
Published as a conference paper at ICLR 2023

MEMORY GYM: PARTIALLY OBSERVABLE
CHALLENGES TO MEMORY-BASED AGENTS

Marco Pleines1 Matthias Pallasch1 Frank Zimmer2 Mike Preuss3

1TU Dortmund University 2Rhine-Waal University of Applied Sciences
3LIACS Universiteit Leiden
marco.pleines@tu-dortmund.de

ABSTRACT

Memory Gym is a novel benchmark for challenging Deep Reinforcement Learn-
ing agents to memorize events across long sequences, be robust to noise, and
generalize. It consists of the partially observable 2D and discrete control envi-
ronments Mortar Mayhem, Mystery Path, and Searing Spotlights. These environ-
ments are believed to be unsolvable by memory-less agents because they feature
strong dependencies on memory and frequent agent-memory interactions. Empir-
ical results based on Proximal Policy Optimization (PPO) and Gated Recurrent
Unit (GRU) underline the strong memory dependency of the contributed envi-
ronments. The hardness of these environments can be smoothly scaled, while
different levels of difficulty (some of them unsolved yet) emerge for Mortar
Mayhem and Mystery Path. Surprisingly, Searing Spotlights poses a tremen-
dous challenge to GRU-PPO, which remains an open puzzle. Even though the
randomly moving spotlights reveal parts of the environment’s ground truth, en-
vironmental ablations hint that these pose a severe perturbation to agents that
leverage recurrent model architectures as their memory. Source Code: https:
//github.com/MarcoMeter/drl-memory-gym/

1 INTRODUCTION

Memory is a vital mechanism of intelligent living beings to make favorable decisions sequentially
under imperfect information and uncertainty. One’s immediate sensory perception may not suffice
if information from past events cannot be recalled. Reasoning, imagination, planning, and learning
are skills that may become unattainable. When developing autonomously learning decision-making
agents, the agent’s memory mechanism is required to maintain a representation of former obser-
vations to ground its next decision. Adding memory mechanisms as a recurrent neural network
(Werbos, 1990) or a transformer (Vaswani et al., 2017) led to successfully learned policies in both
virtual and real-world tasks. For instance, Deep Reinforcement Learning (DRL) methods master
complex video games such as StarCraft II (Vinyals et al., 2019), and DotA 2 (Berner et al., 2019).
Examples of successes in real-world problems are dexterous in-hand manipulation (Andrychow-
icz et al., 2020) and controlling tokamak plasmas (Degrave et al., 2022). In addition to leveraging
memory, these tasks require vast amounts of computation resources and additional methods (e.g.
domain randomization, incorporating domain knowledge, ect.), which make them undesirable for
solely benchmarking an agent’s ability to interact with its memory meaningfully.

We propose Memory Gym as a novel and open source benchmark consisting of three unique envi-
ronments: Mortar Mayhem, Mystery Path, and Searing Spotlights. These environments challenge
memory-based agents to memorize events across long sequences, generalize, be robust to noise, and
be sample efficient. By accomplishing the desiderata that we define in this work, we believe that
Memory Gym has the potential to complement existing benchmarks and therefore accelerate the de-
velopment of DRL agents leveraging memory. All three environments feature visual observations,
discrete action spaces, and are notably not solvable without memory. This allows users to assure
early on whether their developed memory mechanism is working or not. To fit the problem of se-
quential decision-making, agents have to frequently leverage their memory to solve the posed tasks
by Memory Gym. Several related environments ask the agent only to memorize initial cues, which
require infrequent agent-memory interactions. Our environments are smoothly configurable. This

1

https://github.com/MarcoMeter/drl-memory-gym/
https://github.com/MarcoMeter/drl-memory-gym/

Published as a conference paper at ICLR 2023

is useful to adapt the environment’s difficulty to the available resources, while easier difficulties can
be used as a proof of concept. Competent methods can show off themselves in new challenges or
identify their limits in a profound way. All environments are procedurally generated to evaluate the
agent’s ability to generalize to unseen levels (or seeds). Due to the aforementioned configurable dif-
ficulties, the trained agent can be evaluated on out-of-distribution levels. Memory Gym’s significant
dependencies are gym (Brockman et al., 2016) and PyGame1. This allows Memory Gym to be eas-
ily set up and executed on Linux, macOS, and Windows. Multiple thousands of agent-environment
interactions per second are simulated by all environments.

This paper proceeds as follows. We first define the memory benchmarks’ criteria and portray the
related benchmarks’ landscape. Next, Mortar Mayhem, Mystery Path, and Searing Spotlights are
detailed. Afterward, we show that memory is crucial in our environments by conducting empirical
experiments using a recurrent implementation (GRU-PPO) of Proximal Policy Optimization (PPO)
(Schulman et al., 2017) and HELM (Paischer et al., 2022). When scaling the hardness in Mortar
Mayhem and Mystery Path, a full range of difficulty levels emerge. Searing Spotlights remains
unsolved because the recurrent agent is volatile to perturbations of the environment’s core mechanic:
the randomly wandering spotlights. This observation is also apparent when training on a single
Procgen BossFight (Cobbe et al., 2020) level under the same spotlight perturbations as in Searing
Spotlights. At last, this work concludes and enumerates future work.

2 COMPARISON OF RELATED MEMORY BENCHMARKS

2.1 DESIDERATA OF MEMORY BENCHMARKS

Before detailing related benchmarks, we define the aforementioned desiderata that we believe are
essential to memory benchmarks and benchmarks in general.

Accessibility refers to the competence to easily set up and execute the environment. Benchmarks
shall be publicly available, acceptably documented, and open source while running on the commonly
used operating systems Linux, macOS, and Windows. Linux, in general, is important because many
high-performance computing (HPC) facilities employ this operating system. As HPC facilities might
not support virtualization, benchmarks should not be solely deployed as a docker image or similar.
At last, benchmarks shall run headless because otherwise, these potentially rely on dependencies like
xvfb or EGL, which HPC facilities may not support as well. Suppose relevant benchmark details,
such as environment dynamics, are missing. In that case, it can be desirable to support humanly
playable environments so that these can be explored in advance.

Fast simulation speeds, which achieve thousands of steps per second (i.e. FPS), allow training
runs to be more wall time efficient, enabling to upscale experiments and their repetitions or faster
development iterations. The benchmark’s speed also depends on the time it takes to reset the envi-
ronment to set up a new episode for the agent to play. Towards maxing out FPS on a single machine,
benchmarks shall be able to run multiple instances of their environments concurrently.

High diversity attributes environments that offer a large distribution of procedurally generated levels
to reasonably challenge an agent’s ability to generalize (Cobbe et al., 2020). Also, it is desirable to
implement smoothly configurable environments to evaluate the agent at out-of-distribution levels.

Scalable difficulty is a property that shall make environments controllable such that their current
hardness can be increased or decreased. Easier environments can have benefits: a proof-of-concept
state is sooner reachable while developing novel methods, and research groups can fit the difficulty to
their available resources. Moreover, increasing the difficulty ensures that already competent methods
may prove themselves in new challenges to demonstrate their abilities or limits.

Strong dependency on memory refers to tasks that are only solvable if the agent can recall past
information (i.e. successfully leveraging its memory). Section 2.4 describes partially observable
environments that can be solved to some extent without memory. While memory-based agents might
more efficiently solve these tasks, these do not guarantee that the agent’s memory is working. To
ensure that the utilized memory mechanism is working and does not suffer from bugs, this criterion
cannot be omitted by benchmarks targeting specifically the agent’s memory.

1https://www.pygame.org

2

https://www.pygame.org

Published as a conference paper at ICLR 2023

Table 1: An overview of the simulation speed and meta desiderata of the considered environments.
The meta desiderata cover the criteria that are applicable to any benchmark in DRL. The mean FPS
are measured across 100 episodes using constant actions. Procgen is averaged across its memory
distribution environments, and so is Memory Gym. The other benchmarks are measured using a
single environment. refers to true and # to false. Appendix B provides further details.

Benchmark Mean FPS Meta Desiderata

Memory Gym (ours)

Pu
bl

ic
ly

Av
ai

la
bl

e

O
pe

n
So

ur
ce

Li
nu

x
m

ac
O

S
W

in
do

w
s

H
ea

dl
es

s
D

oc
ke

r
Co

nc
ur

re
nt

Pl
ay

ab
le

H
ig

h
D

iv
er

sit
y

Sc
al

ab
le

D
iffi

cu
lty

10123 #
Procgen Memory Distribution (Cobbe et al., 2020) 18530 #
DM Ballet (Lampinen et al., 2021) 6631 #
MiniGrid Memory (Chevalier-Boisvert et al., 2018) 5185 # #
VizDoom (Wydmuch et al., 2018) 549 #
DM Memory Task Suite (Fortunato et al., 2019) 442 # #
DM Lab 30 (Beattie et al., 2016) 433 # # # #
DM Numpad (Parisotto et al., 2020) #
DM Memory Maze (Parisotto et al., 2020) #
DM Object Permanence (Lampinen et al., 2021) #

Strong dependency on frequent memory interactions is a property of tasks that forces the agent
to recall information from and add information to its memory frequently. We believe this is more
suitable for sequential decision-making problems because some related environments can be turned
into supervised learning problems (Section 2.5) and therefore only assess the memory’s capacity
and potentially its robustness to noise.

2.2 CONSIDERED ENVIRONMENTS

A diverse set of environments were used in the past to challenge memory-based agents. Some of
them are originally fully observable but are turned into partially observable Markov Decision Pro-
cesses (POMDP) by adding noise or masking out information from the agent’s observation space.
For instance, this was done for the Arcade Learning Environment (Bellemare et al., 2013) by using
flickering frames (Hausknecht & Stone, 2015) and common control tasks by removing the velocity
from the agent’s observation (Heess et al., 2015; Meng et al., 2021; Shang et al., 2021). These envi-
ronments do not require the agent to memorize long sequences and can already be approached using
frame stacking. Control tasks also touch on the context of Meta Reinforcement Learning (Meta
RL), where memory mechanisms are prominent (Wang et al., 2021; Melo, 2022; Ni et al., 2022).
The same applies to Multi-Agent Reinforcement Learning (Berner et al., 2019; Baker et al., 2020;
Vinyals et al., 2019). As we solely focus on benchmarking the agent’s memory and its ability to gen-
eralize, we do not compare Memory Gym to environments of more complex contexts such as DM
Alchemy (Wang et al., 2021), Crafter (Hafner, 2021), or Obstacle Tower Juliani et al. (2019). Those
might need additional components to the agent’s architecture and its training paradigm. Within this
section, we consider DRL benchmarks (Table 1) that were used by the recently contributed memory
approaches MRA (Fortunato et al., 2019), GTrXL (Parisotto et al., 2020), HCAM (Lampinen et al.,
2021), HELM (Paischer et al., 2022), and A2C-Transformer (Sopov & Makarov, 2022). By exam-
ining these works, it becomes apparent that all of them use different environments to evaluate their
methods, making their results harder to compare.

2.3 META DESIDERATA

Table 1 provides information on the meta desiderata of the considered environments. Some environ-
ments are inaccessible to some extent, as some cannot be run headless. DM Memory Maze (Parisotto
et al., 2020), DM Numpad (Humplik et al., 2019), and DM Object Permanence (Lampinen et al.,
2021) are not publicly available and can, therefore, not be used to reproduce and compare results
in adjacent research. DM Memory Task Suite (Fortunato et al., 2019) is not open source and can

3

Published as a conference paper at ICLR 2023

only be accessed via docker. It may be for these reasons that DM Memory Task Suite, Object Per-
manence, Memory Maze, and Numpad are not widely used yet. DM Lab 30 (Beattie et al., 2016)
has more uses, but the available environments, especially those used in the context of memory, are
superficially documented. Parisotto et al. 2020 divide these environments into reactive and mem-
ory tasks without further reasoning. Potential users have to explore these environments by playing
them, which is possible on machines running Linux only. Procgen (Cobbe et al., 2020), DM Ballet
(Lampinen et al., 2021), MiniGrid (Chevalier-Boisvert et al., 2018), and Memory Gym (ours) are
the only environments that achieve a throughput of thousands of steps per second. 3D environments
usually achieve a smaller throughput, like VizDoom (Wydmuch et al., 2018) or DM Memory Task
Suite (Fortunato et al., 2019).

2.4 STRONG DEPENDENCY ON MEMORY

As stated before, if an environment is solvable to some extent using an agent without memory,
it is not easy to differentiate whether the memory mechanism is working. This impression can
be retrieved by examining the results of Sopov & Makarov 2022 on the VizDoom environments
where a policy without memory makes progress or achieves comparable performances. The six
environments of Procgen’s memory distribution leave us with controversial thoughts. Paischer et al.
2022 show results in these environments that indicate that a memory-less approach can perform
similarly to a memory one. We further take a closer look at Miner. The agent can momentarily
perceive some cues related to past steps of the episode: its last action is retrievable from its rotation.
At the same time, the density of vanished tiles shows the agent whether this region was explored
or not. Exploiting these cues potentially helps memory-less agents to find successful strategies and
make us believe that this environment does not strongly depend on memory, while doubtlessly, a
memory-based agent should be more efficient concerning the number of steps needed to solve the
entire task. Another problem is that the mean cumulative reward is usually reported, which averages
the rewards achieved by collecting diamonds and using the exit. This data does not precisely tell
how good an agent is at completing the entire task. Especially recalling the exit’s position seems
crucial to succeeding as soon as possible. Reporting the success rate and the episode length should
provide more meaningful insights. The environments Heist and Maze encompass fully observable
levels, which raises concerns on strong memory dependence.

2.5 STRONG DEPENDENCY ON FREQUENT MEMORY INTERACTIONS

Concerning frequent memory interactions, we believe that MiniGrid Memory (Chevalier-Boisvert
et al., 2018), Spot the Difference (Fortunato et al., 2019), and DM Ballet (Lampinen et al., 2021) are
not well suited to the need for memory in sequential decision making. These environments demand
the agent’s memory to solely memorize the to-be-observed goal cues during the very beginning of
the episode. Once this cue is memorized, there is no need to manipulate the agent’s memory further.
Simply maintaining it is enough to solve the task. It can be hypothesized that the extracted features
from observing the goal cues are sufficient to solve the ballet environment. To show this, the ballet
environment can be made fully observable (markovization) by feeding the entire sequence of cues
to a recurrent encoder that extracts features that are utilized by the agent’s policy. Consequently,
the policy does not need to maintain its memory in this case. The task at hand gets much easier
because the agent does not need to make obsolete decisions while observing the sequence of cues
as its position is frozen. These tasks would, therefore, only challenge the capacity and robustness to
noise of the agent’s memory. We believe this can be done more efficiently by other benchmarks that
do not belong to the context of DRL, like Long Range Arena (Tay et al., 2021).

3 MEMORY GYM ENVIRONMENTS

Mini-games of the commercial video game Pummel Party2 inspired Memory Gym’s environments.
The agent perceives all environments using 84 × 84 RGB pixels, while its action space is multi-
discrete, featuring two dimensions of size three as shown in appendix C.1. One dimension allows
the agent to move horizontally (no movement, move left, move right), and the other concerns the
agent’s vertical locomotion (no movement, move up, move down). Mortar Mayhem and Mystery

2http://rebuiltgames.com/

4

http://rebuiltgames.com/

Published as a conference paper at ICLR 2023

Agent

Next Target

Command

(a) Annotated Ground Truth (b) Agent Observation (c) Visual Feedback

Figure 1: Mortar Mayhem’s relevant entities are presented by the annotated ground truth of the
environment (a). The green circle, which is solely part of the ground truth, indicates the very next tile
to move to. Once the agent has solved this command, the green circle moves to the next target tile.
At the start of an episode, the commands are rendered sequentially onto the agent’s observation (b)
while the agent cannot move. Once all commands are shown, the agent has to move to the target
tile in a certain amount of time. As soon as the time for executing the current command is over, the
agent’s success is verified, as seen in figure (c). This visual feedback is perceivable by the agent.
After a delay of a few steps, the agent can approach the following command if the episode did not
terminate yet due to failure or completing the entire command sequence.

Path also feature variants based on grid-like locomotion (Figures 10(b) to 10(d)). This way, the
action space is discrete and allows the agent to not move at all, rotate left, rotate right, or move
forward. Subsequently, we further detail the environments’ dynamics, their peculiarities towards
memory, and how these can be smoothly scaled to support varying difficulty levels. Appendix C.2
quantifies the episode lengths. All parameters used for scaling the environments’ hardness and their
default values are found in appendix C.3. Appendices C.4 to C.6 visualize played episodes.

3.1 MORTAR MAYHEM

Mortar Mayhem (MM) (Figure 1) takes place inside a grid-like arena and consists of two tasks that
depend on memory. At first, while unable to move, the agent has to memorize a sequence of five
commands (Clue Task), and afterward, it has to execute each command in the observed order (Act
Task). One command orders the agent to move to one adjacent floor tile or to stay at the current one.
If the agent fails, the episode terminates while receiving no reward. Upon successfully executing
one command, the agent receives a reward of +0.1. Episode lengths in MM are dependent on the
agent’s current ability. The better the agent, the longer the episode lasts until an upper bound (i.e.
max episode length) is reached. MM can be reduced to provide only the Act Task (MMAct). In
this case, the command sequence is fully observable as a one-hot encoded feature vector. The Act
Task requires an agent to leverage its memory frequently because otherwise, the agent does not know
which commands were already executed to fulfill the next one, while there are nine tiles at maximum
to consider. To solve this problem, the agent could learn to track time (e.g. count steps) where a
short-term memory should suffice. The hardness of MM can be further simplified by equipping the
agent with a grid-like movement (MMGrid, MMActGrid). The agent is now capable of moving one
tile at a time. To ensure a meaningful task, the agent must execute ten commands, not five. Further
examples to raise MM’s difficulty are to extend or sample the number of commands or the delay
between command execution. If compared to DM Ballet, MM’s Act Task requires many correct
actions in sequence, while DM Ballet asks the agent to only identify the requested dancer.

3.2 MYSTERY PATH

Mystery Path (MP) (Figure 2) challenges the agent to traverse an invisible path in a grid-like level
of dimension 7 × 7, while only the path’s origin is visible to the agent. If the agent moves off
the path (i.e. falls down the pit), the agent is relocated to its origin. The episode terminates if the
agent reaches the goal or runs out of time (512 steps). Upon reaching the goal, the environment
signals a reward of +1. To overcome uncertainty in this environment, the agent has to memorize
several locations: its steps on the path and the locations where it fell off. The invisible path is
procedurally generated using the path-finding algorithm A∗ (Hart et al., 1968). At first, the path’s

5

Published as a conference paper at ICLR 2023

Goal

Path

A∗ Wall

Pit

Agent

Origin

(a) Annotated Ground Truth (b) Agent Observation (c) Visual Feedback

Figure 2: Mystery Path’s relevant entities are described by the environment’s annotated ground
truth (a). The walkable parts of the path are colored blue (origin), green (goal), and white (path).
Every other part of the environment is considered a pit (black and red) where the agent falls off and
is then relocated to the path’s origin during its next step. The initially randomly chosen red tiles (A∗

Walls) are not considered during path generation. The agent observes itself and the path’s origin (b).
If the agent is off the path, a red cross provides visual feedback (c), which is also observed.

Health Bar

Last Action

Exit

Agent

Spotlight

Coin
(a) Annotated Ground Truth (b) Agent Observation (c) Visual Feedback

Figure 3: All relevant entities can be identified in the annotated ground truth of Searing Spot-
lights (a). The top rows of pixels feature the agent’s remaining health points and its last action
that two chunks and three colors encode. Yellow circles correspond to coins, while the somewhat
rounded gray shape resembles the exit. If the exit is open (i.e. no coins are left), it turns green. The
floor of the environment is a chessboard colored blue and white. As seen in the agent’s observa-
tion (b), the spotlights hide or reveal the other entities. As additional visual feedback (c), the blue
floor tiles turn red if a spotlight spots the agent.

origin is sampled from the grid’s border. Then, the goal is placed in a random position on the
opposing side. Usually, A∗ seeks to find the shortest path. A∗’s cost function is sampled to ensure
that a wide variety of paths is procedurally generated. The path generation randomizes some cells
to be untraceable (A∗ walls). Note that the walls are considered pits and not physical obstacles.
MP can also be simplified to a grid variant (MPGrid), featuring the single discrete action space of
four actions, while the agent’s time limit is reduced from 512 steps to 128. In contrast to MM, the
episode terminates sooner as the agent improves.

3.3 SEARING SPOTLIGHTS

Searing Spotlights (Figure 3) is perceived as a pitch-black surrounding by the agent where the only
information is unveiled by roaming and threatening spotlights. While initially starting with a limited
number of health points (e.g. 100), the agent loses one health point per step if hit by a spotlight.
The episode terminates if the agent has no remaining health points or runs out of time (512 steps).
Because of the posed threats, the agent has to hide in the dark. To successfully run away from closing
in spotlights, the agent must memorize its past actions and at least one past position of itself to infer
its current location. That also requires the agent to carefully use its health point budget to figure
out its location - ideally once briefly. To avoid numb policies, two additional tasks are added to

6

Published as a conference paper at ICLR 2023

0 50 100 150
Steps (in millions)

0

2

4

6

8

10

IQ
M

 C
om

m
an

ds
 E

xe
cu

te
d

(a) Mortar Mayhem Act Grid

0 50 100 150
Steps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

 S
uc

ce
ss

 R
at

e

(b) Mystery Path Grid

0 50 100 150
Steps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

 S
uc

ce
ss

 R
at

e

GRU-PPO (training seeds)
GRU-PPO (novel seeds)
PPO (training seeds)
PPO (novel seeds)
HELM (training seeds)
HELM (novel seeds)
4-Stack (training seeds)
4-Stack (novel seeds)
16-Stack (training seeds)
16-Stack (novel seeds)
Random

(c) Searing Spotlights

Figure 4: Training and generalization performances show strong dependence on memory.

the environment that requires the agent to traverse the environment. The first one randomly places
an exit in the environment, which the agent can use to receive a reward of +1 and terminate the
episode. Secondly, a coin collection task is added. Before using the environment’s exit, the agent
has to collect a certain number of randomly positioned coins. Collecting one coin grants a reward of
+0.25 to the agent. If the agent successfully uses its memory, it can infer its current location, and
recall the locations of the exit and the coins. A simplified grid version of Searing Spotlights is not
available. As a default simplification, the episode starts with perfect information, and after a few
steps, the global light is dimmed until off. Just like in MP, successful episodes terminate sooner.
Appendix C.3 enumerates multiple parameters that organize the measures, behavior, and spawning
frequency of the spotlights. Other parameters concern the reward function, the agent’s properties,
and the visual representation of Searing Spotlights.

4 BASELINE EXPERIMENTS

We run empirical baseline experiments using the DRL algorithm Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017). To support memory, our implementation adds a gated recurrent
unit (GRU) (Cho et al., 2014) to the actor-critic model architecture of PPO (GRU-PPO). Related
memory-based approaches such as MRA (Fortunato et al., 2019), GTrXL (Parisotto et al., 2020),
HCAM (Lampinen et al., 2021), and ALD (Parisotto & Salakhutdinov, 2021) are not considered,
because there is no applicable code available (see appendix G), while these methods are expensive
to reproduce. That does not account for HELM (Paischer et al., 2022), which we successfully added
to our training framework. However, HELM has poor wall-time efficiency (see figs. 17 and 18 in
appendix E). Due to the vast transformer component consisting of 18 blocks, the policy takes much
more time to produce actions during inference. One GRU-PPO training run takes about ten hours
in MMActGrid with a sequence length of 79, while HELM needs at least six times longer. This
effect worsens for longer sequences. The last two baselines consider frame stacking. One stacks
4 RGB frames (4-Stack), while the other one stacks 16 grayscale frames (16-Stack). We repeat all
experiments 5 times. All training runs utilize 100,000 environment seeds. Generalization is assessed
on 30 novel seeds, which are repeated 5 times. Hence, each data point aggregates 750 episodes. The
subsequent sample efficiency curves show the interquartile mean (IQM) and a confidence interval of
0.95 as recommended by Agarwal et al. (2021). For Mystery Path and Searing Spotlights, we report
the success rate, which indicates whether the agent succeeded at the entire task or not. Results on
Mortar Mayhem show the number of commands that were properly executed during one episode.
Appendix D details all baselines, the model architecture, and the used hyperparameters.

4.1 DEPENDENCY ON MEMORY

To support our claim that Memory Gym’s environments strongly depend on memory, the agents are
trained with PPO (memory-less), GRU-PPO, frame stacking, and HELM on MMActGrid, MPGrid
(hidden goal), and Searing Spotlights. Figure 4(a) shows the results on MMActGrid where GRU-
PPO successfully executes ten commands after 50 million training steps, while memory-less PPO is
ineffective by solving only one to two commands. Even though the task requires short-term memory
only, HELM and the frame stacking baselines are notably inferior to GRU-PPO. Concerning MPGrid

7

Published as a conference paper at ICLR 2023

0 50 100 150
Steps (in millions)

0

2

4

6

8

10

IQ
M

 C
om

m
an

ds
 E

xe
cu

te
d

MMActGrid
MMGrid
MMAct
MM

(a) Mortar Mayhem Novel Seeds

0 50 100 150
Steps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

 S
uc

ce
ss

 R
at

e

(b) Mystery Path Training Seeds

0 50 100 150
Steps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

 S
uc

ce
ss

 R
at

e

MPGrid
MPGrid !G
MPGrid !GO
MP Dense
MP

(c) Mystery Path Novel Seeds

Figure 5: By scaling the hardness of Mortar Mayhem and Mystery Path, unsolved and diverse
levels of difficulties emerge. The agents are trained using GRU-PPO. MMAct and MM ask for five
commands to be executed and not ten. Only the generalization performance is shown because, as in
figure 4(a), both performances are nearly identical. In MPGrid, the goal and origin are visible, while
the other two experiments hide the goal (!G) or both (!GO). MP Dense provides a denser reward
signal. Whenever the agent touches a tile of the path for the first time, it is rewarded by 0.03.

(Figure 4(b)), GRU-PPO needs the entire training time to succeed and generalize. HELM reaches a
success rate of about 0.84 during generalization. The frame stacking agents perform worse, while
PPO’s performance is close to random. Results of Searing Spotlights are illustrated in Figure 4(c).
All baselines are barely able to reliably complete this environment, although HELM is the best
baseline achieving a success rate of about 0.3. To further investigate this outcome, subsection 4.3
examines environment ablations and hints at why randomly moving spotlights may be a significant
issue to memory based on recurrence.

4.2 LEVELS OF DIFFICULTY IN MORTAR MAYHEM AND MYSTERY PATH

Levels of difficulty, ranging from easy to unsolved, emerge when scaling Mortar Mayhem and Mys-
tery Path and if trained using GRU-PPO. As seen in figure 5(a), the agent in MMActGrid only needs
50 million steps to accomplish the whole task. In MMAct, it needs twice as long to solve only
five commands. Note that the available commands in the grid variants comprise only five command
choices and not the full range of nine ones. Adding the Clue Task notably increases the agent’s
challenge because the agent trained on MMGrid needs the entire training time to succeed. At the
same time, the complete task of MM remains unsolved. The performance on training and novel
seeds is nearly identical with nearly no variance, which can be explained by the high uncertainty
of this environment. A single observation leaves the agent clueless about which of the nine tiles to
move next. Therefore the agent has no other choice but to obtain the ability to memorize and recall
past events.

Concerning MPGrid, if the goal and origin are part of the agent’s observation, it takes about 65
million steps for the agent to generalize to novel seeds, as shown in figure 5(c). If only the goal is
hidden, the agent needs the entire training time to reach a success rate of 1.0. Hiding the goal and
origin degrades the agent’s performance to a success rate of 0.2 on novel seeds. Agents trained on
MP or MP Dense do not evaluate well on novel seeds. The agent in MP Dense makes little progress
due to the help of a denser reward function that signals a reward of 0.03 for visiting a tile of the path
for only the first time. Consequently, we also experimented with a negative reward of −0.001 for
each step taken, severely hurting the training performance.

4.3 RECURRENCE IS VULNERABLE TO SPOTLIGHT PERTURBATIONS

Searing Spotlights remains a puzzle. It is difficult to tell whether the agent’s trained recurrent policy
learned anything meaningful. Collecting the coin seems worse than chance. The agent’s remaining
health points drop to zero in nearly all evaluated episodes because avoiding the spotlights does not
work well. It seems that the agent struggles to determine what it controls. Even though the spotlights
unveil information on the ground truth of the environment or leave room for exploitation, the recur-
rent agent seems severely hurt by the perturbations inflicted by the randomly moving spotlights,

8

Published as a conference paper at ICLR 2023

(a) Fully Observable (b) Spotlight Perturbation

0 5 10 15 20 25 30
Steps (in millions)

0

2

4

6

8

10

12

IQ
M

 R
et

ur
n

PPO
PPO + Spotlights
GRU-PPO
GRU-PPO + Spotlights

(c) BossFight Performance on Training Seeds

Figure 6: Under perfect information, the noise inflicted by spotlight perturbations harms the recur-
rent agents’ performance in Searing Spotlights (a) and Procgen’s BossFight (b). (c) denotes the
training performances on training seeds when trained with and without perturbations using PPO and
GRU-PPO. The IQM return denotes the summed rewards that the agent achieved during one episode.

which can be considered noise. Regardless of any executed measure (see appendix F for details), for
instance, environmental ablations, model architectures, and hyperparameters, progress in learning
a reasonable behavior is lacking. When trained with GRU-PPO, the only solvable scenario is to
remove the spotlights. In this case, if the global light is initially turned on (perfect information) and
dimmed until off during the first few steps, the agent rapidly collects the coin and uses the exit. In
contradiction, if the global light is slightly dimmed while spotlights are present (Figure 6(a)), GRU-
PPO fails. On the other hand, memory-less PPO quickly succeeds because this fully observable task
is trivial.

Those results are also apparent in training a different environment. We choose Procgen’s BossFight
because it rather needs fewer steps to train as seen in the results of Cobbe et al. 2020. BossFight is
set up to utilize only one level causing the boss always to behave the same. We extrapolate this level
by 100,000 spotlight perturbation seeds under perfect information. Its background is rendered white
to match Searing Spotlight’s visual appearance more closely. The now-established BossFight task
(Figure 6(b)) invites overfitting. Figure 6(c) shows results with and without spotlight perturbations
on PPO and GRU-PPO. Notably, GRU-PPO, perturbed by spotlights, struggles.

5 CONCLUSION AND FUTURE WORK

By accomplishing the desiderata that we have defined and examined in this work, and by evalu-
ating the baseline experiments, we believe that Memory Gym has proven potential to complement
the landscape of Deep Reinforcement Learning benchmarks specializing on agents leveraging mem-
ory. Memory Gym’s unique environments, Mortar Mayhem, Mystery Path, and Searing Spotlights,
strongly depend on memory and frequent agent-memory interactions. As the environments’ diffi-
culties are smoothly scalable, current and future approaches to memory may find their right fit for
examination. To our surprise, Searing Spotlights poses a yet unsolved challenge to agents leveraging
GRU or LSTM.

In future work, it will be intriguing to see whether adjacent and novel memory approaches suffer
from the noisy perturbations inflicted by the spotlights. HELM’s performance on Searing Spot-
lights may point toward a transformer-based approach (e.g. HCAM (Lampinen et al., 2021), GTrXL
(Parisotto et al., 2020)), while approaches that have not been used yet in the context of Deep Rein-
forcement Learning (e.g. Structural State-Space models (Gu et al., 2022)), are also considerable for
Memory Gym in general. Consecutive work may extrapolate the concepts of Memory Gym’s envi-
ronments. Mortar Mayhem could be advanced to an open-ended environment. For instance, the Clue
Task and the Act Task could be stacked infinitely. Every Clue Task could only show one command
at a time, while the Act Task requires the agent to execute all commands that were shown so far.
Hence, memory approaches could be compared by achieved episode lengths, which are correlated
with the amount of information that the agent must be able to recall. Such a goal in mind may inspire
Mystery Path as well. The to-be-traversed path could be endless. However, a larger environment
may not fit into the agent’s observation that an egocentric observation could compensate.

9

Published as a conference paper at ICLR 2023

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In Thirty-Fifth Conference on
Neural Information Processing Systems, 2021.

Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob McGrew, Jakub Pa-
chocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szymon
Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning dexterous in-
hand manipulation. Int. J. Robotics Res., 39(1), 2020. doi: 10.1177/0278364919887447. URL
https://doi.org/10.1177/0278364919887447.

Andrea Baisero and Sammie Katt. gym-gridverse: Gridworld domains for fully and partially ob-
servable reinforcement learning. https://github.com/abaisero/gym-gridverse,
2021.

Bowen Baker, Ingmar Kanitscheider, Todor M. Markov, Yi Wu, Glenn Powell, Bob McGrew, and
Igor Mordatch. Emergent tool use from multi-agent autocurricula. In 8th International Con-
ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.net/forum?id=SkxpxJBKwS.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Ander-
son, Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis
Hassabis, Shane Legg, and Stig Petersen. Deepmind lab. CoRR, abs/1612.03801, 2016. URL
http://arxiv.org/abs/1612.03801.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. J. Artif. Intell. Res., 47:253–279, 2013. doi:
10.1613/jair.3912. URL https://doi.org/10.1613/jair.3912.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning. CoRR, abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans
(eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pp. 1724–1734. ACL, 2014. doi: 10.3115/v1/d14-1179. URL
https://doi.org/10.3115/v1/d14-1179.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural genera-
tion to benchmark reinforcement learning. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pp. 2048–2056. PMLR, 2020. URL http://proceedings.
mlr.press/v119/cobbe20a.html.

Matthew Crosby, Benjamin Beyret, Murray Shanahan, José Hernández-Orallo, Lucy Cheke, and
Marta Halina. The animal-ai testbed and competition. In Hugo Jair Escalante and Raia Hadsell
(eds.), Proceedings of the NeurIPS 2019 Competition and Demonstration Track, volume 123 of
Proceedings of Machine Learning Research, pp. 164–176. PMLR, 08–14 Dec 2020.

10

https://doi.org/10.1177/0278364919887447
https://github.com/abaisero/gym-gridverse
https://openreview.net/forum?id=SkxpxJBKwS
http://arxiv.org/abs/1612.03801
https://doi.org/10.1613/jair.3912
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://github.com/maximecb/gym-minigrid
https://doi.org/10.3115/v1/d14-1179
http://proceedings.mlr.press/v119/cobbe20a.html
http://proceedings.mlr.press/v119/cobbe20a.html

Published as a conference paper at ICLR 2023

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de las Casas, Craig
Donner, Leslie Fritz, Cristian Galperti, Andrea Huber, James Keeling, Maria Tsimpoukelli,
Jackie Kay, Antoine Merle, Jean-Marc Moret, Seb Noury, Federico Pesamosca, David Pfau,
Olivier Sauter, Cristian Sommariva, Stefano Coda, Basil Duval, Ambrogio Fasoli, Pushmeet
Kohli, Koray Kavukcuoglu, Demis Hassabis, and Martin Riedmiller. Magnetic control of toka-
mak plasmas through deep reinforcement learning. Nature, 602(7897):414–419, Feb 2022.
ISSN 1476-4687. doi: 10.1038/s41586-021-04301-9. URL https://doi.org/10.1038/
s41586-021-04301-9.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IM-
PALA: scalable distributed deep-rl with importance weighted actor-learner architectures. In Jen-
nifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, vol-
ume 80 of Proceedings of Machine Learning Research, pp. 1406–1415. PMLR, 2018. URL
http://proceedings.mlr.press/v80/espeholt18a.html.

Meire Fortunato, Melissa Tan, Ryan Faulkner, Steven Hansen, Adrià Puigdomènech Badia, Gavin
Buttimore, Charles Deck, Joel Z Leibo, and Charles Blundell. Generalization of reinforcement
learners with working and episodic memory. In Advances in Neural Information Processing
Systems, pp. 12448–12457, 2019.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/
forum?id=uYLFoz1vlAC.

Çaglar Gülçehre, Tom Le Paine, Bobak Shahriari, Misha Denil, Matt Hoffman, Hubert Soyer,
Richard Tanburn, Steven Kapturowski, Neil C. Rabinowitz, Duncan Williams, Gabriel Barth-
Maron, Ziyu Wang, Nando de Freitas, and Worlds Team. Making efficient use of demonstra-
tions to solve hard exploration problems. In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=SygKyeHKDH.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. CoRR, abs/2109.06780, 2021.
URL https://arxiv.org/abs/2109.06780.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. Syst. Sci. Cybern., 4(2):100–107, 1968. doi: 10.1109/TSSC.
1968.300136. URL https://doi.org/10.1109/TSSC.1968.300136.

Matthew J. Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps.
In 2015 AAAI Fall Symposia, Arlington, Virginia, USA, November 12-14, 2015, pp. 29–37. AAAI
Press, 2015. URL http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/
view/11673.

Nicolas Heess, Jonathan J. Hunt, Timothy P. Lillicrap, and David Silver. Memory-based control
with recurrent neural networks. CoRR, abs/1512.04455, 2015. URL http://arxiv.org/
abs/1512.04455.

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A. Ortega, Yee Whye Teh, and
Nicolas Heess. Meta reinforcement learning as task inference. CoRR, abs/1905.06424, 2019.
URL http://arxiv.org/abs/1905.06424.

Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao, Hunter Henry, Marwan Mattar, and
Danny Lange. Unity: A general platform for intelligent agents. CoRR, abs/1809.02627, 2018.
URL http://arxiv.org/abs/1809.02627.

Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Ervin Teng, Hunter Henry,
Adam Crespi, Julian Togelius, and Danny Lange. Obstacle tower: A generalization challenge in
vision, control, and planning. In Sarit Kraus (ed.), Proceedings of the Twenty-Eighth International

11

https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-021-04301-9
http://proceedings.mlr.press/v80/espeholt18a.html
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=SygKyeHKDH
https://arxiv.org/abs/2109.06780
https://doi.org/10.1109/TSSC.1968.300136
http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
http://arxiv.org/abs/1512.04455
http://arxiv.org/abs/1512.04455
http://arxiv.org/abs/1905.06424
http://arxiv.org/abs/1809.02627

Published as a conference paper at ICLR 2023

Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pp.
2684–2691. ijcai.org, 2019. doi: 10.24963/ijcai.2019/373. URL https://doi.org/10.
24963/ijcai.2019/373.

Steven Kapturowski, Georg Ostrovski, Will Dabney, John Quan, and Remi Munos. Recurrent ex-
perience replay in distributed reinforcement learning. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=r1lyTjAqYX.

Andrew Kyle Lampinen, Stephanie C. Y. Chan, Andrea Banino, and Felix Hill. Towards mental
time travel: a hierarchical memory for reinforcement learning agents. CoRR, abs/2105.14039,
2021. URL https://arxiv.org/abs/2105.14039.

Luckeciano C. Melo. Transformers are meta-reinforcement learners. In Kamalika Chaudhuri, Ste-
fanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Con-
ference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, vol-
ume 162 of Proceedings of Machine Learning Research, pp. 15340–15359. PMLR, 2022. URL
https://proceedings.mlr.press/v162/melo22a.html.

Lingheng Meng, Rob Gorbet, and Dana Kulic. Memory-based deep reinforcement learning for
pomdps. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021,
Prague, Czech Republic, September 27 - Oct. 1, 2021, pp. 5619–5626. IEEE, 2021. doi:
10.1109/IROS51168.2021.9636140. URL https://doi.org/10.1109/IROS51168.
2021.9636140.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nat., 518(7540):529–533, 2015. doi: 10.1038/nature14236. URL https://doi.org/10.
1038/nature14236.

Tianwei Ni, Benjamin Eysenbach, and Ruslan Salakhutdinov. Recurrent model-free RL can be a
strong baseline for many pomdps. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pp. 16691–16723. PMLR, 2022. URL https://proceedings.mlr.
press/v162/ni22a.html.

Fabian Paischer, Thomas Adler, Vihang P. Patil, Angela Bitto-Nemling, Markus Holzleitner, Se-
bastian Lehner, Hamid Eghbal-Zadeh, and Sepp Hochreiter. History compression via language
models in reinforcement learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pp. 17156–17185. PMLR, 2022. URL https://proceedings.mlr.
press/v162/paischer22a.html.

Emilio Parisotto and Ruslan Salakhutdinov. Efficient transformers in reinforcement learning us-
ing actor-learner distillation. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=uR9LaO_QxF.

Emilio Parisotto, H. Francis Song, Jack W. Rae, Razvan Pascanu, Çaglar Gülçehre, Siddhant M.
Jayakumar, Max Jaderberg, Raphaël Lopez Kaufman, Aidan Clark, Seb Noury, Matthew M.
Botvinick, Nicolas Heess, and Raia Hadsell. Stabilizing transformers for reinforcement learning.
In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 7487–
7498. PMLR, 2020. URL http://proceedings.mlr.press/v119/parisotto20a.
html.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Yoshua Bengio and
Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR 2016,

12

https://doi.org/10.24963/ijcai.2019/373
https://doi.org/10.24963/ijcai.2019/373
https://openreview.net/forum?id=r1lyTjAqYX
https://arxiv.org/abs/2105.14039
https://proceedings.mlr.press/v162/melo22a.html
https://doi.org/10.1109/IROS51168.2021.9636140
https://doi.org/10.1109/IROS51168.2021.9636140
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://proceedings.mlr.press/v162/ni22a.html
https://proceedings.mlr.press/v162/ni22a.html
https://proceedings.mlr.press/v162/paischer22a.html
https://proceedings.mlr.press/v162/paischer22a.html
https://openreview.net/forum?id=uR9LaO_QxF
https://openreview.net/forum?id=uR9LaO_QxF
http://proceedings.mlr.press/v119/parisotto20a.html
http://proceedings.mlr.press/v119/parisotto20a.html

Published as a conference paper at ICLR 2023

San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347, 2017.

Wenling Shang, Xiaofei Wang, Aravind Srinivas, Aravind Rajeswaran, Yang Gao, Pieter Abbeel,
and Michael Laskin. Reinforcement learning with latent flow. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 22171–22183, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/ba3c5fe1d6d6708b5bffaeb6942b7e04-Abstract.html.

Vitalii Sopov and Ilya Makarov. Transformer-based deep reinforcement learning in vizdoom. In
Evgeny Burnaev, Dmitry I. Ignatov, Sergei Ivanov, Michael Khachay, Olessia Koltsova, Andrei
Kutuzov, Sergei O. Kuznetsov, Natalia Loukachevitch, Amedeo Napoli, Alexander Panchenko,
Panos M. Pardalos, Jari Saramäki, Andrey V. Savchenko, Evgenii Tsymbalov, and Elena Tu-
tubalina (eds.), Recent Trends in Analysis of Images, Social Networks and Texts, pp. 96–110,
Cham, 2022. Springer International Publishing. ISBN 978-3-031-15168-2.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
transformers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=qVyeW-grC2k.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh,
Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P.
Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin
Dalibard, David Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu
Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McK-
inney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis,
Chris Apps, and David Silver. Grandmaster level in starcraft II using multi-agent reinforce-
ment learning. Nat., 575(7782):350–354, 2019. doi: 10.1038/s41586-019-1724-z. URL
https://doi.org/10.1038/s41586-019-1724-z.

Jane Wang, Michael King, Nicolas Porcel, Zeb Kurth-Nelson, Tina Zhu, Charlie Deck, Peter Choy,
Mary Cassin, Malcolm Reynolds, Francis Song, Gavin Buttimore, David Reichert, Neil Rabi-
nowitz, Loic Matthey, Demis Hassabis, Alex Lerchner, and Matthew Botvinick. Alchemy: A
structured task distribution for meta-reinforcement learning. arXiv preprint arXiv:2102.02926,
2021. URL https://arxiv.org/abs/2102.02926.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

Marek Wydmuch, Michał Kempka, and Wojciech Jaśkowski. Vizdoom competitions: Playing doom
from pixels. IEEE Transactions on Games, 2018.

13

http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
https://proceedings.neurips.cc/paper/2021/hash/ba3c5fe1d6d6708b5bffaeb6942b7e04-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ba3c5fe1d6d6708b5bffaeb6942b7e04-Abstract.html
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1038/s41586-019-1724-z
https://arxiv.org/abs/2102.02926

Published as a conference paper at ICLR 2023

A INSTALLATION AND EXECUTION OF MEMORY GYM

Create Anaconda environment
$ conda create -n memory-gym python=3.7 --yes
$ conda activate memory-gym
Install Memory Gym
$ pip install memory-gym
Play Mortar Mayhem
$ mortar_mayhem

Figure 7: Install and play Memory Gym’s environments.

Memory Gym is available as a PyPi package3, which installs the required dependencies gym and
PyGame. We recommend to utilize Anaconda4 to allow for console scripts to be executed. This
way, the environments can be played using the following commands:

$ mortar_mayhem
$ mortar_mayhem_b
$ mortar_mayhem_grid
$ mortar_mayhem_b_grid
$ mystery_path
$ mystery_path_grid
$ searing_spotlights

Figure 8: Console scripts to play Memory Gym’s environments

import gym
import memory_gym

Configure desired reset parameters
options = {"allowed_commands": 5, "command_count": [5]}

env = gym.make("MortarMayhem-v0")
obs = env.reset(options)
print(obs["visual_observation"].shape) # (84, 84, 3)
print(env.action_space) # MultiDiscrete([3 3])

done = False
while not done:

action = env.action_space.sample()
obs, reward, done, info = env.step(action)

Figure 9: Code interactions with Memory Gym environments

3Dear reviewers, the package will be available upon acceptance due to anonymity.
4https://www.anaconda.com/products/distribution

14

https://www.anaconda.com/products/distribution

Published as a conference paper at ICLR 2023

B EXTENDED RELATED BENCHMARK OVERVIEW

Table 2: Comparison of the simulation speed of our benchmark to related ones. A constant action
is executed to measure the speed. Procgen encompasses the mean steps per second for the envi-
ronments CaveFlyer, Jumper, Heist, Dodgeball, Maze, and Miner. The reset duration is included in
steps per second. Some benchmarks are only measured by a single environment. The measurement
was done on a AMD Ryzen 7 2700X.

FPS Reset DurationBenchmark Mean Std Mean (seconds)
Procgen Memory Distribution
(Cobbe et al. (2020)) 18530 5453 4e-6

Mystery Path
(ours) 12187 330 5e-4

Mortar Mayhem
(ours) 11692 179 2e-4

Atari Breakout
(Bellemare et al. (2013)) 7117 19 6e-3

DM Ballet
(Lampinen et al. (2021)) 6631 795 6e-4

Searing Spotlights
(ours) 5490 69 5e-4

MiniGrid Memory
(Chevalier-Boisvert et al. (2018)) 5185 141 1e-3

MiniWorld TMaze
(Chevalier-Boisvert et al. (2018)) 1162 65 6e-4

GridVerse MemoryNineRooms
(Baisero & Katt (2021)) 938 89 1e-3

ML-Agents Hallway
(Juliani et al. (2018)) 702 42 1e-3

VizDoom My Way Home
(Wydmuch et al. (2018)) 549 22 3e-3

Crafter
(Hafner (2021)) 482 33 1e-1

DM Spot the Difference
(Fortunato et al. (2019)) 442 20 1e-1

DM Lab 30 rooms watermaze
(Beattie et al. (2016)) 433 53 5e-1

DM Alchemy
(Wang et al. (2021)) 308 31 2e-1

DM Hard Eight ball room navigation cubes
(Gülçehre et al., 2020) 160 7 2e-1

AnimalAI 3 aai c32 r5
(Crosby et al. (2020)) 190 59 1e-2

Obstacle Tower
(Juliani et al. (2019)) 43 2 16e-1

15

Published as a conference paper at ICLR 2023

C ENVIRONMENT DETAILS

C.1 ACTION SPACES

(a) Multi-Discrete (b) Move Forward (c) Rotate Left (d) Rotate Right

Figure 10: Memory Gym’s environments feature a multi-discrete action space as seen in (a). One
dimension (green arrows) denotes the agent’s vertical velocity. The other one (red arrows) refers to
the agent’s horizontal velocity. Both dimensions feature a no-op action. Therefore, the agent can
utilize both dimensions to move into eight distinct cardinal directions (all arrows). The speed of the
agent is fixed at 2.83 pixels per step. Mortar Mayhem and Mystery Path also provide a grid-like
locomotion based on a discrete action space of four actions. The agent can move forward (b) one
tile at a time. Its forward speed in Mortar Mayhem is 14 pixels per second. Its forward speed in
Mystery Path is 12 pixels per second. Two other actions allow the agent to rotate left (c) or right (d)
at 90 degrees. The last action is no-op.

C.2 EPISODE LENGTHS

Table 3: Lengths of successful (best case) and failed (worst case) episodes in Mortar Mayhem. The
values are calculated by equations (1-6).

MM MMAct MMGrid MMActGrid
Min (Lower Bound) 38 19 46 7
Max (Upper Bound) 135 115 119 79

ClueTask = (ShowDuration+ ShowDelay) · CommandCount (1)
ActTask = (ExecutionDuration+ ExecutionDelay) · CommandCount (2)

ActTask = ActTask − ExecutionDelay + 1 (3)
MaxEpisodeLength = ClueTask +ActTask (4)

ActFailure = ExecutionDuration+ 1 (5)
MinEpisodeLength = ClueTask +ActFailure (6)

Table 4: Lengths of successful episodes in Mystery Path, Mystery Path Grid, and Searing Spotlights.
The values for MP and MPGrid are retrieved from one agent trained on the ground truth. The values
for Searing Spotlights are based on an optimal policy. The optimal policy traverses the shortest path
to the coin and then to the exit.

MP MPGrid Searing Spotlights
Min (Lower Bound) 23 6 15
Mean 39.13 13.17 35.33
Std 7.36 3.22 8.01
Max 73 29 67
Upper Bound 512 128 512
Policy Agent Agent Optimal
Episode Samples 100k 100k 100k

16

Published as a conference paper at ICLR 2023

C.3 RESET PARAMETERS TO CONFIGURE THE ENVIRONMENTS

Table 5: These are the default parameters that we used throughout this paper as default. Parameters
with a * indicate that these are uniformly sampled. Values in square brackets are discrete choices,
while values in parentheses consider a range to sample from. Mortar Mayhem Grid features the
same parameters as its parent, but only the modified ones are presented.

Mortar Mayhem Searing Spotlights
Parameter Default Parameter Default
Agent Scale 0.25 Max Episode Length 512
Agent Speed 2.5 Agent Scale 0.25
Arena Size 5 Agent Speed 2.5
Number of Available Commands 9 Agent Visible False
Number of Commands* [5] Agent Health 100
Command Show Duration* [3] Sample Agent Position True
Command Show Delay* [1] Use Exit True
Execution Delay* [6] Exit Scale 0.5
Execution Duration* [18] Exit Visible False
Hide Visual Feedback False Number of Coins* [1]
Reward Command Failure 0 Number of Initial Spotlight Spawns 4
Reward Command Success 0.1 Number of Spotlight Spawns 30
Reward Episode Success 0 Spotlight Spawn Interval 30

Mortar Mayhem Grid Spotlight Spawn Decay 0.95
Parameter Default Spotlight Spawn Threshold 10
Number of Available Commands 5 Spotlight Radius* (7.5-13.75)
Number of Commands* [10] Spotlight Speed* (0.0025-0.0075)
Execution Delay* [2] Spotlight Damage 1
Execution Duration* [6] Light Dim Off Duration 6

Mystery Path Light Threshold 255
Parameter Default Hide Visual Feedback False
Max Episode Length 512 Render Background Black False
Agent Scale 0.25 Reward Inside Spotlight 0
Agent Speed 2.5 Reward Outside Spotlights 0
Cardinal Origin Choice* [0, 1, 2, 3] Reward Death 0
Hide Origin False Reward Exit 1
Hide Goal True Reward Coin 0.25
Hide Visual Feedback False Reward Max Steps 0
Reward Goal 1
Reward Fall Off 0
Reward Path Progress 0
Reward Step 0

17

Published as a conference paper at ICLR 2023

C.4 MORTAR MAYHEM GRID TRAJECTORY

Figure 11: A successfully completed episode of Mortar Mayhem Grid showing the ground truth.
The zip archive of the supplementary material provides an episode as a video.

18

Published as a conference paper at ICLR 2023

C.5 MYSTERY PATH GRID TRAJECTORY

Figure 12: Various randomly generated levels in the Mystery Path environment.

Figure 13: A successfully completed episode of Mystery Path Grid showing the ground truth. The
zip archive of the supplementary material provides an episode as a video.

19

Published as a conference paper at ICLR 2023

C.6 SEARING SPOTLIGHTS TRAJECTORY

Figure 14: An excerpt of Searing Spotlights showing the ground truth and using a frame skip of
four. The zip archive of the supplementary material provides an episode as a video.

20

Published as a conference paper at ICLR 2023

Visual
Observation

Conv
Filters: 32

Size: 8
Stride: 4

Conv2
Filters: 64

Size: 4
Stride: 2

Conv3
Filters: 64

Size: 3
Stride: 1 FC

 (5
12

)

Value (1)

FC
 (5

12
)G

R
U

 (5
12

)

Policy Branch (3)

Policy Branch (3)

Fl
at

te
n

C
on

ca
te

na
te

FC
 (1

28
)

Vector
Observation

FC
 (5

12
)

R
es

ha
pe

 to
 s

eq
ue

nc
es

R
es

ha
pe

 to
 b

at
ch

Figure 15: GRU-PPO utilizes an actor-critic feed-forward convolutional recurrent neural network.
Visual and vector observations are encoded as an entire batch by either convolutional or fully con-
nected layers. The encoded features are concatenated and then reshaped to sequences before feeding
them to the recurrent layer. Its output has to be reshaped into the original batch shape. Further, the
forward pass is divided into two streams relating to the value function and the policy. The number
of policy heads is equal to the number of action dimensions given by a multi-discrete action space.

split zero pad

Sampled Trajectories

w0, tT

wW, t0

w0, t0

wW, tT

w..., t...

Split Episodes

epiE, t0 epiE, tET

epi..., t...

epi0, t0 epi0, tET

epiE, tETepiE, t0

Split Sequences

seq#, t0 seq#, t#T

seq0, t0 seq0, t#T

seq..., t...

split

Padding

pad#T+1 : max(#T)

pad#T+1 : max(#T)

pad#T+1 : max(#T)

concatenate

Figure 16: The data preprocessing starts out by sampling trajectories across W workers for T steps.
Next, E episodes of varying length ET are extracted from the trajectories. Those can be further
split into # sequences of varying length #T . At last, zero padding is used to retrieve sequences of
fixed length max(#T).

D BASELINES

D.1 GRU-PPO

Our GRU-PPO baseline utilizes the clipped surrogate objective (Schulman et al., 2017). Due to the
usage of the Gated Recurrent Unit as the recurrent layer, the to be selected action at of the policy
πθ depends on the current observation ot and hidden state ht of the recurrent layer. Ât denotes
advantage estimates based on generalized advantage estimation (GAE) (Schulman et al., 2016), θ
the parameters of a neural net and ϵ the clip range.

LC
t (θ) = Êt[min(qt(θ)Ât, clip(qt(θ), 1− ϵ, 1 + ϵ)Ât)] (7)

with ratio qt(θ) =
πθ(at|ot, ht)

πθold(at|ot, ht)

The value function is optimized using the squared-error loss LV
t (θ). H[πθ](ot) denotes an entropy

bonus encouraging exploration (Schulman et al., 2017). Both are weighted using the coefficients c1
and c2 and are added to LC

t to complete the loss:

LCV H
t (θ) = Êt[L

C
t (θ)− c1L

V
t (θ) + c2H[πθ](ot, ht)] (8)

with LV
t (θ) = (Vθ(ot, ht)− V targ

t)2

21

Published as a conference paper at ICLR 2023

IMPLEMENTATION DETAILS

Three major components have to be implemented: the forward pass of the model (Figure 15), the
processing of the sampled training data (Figure 16), and the loss function (Equation 9).

The training data is sampled by a fixed number of workers for a fixed amount of steps and is stored
as a tensor. Each collected trajectory may contain multiple episodes that might have been truncated.
After sampling, the data has to be split into episodes. Optionally, these can be further split into
smaller sequences of fixed length. Otherwise, the actual sequence length is equal to the length of
the longest episode. Episodes or sequences that are shorter than the desired length are padded using
zeros. As the data is structured into fragments of episodes, the hidden states of the recurrent layer
have to be selected correctly. The output hidden state of the previous sequence is the input hidden
state of its consecutive one. This approach is also known as truncated backpropagation through time
(truncated bptt). Finally, minibatches sample multiple sequences from the just processed data.

Concerning the forward pass of the model, it is more efficient to feed every non-recurrent layer the
entire batch of the data (i.e. batch size = workers × steps) and not each sequence one by one.
Whenever the batch is going to be fed to a recurrent layer during optimization, the batch has to be
reshaped to the dimensions: number of sequences and sequence length. After passing the sequences
to the recurrent layer, the data has to be reshaped again to the overall batch size. Note that the
forward pass for sampling trajectories operates on a sequence length of one. In this case, the data
keeps its shape throughout the entire forward pass.

Once the loss function is being computed, the padded values of the sequences have to be masked
so that these do not affect the gradients. Lmask is the average over all losses not affected by the
paddings.

Lmask(θ) =

∑T
t

[
maskt × LCV H

t (θ)
]∑T

t [maskt]
(9)

with maskt =

{
0 where padding is used
1 where no padding is used

D.2 MEMORY-LESS PPO

In the case of memory-less PPO, Frame Stacking, and HELM, the recurrent layer is removed. The
training data is not split into sequences. Loss masking is not used.

D.3 FRAME STACKING

n − 1 past frames are stacked to the agents current visual observation. In the case of stacking 4
frames, RGB frames are used. Grayscale frames are utilized in the case of stacking 16 frames to
reduce the model’s input dimension.

D.4 HELM

If HELM is used, the model receives another encoding branch that receives the current grayscale
visual observation. The observation is then propagated by a frozen hopfield and a pre-trained trans-
former as described by Paischer et al. 2022. The resulting features are concatenated to the ones from
the CNN and the vector observation encoder.

D.5 CHOICE OF HYPERPARAMETERS

Table 6 enumerates the utilized hyperparameters. The agent in Searing Spotlights uses a frame skip
of 2, which halves the length of an episode easing the agent’s exploration. The quite large batch
size is chosen to max out the wall-time efficiency of the utilized resources. One training based on
GRU-PPO utilizes almost 32GB of VRAM. Most of the hyperparameters related to memory were
found by running a grid search on an early version of Mortar Mayhem Grid. Besides that we made
coarse hyperparameter sweeps especially for Searing Spotlights that did not yield any benefit. We

22

Published as a conference paper at ICLR 2023

Table 6: These are the hyperparameters that we used for all training runs. The sequence length is
dynamically set by the longest episode inside the batch of the gathered training data. The experi-
ments on Searing Spotlights and Mystery Path utilized a fixed sequence length of 128. The learning
rate and the entropy coefficient decay linearly.

Hyperparameter Value
Training Seeds 100000
Sequence Length Max
Number of Workers 32
Worker Steps 512
Batch Size 16384
Number of Mini Batches 8
Mini Batch Size 2048
PPO Updates 10000
Training Steps 163840000
Discount Factor Gamma 0.99
GAE Lamda 0.95
Epochs 3
Value Loss Coefficient 0.25
Max Gradient Norm 0.5
Clip Range Epsilon 0.2
Initial Learning Rate 3e-4
Final Learning Rate 1e-4
Initial Entropy Coefficient 1e-4
Final Entropy Coefficient 1e-5
HELM Beta 1000
Optimizer AdamW

tried the values 50, 100, 200, and 1000 for HELM’s beta hyperparameter on MMActGrid. All
values ended up with a nearly identical performance. We ultimately chose 1000 because there is
not much variance in individual observations in Mortar Mayhem and Mystery Path. Overall, we
rather allocated our resources to scale the difficulty of Mortar Mayhem and Mystery Path, while
investigating the issues of Searing Spotlights.

23

Published as a conference paper at ICLR 2023

E WALL-TIME EFFICIENCY OF HELM

0 10 20 30 40 50 60
Hours

0

2

4

6

8

10
IQ

M
 C

om
m

an
ds

 E
xe

cu
te

d GRU-PPO
PPO
HELM
Random

Figure 17: Generalization performances on novel seeds in Mortar Mayhem Act Grid showing the
wall-time efficiency of PPO, GRU-PPO, and HELM. These experiments are run on an NVIDIA
A100 Tensor-Core-GPU and an AMD EPYC 7542 CPU (32 cores).

0 10 20 30 40 50 60 70 80
Hours

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

 S
uc

ce
ss

 R
at

e

GRU-PPO
PPO
HELM
Random

Figure 18: Generalization performances on novel seeds in Mystery Path Grid (hidden goal) showing
the wall-time efficiency of PPO, GRU-PPO, and HELM. These experiments are run on an NVIDIA
A100 Tensor-Core-GPU and an AMD EPYC 7542 CPU (32 cores).

24

Published as a conference paper at ICLR 2023

F MEASURES TAKEN ON SEARING SPOTLIGHTS

(a) Default (b) Fully Observable (c) No Spotlights (d) No Chessboard (e) Black Floor

Figure 19: Varying visual representations of Searing Spotlights are examined. (a) poses the original
task. (b) provides perfect information, because the global light is just dimmed. (c) disables the
spotlight dynamics while dimming the global light until off. (d) removes the tiled background. (e)
renders the floor black that requires to render the spotlights’ circumference white.

Multiple experiments were conducted to ablate the environment’s difficulty and to vary the model
architecture. Figure 19 shows a few variations of the visual representation of Searing Spotlights.
Whenever spotlights are present, the recurrent agent fails. Subsequently, we enumerate the measures
that we tried with limited success to help the agent to learn a more meaningful policy. Increasing
the scale of all entities but the spotlights or reducing the number of spotlights may have undesirable
consequences to the task’s quality. Random policies may be more successful under these measures.

• Reduce episode length to ease explo-
ration

– Leverage frame skipping
– Raise agent speed
– Scale up all entities except spotlights

• Vary spotlights
– Add negative reward of −0.01 for

the agent being inside the spotlights
– Stationary spotlights
– Fewer spotlights
– Constant spotlight size and speed

• Vary task
– Use only one coin and no exit
– Use the exit but no coin
– Agent always starts at the center of

the level
– Increase agent health points
– Add negative death reward of −0.1

• Vary agent observation
– Environment is fully observable for

few steps
– Make the agent, coin, exit, or all of

them permanently visible

– Add health points bar
– Render the agent’s last action onto to

the observation instead of feeding a
one-hot encoded feature vector

– Feed the agent its exact position as
normalized scalars

– Slightly dim the light (perfect infor-
mation)

– Render the environment’s floor
black while drawing the spotlights’
circumference white

• Vary model architecture
– Add residual connection around the

GRU cell
– Use LSTM instead of GRU
– Reduce sequence length from 128 to

64
– Use Impala CNN Espeholt et al.

(2018) instead of Nature CNN Mnih
et al. (2015)

– Add fully connected layer between
CNN and GRU

25

Published as a conference paper at ICLR 2023

G SOURCE CODE AVAILABILITY OF TRANSFORMER-BASED APPROACHES

During the rebuttal, few complex frameworks were brought to our attention that claim to support
a DRL algorithm leveraging Gated TransformerXL (Parisotto et al., 2020) or just TransformerXL,
namely Rllib, DI-engine, and Brain Agent. We tried to use Memory Gym with RLib but observed
questionable outputs like negative rewards (even though the environments did not use any negative
rewards). The framework is too complex to analyze and eventually to verify. The same accounts for
Brain Agent, which is not densely commented nor documented. DI-Engine implements an R2D2
(Kapturowski et al., 2019) variant based on Gated TransformerXL. We tried it and learned that it
has a poor sample throughput by a magnitude of 10 if compared to GRU-PPO. We do not claim
that those frameworks are dysfunctional, because we just report our limited experience by exploring
those.

By the time of acceptance, we finally implemented a lightweight and easy-to-follow TransformerXL
+ PPO baseline, which is now used in our momentary work on Memory Gym. Source Code:
https://github.com/MarcoMeter/episodic-transformer-memory-ppo

26

https://github.com/ray-project/ray/blob/master/rllib/models/torch/attention_net.py
https://github.com/opendilab/DI-engine
https://github.com/kakaobrain/brain_agent/
https://github.com/MarcoMeter/episodic-transformer-memory-ppo

	Introduction
	Comparison of Related Memory Benchmarks
	Desiderata of Memory Benchmarks
	Considered Environments
	Meta Desiderata
	Strong Dependency on Memory
	Strong Dependency on Frequent Memory Interactions

	Memory Gym Environments
	Mortar Mayhem
	Mystery Path
	Searing Spotlights

	Baseline Experiments
	Dependency on Memory
	Levels of Difficulty in Mortar Mayhem and Mystery Path
	Recurrence is Vulnerable to Spotlight Perturbations

	Conclusion and Future Work
	Installation and Execution of Memory Gym
	Extended Related Benchmark Overview
	Environment Details
	Action Spaces
	Episode Lengths
	Reset Parameters to Configure the Environments
	Mortar Mayhem Grid Trajectory
	Mystery Path Grid Trajectory
	Searing Spotlights Trajectory

	Baselines
	GRU-PPO
	Memory-Less PPO
	Frame Stacking
	HELM
	Choice of Hyperparameters

	Wall-time efficiency of HELM
	Measures taken on Searing Spotlights
	Source Code Availability of Transformer-Based Approaches

