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Abstract

We propose a new method for the problem of controlling linear dynamical sys-
tems under partial observation and adversarial disturbances. Our new algorithm,
Double Spectral Control (DSC), matches the best known regret guarantees while
exponentially improving runtime complexity over previous approaches in its depen-
dence on the system’s stability margin. Our key innovation is a two-level spectral
approximation strategy, leveraging double convolution with a universal basis of
spectral filters, enabling efficient and accurate learning of the best linear dynamical
controllers.

1 Introduction

Control theory is a decades-old branch of applied mathematics concerned with designing systems
that maintain desirable behavior over time, with applications ranging from robotics and aerospace to
economics and biology. Recently, it has been adopted by the machine learning community through
the lens of online learning, enabling new approaches to sequential decision making in systems with
latent state and feedback.

A central model in control theory, and increasingly in reinforcement learning and sequence prediction,
is the linear dynamical system (LDS), where the hidden state xt ∈ Rd evolves linearly in response to
control inputs ut ∈ Rn and adversarial disturbances wt, and only partial observations yt ∈ Rp are
available:

xt+1 = Axt +But +wt ,

yt = Cxt . (1)

where ut ∈ Rn is the control input, wt ∈ Rd is an adversarial disturbance, and yt ∈ Rp is a partial
observation of the latent state.

At each round t, the learner observes yt, selects a control ut, and incurs a convex loss ct(yt,ut),
where the loss functions ct are chosen by an adaptive adversary. This setting extends the classical
Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) [22], which assumes
known dynamics, full observation, and stochastic Gaussian noise. In contrast, our setting accounts
for arbitrary time-varying convex losses, adversarial disturbances, and partial observations. This
adversarial setup with partial information falls under the framework of online nonstochastic control,
see e.g. [19]. We focus on the setting where the system matrices (A,B,C) are known and time-
invariant.
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Regret Minimization with Partial Observation. Since minimizing cumulative cost directly is
infeasible in adversarial environments, we adopt the standard benchmark of regret. The goal is to
compete with the best fixed policy π ∈ Π in hindsight from a comparator class Π. Formally, the
regret of an algorithm A is defined as

RegretT (A,Π) =

T∑
t=1

ct(y
A
t ,u

A
t )−min

π∈Π

T∑
t=1

ct(y
π
t ,u

π
t ),

where (yA
t ,u

A
t ) are the observation and control sequences induced by the algorithm, and (yπ

t ,u
π
t )

are those induced by policy π. Note that since the controller does not observe the full state, the losses
have to be defined over observations rather than full states, as regret is meaningful only when costs
depend on information available to the controller.

We consider comparator classes Π consisting of linear dynamical controllers (LDCs), the standard
benchmark for optimal control under partial observation [19]. These controllers maintain an internal
linear state updated based on incoming observations, and generate control actions via a linear readout
of this internal state. As such, LDCs are substantially more expressive than a linear map of the
current observation. When the system dynamics and cost functions are known in advance and the
disturbances are Gaussian, the optimal controller is computed by the classical Linear Quadratic
Gaussian (LQG) algorithm [22, 6, 8]. However, in the more general setting that we consider in this
work, directly optimizing over LDCs is nonconvex and computationally intractable. To address this,
we adopt improper learning, using a convex relaxation that enables efficient competition with the
best stable LDC in hindsight.

Marginal Stability and Spectral Filters. Linear Dynamical Controllers (LDCs) form the most ex-
pressive class of linear policies in the online control literature, capturing systems with internal memory
and feedback over partial observations [19]. Unlike linear state-feedback or linear action controllers,
LDCs can implement rich temporal dependencies and adapt to long-horizon structure—making them
the natural comparator class in the partially observed setting.

However, learning or competing with general LDCs is computationally hard without further assump-
tions. We focus on the regime of marginal stability, where the spectral radius of the closed-loop
dynamics is at most 1− γ for small γ > 0. This regime is both practically relevant, many systems
are designed to retain memory over time, and analytically tractable, as it ensures geometric decay
of impulse responses. In practice, small stability margins occur in systems that require smooth,
long-memory control such as robotics, thermal regulation, satellite attitude control, surgery, and
structural damping. In these applications, aggressive control is infeasible or undesirable, and con-
trollers must operate near the stability boundary to achieve robustness and precision. To make this
structure exploitable, we restrict to (κ, γ)-diagonalizably stable LDCs (Definition 3.5), which admit
well-conditioned diagonalizations and bounded responses. Appendix D presents an explicit control
example where marginal stability yields a poly(T ) improvement in cumulative cost.

Our algorithm leverages this structure by expressing the disturbance-response map of LDCs in a
spectral basis. We construct a universal set of filters from the top eigenvectors of a Hankel matrix,
enabling convex approximation of any such stable controller. This leads to a computationally efficient
reduction to online convex optimization, with near-optimal regret and exponential improvement in
runtime dependence on the stability margin γ.

1.1 Our Contributions

New algorithm: Double Spectral Control (DSC). We propose Double Spectral Control, a novel
algorithm for controlling partially observed linear dynamical systems (LDSs) with adversarial
disturbances and convex losses. DSC constructs a two-level spectral approximation of the best stable
linear dynamical controller (LDC): first approximating it by a long-memory open-loop controller, and
then expressing that controller as a convolutional operator over the observable signal. This results in
a convex parameterization over double-filtered outputs: spectral convolutions of spectral convolutions
of past observations.
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Exponential runtime improvement in terms of condition number. We prove that DSC achieves
the regret bound

RegretT (DSC) = O

(√
T

γ11

)
,

where γ is the closed-loop stability margin of the best diagonalizably stable LDC. Crucially, the
per-step runtime is only polylog (T/γ), exponentially improving over the polynomial dependence of
prior work such as GRC [30].

Empirical Performance. Preliminary empirical evaluations, presented in Appendix C, provide
support for our theoretical findings.

Method Regret Time Disturbances Costs

LQG 0 O(d3) i.i.d Known Quadratic

GRC [30] Õ
(

poly
(
γ−1

)√
T
)

Õ
(
poly

(
γ−1

)
log T

)
Adversarial Online Convex

AdaptOn [24] Õ(polylog(T )) O(d3 log T ) Stochastic Strongly Convex

DSC (this work) Õ
(

poly
(
γ−1

)√
T
)

polylog (T/γ) Adversarial Online Convex

Table 1: Comparison of algorithms for controlling linear dynamical systems under partial observation.
Among methods that handle adversarial disturbances and general convex costs, DSC achieves the
same asymptotic Õ(

√
T ) regret as prior work [30], while attaining exponentially faster runtime with

respect to the stability margin γ. For both GRC and DSC, runtime depends only polylogarithmically
on the hidden-state dimension d.

1.2 Related Work

Control of Linear Dynamical Systems. Classical control theory provides foundational tools
for regulating dynamical systems under uncertainty, with early contributions such as state-space
modeling [22] and Lyapunov stability analysis [26]. While optimal control methods like LQR assume
full-state observation and stochastic disturbances, modern applications often require adapting to
adversarial inputs and partial observability. The online LQG problem corresponds to the setting where
the system is driven by well-conditioned, independent Gaussian noise, and the losses ℓt(y, u) =
y⊤Qy + u⊤Ru are fixed quadratic functions. LQR is the fully observed analogue of LQG, and
the optimal solutions to these problems are known as H2-optimal controllers, which can be well-
approximated by fixed state-feedback controllers (for LQR) or linear dynamical controllers (for
LQG).

In the worst-case setting, the H∞ framework [7] computes minimax controllers that are optimal
against adversarial disturbances and can likewise be represented as LDCs. Extensions such as mixed
H2/H∞ control, risk-sensitive control, and regret-optimal control [33, 16], as well as recent minimax
adaptive and output-feedback formulations [23], further explore the trade-off between robustness
and performance. In contrast to these worst-case optimal control methods, low-regret algorithms
offer instance-wise guarantees that adapt to each realized disturbance sequence. We emphasize
that H2- and H∞-optimal controllers for partially observed systems correspond to LDCs, whereas
state-feedback controllers suffice only in the fully observed case.

Online Control and Adversarial Disturbances. Early work in the machine learning literature on
control focused on the online LQR setting [1, 14, 27, 13], establishing

√
T regret with polynomial

runtime. A related line of research [12] investigated online LQR with adversarially chosen quadratic
losses, attaining the same

√
T rate. In all these works, the benchmark is the best linear controller

in hindsight. Online control [19] extends the classical setting to environments with unknown
and potentially adversarial cost functions and disturbances. The Gradient Perturbation Controller
(GPC) [2] achieves sublinear regret against the best linear policy under full state observation, but its
runtime scales polynomially with the inverse stability margin. Extensions to strongly convex costs [3]
and known quadratic losses [15] have further improved regret bounds in specialized settings. Online
control has seen applications in meta-optimization [11], mechanical ventilation [32], and population
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regulation [17]. Other recent directions include adaptive control for time-varying systems [29] and
online control under bandit feedback [31].

Partial Observation. In the setting of fixed quadratic costs and gaussian noise with partial obser-
vation of the states, known as the linear–quadratic–Gaussian (LQG) control problem, the optimal
solution can be derived using the estimation-control separation principle; see, for example, [8]. [24]
study online LQ control with partial observation of the state under stochastic assumptions, which
is a more limited setting. In the adversarial case, [30] introduced the Gradient Response Controller
(GRC), which parameterizes policies over a latent “nature observation” signal to decouple distur-
bances from system dynamics. While GRC avoids explicit state estimation and achieves sublinear
regret, it retains a polynomial runtime dependence on the stability margin. We propose a new method
for this setting, based on a double convolution over universal spectral filters, which achieves the same
regret guarantees with exponentially faster runtime.

Spectral Filtering. Spectral filtering has been widely used for learning linear dynamical systems
from sequences of observations [20]. [21] extended this approach to systems with non-symmetric
dynamics, and [28] recently eliminated dimension dependence using Chebyshev approximations.
These techniques have been applied primarily in the context of sequence prediction. The only prior
use of spectral filtering in control is by [5], who applied it in the offline LQR setting with unknown
dynamics.

Convex Relaxations in Control. Improper learning has emerged as a powerful tool for bypassing
the nonconvexity of optimal control, particularly when competing with rich policy classes. Early work
introduced convex surrogates for strongly stable policies [12, 2], and recent advances used spectral
filtering to approximate disturbance-response maps in the fully observed setting [9]. Our work
develops a new convex relaxation for partial observation, based on a two-level spectral approximation
of linear dynamical controllers. Unlike in prediction [20], where convolution with inputs can be
directly evaluated using observed outputs, control lacks access to the comparator’s actions. In the
full observation case, disturbances can be reconstructed and filtered; under partial observation, this
is infeasible, so we instead convolve the natural observation sequence (3), introducing additional
structure and analytical challenges.

Online Convex Optimization. Our approach reduces online control to online convex optimiza-
tion over spectral policy parameters. For background, we refer to standard references on regret
minimization [10, 18].

2 Our Method

We propose a convex relaxation of the online control problem with partial observation, grounded in
a two-level spectral approximation of linear dynamical controllers (LDCs). The central idea is to
represent the input-output behavior of a marginally stable LDC as a composition of spectral operations,
enabling efficient improper learning through a compact, universal basis. To do so, we leverage the
fact that the controllers in a LDC have the structure of convolution of the natural observations with
vectors of the form

[
1, α, α2, . . .

]
, and spectral filters provide a compact, universal representation for

such sequences. Formally, the filters used in our method are obtained from the top h eigenvectors of
a fixed Hankel matrix H ∈ Rm×m, defined by

Hij =
(1− γ)i+j−1

i+ j − 1
, (2)

where γ is a known lower bound on the system’s stability margin. These eigenvectors form a universal
basis, independent of the system dynamics, cost functions, or noise realizations, and are precomputed
before learning. Figure 1 shows examples of the resulting filter shapes.
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Figure 1: Entries of the first six eigenvectors of H500, plotted coordinate-wise.

The algorithm operates on a signal called the natural observation sequence, denoted ynat
t , which

corresponds to the output the system would have produced had the learner applied zero controls from
the start. This sequence is computed online by maintaining a fictitious internal state zt that tracks the
contribution of the learner’s own actions:

zt+1 = Azt +But, ynat
t = yt − Czt. (3)

Unlike the raw observations yt, the natural sequence ynat
t is independent of the learner’s parameters,

making it amenable to convex optimization.

LDS

Naturalizer

Projection

෍

𝑖
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Spectral 
Lifting
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Spectral 
Filtering
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Figure 2: Illustration of the Double Spectral Control (DSC) method. The learner receives the observed
signal yt, from which it computes the natural observation ynat in an online manner by maintaining a
fictitious internal state. This signal is processed through two levels of spectral operations: a spectral
lifting stage using filters ϕ, followed by a spectral filtering stage using filters φ. The resulting features
are linearly combined to generate the control action u, which is applied to the linear dynamical
system (LDS).

Why Double Filtering. As illustrated in 2, our method consists of two stages: lifting and learning,
and spectral filtering is applied in both. If spectral filtering were applied only during learning as in
standard lifting approaches such as [19], the ambient dimension would remain polynomial in the
stability margin, and the number of tunable parameters would not decrease. While one could, in
principle, avoid explicit lifting by analyzing the composite effect of the two filtering operators directly,
this would require substantially different assumptions and analysis. We found our double-filtering
approach to be both more direct and conceptually aligned with prior work.
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Spectral Filtering vs. Fourier Basis. While the Fourier basis, used in methods like the Fourier
Neural Operator [25], is orthonormal and does not induce spectral decay, the Hankel spectral
basis exhibits exponentially decaying eigenvalues. This decay enables logarithmic approximation
guarantees in the number of retained components, which are crucial for improved dependence on the
stability margin γ. These guarantees are specific to the Hankel basis and do not directly carry over to
Fourier-based representations.

2.1 Algorithm Overview

Algorithm 1 constructs the control ut through a two-stage spectral transformation of the natural
observation history. First, the past sequence ynat

t−m:t is convolved with a fixed set of spectral filters
{ϕj}hj=1, derived from the top eigenvectors of a Hankel matrix H . This spectral lifting step produces
a sequence of intermediate signals that captures long-term dependencies in a compact representation.
Crucially, this step enables dimensionality reduction: directly lifting the full history would require a
number of parameters that scales polynomially with the inverse stability margin γ−1, as detailed in
previous work [19]. In contrast, our intermediate spectral approximation ensures only polylogarithmic
dependence on γ−1.

Next, the lifted signal undergoes a second spectral transformation, analogous to the spectral filtering
technique of [20], as adapted to the control setting by [9], but now applied to the already filtered and
lifted natural observation sequence. Specifically, we convolve the lifted signal with a second set of
filters {φi}h̃i=1, also obtained as eigenvectors of a Hankel matrix. The resulting features are linearly
combined using learnable matrices to produce the control ut. Since this map is linear in the parameters,
we can apply Projected Online Gradient Descent over a convex set K ⊆ R(h̃+1)×(h+2)×n×p.

The loss functions ℓt are convex and memoryless (Definition 3.9). Moreover, by leveraging fast
online convolution methods [4], each step can be implemented in time polylogarithmic in the horizon
T and the stability margin γ−1.

Algorithm 1 Double Spectral Control Algorithm

1: Input: Horizon T , number lifting filters h, number of learning filters h̃, memories m, m̃, step
size η, convex constrains set K ⊆ R(h̃+1)×n×(h+2)p.

2: Compute {(σj ,ϕj)}hj=1 and {(λj ,φj)}h̃j=1, the top eigenpairs of a matrices whose i, j th entry

is (1−γ)i+j−1

i+j−1 of dimensions m and m̃ respectively.

3: Initialize M0
i ∈ Rn×(h+2)p for all i ∈ {0, . . . , h̃}, and z0 = 0 ∈ Rd.

4: for t = 0, . . . , T − 1 do
5: Perform spectral lifting by computing

ỹnat
t =

[
ynat
t σ

1/4
0 Y nat

t:t−mϕ0 . . . σ
1/4
h Y nat

t:t−mϕh

]⊤
∈ R(h+2)p .

6: Define Ỹ nat
t:t−m̃ =

[
ỹnat
t . . . ỹnat

t−m̃

]
and compute control

ut = M t
0ỹ

nat
t +

h̃∑
i=1

λ
1/4
i M t

i Ỹ
nat
t:t−m̃φi

7: Update zt+1 = Azt +But

8: Observe yt+1 and record ynat
t+1 = yt+1 − Czt+1.

9: Set M t+1 = ΠK [M t − η∇M ℓt (M
t)]

10: end for
11: return MT
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3 Preliminaries

3.1 Notation

We use x to denote states, u for control inputs, y for observations, and w for disturbances. The
dimensions of the state, control and observation spaces are denoted by d = dim(x), n = dim(u) and
p = dim(y) respectively. Matrices related to the system dynamics and control policy are denoted by
capital letters A,B,C,K,M . For convenience, we write ynat

t = 0 for all t ≤ 0.

Given a policy π, we denote the state and control at time t by (xπ
t ,u

π
t ) when following π. If π is

parameterized by a set of parameters Θ, and the context makes the inputs clear, we use (xΘ
t ,u

Θ
t ) or

(xt(Θ),ut(Θ)) to refer to the same quantities. For simplicity, we use (xt,ut) without any superscript
or argument to refer to the state and control at time t under Algorithm 1.

3.2 Setting

We begin by making the following assumptions about our system. Non-stochasticity allows us to
assume without loss of generality that x0 = 0.
Definition 3.1. An LDS as in (1) is controllable if the noiseless LDS given by xt+1 = Axt +But

can be steered to any target state from any initial state.
Assumption 3.2. The system matrices B and C are bounded, i.e., ∥B∥ ≤ κB , ∥C∥ ≤ κC . The
powers of the system matrix A are bounded as

∥∥Ai
∥∥ ≤ κ(1− γ)i. The disturbance at each time step

is also bounded, i.e., ∥wt∥ ≤ W .
Remark 3.3 (Measurement Noise). Adding bounded noise to the observations is equivalent to
introducing an additional bounded disturbance term, which is already captured in our formulation
through the definition of ynat. Due to Assumption 3.2, the same arguments apply when measurement
noise is present, and all theoretical guarantees remain valid under this modification.
Assumption 3.4. The cost functions ct(y,u) are convex. Moreover, as long as ∥y∥, ∥u∥ ≤ D, the
gradients are bounded:

∥∇yct(y,u)∥, ∥∇uct(y,u)∥ ≤ GD .

As mentioned in [19], the most well-known class of controllers for partially observable linear
dynamical systems is that of linear dynamical controllers due to its connection to Kalman filtering.
We define a (κ, γ)−diagonalizably stable LDCs as follows:
Definition 3.5. A linear dynamical controller π has parameters (Aπ, Bπ, Cπ) and chooses the the
control at time t as:

st+1 = Aπst +Bπyt

uπ
t = Cπst

We say that this linear dynamical controller is (κ, γ)-diagonalizably stable if:

1. Aπ = HπLπH
−1
π where Lπ is a real positive2 diagonal matrix such that ∥Lπ∥ ≤ 1 − γ

and ∥Hπ∥ ,
∥∥H−1

π

∥∥ ≤ κ.

2. ∥Bπ∥ , ∥Cπ∥ ≤ κ.

3. Define A :=

[
A BCπ

BπC Aπ

]
. Then,

∥∥Ai
∥∥ ≤ κ2(1− γ)i.

4. Let ACL be the closed loop matrix for the policy defined in Lemma A.2, then ACL =
HLH−1 where L is a real positive diagonal matrix such that ∥L∥ ≤ 1 − γ and
∥H∥ ,

∥∥H−1
∥∥ ≤ κ.

We denote by S = {(Aπ, Bπ, Cπ) : (Aπ, Bπ, Cπ) is (κ, γ)-diagonalizably stable} the set of such
policies, and, with slight abuse of notation, also use S to refer to the class of LDC policies uπ

t where
(Aπ, Bπ, Cπ) ∈ S.

2The requirement of nonnegative eigenvalues can be relaxed by integrating over a larger set; it is imposed
here for ease of presentation.
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Assumption 3.6. The zero policy (Aπ, Bπ, Cπ) = (0, 0, 0) lies in S .

For simplicity, we assume that κ, κB , κC ,W ≥ 1 and γ ≤ 2/3, without loss of generality.

Algorithm 1 learns a convex relaxation of the LDC policy class S from Definition 3.5, which we
define as follows:
Definition 3.7. [Double Spectral Controller] The class of Double Spectral Controllers with h lifting
filters and h̃ learning filters, memories (m, m̃) and stability γ is defined as:ut(M) = M0ỹ

nat
t +

h̃∑
i=1

λ
1/4
i MiỸ

nat
t:t−m̃φi

∣∣M ∈ R(h̃+1)×n×(h+2)p

 ,

where:

1. ỹnat
t =

[
ynat
t σ

1/4
0 Y nat

t:t−mϕ0 . . . σ
1/4
h Y nat

t:t−mϕh

]⊤
∈ R(h+2)p ,

2. Ỹ nat
t:t−m̃ =

[
ỹnat
t . . . ỹnat

t−m̃

]
,

3. (σi,ϕi) ∈ R × Rm and (λi,φi) ∈ R × Rm̃ are the (i + 1)-th and i-th top eigenpairs of
H ∈ Rm×m and H̃ ∈ Rm̃×m̃ with the (i, j)-th entry being (1−γ)i+j−1

i+j−1 respectively.

To enable learning via online gradient descent, we require a bounded set of parameters:
Definition 3.8. We define the domain over which we optimize as

K =
{
M ∈ R(h̃+1)×n×(h+2)p |

∥∥yM
t

∥∥ ,∥∥uM
t

∥∥ ≤ R, ∥M∥ ≤ RM

}
.

where

R =
4096κ24κBκ

2
CWh4

γ4
log1/2

(
2

γ

)
, RM =

128κ16κBκC

√
h5h̃

γ5/2
log1/4

(
2

γ

)
.

We further note that in Algorithm 1, online gradient descent is not performed on the actual cost
function, but on a modified cost function, referred to as the memory-less loss function:
Definition 3.9. We define the memory-less loss function at time t as

ℓt(M) = ct(yt(M),ut(M)) ,

where ut(M) is as defined in 3.7, and yt(M) is observed by playing u0(M), . . . ,ut−1(M).

Our use of a memory-less convex loss offers an alternative to [29], which formulates online control
as optimization with memory. Our approach, inspired by [2], yields a more direct analysis while still
relying on surrogate losses that implicitly capture system memory.

4 Main Result and Analysis Overview

In this section, we present our main result and its proof:
Theorem 4.1 (Main Theorem). Let ct be any sequence of convex Lipschitz cost functions satisfying
Assumption 3.4, and let the LDS be controllable (Definition 3.1) and satisfy Assumption 3.2. Then,
Algorithm 1 achieves the following regret bound:

RegretT (OSC,S) = Õ

(√
T

γ11

)
,

where Õ hides poly-logarithmic factors in T
γ and constants, and S is the class of LDCs defined in

Definition 3.5. This result holds under the following choice of inputs:

1. m =
⌈
1
γ log

(
C1T

3/2

γ3

)⌉
,
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2. h =
⌈
2 log T log

(
C2

√
m

γ2 T 3/2 log T log1/4
(

2
γ

))⌉
,

3. m̃ =
⌈
1
γ log

(
C3h

19/2

γ12

√
T log5/4

(
2
γ

))⌉
,

4. h̃ =
⌈
2 log T log

(
C4h

21/2
√
m̃

γ23/2

√
T log T log3/2

(
2
γ

))⌉
5. η = 1

C5

√
γ7

h5h̃mm̃
,

6. K is the set from Definition 3.8,

where the constants are defined as follows:

C1 = C0Gκ13κBκ
4
CW

2 , C2 = C0Gκ13κ2
Bκ

5
CW

2d , C3 = C0Gκ56κ3
Bκ

5
CW

2 ,

C4 = C3d , C5 = 1024Gκ12κBκ
3
CW

2

and C0 is some absolute constant.

The regret bound in Theorem 4.1 matches the Õ(
√
T ) rate that is optimal in the convex cost setting,

while significantly improving the computational dependence on the stability margin γ. Specifically,
the number of tunable parameters and the per-round runtime scale only as polylog(1/γ), whereas
prior work [30] requires polynomial dependence on 1/γ. Thus, our method preserves the optimal
asymptotic regret rate while achieving an exponentially better scaling in both model size and runtime
with respect to the stability margin, as emphasized in Corollary 4.4.

Before proceeding to the proof, we outline the key technical definitions and lemmas required to
understand the main proof, while deferring their proof to the Appendix.

In Appendix A, we prove that the spectral policy class can approximate S up to arbitrary accuracy.
Formally, we state this as:
Lemma 4.2. For any LDC policy (Aπ, Bπ, Cπ) ∈ S, there exists a Double spectral controller with
M ∈ K such that:

T∑
t=1

|ct(yt(M),u(M))− ct(y
π
t ,u

π
t )| = O(

√
T ) ,

for m,h, m̃, h̃ as defined in Theorem 4.1.

Classical results in online gradient descent provide a regret bound with respect to loss functions
ℓt(M

t). However, our regret is defined in terms of the actual costs ct(xt,ut). To overcome this
technicality, in Appendix B.3 we prove that ct(xt,ut) is well approximated by ℓt(M

t). We formally
state this result here:
Lemma 4.3. Algorithm 1 is executed with η as defined in Theorem 4.1. Then for every t ∈ [T ],∣∣ct(yt,ut)− ℓt(M

t)
∣∣ ≤ 16GRRMhh̃

√
mm̃κ4κBκ

2
CW

γ3
√
T

log1/2
(
2

γ

)
.

Proof of Theorem 4.1. Observe that for our choice of m,h, m̃, h̃, using Lemma 4.2 and the Definition
3.9 we get:

min
M⋆∈K

T∑
t=1

ℓt(M
⋆)−min

π∈S

T∑
t=1

ct(y
π
t ,u

π
t ) = O(

√
T ) , (4)

since the cost evaluated on the stationary approximating policy M⋆ is identical to the memory-less
loss on that policy. To derive a regret bound, we apply the standard guarantee for Online Gradient
Descent (Theorem 3.1 in [18]). Lemma B.1 ensures that the set K is convex, and Lemma B.2 confirms
the convexity of the memory-less loss functions. Additionally, Lemma B.3 provides a Lipschitz
bound for these losses, and together with the diameter bound of M , this yields a regret guarantee
under our step size choice η. Instantiating this bound with our selected values of m,h, m̃, h̃, we
obtain:
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T∑
t=1

ℓt
(
M t
)
− min

M⋆∈K

T∑
t=1

ℓt (M
⋆) = Õ

(√
T

γ11

)
. (5)

Next, Lemma 4.3 gives us the bound on the difference between the memory-less loss ℓt(M t) and the
cost incurred by the algorithm ct(xt,ut) for every t ∈ [T ]. Summing over all t ∈ [T ] and for our
selected values of m,h, m̃, h̃:

T∑
t=1

ct (yt,ut)−
T∑

t=1

ℓt
(
M t

1:h

)
= Õ

(√
T

γ11

)
. (6)

Finally, we add equations (4),(5),(6) together to obtain the result:
T∑

t=1

ct (yt,ut)−min
π∈S

T∑
t=1

ct (y
π
t ,u

π
t ) = Õ

(√
T

γ11

)

Finally, Algorithm 1 maintains only polylog (T/γ) parameters at each step t. The spectral lifting step
(line 5) at time t ∈ [T ] can be efficiently implemented by zero-padding each filter ϕi to length T and
applying online convolution to the natural observation stream {ynat

t }t∈[T ]. Likewise, the controller
computation (line 6) involves convolving the lifted, filtered stream ỹnat

t with zero-padded filters
φi. By leveraging the fast online convolution method presented in Theorem 3 of [4], we obtain the
following corollary:
Corollary 4.4. Each round of Algorithm 1 can be implemented with amortized runtime
polylog (T/γ).

5 Conclusions

We introduced Double Spectral Control (DSC), a new algorithm for controlling partially observed
linear dynamical systems under adversarial disturbances and convex loss functions. Our method
constructs a two-level spectral approximation of linear dynamical controllers, enabling efficient
learning via a convex relaxation. DSC achieves optimal regret while exponentially improving the
runtime dependence on the stability margin compared to prior work. To our knowledge, this is the
first algorithm to combine partial observation, adversarial noise, and general convex losses with
polylogarithmic runtime guarantees.

5.1 Limitations

Our method assumes access to the system dynamics (A,B,C), which may not be available in many
practical scenarios. Extending DSC to settings with unknown or partially known dynamics is an
important direction for future work. We also assume full-information feedback on the loss functions;
extending the method to the bandit setting is a natural next step.

This work is primarily theoretical and serves as a proof of concept. Our analysis relies on Defini-
tion 3.5, which assumes that certain system matrices are real-diagonalizable. While this assumption
simplifies the regret analysis, it excludes systems with oscillatory or non-diagonalizable dynamics.
The focus on positive real eigenvalues stems from the Hankel-based spectral filtering method rather
than an artifact of analysis. Extending the framework to oscillatory or Jordan-block systems remains
an open challenge. Empirically, our experiments focused on symmetric systems satisfying these
assumptions and therefore should not be interpreted as validating them. Extending the approach to
more general dynamical systems, and exploring whether similar spectral compression arises under
complex dynamics, presents an important direction for future work. Finally, evaluating DSC on
real-world control tasks remains an important step toward validating its practical effectiveness.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The improvement in the running time is proven in Corollary 4.4. The re-
gret bound is proven in Theorem 4.1. The empirical performance is demonstrated in our
experiments.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in section 5.1.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions are mentioned in 3. The complete proof of Theorem 4.1 is in
the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we describe our method completely in Algorithm 1. Our code repository
will be open sourced and a link will be provided in the final version.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: A link to the code will be provided in the final version. However, we omit the
GitHub repository with all of our code at the moment in order not to violate the double blind
policy and keep the paper anonymous.
Guidelines:
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiment details will be expansively explained in the supplementary materi-
als.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Experiment details with the robust statistical significance measures will be
reported in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We will completely describe the necessary computing resources in the supple-
mentary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research does not involve human participants, and all experiments are
simulation-based without the use of any external datasets. Furthermore, the work does
not raise concerns related to safety, security, discrimination, surveillance, deception or
harassment, environmental impact, human rights, or issues of bias and fairness.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is purely in the theoretical domain and hence it does not have any
societal implications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper proposes a new method for control, and hence we do not have any
data or models to be released.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use anyone’s code to run the simulations.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release the code for our simulations.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing experiments or research with human subjects have been
performed for this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No research with human subjects have been performed for this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs have only been used for formatting purposes for this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Approximation Results

In this section, we present the proof of Lemma 4.2. We begin by showing that the class S can be
approximated by a family of controllers that are linear in spectral projections of past observations,
computed over a fixed memory window. The following definition formalizes this class.
Definition A.1 (Spectral-Projection Linear Controller). Let h ∈ N denote the number of spectral
components, m ∈ N the memory length, and γ ∈ (0, 1) a stability parameter. We define the class of
Spectral-Projection Linear Controllers as:{

uK
t =

h∑
i=1

σ
1/4
i KiY

K
t:t−mϕi

∣∣∣∣∣ Ki ∈ Rn×p

}
,

where Y K
t:t−m =

[
yKt yKt−1 · · · yKt−m

]
∈ Rp×(m+1) denotes the matrix of past observations

under controller K, and (σi,ϕi) ∈ R× Rm+1 are the top h+ 1 eigenpairs (indexed from 0) of the
Hankel matrix H ∈ R(m+1)×(m+1), with entries

Hij =
(1− γ)i+j−1

i+ j − 1
.

In Section A.1, we establish the following lemma, which shows that the class of linear dynamic
controllers in S can be approximated by the class of spectral-projection linear controllers, for
appropriately chosen values of m and h.
Lemma A.2. Let a LDC (Aπ, Bπ, Cπ) ∈ S. Then for

m ≥ 1

γ
log

(
56Gκ13κBκ

4
CW

2T

εγ3

)
, h ≥ 2 log T log

(
224Gκ13κ2

Bκ
5
CW

2
√
md

εγ2
T log T log1/4

(
2

γ

))
,

and ε ∈ (0, 1), there exists a spectral-projection linear controller with

Ki = σ
−1/4
i

 d∑
j=1

CπHπeje
⊤
j H

−1
π Bπϕ

⊤
i µαj

 where µα = [1, α, . . . , αm] ∈ Rm+1 ,

such that
T∑

t=1

∣∣ct(yK
t ,uK

t )− ct(y
π
t ,u

π
t )
∣∣ ≤ εT .

We now observe that any spectral-projection linear controller can be viewed as a static linear controller
acting on a lifted dynamical system. Define the lifted system as follows:

x̃t = Ãx̃t−1 + B̃ut + w̃t , ỹt = C̃x̃t , (7)

where

Ã =


A 0 · · · 0
I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈ R(m+1)d×(m+1)d, B̃ =


B
0
...
0

 ∈ R(m+1)d×n, w̃t =


wt

0
...
0

 ∈ R(m+1)d.

(8)

The output matrix C̃ is given by:

C̃ =


C · · · 0

σ
1/4
0 ϕ0(1)C · · · σ

1/4
0 ϕ0(m+ 1)C

...
. . .

...
σ
1/4
h ϕh(1)C · · · σ

1/4
h ϕh(m+ 1)C

 ∈ R(h+2)p×(m+1)d, (9)
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where ϕi = (ϕi(1), . . . , ϕi(m+ 1))⊤ is the i+ 1-th eigenvector of the Hankel matrix in Definition
A.1.

The control law defined by the spectral-projection linear controller corresponds to a static linear
controller on the lifted system:

K =


0
K0

K1

...
Kh

 ∈ R(h+2)p×n, so that ut = Kỹt. (10)

The lifted state and lifted output can be written compactly as:

x̃t =
[
x⊤
t x⊤

t−1 · · · x⊤
t−m

]⊤ ∈ R(m+1)d, (11)

ỹK
t =

[
(yK

t )⊤ σ
1/4
0 (Y K

t:t−mϕ0)
⊤ · · · σ

1/4
h (Y K

t:t−mϕh)
⊤
]⊤

∈ R(h+2)p, (12)

To evaluate performance, we define the lifted cost c̃t by applying the original cost function ct to the
first p coordinates of ỹt (i.e., the original observation yt) and to the control ut.

Finally, in the zero-input (natural) system, the lifted observation becomes:

ỹnat
t =

[
(ynat

t )⊤ σ
1/4
0 (Y nat

t:t−mϕ0)
⊤ · · · σ

1/4
h (Y nat

t:t−mϕh)
⊤
]⊤

∈ R(h+2)p. (13)

where Y nat
t:t−m is as defined in Algorithm 1.

We now summarize key norm bounds for the lifted system components, which will be used in
subsequent analysis.

• The output dimension of the lifted system is (h+ 2)p.

• The lifted input matrix satisfies ∥B̃∥ ≤ κB , and the lifted noise satisfies ∥w̃t∥ ≤ W for all
t, by assumption.

• By Assumption 3.6, the lifted dynamics matrix satisfies the exponential decay bound

∥Ãi∥ ≤ κ2(1− γ)i for all i ≥ 0.

• The norm of the lifted output matrix C̃ can be bounded as follows. Each spectral projection
row block after the first block in C̃ is of the form[

σ
1/4
i ϕi(1)C · · · σ

1/4
i ϕi(m+ 1)C

]
,

and since the eigenvectors ϕi ∈ Rm+1 are orthonormal and the eigenvalues σi are bounded
by σi ≤ log

(
2
γ

)
, defining Φ as a matrix with ϕT

i as its rows, we have

∥C̃∥ ≤ ∥C∥+σ1/4
max ∥Φ⊗ C∥ ≤ κC

(
1 +

√
h+ 1 log1/4

(
2

γ

))
≤ 4κC

√
h·log1/4

(
2

γ

)
.

• The lifted cost function c̃t, which is defined by applying the original cost function ct to the
first p coordinates of ỹt and to ut, inherits the same Lipschitz constant G as the original
cost. That is, for all t,

Lip(c̃t) ≤ G.

• Finally, for the control matrix K ∈ R(h+2)p×n defined in the proof of Lemma A.2, the norm
can be bounded as

∥K∥ ≤ κ4

√
2(h+ 1)

γ
≤ 2κ4

√
h

γ
.

In section A.2, we prove the following lemma that states that linear controllers can be approximated
by spectral controller defined as follows.
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Lemma A.3. Consider a system with parameters (A,B,C) such that ∥B∥ ≤ κ̃B , ∥C∥ ≤ κ̃C ,
and ∥Ai∥ ≤ κ̃2(1 − γ̃)i for all i ∈ N. Let {ct}Tt=1 be a sequence of cost functions that are G̃-
Lipschitz over the domain {∥y∥, ∥u∥ ≤ D}. Suppose K ∈ Rn×p is a linear controller such that
A+BKC = HLH−1, where L is a diagonal matrix with nonnegative entries satisfying ∥L∥ ≤ 1−γ̃,
and ∥H∥, ∥H−1∥ ≤ κ̃.

Then, for any ε ∈ (0, 1), there exists a spectral controller of the form

uM
t = M0y

nat
t +

h̃∑
i=1

λ
1/4
i MiY

nat
t−1:t−m̃φi,

where (λi,φi) are the top h̃ eigenpairs of the Hankel matrix H ∈ Rm̃×m̃ with Hij = (1−γ̃)i+j−1

i+j−1 ,
such that

T∑
t=1

∣∣ct(yM
t ,uM

t )− ct(y
K
t ,uK

t )
∣∣ ≤ 2εT,

provided

m̃ ≥ 1

γ̃
log

(
6G̃κ̃14κ̃3

Bκ̃
5
CW̃

2

εγ̃5

)
, h̃ ≥ 2 log T ·log

(
400G̃κ̃14κ̃3

Bκ̃
5
CW̃

2
√
m̃d

εγ̃9/2
log T log1/4

(
2

γ̃

))
.

Moreover, the parameters M lie in the bounded set

K =

{
M ∈ Rh̃×n×p

∣∣∣∣∣ ∥yM
t ∥, ∥uM

t ∥ ≤ 4κ̃6κ̃Bκ̃
2
CW̃

γ̃2
, ∥M0∥ ≤ κ̃, ∥Mi∥ ≤ κ̃4κ̃Bκ̃C

√
2

γ̃

}
.

Thus, we complete the proof of Lemma 4.2 as follows:

Proof of Lemma 4.2. Substituting the values of the bounds in Lemma A.3 and substituting ε = 1/
√
T

completes the proof.

A.1 Approximating LDC with spectral Surrogate Controller

In this section, we prove Lemma A.2. We begin by deriving bounds on the observations and controls
generated by any linear dynamic controller in S , as well as by the corresponding spectral-projection
linear controller constructed in Lemma A.2. These bounds are established in the following lemmas.
Lemma A.4. Let (Aπ, Bπ, Cπ) ∈ S. Then for all t ≥ 0, the observation and control satisfy:

∥yπ
t ∥, ∥uπ

t ∥ ≤ κCκ
3W

γ
.

Proof. Define the joint state zπt =

[
xπ
t

sπt

]
, with closed-loop dynamics

zπt+1 = Azπt + Bwt, where A =

[
A BCπ

BπC Aπ

]
, B =

[
I
0

]
.

Since zπ0 = 0, we have

zπt =

t−1∑
i=0

At−1−iBwi.

The outputs are yπ
t = [C 0]zπt , uπ

t = [0 Cπ]z
π
t . Using definition 3.5, ∥Ai∥ ≤ κ2(1−γ)i, ∥B∥ = 1,

∥C∥ ≤ κC , ∥Cπ∥ ≤ κ, and ∥wi∥ ≤ W , we get:

∥yπ
t ∥ ≤ κC

t−1∑
i=0

∥Ai∥W ≤ κ2κCW

γ
, ∥uπ

t ∥ ≤ κ

t−1∑
i=0

∥Ai∥W ≤ κ3W

γ
.
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Lemma A.5. Let (Aπ, Bπ, Cπ) ∈ S and let K be as mentioned in Lemma A.2 for (Aπ, Bπ, Cπ).
Then, for any t ≥ 0, ∥∥yK

t

∥∥ ≤ κ2κCW

γ
.

Proof. Observe that our spectral-projection linear controller can be represented by the lifted system
defined in Equations (7), (8), (9) and (10) for the choice of Ki in Lemma A.2. By definition 3.5,
Ã+B̃K̃C̃ = HLH−1, and thus

∥∥∥(Ã+ B̃K̃C̃)i
∥∥∥ ≤ κ2(1−γ)i. Moreover, observe that ∥w̃t∥ ≤ W .

Thus,

x̃K
t =

t∑
i=1

(Ã+ B̃K̃C̃)i−1w̃t−i =⇒
∥∥x̃K

t

∥∥ ≤ κ2W

γ
.

Using Eqn (11), it is clear that yK
t = [C 0 . . . 0] x̃K

t and thus,
∥∥yK

t

∥∥ ≤ κ2κCW
γ

We now complete the proof of Lemma A.2 as follows:

Proof of Lemma A.2. Observe that

uπ
t =

t∑
i=0

CπA
i
πBπy

π
t−i .

Consider the following policy πτ defined for some τ ∈ N ∪ {0}:

uπτ
t =


∑h

i=0 σ
1/4
i KiY

πτ
t:t−mϕi if t ≤ τ − 1∑m

i=0 CπA
i
πBπy

πτ
t−i if t = τ∑t

i=0 CπA
i
πBπy

πτ
t−i if t ≥ τ + 1

Observe that π0 is pure LDC policy and that πT+1 is purely spectral policy. In order to bound the
difference of costs between these, we shall bound the difference of costs between πτ and πτ−1 for
any τ ∈ [T ].

Observe that for all t ∈ [0, τ − 2], uπτ
t = u

πτ−1

t and for all t ∈ [0, τ − 1], yπτ
t = y

πτ−1

t by the
definition of πτ . Thus, Y πτ

τ−1:τ−m−1 = Y
πτ−1

τ−1:τ−m−1 and this gives us

u
πτ−1

τ−1 =

m∑
i=1

CπA
i
πBπy

πτ−1

τ−i−1 =

m∑
i=0

CπHπL
i
πH

−1
π Bπy

πτ−1

τ−i−1 .

Writing Li
π =

∑d
j=1 α

i
jeje

⊤
j , and defining µα = [1 α . . . αm]

⊤ ∈ Rm+1, we get

u
πτ−1

τ−1 =

m∑
i=0

CπHπ

 d∑
j=1

αi
jeje

⊤
j

H−1
π Bπy

πτ−1

τ−i−1 =

d∑
j=1

CπHπeje
⊤
j H

−1
π BπY

πτ−1

τ−1:τ−m−1µαj .

Since {ϕi | i ∈ [m] ∪ {0}} form an orthonormal basis,

u
πτ−1

τ−1 =

d∑
j=1

CπHπeje
⊤
j H

−1
π BπY

πτ−1

τ−1:τ−m−1

(
m∑
i=0

ϕiϕ
⊤
i

)
µαj =

m∑
i=0

σ
1/4
i KiY

πτ−1

τ−1:τ−m−1ϕi .

Since, Y πτ−1

τ−1:τ−m−1 = Y πτ
τ−1:τ−m−1, and all of {yπτ

t | t ∈ [τ − 1]} are outputs of the spectral-

projection linear policy. Using Lemma A.5, we know that
∥∥Y πτ

τ−1:τ−m−1

∥∥ ≤
√
m+1κ2κCW

γ ≤
2κ2κCW

√
m

γ . Moreover,

uπτ
τ−1 =

h∑
i=0

σ
1/4
i KiY

πτ
τ−1:τ−m−1ϕi .

Taking the difference, we get that:∥∥uπτ
τ−1 − u

πτ−1

τ−1

∥∥ ≤
m∑

i=h+1

∥∥∥σ1/4
i Ki

∥∥∥∥∥Y πτ
τ−1:τ−m−1

∥∥ ≤ 2κ6κCW
√
m

γ

m∑
i=h+1

d∑
j=1

|ϕ⊤
i µαj

|
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Using Lemma 7.4 of [9], we get that:∥∥uπτ
τ−1 − u

πτ−1

τ−1

∥∥ ≤ 2κ6κCWd
√
m

γ
log1/4

(
2

γ

)∫ ∞

h

exp

(
− π2j

16 log T

)
dj

≤ 4κ6κCWd
√
m

γ
log T log1/4

(
2

γ

)
exp

(
− π2h

16 log T

)
≤ δ1 [h ≥ 2 log T log

(
4κ6κCWd

√
m

δ1γ
log T log1/4

(
2

γ

))
] (14)

Now, observe that since the controls of πτ and πτ−1 are the same until time τ − 2, xπτ
τ−1 = x

πτ−1

τ−1 .
Thus, using eqn. (14), we get that:

∥xπτ
τ − xπτ−1

τ ∥ =
∥∥B(uπτ

τ−1 − u
πτ−1

τ−1 )
∥∥ ≤ κBδ1 (15)

and

∥yπτ
τ − yπτ−1

τ ∥ =
∥∥CB(uπτ

τ−1 − u
πτ−1

τ−1 )
∥∥ ≤ κBκCδ1 (16)

Again by using the fact that yπτ
t−i = y

πτ−1

t−i for all i ≥ 1,

∥uπτ
τ − uπτ−1

τ ∥ =

∥∥∥∥∥
τ∑

i=0

CπA
i
πBπy

πτ
τ−i −

m∑
i=0

CπA
i
πBπy

πτ−1

τ−i

∥∥∥∥∥
≤ ∥CπBπ (y

πτ
τ − yπτ−1

τ )∥+

∥∥∥∥∥
τ∑

i=1

CπA
i
πBπy

πτ
τ−i −

m∑
i=1

CπA
i
πBπy

πτ−1

τ−i

∥∥∥∥∥
≤ κBκCκ

2δ1 +
κ6κCW

γ2
(1− γ)

m+1
[choice of h]

≤ 2κ2κBκCδ1 [m ≥ 1

γ
log

(
κ4W

κBγ2δ1

)
] (17)

Now, for any t > τ , we have that[
xπτ
t − x

πτ−1

t

sπτ
t − s

πτ−1

t

]
=

[
A BπC

BCπ Aπ

][
xπτ
t−1 − x

πτ−1

t−1

sπτ
t−1 − s

πτ−1

t−1

]
=

[
A BπC

BCπ Aπ

]t−τ−1
[
xπτ
τ+1 − x

πτ−1

τ+1

sπτ
τ+1 − s

πτ−1

τ+1

]
.

In order to compute the terms on the RHS,∥∥xπτ
τ+1 − x

πτ−1

τ+1

∥∥ = ∥A (xπτ
τ − xπτ−1

τ ) +B (uπτ
τ − uπτ−1

τ )∥
≤ κ2 ∥xπτ

τ − xπτ−1
τ ∥+ κB ∥uπτ

τ − uπτ−1
τ ∥

≤ κ2κBδ1 + 2κ2κ2
BκCδ1 ≤ 3κ2κ2

BκCδ1 . [Eqns (15) and (17)] (18)

and thus, ∥∥yπτ
τ+1 − y

πτ−1

τ+1

∥∥ =
∥∥C(xπτ

τ+1 − x
πτ−1

τ+1 )
∥∥ ≤ 3κ2κ2

Bκ
2
Cδ1 (19)

Moreover, for t > τ , the controller does behave like an LDC, however, the starting state is different
and must be calculated. Observe that if sπτ

t :=
∑t

i=0 A
i
πBπy

πτ
t−i for all t > τ , then the control is

correctly defined. Hence,∥∥sπτ
τ+1 − s

πτ−1

τ+1

∥∥ =
∥∥AπBπ (y

πτ
τ − yπτ−1

τ ) +Bπ

(
yπτ
τ+1 − y

πτ−1

τ+1

)∥∥
≤ κ3κBκCδ1 + 3κ3κ2

Bκ
2
Cδ1 ≤ 4κ3κ2

Bκ
2
Cδ1 [Eqns (16) and (19)] .

Putting this together, we have that∥∥∥∥∥
[
xπτ
τ+1 − x

πτ−1

τ+1

sπτ
τ+1 − s

πτ−1

τ+1

]∥∥∥∥∥ ≤ 3κ2κ2
BκCδ1 + 4κ3κ2

Bκ
2
Cδ1 ≤ 7κ3κ2

Bκ
2
Cδ1 .

Thus, we have∥∥∥∥∥
[
xπτ
t − x

πτ−1

t

sπτ
t − s

πτ−1

t

]∥∥∥∥∥ ≤ κ2 (1− γ)
t−τ−1

∥∥∥∥∥
[
xπτ
τ+1 − x

πτ−1

τ+1

sπτ
τ+1 − s

πτ−1

τ+1

]∥∥∥∥∥ ≤ 7κ5κ2
Bκ

2
Cδ1 .
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Observe that

yπτ
t − y

πτ−1

t = [C 0]

[
xπτ
t − x

πτ−1

t

sπτ
t − s

πτ−1

t

]
, yπτ

t − y
πτ−1

t = [0 Cπ]

[
xπτ
t − x

πτ−1

t

sπτ
t − s

πτ−1

t

]
,

for all t > τ . Thus, for all t > τ (and also for all t ∈ [T ] using the previous bounds) we have that

max
{∥∥yπτ

t − y
πτ−1

t

∥∥ ,∥∥uπτ
t − u

πτ−1

t

∥∥} ≤ 7κ6κ2
Bκ

3
Cδ1 .

Now, observe that:

max
{∥∥yπT+1

t − yπ0
t

∥∥ ,∥∥uπT+1

t − uπ0
t

∥∥} ≤
T+1∑
τ=1

max
{∥∥yπτ

t − y
πτ−1

t

∥∥ ,∥∥uπτ
t − u

πτ−1

t

∥∥}
≤ 14κ6κ2

Bκ
3
Cδ1T

If out choice of δ1 ≤ W/14κ3κ2
Bκ

2
CγT , then the difference is upper bounded by κ3κCW/γ and since

by lemma A.4, ∥yπ0
t ∥ , ∥uπ0

t ∥ ≤ κ3κCW/γ, we have that ∥yπ0
t ∥ , ∥uπ0

t ∥ ,
∥∥yπT+1

t

∥∥ ,∥∥uπT+1

t

∥∥ ≤
2κ3κCW/γ. Using lipschitzness, this gives us

T∑
t=1

∣∣ct(yπT+1

t ,u
πT+1

t )− ct(y
π0
t ,uπ0

t )
∣∣ ≤ 2Gκ3κCW

γ

(
T∑

t=1

∥∥yπT+1

t − yπ0
t

∥∥+ ∥∥uπT+1

t − uπ0
t

∥∥)

≤ 2Gκ3κCW

γ
· T · 28κ6κ2

Bκ
3
Cδ1T

≤ 56Gκ9κ2
Bκ

4
CW

γ
· δ1T 2 = εT

by picking δ1 = εγ/56Gκ9κ2
Bκ

4
CWT ≤ W/14κ3κ2

Bκ
2
CγT . This completes the proof by substitut-

ing the value of δ1 into the choosen expressions of m and h.

A.2 Linear controllers

In the previous section, we have proven that any LDC controller in S̃ can be approximated by
spectral-projection linear controller. As explained previously, this spectral-projection linear controller
can be viewed as a linear controller over the lifted system defined in eqns (7), (8), (9).

In this section, we prove that the class of linear controllers can be approximated by spectral filtering.
We begin by making certain assumptions only for this section, and defining the class of linear
controllers that we aim to compete against and the class of spectral controllers.
Assumption A.6. The system matrices B,C are bounded, i.e., ∥B∥ ≤ κ̃B , ∥C∥ ≤ κ̃C . The
disturbance at each time step is also bounded, i.e., ∥wt∥ ≤ W̃ .
Assumption A.7. The cost functions ct(y,u) are convex. Moreover, as long as ∥y∥, ∥u∥ ≤ D, the
gradients are bounded:

∥∇yct(y,u)∥, ∥∇uct(y,u)∥ ≤ G̃D .

Definition A.8. A linear policy K is (κ̃, γ̃)-diagonalizably stable if there exist matrices L,H
satisfying A+BKC = HLH−1, such that the following conditions hold:

1. L is diagonal with nonnegative entries.

2. The spectral norm of L is strictly less than one, i.e., ∥L∥ ≤ 1− γ̃.

3. The controller and the transformation matrices are bounded, i.e., ∥K∥, ∥H∥, ∥H−1∥ ≤ κ̃.

We denote by S̃ = {K : K is (κ̃, γ̃)-diagonalizably stable} the set of such policies, and, with slight
abuse of notation, also use S̃ to refer to the class of linear policies ut = Syt where S ∈ S̃. Each
policy in S̃ is fully parameterized by the matrix K ∈ Rn×p.
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Assumption A.9. The zero policy K = 0 lies in S̃.

For simplicity, we assume that κ̃, κ̃B , W̃ , G̃ ≥ 1 and γ̃ ≤ 2/3, without loss of generality.

We define ynat
t as the observation at time t assuming that all inputs to the system were zero from the

beginning of time, i.e.
xnat
t+1 = Axnat

t +wt; ynat
t = Cxnat

t

We define our disturbance response controller with respect to these as follows:

Definition A.10. [Spectral Controller] The class of Spectral Controllers with h parameters, memory
m and stability γ̃ is defined as:{

uM
t = M0y

nat
t +

h∑
i=1

λ
1/4
i MiY

nat
t−1:t−mφi

}
,

where φi ∈ Rm, λi ∈ R are the ith top eigenvector and eigenvalue of H ∈ Rm×m such that
Hij =

(1−γ̃)i+j−1

i+j−1 . Any policy in this class is fully parameterized by the matrices M ∈ Rn×p×h.

The sequence {ynat
t }t∈[T ] can be iteratively computed using the following:

ynat
t = yt − C

t∑
i=1

Ai−1But−i

Alternatively, it can be carried out recursively, starting from z0 = 0, as:

zt+1 = Azt +But; ynat
t = yt − Czt

Lemma A.11. Under our assumptions, ∥ynat
t ∥ ≤ κ̃2κ̃CW̃

γ̃

Proof. Unrolling the recursion, we get that

ynat
t =

t∑
i=1

CAi−1wt−i

Taking norm on both sides,

∥∥ynat
t

∥∥ ≤ κ̃2κ̃CW̃

t∑
i=1

(1− γ̃)i−1 ≤ κ̃2κ̃CW̃

γ̃

Lemma A.12. For any K ∈ S̃ , the corresponding states xK
t and control inputs uK

t are bounded by∥∥yK
t

∥∥ ≤ 2κ̃5κ̃Bκ̃
2
CW̃

γ̃2
,
∥∥uK

t

∥∥ ≤ 2κ̃6κ̃Bκ̃
2
CW̃

γ̃2
.

Proof. As in many other parts of this paper, we first write ∆K
t as a linear transformation of nature’s

observations: ∥∥∆K
t

∥∥ =

∥∥∥∥∥
t∑

i=1

(A+BKC)
i−1

BKynat
t−i

∥∥∥∥∥
≤ κ̃3κ̃B

t∑
i=0

(1− γ̃)
i ∥∥ynat

t−i−1

∥∥
≤ κ̃5κ̃Bκ̃CW̃

γ̃2
.

Then, since yK
t = ynat

t + C∆K
t and uK

t = KyK
t , we get our result.
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For convenience of notation, for a given policy π we define ∆π
t = xπ

t − xnat
t . We begin by defining

the class of open-loop optimal controllers as follows:

Definition A.13 (Open Loop Optimal Controller). The class of Open Loop Optimal Controllers of
with memory m is defined as:{

uK,m
t = Kynat

t +

m∑
i=1

KC (A+BKC)
i−1

BKynat
t−i

}
.

Any policy in this class is fully parameterized by the matrix K ∈ Rd×n and the memory m ∈ Z.

Next, we state and prove Lemma A.14, which shows that any linear policy in S̃ can be approximated
up to arbitrary accuracy with an open-loop optimal controller of suitable memory.

Lemma A.14. Let a linear policy K ∈ S̃. Then, for m ≥ 1
γ̃ log

(
6G̃κ̃14κ̃3

B κ̃5
CW̃ 2

εγ̃5

)
and ε ∈ (0, 1),

T∑
t=1

∣∣∣ct(yK,m
t ,uK,m

t )− ct(y
K
t ,uK

t )
∣∣∣ ≤ εT ,

∥∥∥yK,m
t

∥∥∥ ,∥∥∥uK,m
t

∥∥∥ ≤ 3κ̃6κ̃Bκ̃
2
CW̃

γ̃2
.

Proof. We begin by bounding the difference in the observation and the difference in the control
inputs. The difference in cost is bounded using the fact that the cost functions are lipschitz in the
control and observation. We begin by unrolling the expressions for ∆K

t in terms of ynat
t :

∆K
t = A∆K

t−1 +BKyK
t−1 = (A+BKC)∆K

t−1 +BKynat
t−1 =

t∑
i=1

(A+BKC)i−1BKynat
t−i

(20)

This gives us that:

uK
t = Kynat

t +KC∆K
t = Kynat

t +

t∑
i=1

KC(A+BKC)i−1BKynat
t−i

Notice that for all t ≤ m, uK
t = uK,m

t and hence yK
t = yK,m

t . For t > m,∥∥∥uK
t − uK,m

t

∥∥∥ =

∥∥∥∥∥
t∑

i=m+1

KC(A+BKC)i−1BKynat
t−i

∥∥∥∥∥
≤ κ̃6κ̃Bκ̃

2
CW̃

γ̃

t∑
i=m+1

(1− γ̃)i−1 [∆− ineq., C-S]

≤ κ̃6κ̃Bκ̃
2
CW̃

γ̃2
(1− γ̃)m .

We also note that for any policy π,

yπ
t = ynat

t + C∆π
t = ynat

t +

t∑
i=1

CAi−1Buπ
t−i

Using both the previous results and the fact that uK
t = uK,m

t for any t ≤ m, we similarly get:∥∥∥yK
t − yK,m

t

∥∥∥ =

∥∥∥∥∥
t∑

i=1

CAi−1B(uK
t−i − uK,m

t−i )

∥∥∥∥∥ =

∥∥∥∥∥
t−m∑
i=1

CAi−1B(uK
t−i − uK,m

t−i )

∥∥∥∥∥ ,

and by using Assumption A.9 we can write:∥∥∥yK
t − yK,m

t

∥∥∥ ≤ κ̃Bκ̃C κ̃
2

∞∑
i=1

(1− γ̃)i−1
∥∥∥uK

t−i − uK,m
t−i

∥∥∥ ≤ κ̃8κ̃2
Bκ̃

3
CW̃

γ̃3
(1− γ̃)m .
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Using the fact that κ̃Bκ̃C κ̃
2/γ̃ > 1, we get the following uniform bound:

max
{∥∥∥uK

t − uK,m
t

∥∥∥ ,∥∥∥yK
t − yK,m

t

∥∥∥} ≤ κ̃8κ̃2
Bκ̃

3
CW̃

γ̃3
(1− γ̃)m .

Whenever m ≥ 1
γ̃ log

(
κ̃2κ̃B κ̃C

γ̃

)
, which is indeed true from our choice of ε and m, this implies

that the
∥∥∥yK

t − yK,m
t

∥∥∥ ,∥∥∥uK
t − uK,m

t

∥∥∥ ≤ κ̃6κ̃Bκ̃
2
CW̃/γ̃2. Using Lemma A.12

∥∥yK
t

∥∥ ,∥∥uK
t

∥∥ ≤

2κ̃6κ̃Bκ̃
2
CW̃/γ̃2, by triangle inequality

∥∥∥yK,m
t

∥∥∥ ,∥∥∥uK,m
t

∥∥∥ ≤ 3κ̃6κ̃Bκ̃
2
CW̃/γ̃2. Thus, the sum of

costs is bounded using lipschitzness of ct as follows:

T∑
t=1

∣∣∣ct(yK
t ,uK

t )− ct(y
K,m
t ,uK,m

t )
∣∣∣ ≤ 3G̃κ̃6κ̃Bκ̃

2
CW̃

γ̃2

T∑
t=1

(∥∥∥yK
t − yK,m

t

∥∥∥+ ∥∥∥uK
t − uK,m

t

∥∥∥)
≤ 6G̃κ̃14κ̃3

Bκ̃
5
CW̃

2

γ̃5
(1− γ̃)m · T ≤ εT . [choice of m]

To enable learning via online gradient descent, we require a bounded set of parameters:

Definition A.15. The set of bounded spectral parameters is defined as

K =

{
M ∈ Rh×n×p |

∥∥yM
t

∥∥ ,∥∥uM
t

∥∥ ≤ 4κ̃6κ̃Bκ̃
2
CW̃

γ̃2
, ∥M0∥ ≤ κ̃, ∥Mi∥ ≤ κ̃4κ̃Bκ̃C

√
2

γ̃

}
.

We shall now prove that every open-loop optimal controller can be approximated up to arbitrary
accuracy with a spectral controller.

Lemma A.16. For every open loop optimal controller πOLOC
K,m such that K ∈ S̃ and∥∥yK,m

∥∥ ,∥∥uK,m
∥∥ ≤ 3κ̃6κ̃B κ̃2

CW̃
γ̃2 , there exists an spectral controller πSC

h,m,γ̃,M with M ∈ K such
that:

T∑
t=1

∣∣∣ct(yM
t ,uM

t )− ct(y
K,m
t ,uK,m

t )
∣∣∣ ≤ εT .

for any ε ∈ (0, 1) and h ≥ 2 log T log
(

400G̃κ̃14κ̃3
B κ̃5

CW̃ 2√md

εγ̃9/2 log T log1/4
(

2
γ̃

))
.

Proof. Since K ∈ S̃, there exists a diagonal L ∈ Rn×n as in Definition A.8 so that:

uK,m
t = Kynat

t +

m∑
i=1

KC(A+BKC)i−1BKynat
t−i = Kynat

t +

m∑
i=1

KCHLi−1H−1BKynat
t−i .

Then write Li−1 =
∑d

j=1 α
i−1
j eje

⊤
j and obtain

uK,m
t = Kynat

t +

m∑
i=1

KCH

 d∑
j=1

αi−1
j eje

⊤
j

H−1BKynat
t−i

= Kynat
t +

d∑
j=1

KCHeje
⊤
j H

−1BK

m∑
i=1

αi−1
j ynat

t−i .
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Recall Y nat
t−1:t−m = [ynat

t−1, . . . ,y
nat
t−m] ∈ Rd×m, define µα = [1, α, . . . , αm−1] ∈ Rm and get

uK,m
t = Kynat

t +

d∑
j=1

KCHeje
⊤
j H

−1BKY nat
t−1:t−mµαj

= Kynat
t +

d∑
j=1

KCHeje
⊤
j H

−1BKY nat
t−1:t−m

(
m∑
i=1

φiφ
⊤
i

)
µαj

[
m∑
i=1

φiφ
⊤
i = Im

]

= Kynat
t +

m∑
i=1

 d∑
j=1

KCHeje
⊤
j H

−1BKφ⊤
i µαj

Y nat
t−1:t−mφi .

Let πSC
h,m,γ̃,M∗ be the spectral controller with M0 = K and M∗

i =

λ
−1/4
i KCH

(∑d
j=1 φ

⊤
i µαj

eje
⊤
j

)
H−1BK for all i ∈ [h]. Note that we have

∥M0∥ ≤ κ̃, ∥M∗
i ∥ ≤ κ̃4κ̃Bκ̃C ·max

ℓ∈[d]
λ
−1/4
j

〈
φj ,µαl

〉
∀1 ≤ j ≤ m,

and from the analysis of Lemma 7.4 of [9], we have that λ−1/4
j

〈
φj , µ(αl)

〉
≤
√

2
γ̃ . Thus, ∥M∗

i ∥ ≤

κ̃4κ̃Bκ̃C

√
2
γ̃ . Then,

∥∥∥uK,m
t − uM∗

t

∥∥∥ =

∥∥∥∥∥∥
m∑

i=h+1

KCH

 d∑
j=1

φ⊤
i µαj

eje
⊤
j

H−1BKY nat
t−1:t−mφi

∥∥∥∥∥∥
≤ κ̃6κ̃Bκ̃

2
CW̃

√
m

γ̃

m∑
i=h+1

d∑
j=1

|φ⊤
i µαj

|

[
∥Yt−1:t−m∥ ≤ κ̃2κ̃CW̃

γ̃

√
m

]

≤ 30κ̃6κ̃Bκ̃
2
CW̃

√
m

γ̃3/2
log1/4

(
2

γ̃

) m∑
i=h+1

d∑
j=1

exp

(
− π2j

16 log T

)
[Lemma 7.4 of [9]]

≤ 30κ̃6κ̃Bκ̃
2
CW̃

√
md

γ̃3/2
log1/4

(
2

γ̃

) ∞∫
h

exp

(
− π2j

16 log T

)
dx

≤ 50κ̃6κ̃Bκ̃
2
CW̃

√
md

γ̃3/2
log T log1/4

(
2

γ̃

)
exp

(
− π2h

16 log T

)
,

∥∥∥yM∗

t − yK,m
t

∥∥∥ =

∥∥∥∥∥
t∑

i=1

CAi−1B(uM∗

t−i − uK,m
t−i )

∥∥∥∥∥
≤ κ̃Bκ̃C κ̃

2
t∑

i=1

(1− γ̃)i−1
∥∥∥uM

t−i − uK,m
t−i

∥∥∥ [Assumption A.9]

≤ 50κ̃8κ̃2
Bκ̃

3
CW̃

√
md

γ̃5/2
log T log1/4

(
2

γ̃

)
exp

(
− π2h

16 log T

)
.

Using the fact that κ̃C κ̃Bκ̃
2/γ̃ > 1, we get a uniform bound:

max
{∥∥∥yK,m

t − yM∗

t

∥∥∥ ,∥∥∥uK,m
t − uM∗

t

∥∥∥} ≤ 50κ̃8κ̃2
Bκ̃

3
CW̃

√
md

γ̃5/2
log T log1/4

(
2

γ̃

)
exp

(
− π2h

16 log T

)
.

Whenever h ≥ 2 log T log
(

50κ̃B κ̃C κ̃2√md√
γ̃

log T log
(

2
γ̃

))
, which is indeed the case for our choice

of ε and h, this implies that
∥∥∥yM∗

t − yK,m
t

∥∥∥ ,∥∥∥uM∗

t − uK,m
t

∥∥∥ ≤ κ̃6κ̃B κ̃2
CW̃

γ̃2 . Hence, by triangle
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inequality
∥∥yM∗

t

∥∥ ,∥∥uM∗

t

∥∥ ≤ 4κ̃6κ̃B κ̃2
CW̃

γ̃2 . Thus, the sum of costs is bounded as follows:

T∑
t=1

∣∣∣ct(yM∗

t ,uM∗

t )− ct(y
K,m
t ,uK,m

t )
∣∣∣ ≤ 4G̃κ̃6κ̃Bκ̃

2
CW̃

γ̃2

T∑
t=1

(∥∥∥yM∗

t − yK,m
t

∥∥∥+ ∥∥∥uM∗

t − uK,m
t

∥∥∥)
≤ 400G̃κ̃14κ̃3

Bκ̃
5
CW̃

2
√
md

γ̃9/2
log T log1/4

(
2

γ̃

)
exp

(
− π2h

16 log T

)
· T

≤ εT . [choice of h]

Using these lemmas, we complete the proof of Lemma A.3 as follows:

Proof of Lemma A.3. The proof follows directly from Lemmas A.14 and A.16.

B Learning Results

B.1 Convexity of loss function and feasibility set

To conclude the analysis, we first show that the feasibility set K is convex and the loss functions
are convex with respect to the variables M . This follows since the states and the controls are linear
transformations of the variables.
Lemma B.1. The set K from Definition 3.8 is convex.

Proof. Since xM
t ,uM

t are linear in M , from the convexity of the norm, the fact that the sublevel sets
of a convex function is convex and that the intersection of convex sets is convex, we are done.

Lemma B.2. The loss ℓt(M) is convex in M .

Proof. The loss function ℓt is given by ℓt(M) = ct(xt(M),ut(M)). Since the cost ct is a convex
function with respect to its arguments, we simply need to show that xM

t and uM
t depend linearly on

M . The control is given by

uM
t =M̄0y

nat
t +

h̃∑
i=1

m̃∑
j=1

λ
1/4
i [φi]j M̄iy

nat
t−j +

h∑
l=0

m∑
k=0

σ
1/4
l [ϕl]k M0ly

nat
t−k

+

h̃∑
i=1

m̃∑
j=1

h∑
l=0

m∑
k=0

(σlλi)
1/4

[ϕl]k [φi]j Mily
nat
t−j−k , (21)

which is a linear function of the variables. Similarly, the observation yM
t is given by

yM
t = ynat

t +

t∑
q=1

CAq−1BuM
t−q .

Thus, we have shown that yt(M) and ut(M) are linear transformations of M . A composition of
convex and linear functions is convex, which concludes our Lemma.

B.2 Lipschitzness of ℓt(·)

The following lemma states and proves the explicit lipschitz constant of ℓt(·).
Lemma B.3. For any M,M ′ ∈ K it holds that,

|ℓt(M)− ℓt(M
′)| ≤ 32GRhh̃

√
mm̃κ4κBκ

2
CW

γ2
log1/2

(
2

γ

)
∥M −M ′∥ .
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Proof. Taking the difference in controls defined in eqn. (21):

∥ut(M)− ut(M
′)∥ ≤ 16hh̃

√
mm̃κ2κCW

γ
log1/2

(
2

γ

)
∥M −M ′∥

Taking the difference in the observations,

∥yt(M)− yt(M
′)∥ =

∥∥∥∥∥
t∑

q=1

CAq−1B(ut−q(M)− ut−q(M
′))

∥∥∥∥∥
≤ κBκCκ

2

γ
max
q∈[t]

{∥ut−q(M)− ut−q(M
′)∥}

≤ 16hh̃
√
mm̃κ4κBκ

2
CW

γ2
log1/2

(
2

γ

)
∥M −M ′∥

Using the fact that κBκCκ
2/γ > 1, we get a uniform bound:

max {∥yt(M)− yt(M
′)∥ , ∥ut(M)− ut(M

′)∥} ≤ 16hh̃
√
mm̃κ4κBκ

2
CW

γ2
log1/2

(
2

γ

)
∥M −M ′∥ .

Using the lipschizness of the cost function from Assumption 3.4, the definition of K, we have

|ℓt(M)− ℓt(M
′)| = |ct(yt(M),ut(M))− ct(yt(M

′),ut(M
′))|

≤ GR (∥xt(M)− xt(M
′)∥+ ∥ut(M)− ut(M

′)∥)

≤ 32GRhh̃
√
mm̃κ4κBκ

2
CW

γ2
log1/2

(
2

γ

)
∥M −M ′∥ .

B.3 Loss functions with memory

The actual loss ct at time t is not calculated on xt(M
t), but rather on the true state xt, which in turn

depends on different parameters M i for various historical times i < t. Nevertheless, ct(xt,ut) is
well approximated by ℓt(M

t), as stated in Lemma 4.3 and proven next.

Proof of Lemma 4.3: By the choice of step size η, and by the computation of the lipschitz constant of
ℓt w.r.t M in Lemma B.3, we have:

η =
RM

L
√
T

,

where L is the lipschitz constant of ℓt w.r.t M , computed in Lemma B.3. Thus, for each j ∈ [h],

∥M t −M t−i∥ ≤
t∑

s=t−i+1

∥Ms −Ms−1∥ ≤ iηL =
iRM√

T
.

Observe that ut = ut(M
t). Observe that yt and yt(M

t) can be written as

yt(M
t) = ynat

t +

t∑
q=1

CAq−1But−q(M
t) , yt = ynat

t +

t∑
q=1

CAq−1But−q(M
t−q) .
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Evaluating the difference,

∥yt − yt(M
t)∥ ≤

∥∥∥∥∥
t∑

q=1

CAq−1B(ut−q(M
t)− ut−q(M

t−q))

∥∥∥∥∥
≤ κBκCκ

2
t∑

q=1

(1− γ)q−1
∥∥ut−q(M

t)− ut−q(M
t−q)

∥∥
≤ 16hh̃

√
mm̃κ4κBκ

2
CW

γ
log1/2

(
2

γ

) t∑
q=1

(1− γ)q−1
∥∥M t −M t−q

∥∥
≤ 16RMhh̃

√
mm̃κ4κBκ

2
CW

γ
√
T

log1/2
(
2

γ

) t∑
q=1

q(1− γ)q−1

≤ 16RMhh̃
√
mm̃κ4κBκ

2
CW

γ3
√
T

log1/2
(
2

γ

)
.

By definition, ℓt(M t) = ct(yt(M
t),ut(M

t)), and by the definition of K and the projection used in
Algorithm 1 we have by Assumption 3.4:∣∣ℓt(M t)− ct(yt,ut)

∣∣ = ∣∣ct(yt(M
t),ut(M

t))− ct(yt,ut)
∣∣

≤ GR∥yt(M
t)− yt∥

≤ 16GRRMhh̃
√
mm̃κ4κBκ

2
CW

γ3
√
T

log1/2
(
2

γ

)
.

□

C Experiments

We present a series of synthetic experiments designed to evaluate the performance of the DSC, as
specified in Algorithm 1. We compare DSC against the gradient response controller (GRC) [30]
and the linear quadratic gaussian controller (LQG) [8]. We analyze the performance of these three
controllers under the following system settings: a linear signal, where the initial state x0 is randomly
sampled from the Gaussian distribution; and a signal with the ReLU state transition. For each signal
type, we evaluate the performance of controllers under two types of perturbations: (i) Gaussian noise,
and (ii) sinusoidal disturbances; and provide 95% confidence intervals for each setting.

For each experiment, we consider an LDS with a hidden state dimension of d = 10, observation di-
mension of p = 3, and a control dimension of n = 2. The system matrix A ∈ Rd×d is diagonalizable,
with the largest eigenvalue being 0.8, ensuring marginal stability. The control matrix B ∈ Rd×n

consists of Normally distributed entries. For the described settings, we use h = h̃ = 5 filters and
m = m̃ = 10 memory for both controllers.

Each figure reports the average quadratic loss computed over a sliding window, with its size set to 10%
of the sequence length. Hyperparameters are selected to reflect representative and stable performance,
though the experimental setup generalizes to higher-dimensional systems and alternative perturbation
models.

The empirical results presented in Figures 3a demonstrate that the DSC controller outperforms the
GRC controller, while LQG remains optimal for the setting with Gaussian perturbations. Furthermore,
under sinusoidal perturbations, DSC maintains a performance advantage over both LQG and GRC,
as illustrated in Figure 3b. Similar conclusions on the performance of the DSC controller hold for
the experiments with ReLU state transition as shown in Figures 3c and 3d. The confidence intervals
further substantiate that the performance gains of DSC over GRC are consistent and statistically
robust across random system initializations.
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(a) Linear Signal with Gaussian Noise
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(b) Linear Signal with Sinusoidal Noise
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(c) ReLU State Transition with Gaussian Noise
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(d) ReLU State Transition with Sinusoidal Noise

Figure 3: Comparison of Controllers: LQG, GRC, and DSC with 95% Confidence Intervals over 100
trials under Different Input Signal and Perturbation Settings.

D Advantage of Smaller γ

We provide a construction in the fully observed setting, i.e., C = I , similar to the one in [9]. Prior
work typically assumes a stability margin of γ = Ω(1/polylog(T )) to guarantee an O(polylog(T ))
runtime. In contrast, our analysis shows that even when γ = Ω(1/T k) for any k ∈ (0, 1/33), one
can maintain sublinear regret while still achieving an O(polylog(T )) runtime. This section illustrates
that such smaller values of γ can lead to a substantially lower aggregate cost compared to the standard
choice γ = 1/polylog(T ).

Consider a noiseless scalar linear system with parameters a, b ∈ R evolving as

xt+1 = axt + but .

At each time step, the instantaneous loss is defined as

∀ t ∈ [T ], ct(x, u) = max{−x,−1} .

Since the system is one-dimensional, for sufficiently large κ, the set of (κ, γ)-diagonalizably stable
controllers reduces to

S(γ) = { k ∈ R | 0 ≤ a+ bk ≤ 1− γ } .
With initial state x0 = 1, the minimum total loss over the horizon T is

min
k∈S(γ)

T∑
t=1

ct(xt, ut) = min
k∈S(γ)

T∑
t=1

(−xt) = − max
k∈S(γ)

T∑
t=1

(a+ bk)t−1

= −
T∑

t=1

(1− γ)t−1 = −1− (1− γ)T

γ
.

Since 0 ≤ 1− γ ≤ e−γ , we obtain the bounds

− 1

γ
≤ min

k∈S(γ)

T∑
t=1

ct(xt, ut) ≤ −1− e−γT

γ
.
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Applying the lower bound gives

min
k∈S(1/polylog(T ))

T∑
t=1

ct(xt, ut) ≥ −polylog(T ) ,

while the upper bound yields

min
k∈S(1/Tk)

T∑
t=1

ct(xt, ut) ≤ −T k(1− e−T 1−k

) ≤ −T k

2
.

Therefore, the difference between the two minimum cumulative costs satisfies

min
k∈S(1/polylog(T ))

T∑
t=1

ct(xt, ut)− min
k∈S(1/Tk)

T∑
t=1

ct(xt, ut) ≥
T k

2
− polylog(T ) = Ω(T k/2) .

In summary, setting γ = 1/T k results in a markedly smaller cost for the best controller in the class
S(γ) compared to the γ = 1/polylog(T ) case. This demonstrates a polynomial improvement in the
achievable aggregate performance.
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