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Abstract

Continual learning (CL) aims to continuously accumulate knowledge from non-
stationary data streams without catastrophic forgetting of learned knowledge, re-
quiring a balance between stability and plasticity. Leveraging generalizable repre-
sentation in pre-trained models (PTMs), PTM-based CL methods adapt effectively
to downstream tasks by adding learnable adapters or prompts to frozen PTMs.
However, many existing methods restrict adaptation to a fixed set of modules,
limiting CL capabilities. Periodically adding task-specific modules leads to linear
model growth and impaired knowledge reuse. We propose Self-Expansion of PTMs
with Modularized Adaptation (SEMA), a novel approach that enhances stability-
plasticity balance by automatically determining when to reuse or add adapter
modules depending on if distribution shifts that cannot be handled is detected at
different representation levels. Our modular adapter consists of a functional adapter
and a representation descriptor, which acts as a distribution shift indicator, trigger-
ing self-expansion. An expandable weighting router is learned jointly for mixture
of adapter outputs. SEMA enables better knowledge reuse and sub-linear expansion
rate. Extensive experiments show SEMA achieves state-of-the-art performance,
outperforming PTM-based CL methods without memory rehearsal.

1 Introduction

Continual learning (CL) is investigated to learn incrementally and accumulate knowledge efficiently
from the non-stationary data stream without catastrophic forgetting [38, 44] of previously learned
knowledge [12, 48, 53, 58]. Given the progress in pre-trained models (PTMs) with reliable repre-
sentation, recent works explore the potential of using PTMs, such as Vision Transformer (ViT) [13],
in CL. With frozen PTMs to enable stable representation and alleviate forgetting, the PTMs are
continually adapted to downstream tasks through parameter-efﬁcient fine-tuning with newly expanded
parameters as prompts and/or adapters [ 1, 41, 56, 60, , 73, 74]. On the other hand, some
methods enable continual fine-tuning of pre-trained models on real-world downstream tasks arriving
in a streaming manner. Many PTM-based CL approaches mainly add and learn a fixed set/pool of
prompts [27, 76] or adapters [8] shared by all the downstream tasks in the stream [4 1, 60, 61, 73].
To alleviate forgetting caused by the interference on the newly added parameters, they restrict the
parameter updating only on the first task seen in the stream [4 1, 73] or use various regularization
on the shared parameters [60, 61]. Their continual adaptation potentials are restricted by the fixed
and static size of prompt and adapter parameters. Some recent methods expand the PTMs with
task-specific parameters to produce input-conditioned prompts [56] or ensemble of adapters [75].
The task-specifically added modules can help reduce the interference but cause linear scaling of the
model (w.r.t. the number of tasks) and restrain knowledge sharing and reuse.

We propose SEMA, a CL approach with Self-Expansion of pre-trained models with Modularized
Adaptation. To enable knowledge extension with module expansion for CL and avoid linear scaling
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Figure 1: An example of the self-expansion process. (a) The PTM (i.e., ViT) with L transformer
layers at the start. (b) At Task 1, a modular adapter and a (dummy) router is added and trained in each
layer. (c) Components added in Task 1 are frozen to alleviate forgetting. When Task 2 arrives, only
the RD in the L-th layer detects distribution shift and generates expansion signal. A new module is
added in the L-th layer, with the router expanded and updated. (d) At Task 3, new adapter is added
at L — 1-th layer. The expansion is triggered and produced again in the L-th layer, following the
expansion in the L — 1-th layer. Tasks without novel patterns do not trigger expansion and existing
adapters are reused. More discussions are in App. B.2.

of model size caused by task-specific expansion, SEMA automatically decides when and where (i.e.,
which layer) to expand the PTM (i.e., a pre-trained ViT) on demand for tackling new requirements
with sufficient and flexible plasticity, as shown in Fig. 1. The model continually learns how to
compose the learned adapters. With the enhanced knowledge transfer and reuse, SEMA can thus
perform better by only expanding the parameter size sub-linearly.

We summarize our contribution as follows:

* We propose a novel continual learning approach via self-expansion of PTMs with modu-
larized adapters, i.e., SEMA. It automatically determines the expansion necessity and the
location for new adapters to accommodate the new patterns in samples. SEMA enhances
the control of stability-plasticity trade-off through adapter reuse and flexible on-demand
expansion. SEMA enables sub-linear expansion and operates without the need for rehearsal.

* To achieve SEMA, we introduce modular adapters comprising a functional adapter and a
representation descriptor (RD). RD maintains the distribution of pertinent input features,
serving as a local novel pattern detector for expansion. The expandable weighting router
composes the adapters via weighted mixture.

 Extensive experiments are conducted to validate the effectiveness and analyze the behaviour
of the proposed method, which demonstrates the model’s ability to alleviate forgetting and
knowledge transfer as well as the plausibility of the automated process.

2 Methodology

We propose a PTM-based CL approach (i.e., SEMA) with a self-expansion mechanism to automat-
ically add modularized adapters at arbitrary layers of the PTM (i.e., a pre-trained ViT with frozen
parameters) on demand for handling automatically detected novel patterns in CL task stream, as
shown in Fig. 1 and 2. The proposed method simultaneously learns a weighted mixture router
for composing the adapters for different inputs. The design enhances the balance of knowledge
transfer/reuse and plasticity for handling novelty, through only a sub-linear expansion rate [4, 45].

Modular adapter. To achieve the modularized design of SEMA, we introduce the modular adapters
containing a pair of functional adapter f(-) and representation descriptor g, (-). Each added func-
tional adapter (implemented as [8]) works as a branch of a specific layer of the pre-trained transformer;
and the representation descriptor (RD) indicates the feature distribution that can be handled by the
paired f,(-). RD can be implemented as any model with density estimation or novelty detection
ability. For simplicity, we implement them as AE [22]. There can be different number (i.e., K') of
adapters added at each layer through the self-expansion process. When a new modular adapter is
added at layer [, the RD 9ol (+) is trained by minimizing the reconstruction loss on all the features fed

o for (), i, X Lyp i (2) = > xext |1x = g, (x)]13. In our expansion strategy, when a new task



Table 1: Comparison with ViT-based CL methods in class-incremental learning.

Method CIFAR-100 ImageNet-R ImageNet-A _VTAB
A An A An A An A An
Finetune Adapter 47.88 3090 38.51 2422 29.78 17.64 5998 43.50
L2P [61] 84.77 77.87 70.67 6290 47.16 3848 81.19 80.83
DualPrompt [60] 86.60 80.43 6233 6197 59.54 50.23 82.89 79.79
CODA-P [56] 91.55 86.11 75.00 70.02 4729 35.02 79.88 81.58
SimpleCIL [73] 82.31 7621 67.59 6135 6005 49.24 8529 83.61
ADAM w/ Adapter [73]  90.55 85.62 75.84 69.10 60.15 49.24 8529 83.61
SEMA 91.37 8698 8175 74.53 64.53 5332 91.26 89.64

t arrives, at each [-th layer, if all existing RDs detect significantly novel distributions (relying on the
reconstruction error based z-score), the expansion signal is triggered. f, (+) and ot (+) are trained

on this task ¢ and then kept frozen in the future.

Expandable weighting router. We maintain and learn an expandable weighting router for weighted
mixture of the functional adapters. Similar to [14], we implement hl/,z(~) : R RE asa
linear mapping function followed by a softmax operation w! = hy(x') = softmax(x' - W, ),
where W'
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i.e., WL, | is expanded for producing weights with one
more dimension. The expanded router is trained together
with the added adapters. To prevent forgetting on routing, Figure 2: Overview of the model archi-
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Self-expansion strategy. As illustrated in Fig. 1, in CL, when new tasks arrive, g,,(-)’s of the already-
added adapters are used to detect novel feature patterns layer-by-layer, by scanning all samples in the
first epoch. The expansion signal is triggered if all z-scores of reconstruction error corresponding to
each RD at a layer are larger than a threshold, reflecting x' is out of scope of all RDs, as shown in Fig.
3. Only when the novel patterns are detected, new adapters, i.e., pairs of (f4(-), g, (+)), are added and
trained. After being trained sufficiently, the adapters are kept frozen for alleviating forgetting, which
can be reused in future tasks. We facilitate self-expansion across multiple layers by executing the
detection and self-expansion process sequentially from shallow layers to deeper layers. Multi-layer
expansion encourages the accommodation of various distribution shifts [16, 34]. The details of the
self-expansion strategy are in App. B.1. At each layer of the PTM, an expandable weighting router
is continually maintained and updated for composing the adapters via weighted mixture. When no
adapters are added, the existing frozen adapters are retrieved and reused.

3 Experiments

We evaluate SEMA on common class-incremental learning datasets used for pre-trained ViT, including
CIFAR-100 [32], ImageNet-R [20], ImageNet-A [21] and VTAB [71]. We compare it with ViT-
based rehearsal-free CL methods and report the average accuracy of all tasks Ay [6] and average
incremental accuracy A [48] metrics in Tab. 1. SEMA outperforms others in average accuracy at the
last step A that reflects the final goal of CL. Our method shows more improvements on datasets
containing adversarial samples similar to those found in ImageNet, due to its better stability-plasticity
balance. SEMA also excels on VTAB data containing more diverse distributions and fewer samples,
implying that SEMA performs well on knowledge transfer and reuse. Due to space constraints, we
only summarize key takeaways here and leave experimental details and more results in App. C and D.

Weighted mixture routing enables better adapter composition. To demonstrate the ben-
efits of weighted mixture routing, we investigate several variants of SEMA with different



adapter composing strategies. Firstly, we study two variants with soft mixture of adapters
relying on average weighting (Avg. W.) and random weighting (Rand. W.), respectively.
Tab. 2 shows that the expandable weighting router Table 2: Ablation studies on module expan-
learns the effective weighting function. We further  gjon and adapter composing.

study the variants that perform routing by only se-

lecting single adapter indicated by the highest value ~ Method ImageNet-A _VTAB

from the learned weighting router (Top-1 Sel.) or A Ay A Ay
through random drawing (Rand. Sel.) during both ~ SEMA 6453 5332 9126 89.64
training and inference. Additionally, we test the No Exp. 6120 4990 86.21 83.66
trained SEMA by only selecting one adapter with Avg. W. 56.88 4431 90.84 89.14
the highest weight at inference time (Top-1 Sel. Inf.). ~ Rand. W. 62.95 49.77 88.87 85.17
The results show that the weighted soft mixture of ~ Top-1Sel. 62.00 50.56 90.83 88.61

Rand. Sel. 61.70 50.36 90.82 88.51

the learned adapters can work more effectively by en-
couraging better usage of the learned adapters. More ~ 1op-1Sel Inf. 6196 5036 9095 88384
experiments about adapter composing using RD are in App. D.7.

SEMA allows on-demand expansion for adapting to distribution shifts. We demonstrate that
SEMA’s self-expansion can work reliably to continually improve the adaptation results, by comparing
to No Exp., which removes the self-expansion process and only keeps the first-session adaptation, in
Tab. 2. We further visualize the reconstruction error of each AE-based RD corresponding to each
sample seen during training on VTAB in Fig. 3. We restrict expansion to the last transformer layer
for more intuitive visualization. When a new task arrives, the expansion signal is generated when
significantly high reconstruction errors (scaled as z-scores) are detected from all the previous RDs (in
Task 2 and 3). In Task 4 and 5, all samples can be well covered by at least one previous RD, which
implies significant distribution shift is not detected and results in no expansion.
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Figure 3: Reconstruction error during training ~ igure 4: Visualization of adapter usage on
to show dynamic expansion process. The ex- VTAB. Adapter 1,2 and 3 are added and learned
pansion is performed for Task 1,2, and 3. Dis- o Task 1, 2 and 3, respectively. Task 4 and 5
tribution shift is not detected for the Task 4 and reuse Adapter 1 and 3 more due to more similar
s, resulting in no expansion. distributions as Task 1 and 2, respectively.

Adapter usage pattern. Fig. 4 demonstrates the average adapter usage of each task from VTAB.
The self-expansion is automatically produced for Task 1, 2 and 3. For tasks that trigger expansion,
they mainly use the adapters they are trained with. Task 4 and 5 share similar selection pattern with
the tasks they are similar with Task 1 and 3 respectively, showing that added adapters are effectively
reused for new tasks. More details are in App. D.7.

Robustness to varying hyperparameters. We observe that the performance of SEMA is not
sensitive to the choice of hyperparameters, such as expansion threshold and number of layers
allowing expansion (see Fig. 12 and 13). More discussions are in App. D.2 and D.3.

Sub-linear growth of parameters. Instead of expanding w.r.t. number of tasks, SEMA adds
parameters at a sub-linear rate, demonstrating the efficiency of the self-expansion mechanism.
Further analysis is provided in App. D.6.

4 Conclusion

In this paper, we propose a novel self-expandable modularized adaptation approach for continual
learning. SEMA learns to reuse and add modules in an automated manner without memory replay.
We incorporate an efficient expansion strategy with detection for feature distribution shifts in different
layers of transformer-based models, successfully mitigating the forgetting problem of jointly using
the fixed set of parameters. Experimental results demonstrate the outstanding performance of SEMA
on datasets with different levels of distribution shifts.
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A Related Work

Continual Learning (CL). The mainstream taxonomy classifies continual learning methods into three
categories: replay-based methods, regularization-based methods and architecture-based methods [ 12,

]. Replay-based methods aim to alleviate catastrophic forgetting by retaining a memory buffer
to store the information from old tasks for future replay [5, 7, 39, 48]. With simple intuition
and effectiveness in preventing forgetting, these methods are limited by the size of the memory
buffer and may also raise privacy concerns. An alternative approach is to implicitly maintain a
generative model for producing pseudo-samples with similar distribution to old classes [9, 30, 49,

, 55]. Regularization-based methods penalize significant changes to important parameters for seen

tasks [1, 3, 31, 43, 69, 70], or consolidate the knowledge learnt from previous tasks with knowledge
distillation [23, 33, 38, 72]. Instead of using all available parameters for all tasks, architecture-based
methods allocate a subset of parameters dedicated to each task, which can be performed with task
masking [29, 40, 54, 62] or dynamic architecture [2, 26, 35, 36, 45, 57, 64, 65, 66, 67]. These

methods tend to achieve optimal performance with less forgetting as isolating parameters and growing
capacity for novel tasks reduce task interference during training, however, they are mostly restricted
to simple applications due to the complex model design.

Parameter-Efficient Fine-Tuning (PEFT). Parameter-efficient fine-tuning methods train a small set
of additional parameters rather than the entire pre-trained model, which reduces the demands placed
upon computational resources. Prompting applies learnable prompts that modify the inputs to provide
the model with more instructions [27, 37]. LoRA [25] injects low-rank matrices to approximate
weight updates and avoids additional inference latency via re-parameterization, which has been further
utilized as experts with mixture modeling in recent works [14, 18, 59, 63]. Adapters introduced by
[24], along with its variants [8, 28], insert lightweight learnable modules into the transformer. To
enhance the efficacy of adapter learning, [19] investigates different insertion forms, and [10, 47, 51]
explores the potential of adapter compositions.

PTM-based CL. Recent works adopt ViT as the backbone in the continual learning system to
exploit its robust representational ability. Without any tuning, ViT can serve as a feature extractor
for prototypes, which can be used for classification with distance measurement [42, 46, 73]. PEFT
techniques are also widely used to adapt ViT to CL tasks, including adaptation and prompting.
L2P [61], which first applies visual prompt tuning [27] in CL, and DualPrompt [60] uses a pool of
prompts and learn the distribution of new tasks with incremental tuning. The prompt learning process
is further improved by [56] with an attention mechanism and input-conditioned weights. Similar to
prompting in CL, some works also explore the use of a fixed set of adapters [| |, 15] or task-oriented
expansion [75] for better transfer of ViT to downstream CL tasks. Furthermore, [17] builds a unified
framework which allows incorporation of both prompting and adapter-based methods.

B More Details about SEMA

B.1 Self-Expansion Strategy

The representation descriptors provide the capacity to decide when and where to expand the model.
We designed a more specific strategy to achieve reliable self-expansion in the CL task stream.

Task-oriented expansion. The expansion may happen at any time when any new sample is seen
during training. To incorporate the task identification prior knowledge in CL, especially class-
incremental learning (CIL), we improve parameter efficiency and expansion stability with task-
oriented expansion. We restrict that at most one adapter per layer can be added for each task. When a
new task ¢ arrives, the method scans all samples in the first epoch to decide whether to expand the
model. If the expansion signal is triggered, only one adapter is added and then trained for the whole
task; otherwise, task ¢ data can reuse learned modules and the learning process moves to the next
task.

z-score based expansion signal. When scanning through the new task data, expansion signal at a
layer [ is triggered when significantly new patterns are identified. It is reflected that a x' is out of
scope of all RDs, i.e., reconstruction error is high with each g, (x), as illustrated in Fig. 3. However,
it is impractical to directly use reconstruction error, due to the perturbation and heterogeneous
characteristics of each task and adapter. We thus compute and maintain the running statistics u% and
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Figure 9: Zoomed-in view of Fig. 2. Overview of the model architecture. The RDs are trained to
capture the feature distribution of the corresponding task via only Lgp.

standard deviation afc of reconstruction error on all relevant inputs used in training. Given any ' in
the scanning process in future task, the z-score corresponding to each existing RD can be calculated
as z, = (r}, — pt) /ot with rl as reconstruction error. If all 2} ’s for k = 1,..., K' are larger than
a threshold, the expansion signal is triggered. Considering that the z-score has normalized out the
perturbation and scale, the process can be very robust to the threshold setting, as shown in Appendix
D.2.

Multi-layer expansion. We facilitate self-expansion across multiple layers through distinct decision
processes. Upon encountering a new task, self-expansion operations are executed sequentially from
shallow layers to deeper layers. As new adapters are introduced at a shallow level, training ensures
alignment of the representation accordingly. Subsequently, the model determines whether to continue
expanding into subsequent layers. The adaptable multi-layer expansion facilitates the accommodation
of various distribution shifts and enables flexible inter-class knowledge sharing [16, 34].

B.2 More Details of SEMA Training

We discuss more details of SEMA training using a more detailed example in Fig. 10, which contains
more details (i.e., different types of cases and the distribution shift detection/scanning procedure)
compared to that in Fig. 1. At the start of the training, each transformer block at different layers is
equipped with one adapter module containing one adapter and one representation descriptor, as well
as an expandable weighting router, as shown in Fig. 10 (b). They are added as the default adapters
and trained on the first task. After the first task, for the incoming new tasks, SEMA monitors the
representations of each batch of samples at each layer with the AE-based representation descriptor.
New adapters are added if a significant enough representation/distribution shift is detected at each
layer. Adding the adapters expands the model’s representation ability for handling the new patterns.
As introduced in App. B.1, SEMA performs task-oriented expansion (in the class-incremental
learning setting given the task boundary in training), adding at most one adapter per layer. As shown
in Fig. 1 and Fig. 10, the detection and expansion operation starts from the transformer blocks
closest to the input. Once a significant distribution shift is detected at a specific layer that could
not be handled by all existing adapters (detected by RDs), an expansion signal is triggered in this
layer/block. A new adapter module will be added to the block where the expansion signal is triggered,
along with an expansion of the weighting router, and activated for training. After sufficient training,
the detection phase will be restarted for the later blocks. If no distribution shift is reported for a task
in any transformer blocks, as shown in Fig. 10 (c), no adapter module will be added, and no training
of adapters is required for this task.

11



Layer #L

Layer #L-1

% Frozen parameter

% Leamable parameter

D Adapter

D Task descriptor

Task descriptor generating
expansion signal

Expandable
weighting router

@

Layer #1
[ Transformer Block }
sformer

(a) Pretrained model  (b) Task 1 (c) Task 2 (d) Task 3 (e) Task 4

Figure 10: A more detailed example for the illustration of the learning process. (a) The pre-
trained model with L transformer layers is provided for adaptation. (b) At the start of training,
each transformer layer is equipped with one expandable weighting router and one adapter module,
including one functional adapter and its paired representation descriptor. All modules are trainable at
this stage. (c) All modules and routers are frozen after the training on Task 1. When Task 2 arrives,
the detection of distribution shift is performed with all frozen representation descriptors in each
transformer layer for all batches in Task 2. Since no distribution shift is observed, module addition is
not performed and all modules are frozen. (d) As Task 3 arrives, the detection for the distribution
shift is executed again and the distribution shift is observed in the L-th layer. Expansion signal is
triggered and an adapter module is added in the L-th layer with the expanded router. Training for the
newly added adapter and router is performed. Since the addition is performed at the last transformer
layer, no further detection for distribution shift is required. (¢) When Task 4 arrives, expansion signal
is triggered in the L — 1-th layer during the detection phase. After sufficient training, the newly
added module is frozen and detection for distribution shift in later layers is executed. When both
representation descriptors in the L-th layer consider the incoming feature as an outlier, expansion
signal will be triggered. A new module is added for training in the L-th layer while all other modules
are frozen.

C More Details about Implementation and Evaluation

C.1 Details of Datasets

CIFAR-100 contains 100 classes with 500 training samples and 100 testing samples per class.
ImageNet-R contains renditions of 200 ImageNet classes, which is a challenging CL benchmark
introduced by with great intra-class diversity.

ImageNet-A contains real-world images filtered from ImageNet in an adversarial manner which are
hard to be classified by models pre-trained with ImageNet.

VTAB consists of 50 classes from 5 domains with 10 classes from each domain.

To construct class-incremental setting, for results reported in Tab. 1, all datasets are split in a manner
where each task consists of 10 distinct classes.

C.2 Implementations of Compared Methods

For SimpleCIL and ADAM, we use the official implementation at https://github.com/
zhoudw-zdw/RevisitingCIL. For other prompting methods, namely L2P, DualPrompt and
CODA-P, we adopt the open-source implementation from PILOT toolbox, available at https:
//github.com/sun-hailong/LAMDA-PILOT. In our experiments, we adhere to the hyperparame-
ter configurations as specified in the original publications for each of the compared methods.
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C.3 Details on Evaluation Metrics

Denote the accuracy of the i-th task after training on the /N-th task as \A; n. The average accuracy
A represents the average accuracy of all seen tasks after training on the N-th task:

LN
An = NZALN,
i=1

which is often considered as the most important evaluation metric in continual learning.

The average incremental accuracy A is the average accuracy along incremental stages, defined as:
1N

C4 Training details.

We use the commonly used ViT-B/16 model [13] weights pre-trained on ImageNet-1K [52], as the
PTM weights. We also conducted experiments with other pre-trained weights and left the discussions
in Appendix D.5. We train the adapters with 5 epochs and train the representation descriptors with
20 epochs (which could be produced in parallel). The batch size is set to 32. SGD is used as the
optimizer with the initial learning rate set to 0.005 and 0.01 for adapters and representation descriptors,
respectively, decaying with cosine annealing. In experiments, by default, we enable self-expansion in
the last three transformer layers for simplicity but without losing generality.

D More Experiments and Ablation Studies

D.1 Incremental performance of different methods on class-incremental learning
benchmarks.

Fig. 11 shows the varying of the accuracy in continual learning process. It shows the consistently
superior performance of SEMA in the process.

Figure 11: Detailed plots of incremental performance of different methods on class-incremental
learning benchmarks. All models adopt ViT-B/16-IN1K as the backbone.

D.2 Study of Expansion Threshold

We investigate the impact of the expansion threshold on accuracy and the number of added adapters
using ImageNet-A and VTAB. Firstly, the results shown in Fig. 12 show that the proposed method
is not sensitive to the setting of the threshold, benefited from the z-score-based expansion signal.
Fig. 12b and 12d show how the threshold influences the number of added adapters (at each layer),
which shows consistent trends as in Fig. 12a and 12c. Fig. 12a and 12b show that smaller expansion
threshold leads to more frequent expansion, which could boost the performance at some level through
more parameters. A threshold that is too large (e.g., values over 1.5) minimizes the chance for
expansion, which may lead to insufficient adaptation. In SEMA, a proper expansion threshold in a
wide range can lead to a balance between performance gain and parameter size.

D.3 Analysis of multi-layer expansion.

In Fig. 13, we explore the effects on accuracy by implementing expansion across varying numbers of
layers, ranging from the last 2 layers (#11-#12) to the last 4 layers (#9-#12). Intuitively, allowing
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Figure 12: Analysis of the impact of expansion threshold with (a)(b) ImageNet-A and (c)(d) VTAB.
(a) and (c) show that SEMA can produce good accuracy stably with slight variation w.r.t. varying
expansion threshold. (b) and (d) report how the number of added adapters (on the specific Transformer
layers #10, #11, #12) changes with the varying threshold values, corresponding to (a) and (c),
respectively. The proposed method is insensitive to the threshold. Adding more adapters may lead to
higher accuracy, a proper threshold can achieve a balance between performance and model size.

expansion in deeper layers enables better adaptation to different tasks. However, as shown in Fig.
13b and Fig. 13d, permitting expansion in early transformer layers also increases the overall number
of added adapters, without significant boost in performance as earlier layers tend to behave similarly
despite distribution shifts. Also, enforcing the addition of too many adapters may cause difficulty in
training, especially in early transformer layers.
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Figure 13: Analysis of the effect of multi-layer expansion, with (a)(b) ImageNet-A and (c)(d) VTAB.
By enabling automatic self-expansion on multiple transformer layers, SEMA can achieve better
performance than restricting that on a single layer.

D.4 Ablation studies on adapter variants.

Apart from Adapter [8], we extend our evaluation to other adapter variants, namely LoRA [25] and
Convpass [28]. As shown in Tab. 4, our proposed approach is robust to the selection of adapter
methods, showing the broad applicability and effectiveness of our dynamic expansion strategy across
different adapter methods.

Table 4: Different adapter variants.

Method ImageNet-A _VTAB
.A .A N ./4 -AN

Adapter[8] 64.53 5332 91.26 89.64

LoRA[25] 63.50 52.67 91.85 88.53
Convpass[28] 63.48 51.74 90.68 88.62

D.5 Influence of Pre-trained Weights

In the main paper, we experiment SEMA and other methods with ViT-B/16-IN1K in Tab. 1. To study
the influence of pre-trained weights, we further experiment SEMA with another commonly used
pre-trained ViT weight, i.e., ViT-B/16-IN21K. We evaluate the performance using average accuracy
Apn and average incremental accuracy A. As shown in Tab. 5, SEMA consistently outperforms
prompting and adaptation methods in class-incremental learning. This indicates that our model is
robust in performance regardless of different choices of pre-trained weights.
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Table 5: Experiments on four class-incremental learning benchmarks with ViT-B/16-IN21K weight.

Method CIFAR-100 ImageNet-R ImageNet-A _VTAB
A An A An A An A An
L2P 89.51 85.02 7449 6582 46.67 3930 79.17 63.56

DualPrompt  90.39 85.64 73.67 68.88 5845 4878 88.11 77.58
CODA-P 91.01 86.20 7036 6532 50.73 37.06 85.13 85.85
SimpleCIL ~ 87.13 81.26 61.92 5433 6050 49.44 8599 84.38
ADAM 92.18 87.47 75.08 67.30 60.53 49.57 8595 84.35

SEMA 92.23 87.84 77.84 69.60 6250 5135 91.99 90.86

Table 6: Comparison of added parameters and accuracy with different expansion strategies. “Expan-
sion by Task” is a naive implementation of SEMA’s variant that adds one set of adapters (at all layers
allowing expansion) for every new task. SEMA only expands if a distribution shift is detected by the
representation descriptor.

Dataset Expansion by Task SEMA
Params M) Ay  Params (M) Ay
CIFAR-100 1.066 86.86 0.645 86.98

ImageNet-R 1.904 74.08 0.617 74.53
ImageNet-A 1.904 52.80 0.560 53.32
VTAB 0.647 89.09 0.554 89.64

D.6 Further Analyses on the Effectiveness of Self-Expansion

The proposed method SEMA enables the model to add parameters and expand its capacity on demand.
It allows the model to handle samples that could not be handled before by adding a small number of
parameters. In continual learning, this process helps to alleviate forgetting by avoiding interference
from new patterns while still encouraging knowledge reuse and transfer. Unlike some methods
[56, 60, 75] that continually adding task-specific modules by task with a linear parameter growth
rate, SEMA produces a sub-linear expansion rate, w.r.t. number of seen tasks. To analyze and
show the effectiveness of this self-expansion process, we conducted comparisons with other related
methods and a naive implementation of the “expansion-by-task” variant of SEMA. This simple
variant model incrementally adds adapters to the layers that allow expansion for each incoming task.
The number of parameters and accuracy are reported in Tab. 6. Despite the naive implementation of
“expansion-by-task”, the results in Tab. 6 show that SEMA with flexible self-expansion can achieve
better performance than that using more parameters. We demonstrate that our expansion strategy is
efficient in both controlling the size of added parameters regardless of the length of task sequence,
encouraging knowledge reuse and reducing potential task interference in adapter weighting.

Table 7: Number of added parameters used in model deployment, measured in Millions. L2P uses
a fixed size of prompts. DualPrompt and CODA-P incrementally add parameters (i.e., prompts)
sequentially by task. SEMA adds a small number of parameters with its dynamic expansion strategy.

Type Method CIFAR-100 ImageNet-R ImageNet-A VTAB
P Params M) Ay  Params M) Ay  Params M) Ay  Params (M) Ay
Fixed Param Size L2P 0.123 77.87 0.200 62.90 0.200 38.48 0.085 80.83
DualPrompt 1.022 80.43 1.098 61.97 1.098 50.23 0.983 79.79
Expandable Param Size =~ CODA-P 3.917 86.11 3.994 70.02 3.994 35.02 3.878 81.58
SEMA 0.645 86.98 0.617 74.53 0.560 53.32 0.554 89.64

Tab. 7 reports the size of added parameters in several different PTM-based methods. While L2P
uses a fixed size of prompt pool with small amount of added parameters, the fixed size of trainable
parameters may limit its capability to adapt to more distribution shifts in continual learning and comes
with a higher chance of forgetting. Compared to other methods (i.e., CODA-P and DualPrompt) that
incrementally add parameters (i.e., prompts in these methods) for each task, SEMA involves much
fewer added parameters in the model. Apart from the adaptation approach and expansion strategy, the
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Figure 14: Analysis on added parameters (in Millions) during model deployment on ImageNet-A.
We compare with methods using fixed number of prompts like L2P, and methods like DualPrompt
and CODA-P that incrementally expand like SEMA but with prompts and on a linear basis according
to tasks. Expansion by task adds adapters for every incoming task, whilst SEMA executes expansion
on demand, which increments parameters on a sub-linear basis. Specifically, SEMA added more
parameters (with expansions at more layers) at Task 9 than other steps with expansion.

compared methods in this part use similar techniques as the proposed method (such as the classifier
and PTMs). Note that the added parameters for SEMA only consider the functional adapters that are
used in deployment. The RDs are maintained for training and updating of the model, which can be
handled in parallel to other parameters and do not influence the deployment of the model. As shown
in Fig. 14 (also demonstrated in the main paper), SEMA can dynamically expand the model with a
small sub-linear rate, while the other methods are usually with a linear rate.

D.7 Further Discussions on the Weighting Router

Routing relying on representation descriptor. In SEMA, we use the representation descriptors
(RDs) to capture the distribution of the input representations corresponding to each modular adapter,
which are used to detect novel patterns triggering the expansion signal. The RDs can be used
to compose the adapters via hard selection, as in similar modular networks. Specifically, the
reconstruction error of the AE-based RDs can provide the identity information of each inference
sample, w.r.t. the adapters, as different layers. However, the RD-based adapter selection/routing can
be unreliable for every single individual input, and related works usually rely on the statistics of a
batch of samples [45], limiting the application. We thus propose directly learning the soft weighting
router for mixture usage of the adapters. To analyze the behavior of the RDs in detail, we conduct
the experiments that perform adapter composing relying on the RDs and show the results in Tab. 8.
As shown in Tab. 8, the RD-based routing can achieve sound performance on most datasets, which
validates the representation ability of RDs. SEMA with the soft weighting router can perform better,
relying on the specifically learned router that is trained together with the adapters.

Table 8: Comparison between routing with the expandable weighting router and RD-based routing.

Method CIFAR-100 ImageNet-R ImageNet-A _VTAB
A An A An A An A An
SEMA 91.37 8698 81.75 74.53 64.53 5332 91.26 89.64

RD-based routing 9091 83.61 81.02 74.13 61.80 50.36 90.83 88.53

More discussions on adapter usage. Fig. 4 shows the average adapter usage of each task on VTAB.
For clear visualization, we enable expansion to be performed only at the last layer and attach sample
images from each task in Fig. 4. Adapter 1, Adapter 2, and Adapter 3 are automatically added and
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Adapter ID

Task 1 Task 2 Task 3 Task 4 Task 5

Figure 15: Adapter usage visualization on VTAB (same as Fig. 4). For clear and simplified
visualization, we only allow expansion at the last transformer layer. We report the average adapter
usage of each task. Below, we provide visual illustrations of sample images from each VTAB task.

trained when Task 1, Task 2, and Task 3 arrive, respectively. Task 1, Task 2, and Task 3 all present
high preference for choosing the adapters that were trained with them, showing the effectiveness of
the router to direct samples to the adapter that is trained with a similar distribution. While adapter
expansion is not triggered for Task 4, Task 4 data largely employs Adapter 1 during inference. As
visualized in Fig. 15, the data distribution between Task 1 (remote sensing images) and Task 4
(land cover) is similar. Similarly, Task 3 (pets) and Task 5 (flowers) both comprise natural images
with similar characteristics, hence have higher similarity in distribution than Task 1 (remote sensing
images) and Task 2 (texture images), and exhibit a preference for Adapter 3. Thus, we show that our
expandable weighting router can effectively select the proper mixture pattern of adapters with various
data distributions.

D.8 Training and Inference Time

All experiments can be produced on a single NVIDIA GeForce RTX 3090 GPU. To compare the
training efficiency, we report the per-batch training time averaged over the incremental learning
process in Tab. 9. Note that the training processes of adapter and representation descriptor in each
adapter module of SEMA are in parallel after expansion, thus the training of these two components can
be performed in parallel with multiple GPUs. We report the training time of adapters (i.e., “Adapter”
in Tab. 9) and representation descriptors (i.e., “RD” in Tab. 9) separately, along with the overall time
usage of SEMA training if adapters and representation descriptors are trained sequentially.

SEMA with components trained in a parallel manner is highly efficient. Even without the parallel
setup, training the adapters and RDs in SEMA in sequence can still be faster than other PTM-based
CL methods on most datasets. As SEMA only expands while encountering distribution shifts in
incoming new tasks, for tasks that do not trigger expansion, no training of adapters and representation
descriptors is performed and training time on these tasks is minimized, leading to training efficiency
in the long term.

We evaluate the inference efficiency and report the average inference time of each image measured in
milliseconds in Tab. 10. We show that SEMA is efficient compared to other methods on all datasets.
The inference latency of the listed prompting continual learning methods is caused by the extra
procedure of processing the image with a frozen pre-trained model for the query function. Similarly,
ADAM requires extra feature extraction with a frozen pre-trained model for the concatenation of
pre-trained features and adapted features. SEMA relieves the dependency on the frozen pre-trained
model as we focus on the intermediate feature distribution of each transformer block.
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Table 9: Average per-batch train time of each method on each task measured in seconds. SEMA
(overall) denotes the training time used when adapter and representation descriptor (RD) are trained
sequentially.

Train Time (s)
Method CIFAR-100 ImageNet-R ImageNet-A VTAB
L2P 0.27 0.27 0.29 0.28
DualPrompt 0.25 0.25 0.27 0.29
CODA-P 0.31 0.32 0.35 0.36
SEMA (Overall) 0.25 0.11 0.15 0.31
- Adapter 0.13 0.10 0.12 0.20
-RD 0.12 0.01 0.03 0.11

Table 10: Per-image inference time of each method measured in milliseconds.

Inference Time (ms)

Method CIFAR-100 ImageNet-R ImageNet-A VTAB
L2P 9.44 9.53 9.86 9.46
DualPrompt 9.44 9.51 9.84 9.44
CODA-P 9.45 9.47 9.85 9.43
ADAM 9.95 10.03 10.36 9.45
SEMA 4.48 7.39 9.01 7.38

D.9 Additional Results on 10-Task Setting

Apart from Tab. 1 which reports ImageNet-R and ImageNet-A with 20-task setting, we conduct
further experiments on 10-task setting where each task contains 20 classes. We report the average
accuracy Ay at each incremental stage in Tab. 11 and Tab. 12. SEMA outperforms all other methods
in all incremental stages, which demonstrates that our method is competitive regardless of the length
of tasks in continual learning.

Table 11: Average accuracy(%) at each incremental stage on 10-task ImageNet-R.
Method Task 1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9 Task 10

L2P 86.36 6699 6554 66.81 6425 64.66 63.64 6488 63.86 62.72
DualPrompt  84.03 7835 7587 74.02 71.76 7045 69.44 69.23  68.35 66.75
CODA-P 90.71  88.27 84.12 8231 7987 7874 T71.67 T11.69 76.41 75.25
SimpleCIL 79.10 7222 70.01 6829 6583 6436 64.10 6322 6242 61.35
ADAM 91.87 8494 8236 80.02 77776 7646 7561 7497 73.99 73.15

SEMA 93.61 90.08 8697 84.71 82.58 81.26 80.23 79.57 78.68  78.00

Table 12: Average accuracy(%) at each incremental stage on 10-task ImageNet-A.
Method Task 1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9 Task 10

L2P 70.29 5944 5546 53772 4935 50.77 49.06 4848 4581 45.56
DualPrompt  77.71 7194 6639 6289 5791 5774 5620 53.53 5147 51.42
CODA-P 70.86 70.00 62.82 6146 5731 56,51 5352 5152 49.53 49.11
SimpleCIL 76.00 70.83 65.13 61.60 58.03 5692 54.06 51.84 49.68 49.24
ADAM 76.57 70.83 65.13 6175 5826 57.03 54.15 52.00 49.75 49.37

SEMA 8229 7694 7311 6877 6576 6523 62.89 6130 59.50 58.46
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D.10 Additional Results on Longer Task Sequence

We perform the 50-step experiment on ImageNet-R and ImageNet-A, and report the performance and
inference time consumption in Tab. 13. SEMA outperforms other methods in longer task sequences.

Table 13: Accuracy and Inference time (ms) on 50-task sequences.
_ ImageNet-R _ ImageNet-A
A An A AN e

DualPrompt 64.21 56.25 10.52 49.74 39.83 12.56
CODA-P 61.34 5637 1046 3436 23.17 12.75
ADAM 69.59 6258 9.82 5944 48.58 10.28

SEMA 74.64 67.03 798 60.82 49.18 9.74

Methods

D.11 Analyses on Training with Less Data

As shown in the experiments in Tab. 1, SEMA can perform better than other methods on VTAB
dataset with a more significant gap. In VTAB dataset, there are more obvious distribution shifts and
fewer data samples in each task. Benefiting from the better knowledge reuse/transfer ability, SEMA
can achieve better performance with less data. Apart from the experiments in Tab. 1, we further
conduct analyses on this and specifically compare with a state-of-the-art method, EASE [75], which
expands task-specific adapters at all layers of the transformer. Unlike all other methods we compared
with in the main paper, EASE also incrementally adds classification heads for all tasks and ensembles
them in inference. In Tab. 14, we show the results of experiments on VTAB while removing 90%
of samples in one and two tasks, respectively, denoted as VTAB-1 and VTAB-2. Although EASE
uses a much stronger classification head, SEMA can perform better in this data efficiency learning
experiment. We then further extend this data efficiency experiment to ImageNet-A by keeping only
10 or 20 percent of data for all tasks. As shown in Tab. 15, with sub-linear expansion, SEMA obtains
performance comparable to EASE which requires task-oriented expansion at linear growth rate.

Table 14: Experiments on setting with limited data samples on VTAB. VTAB-1 and VTAB-2
randomly removes 90 percent of data in one and two task(s), respectively.

VTAB-1 VTAB-2
A Ay A Ay

SEMA 86.74 81.33 85.99 80.06
EASE 86.56 7837 86.76 78.86

Method

Table 15: Experiments on setting with limited data samples on ImageNet-A. ImageNet-A 10%
contains only 10 percent of data in original ImageNet-A for all tasks and ImageNet-A 20% contains
20 percent.

ImageNet-A 10%  ImageNet-A 20%
A An A An

SEMA  52.90 41.41 57.85 48.26
EASE 52.79 41.67 57.46 48.65

Method

D.12 Experimental Results with Different Seeds and Varying Class Orders

We conduct five independent runs with different seeds for SEMA on all datasets, and report the mean
and standard deviation of accuracies over separate runs in Tab. 16. With different random seeds,
each run is performed with different shuffling of class order and model initialization weights. This
demonstrates the robustness of SEMA'’s performance with varying task/class orderings.
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Table 16: Accuracies with standard deviation over 5 independent runs.
Method CIFAR-100  ImageNet-R  ImageNet-A VTAB

SEMA A 91.37+£038 81.75+1.00 64.53+£0.99 91.26£0.47
An 8698 £0.57 7453+0.92 53.32+0.69 89.64+0.63

D.13 Ablation Study on the Hidden Dimension in AE

We test different values for hidden dimensions in the AE as representation descriptors. The AE-based
representation descriptors enable the capture of the characteristics of the data for decision-making on
whether to add a new adapter during continual training. According to Fig. 16, the proposed method
can perform well with a wide range of settings on the AE’s hidden dimension.
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Figure 16: Ablation on representation descriptor.
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