models’ ability to apply scientific knowledge and reasoning.

• SciQ [63] (0-shot): Crowdsourced multiple-choice science questions covering physics,
chemistry, and biology, designed to evaluate scientific understanding.

• LogiQA [37] (0-shot): Logical reasoning questions derived from Chinese civil service
exams, testing deductive reasoning capabilities.

• TriviaQA [26] (5-shot): Reading comprehension dataset with question-answer pairs au-
thored by trivia enthusiasts, accompanied by evidence documents.

• BoolQ [9] (5-shot): Yes/no questions with associated passages, evaluating models’ ability
to answer naturally occurring questions.

For commonsense reasoning, we evaluate on:

• HellaSwag [70] (10-shot): Sentence completion tasks requiring commonsense inference to
select the most plausible continuation.
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• PIQA [3] (5-shot): Physical commonsense reasoning questions, focusing on everyday tasks
and interactions.

• OpenBookQA [40] (10-shot): Multiple-choice questions based on elementary science facts,
requiring both factual knowledge and reasoning.

• WinoGrande [53] (5-shot): Pronoun resolution tasks designed to test commonsense reason-
ing at scale.

Additionally, two World Knowledge tasks are evaluated:

• Natural Questions (NQ) [29] (5-shot): Real user questions paired with answers from
Wikipedia, assessing open-domain question answering.

• MMLU [23] (5-shot): A benchmark covering 57 subjects across various domains, measuring
multitask language understanding.

For evaluating translated benchmarks, we use the MuBench dataset [21] and conduct evaluations
across 18 languages present in our training set. In the multilingual setting, we evaluate:

• ARC-Easy and ARC-Challenge (25-shot): Translated versions of the science question
benchmarks, assessing cross-lingual reasoning.

• HellaSwag (10-shot): Evaluating commonsense reasoning in multiple languages through
sentence completion tasks.

• MMLU (5-shot): Multilingual evaluation of multitask language understanding across diverse
subjects.

• StoryCloze [41] (0-shot): Narrative understanding task where models choose the correct
ending to a four-sentence story.

• BMLAMA [50] (0-shot): Multilingual factual knowledge probing dataset, assessing cross-
lingual consistency in language models.

• XCOPA [49] (5-shot): Causal commonsense reasoning tasks translated into multiple lan-
guages, evaluating cross-lingual inference.

• XNLI [11] (5-shot): Cross-lingual natural language inference benchmark, testing entailment
and contradiction detection.

• XWinograd [58] (5-shot): A multilingual benchmark for evaluating localized knowledge
and reasoning abilities of large language models across diverse languages.

• MultiLoKo [24] (5-shot): A large-scale multilingual evaluation suite designed to assess
factual knowledge, reasoning, and question answering across 45 languages, emphasizing
both cross-lingual consistency and language-specific understanding.

• FLORES [16] (5-shot): Multilingual machine translation benchmark, evaluating translation
quality across diverse languages.

• MMLU_L (5-shot): A localized version of MMLU, focusing on both general knowledge
and language-specific knowledge and reasoning tasks.

D Detailed Results

D.1 English Detailed Results

Table 6 presents the detailed performance of various selection methods across individual downstream
tasks. Our method consistently outperforms others on most tasks, with notable improvements on
ARC, HellaSwag, and MMLU.

D.2 Multilingual Detailed Results

Detailed results of different data-selection methods across individual downstream benchmarks. For
the 7B experiments, we additionally include the MultiLoKo benchmark [24] to assess cultural and
regional knowledge across languages. Since its scores were too low to be meaningful under the 1.2B
training setup, we do not report the results here.

We also display the detailed results of each benchmark and each language below.
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Table 6: Detailed performance of differnt selection method over all downstream tasks with all values
in percentages and per-benchmark maximum highlighted in bold.
Data Selection Method ARC_Challenge ARC_Easy BoolQ HellaSwag LogiQA MMLU NQ OpenBookQA PIQA TriviaQA WinoGrande SciQ Average

Uniform (+50% data) 35.24 66.50 64.46 62.90 28.88 32.85 7.87 37.00 75.73 27.00 60.62 85.40 48.70

Askllm 36.60 67.63 59.76 63.33 26.57 32.89 7.53 35.60 76.82 26.55 57.85 82.70 47.82
DCLM 40.44 73.78 64.07 62.42 28.73 35.42 9.31 37.40 76.06 28.01 60.06 87.00 50.23
FineWeb_Edu 40.10 72.39 64.62 59.06 26.88 36.01 7.98 38.20 74.27 29.05 58.41 86.90 49.49
QuRater 40.27 72.14 61.93 62.38 28.88 35.26 5.68 38.60 75.63 15.74 57.70 85.80 48.33

MuRater 43.77 75.84 64.28 65.06 30.11 37.24 7.81 38.20 77.04 28.69 59.51 87.20 51.23

Table 7: Performance of different data-selection strategies across downstream tasks when mixing
200B English and 300B multilingual tokens. MuRater(M) denotes scoring multilingual pairs
translated into English, while MuRater(E) uses rated English data translated into multilingual pair
form. Best results within each setting are shown in bold.

Selection Method MMLU
(L)

ARC
C_ML

ARC
E_ML FLORES Hella

swag_ML
MMLU

(T) XCOPA XNLI Story
Cloze_ML XWino BMLAMA Average

18 Languages

Uniform 29.98 28.74 49.03 46.66 44.56 27.83 64.60 42.33 69.28 76.40 48.55 48.00
HPLT-2 29.24 26.94 45.95 42.66 39.87 27.58 59.67 42.14 65.09 71.77 48.38 45.39
FineWeb-2 28.33 27.50 45.97 44.52 42.39 27.75 62.57 41.00 66.77 72.89 41.51 45.56
QuRater-M 30.86 33.89 57.53 46.60 46.77 29.18 62.97 44.39 65.86 71.21 45.84 48.65
MuRater(M) 31.86 34.26 58.21 47.43 46.54 29.28 64.43 42.07 67.08 72.92 50.13 49.47
MuRater(E) 31.96 35.01 58.98 47.27 47.11 29.40 65.73 44.46 67.67 74.13 52.97 50.43

13 Languages Subset

FineWeb2-HQ 30.52 30.91 54.37 50.97 46.15 28.66 64.92 41.79 69.48 68.72 43.08 48.14
MuRater(E) 31.96 36.03 61.63 50.11 49.17 29.43 67.44 44.49 68.75 68.83 53.19 51.00

Table 8: Comparison of MuRater and QuRater-M when training a 7B model on 1T tokens with 16.5%
multilingual data.

MMLU_L ARC_C_ML ARC_E_ML FLORES HSWAG MMLU_T XCOPA XNLI S. Cloze XWino BMLAMA MultiLoKo Avg.

QuRater-M 35.93 42.36 65.20 55.15 57.29 32.54 69.27 45.13 74.50 82.60 49.61 8.87 51.54
MuRater 36.87 43.38 66.87 55.38 57.76 32.93 71.03 45.06 75.42 83.19 52.82 10.61 52.61

Table 9: Detailed per-language performance on across ARC-Easy. Bold indicates the best result for
each language.

Method AR DE EN ES FR ID IT JA KO MS NL PT RU TA TH TR VI ZH

Uniform 42.21 53.07 65.57 56.40 53.66 52.02 52.86 49.07 44.44 45.62 51.43 54.17 50.67 37.88 39.44 46.72 48.44 55.47
QuRater-M 52.69 62.25 72.94 65.74 63.59 61.32 62.71 57.62 53.58 54.29 60.44 63.51 59.34 42.85 43.90 55.72 54.67 63.72
MuRater(M) 52.19 62.79 72.85 66.54 63.85 63.30 62.58 58.00 53.96 55.89 61.70 63.47 59.85 43.35 45.75 56.40 56.19 63.76
MuRater(E) 52.82 63.22 73.91 67.55 63.97 63.68 63.80 58.88 54.59 56.78 61.62 65.24 60.98 44.53 45.50 57.28 57.03 65.11

Table 10: Detailed per-language performance on across ARC-Challenge. Bold indicates the best
result for each language.

Method AR DE EN ES FR ID IT JA KO MS NL PT RU TA TH TR VI ZH

Uniform 27.82 30.03 32.25 30.12 30.03 28.92 30.03 28.92 26.54 29.01 28.33 30.55 29.61 24.83 28.24 28.16 28.58 28.92
QuRater-M 30.55 35.58 41.89 36.95 35.92 34.90 37.20 33.87 32.59 34.56 34.13 36.60 35.32 28.16 28.75 32.34 32.59 36.18
MuRater(M) 30.20 36.95 41.13 39.25 35.75 35.07 35.49 34.39 33.36 32.51 34.56 37.71 35.84 27.99 29.78 33.45 33.70 36.35
MuRater(E) 31.91 36.09 42.06 39.08 37.29 36.18 38.57 35.67 33.45 36.01 34.81 39.25 37.20 27.13 30.20 35.07 31.48 35.84

Table 11: Detailed per-language performance on across HellaSwag. Bold indicates the best result for
each language.

Method AR DE EN ES FR ID IT JA KO MS NL PT RU TA TH TR VI ZH

Uniform 39.52 47.50 60.48 51.46 51.37 47.01 49.52 42.09 38.53 43.34 48.36 50.17 45.76 36.68 35.62 40.05 43.95 46.59
QuRater-M 41.83 49.71 61.61 54.05 54.48 49.95 51.87 43.88 40.63 45.10 50.20 52.71 48.92 37.93 37.46 42.53 46.33 47.50
MuRater(M) 41.65 49.62 62.46 54.00 54.62 49.94 51.89 43.53 40.32 45.60 50.08 52.63 48.03 37.41 37.10 42.15 45.33 47.23
MuRater(E) 42.17 50.23 62.30 54.84 55.13 50.36 52.13 44.39 40.48 46.16 50.89 53.55 48.53 37.69 37.30 42.62 46.28 48.06

Table 12: Detailed per-language performance on across MMLU. Bold indicates the best result for
each language.

Method AR DE EN ES FR ID IT JA KO MS NL PT RU TH TL TR VI ZH

Uniform 0.2628 0.2769 0.2968 0.2782 0.2810 0.2787 0.2741 0.2777 0.2748 0.2791 0.2772 0.2817 0.2708 0.2701 0.2743 0.2742 0.2799 0.2824
QuRater-M 0.2747 0.2949 0.3180 0.2935 0.2975 0.2988 0.2915 0.2911 0.2852 0.2880 0.2979 0.2953 0.2893 0.2812 0.2821 0.2872 0.2915 0.2947
MuRater(M) 0.2727 0.2957 0.3235 0.2908 0.3018 0.3000 0.2944 0.2909 0.2919 0.2877 0.2968 0.2997 0.2907 0.2797 0.2812 0.2874 0.2944 0.2914
MuRater(E) 0.2765 0.3033 0.3206 0.2983 0.3010 0.2989 0.2905 0.2936 0.2871 0.2925 0.2976 0.2988 0.2886 0.2813 0.2850 0.2868 0.2967 0.2949
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Table 13: Detailed per-language performance on across StoryCloze. Bold indicates the best result
for each language.

Method AR DE EN ES FR ID IT JA KO MS NL PT RU TH TL TR VI ZH

Uniform 0.6161 0.7237 0.7570 0.7221 0.7237 0.6974 0.6950 0.6718 0.6463 0.6881 0.7074 0.7214 0.7090 0.6502 0.5967 0.6238 0.6865 0.7136
QuRater-M 0.6014 0.6912 0.7291 0.6927 0.7005 0.6703 0.6726 0.6633 0.5983 0.6471 0.6780 0.6912 0.6757 0.6269 0.5797 0.5875 0.6610 0.6881
MuRater(M) 0.6037 0.6989 0.7314 0.7074 0.7059 0.6989 0.6803 0.6649 0.6246 0.6656 0.6943 0.7098 0.6974 0.6393 0.5820 0.6029 0.6811 0.6865
MuRater(E) 0.6231 0.7082 0.7307 0.7059 0.7012 0.6950 0.6834 0.6811 0.6416 0.6610 0.6927 0.6981 0.7144 0.6517 0.5967 0.6122 0.6850 0.6981

Table 14: Detailed per-language performance on across BMLAMA. Bold indicates the best result for
each language.

Method AR DE EN ES FR ID IT JA KO MS NL PT RU TH TL TR VI ZH

Uniform 0.3128 0.4530 0.5148 0.4531 0.4563 0.3860 0.4422 0.4082 0.2764 0.3536 0.4001 0.4026 0.3391 0.2862 0.4702 0.3063 0.4294 0.4387
QuRater-M 0.3850 0.5540 0.5838 0.5075 0.4860 0.4757 0.5076 0.4317 0.3388 0.4629 0.5186 0.4835 0.3846 0.3431 0.5040 0.3971 0.4934 0.3931
MuRater(M) 0.4039 0.5660 0.6331 0.5725 0.5582 0.5544 0.5563 0.4353 0.3389 0.5364 0.5404 0.5194 0.4350 0.3679 0.5519 0.4393 0.5643 0.4500
MuRater(E) 0.4451 0.6062 0.6380 0.5919 0.5549 0.5898 0.5828 0.4749 0.3920 0.5703 0.5933 0.5578 0.4646 0.3828 0.5615 0.4576 0.6034 0.4669

Table 15: Detailed per-language performance on across XCOPA. Bold indicates the best result for
each language.

Method ID IT TH TR VI ZH

Uniform 68.20 66.60 57.20 58.80 70.60 66.20
QuRater-M 65.20 65.00 56.00 58.40 67.40 65.80
MuRater(M) 67.80 67.20 58.20 58.80 69.00 65.60
MuRater(E) 69.00 68.20 57.20 60.20 70.20 69.60

Table 16: Detailed per-language performance on across XNLI. Bold indicates the best result for each
language.

Method AR DE EN ES FR RU TH TR VI ZH

Uniform 35.90 46.47 47.67 45.74 46.14 43.29 38.35 39.60 39.56 40.60
QuRater-M 37.11 47.63 49.60 47.71 49.32 46.99 37.87 43.78 41.93 41.93
MuRater(M) 35.74 44.34 46.79 44.50 47.15 44.14 38.39 39.60 38.80 41.24
MuRater(E) 34.86 48.84 51.49 46.55 49.40 47.39 37.27 43.94 41.77 43.13

Table 17: Detailed per-language performance on XWinograd. Bold indicates the best result for each
language.

Method EN FR JP PT RU ZH

Uniform 83.70 69.88 67.78 69.96 62.86 72.02
QuRater-M 77.12 66.27 66.21 66.54 60.32 63.49
MuRater(M) 78.54 65.06 67.47 67.30 62.86 67.86
MuRater(E) 80.22 69.88 66.32 71.48 65.71 68.25

(a) Translation from English (EN TO ML)
Method AR DE ES FR ID IT JA KO MS NL PT RU TH TL TR VI ZH

Uniform 35.03 53.27 48.27 57.70 57.95 47.76 21.81 18.99 53.94 48.94 58.22 44.17 28.60 40.04 37.94 48.97 19.82
QuRater-M 36.60 52.70 48.28 58.74 59.62 48.17 23.59 19.52 54.23 48.20 59.03 45.09 29.94 42.05 39.73 48.65 19.97
MuRater(M) 37.84 53.65 48.92 59.45 60.17 48.85 24.01 21.26 54.33 49.51 60.30 46.70 30.78 41.83 40.11 50.89 19.98
MuRater(E) 37.80 53.87 48.30 58.85 60.20 49.39 23.73 20.99 54.03 49.52 60.05 46.14 29.84 42.49 40.64 50.79 20.40

(b) Translation to English (ML TO EN)
Method AR DE ES FR ID IT JA KO MS NL PT RU TH TL TR VI ZH

Uniform 52.14 61.41 54.46 61.71 57.93 55.28 42.48 41.73 56.63 54.41 64.62 54.96 45.81 49.27 45.40 52.24 46.10
QuRater-M 51.14 60.40 53.63 61.47 57.81 55.68 42.13 41.04 55.82 53.77 64.34 53.30 44.44 47.39 46.58 51.23 44.62
MuRater(M) 52.39 60.86 54.26 62.64 57.77 56.21 42.47 42.47 56.71 54.26 64.80 55.00 45.65 48.84 46.17 52.53 45.40
MuRater(E) 52.63 60.93 54.03 61.72 57.98 56.00 42.25 41.48 56.12 54.23 64.59 54.55 46.01 47.97 47.03 52.04 45.31

Table 18: Detailed per-language performance on FLORES. Bold indicates the best result for each
language.

Method AMMLU CMMLU INDOMMLU JMMLU VLMU

Uniform 0.2594 0.3175 0.3235 0.3079 0.2909
QuRater-M 0.2659 0.3398 0.3278 0.3197 0.2898
MuRater(M) 0.2713 0.3467 0.3441 0.3304 0.3005
MuRater(E) 0.2714 0.3404 0.3489 0.3323 0.3048

Table 19: Detailed per-language performance on across MMLU-L. Bold indicates the best result per
column.
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D.3 Impact of Translation and Data Quality on Multilingual Performance

To further investigate translation and data quality impact on multilingual performance, we analyze two
representative language pairs with comparable token ratios but differing translation quality: Japanese
vs. Spanish and Thai vs. Korean. Human evaluation results reveal that Japanese and Thai translations
receive approximately 0.5 lower average quality scores than their respective counterparts, Spanish
and Korean. As detailed in Tables above, this discrepancy is reflected in downstream performance,
where Japanese and Thai consistently underperform across most multilingual benchmarks.

Table 20 presents the normalized top-10% selection scores (relative to Chinese). These results show
that Japanese and Korean data exhibit notably lower selection scores than Spanish and Thai, aligning
with observed translation-quality trends.

Table 20: Normalized top-10% document scores across languages (relative to Chinese).
Language ja de es ar id pt th fr vi
Score 0.743 0.862 0.922 0.877 0.996 0.896 0.922 0.806 0.967

Language ms tl it ko ru tr zh nl
Score 0.817 0.690 0.877 0.843 0.940 0.941 1.000 0.862

These findings suggest that translation quality partially accounts for the observed performance gaps,
yet it is not the sole determinant. Additional factors—including the intrinsic quality of the source
corpora, language-specific tokenizer compression effects [15], and cross-lingual knowledge transfer
dynamics [22]—likely contribute to the variation in multilingual model performance. Collectively,
the results highlight that improving translation fidelity and ensuring balanced corpus quality are both
critical for enhancing multilingual LLM training.
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E Case Study

We present examples from various languages exhibiting a range of quality scores. The results
demonstrate that texts with higher scores tend to be more fluent and contain richer educational
content, particularly in domains such as health and science. Moreover, for texts with comparable
scores, the quality remains consistent across different languages. This suggests that our MuRater
model evaluates text quality in a language-agnostic manner, relying solely on the content rather than
the language in which it is written.

Figure 12: Sampled training examples of Japanese with quality ratings at different score range

Figure 13: Sampled training examples of German with quality ratings at different score range

Figure 14: Sampled training examples of French with quality ratings at different score range

Figure 15: Sampled training examples of Chinese with quality ratings at different score range

Figure 16: Sampled training examples of Thai with quality ratings at different score range
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