Efficient Spectral Control of Partially Observed Linear Dynamical Systems

Anand Brahmbhatt^{1*} Gon Buzaglo^{1*} Sofiia Druchyna^{1*} Elad Hazan^{1,2*}

¹Computer Science Department, Princeton University ²Google DeepMind Princeton

Abstract

We propose a new method for the problem of controlling linear dynamical systems under partial observation and adversarial disturbances. Our new algorithm, Double Spectral Control (DSC), matches the best known regret guarantees while exponentially improving runtime complexity over previous approaches in its dependence on the system's stability margin. Our key innovation is a two-level spectral approximation strategy, leveraging double convolution with a universal basis of spectral filters, enabling efficient and accurate learning of the best linear dynamical controllers.

1 Introduction

Control theory is a decades-old branch of applied mathematics concerned with designing systems that maintain desirable behavior over time, with applications ranging from robotics and aerospace to economics and biology. Recently, it has been adopted by the machine learning community through the lens of online learning, enabling new approaches to sequential decision making in systems with latent state and feedback.

A central model in control theory, and increasingly in reinforcement learning and sequence prediction, is the linear dynamical system (LDS), where the hidden state $\mathbf{x}_t \in \mathbb{R}^d$ evolves linearly in response to control inputs $\mathbf{u}_t \in \mathbb{R}^n$ and adversarial disturbances \mathbf{w}_t , and only partial observations $\mathbf{y}_t \in \mathbb{R}^p$ are available:

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t + \mathbf{w}_t,$$

$$\mathbf{y}_t = C\mathbf{x}_t.$$
 (1)

where $\mathbf{u}_t \in \mathbb{R}^n$ is the control input, $\mathbf{w}_t \in \mathbb{R}^d$ is an adversarial disturbance, and $\mathbf{y}_t \in \mathbb{R}^p$ is a partial observation of the latent state.

At each round t, the learner observes \mathbf{y}_t , selects a control \mathbf{u}_t , and incurs a convex loss $c_t(\mathbf{y}_t, \mathbf{u}_t)$, where the loss functions c_t are chosen by an adaptive adversary. This setting extends the classical Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) [22], which assumes known dynamics, full observation, and stochastic Gaussian noise. In contrast, our setting accounts for arbitrary time-varying convex losses, adversarial disturbances, and partial observations. This adversarial setup with partial information falls under the framework of *online nonstochastic control*, see e.g. [19]. We focus on the setting where the system matrices (A, B, C) are known and time-invariant.

^{*}Authors ordered alphabetically. Emails: {ab7728,gon.buzaglo,sd0937,ehazan}@princeton.edu

Regret Minimization with Partial Observation. Since minimizing cumulative cost directly is infeasible in adversarial environments, we adopt the standard benchmark of *regret*. The goal is to compete with the best fixed policy $\pi \in \Pi$ in hindsight from a comparator class Π . Formally, the regret of an algorithm \mathcal{A} is defined as

$$\operatorname{Regret}_T(\mathcal{A}, \Pi) = \sum_{t=1}^T c_t(\mathbf{y}_t^{\mathcal{A}}, \mathbf{u}_t^{\mathcal{A}}) - \min_{\pi \in \Pi} \sum_{t=1}^T c_t(\mathbf{y}_t^{\pi}, \mathbf{u}_t^{\pi}),$$

where $(\mathbf{y}_t^{\mathcal{A}}, \mathbf{u}_t^{\mathcal{A}})$ are the observation and control sequences induced by the algorithm, and $(\mathbf{y}_t^{\pi}, \mathbf{u}_t^{\pi})$ are those induced by policy π . Note that since the controller does not observe the full state, the losses have to be defined over observations rather than full states, as regret is meaningful only when costs depend on information available to the controller.

We consider comparator classes Π consisting of *linear dynamical controllers* (LDCs), the standard benchmark for optimal control under partial observation [19]. These controllers maintain an internal linear state updated based on incoming observations, and generate control actions via a linear readout of this internal state. As such, LDCs are substantially more expressive than a linear map of the current observation. When the system dynamics and cost functions are known in advance and the disturbances are Gaussian, the optimal controller is computed by the classical *Linear Quadratic Gaussian* (LQG) algorithm [22, 6, 8]. However, in the more general setting that we consider in this work, directly optimizing over LDCs is nonconvex and computationally intractable. To address this, we adopt *improper learning*, using a convex relaxation that enables efficient competition with the best stable LDC in hindsight.

Marginal Stability and Spectral Filters. Linear Dynamical Controllers (LDCs) form the most expressive class of linear policies in the online control literature, capturing systems with internal memory and feedback over partial observations [19]. Unlike linear state-feedback or linear action controllers, LDCs can implement rich temporal dependencies and adapt to long-horizon structure—making them the natural comparator class in the partially observed setting.

However, learning or competing with general LDCs is computationally hard without further assumptions. We focus on the regime of *marginal stability*, where the spectral radius of the closed-loop dynamics is at most $1-\gamma$ for small $\gamma>0$. This regime is both practically relevant, many systems are designed to retain memory over time, and analytically tractable, as it ensures geometric decay of impulse responses. In practice, small stability margins occur in systems that require smooth, long-memory control such as robotics, thermal regulation, satellite attitude control, surgery, and structural damping. In these applications, aggressive control is infeasible or undesirable, and controllers must operate near the stability boundary to achieve robustness and precision. To make this structure exploitable, we restrict to (κ, γ) -diagonalizably stable LDCs (Definition 3.5), which admit well-conditioned diagonalizations and bounded responses. Appendix D presents an explicit control example where marginal stability yields a poly(T) improvement in cumulative cost.

Our algorithm leverages this structure by expressing the disturbance-response map of LDCs in a spectral basis. We construct a universal set of filters from the top eigenvectors of a Hankel matrix, enabling convex approximation of any such stable controller. This leads to a computationally efficient reduction to online convex optimization, with near-optimal regret and exponential improvement in runtime dependence on the stability margin γ .

1.1 Our Contributions

New algorithm: Double Spectral Control (DSC). We propose *Double Spectral Control*, a novel algorithm for controlling partially observed linear dynamical systems (LDSs) with adversarial disturbances and convex losses. DSC constructs a two-level spectral approximation of the best stable linear dynamical controller (LDC): first approximating it by a long-memory open-loop controller, and then expressing that controller as a convolutional operator over the observable signal. This results in a convex parameterization over double-filtered outputs: spectral convolutions of spectral convolutions of past observations.

Exponential runtime improvement in terms of condition number. We prove that DSC achieves the regret bound

 $\mathrm{Regret}_T(\mathrm{DSC}) = \mathcal{O}\left(\frac{\sqrt{T}}{\gamma^{11}}\right),$

where γ is the closed-loop stability margin of the best diagonalizably stable LDC. Crucially, the per-step runtime is only polylog (T/γ) , exponentially improving over the polynomial dependence of prior work such as GRC [30].

Empirical Performance. Preliminary empirical evaluations, presented in Appendix C, provide support for our theoretical findings.

Method	Regret	Time	Disturbances	Costs
LQG	0	$O(d^3)$	i.i.d	Known Quadratic
GRC [30]	$\tilde{O}\left(\operatorname{poly}\left(\gamma^{-1}\right)\sqrt{T}\right)$	$\tilde{O}\left(\operatorname{poly}\left(\gamma^{-1}\right)\log T\right)$	Adversarial	Online Convex
AdaptOn [24]	$\tilde{O}(\operatorname{polylog}(T))$	$O(d^3 \log T)$	Stochastic	Strongly Convex
DSC (this work)	$\tilde{O}\left(\operatorname{poly}\left(\gamma^{-1}\right)\sqrt{T}\right)$	$\operatorname{polylog}\left(T/\gamma\right)$	Adversarial	Online Convex

Table 1: Comparison of algorithms for controlling linear dynamical systems under partial observation. Among methods that handle adversarial disturbances and general convex costs, DSC achieves the same asymptotic $\tilde{\mathcal{O}}(\sqrt{T})$ regret as prior work [30], while attaining exponentially faster runtime with respect to the stability margin γ . For both GRC and DSC, runtime depends only polylogarithmically on the hidden-state dimension d.

1.2 Related Work

Control of Linear Dynamical Systems. Classical control theory provides foundational tools for regulating dynamical systems under uncertainty, with early contributions such as state-space modeling [22] and Lyapunov stability analysis [26]. While optimal control methods like LQR assume full-state observation and stochastic disturbances, modern applications often require adapting to adversarial inputs and partial observability. The online LQG problem corresponds to the setting where the system is driven by well-conditioned, independent Gaussian noise, and the losses $\ell_t(y,u) = y^TQy + u^TRu$ are fixed quadratic functions. LQR is the fully observed analogue of LQG, and the optimal solutions to these problems are known as \mathcal{H}_2 -optimal controllers, which can be well-approximated by fixed state-feedback controllers (for LQR) or linear dynamical controllers (for LQG).

In the worst-case setting, the \mathcal{H}_{∞} framework [7] computes minimax controllers that are optimal against adversarial disturbances and can likewise be represented as LDCs. Extensions such as mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ control, risk-sensitive control, and regret-optimal control [33, 16], as well as recent minimax adaptive and output-feedback formulations [23], further explore the trade-off between robustness and performance. In contrast to these worst-case optimal control methods, low-regret algorithms offer instance-wise guarantees that adapt to each realized disturbance sequence. We emphasize that \mathcal{H}_2 - and \mathcal{H}_{∞} -optimal controllers for partially observed systems correspond to LDCs, whereas state-feedback controllers suffice only in the fully observed case.

Online Control and Adversarial Disturbances. Early work in the machine learning literature on control focused on the online LQR setting [1, 14, 27, 13], establishing \sqrt{T} regret with polynomial runtime. A related line of research [12] investigated online LQR with adversarially chosen quadratic losses, attaining the same \sqrt{T} rate. In all these works, the benchmark is the best linear controller in hindsight. Online control [19] extends the classical setting to environments with unknown and potentially adversarial cost functions and disturbances. The Gradient Perturbation Controller (GPC) [2] achieves sublinear regret against the best linear policy under full state observation, but its runtime scales polynomially with the inverse stability margin. Extensions to strongly convex costs [3] and known quadratic losses [15] have further improved regret bounds in specialized settings. Online control has seen applications in meta-optimization [11], mechanical ventilation [32], and population

regulation [17]. Other recent directions include adaptive control for time-varying systems [29] and online control under bandit feedback [31].

Partial Observation. In the setting of fixed quadratic costs and gaussian noise with partial observation of the states, known as the linear–quadratic–Gaussian (LQG) control problem, the optimal solution can be derived using the estimation-control separation principle; see, for example, [8]. [24] study online LQ control with partial observation of the state under stochastic assumptions, which is a more limited setting. In the adversarial case, [30] introduced the Gradient Response Controller (GRC), which parameterizes policies over a latent "nature observation" signal to decouple disturbances from system dynamics. While GRC avoids explicit state estimation and achieves sublinear regret, it retains a polynomial runtime dependence on the stability margin. We propose a new method for this setting, based on a double convolution over universal spectral filters, which achieves the same regret guarantees with exponentially faster runtime.

Spectral Filtering. Spectral filtering has been widely used for learning linear dynamical systems from sequences of observations [20]. [21] extended this approach to systems with non-symmetric dynamics, and [28] recently eliminated dimension dependence using Chebyshev approximations. These techniques have been applied primarily in the context of sequence prediction. The only prior use of spectral filtering in control is by [5], who applied it in the offline LQR setting with unknown dynamics.

Convex Relaxations in Control. Improper learning has emerged as a powerful tool for bypassing the nonconvexity of optimal control, particularly when competing with rich policy classes. Early work introduced convex surrogates for strongly stable policies [12, 2], and recent advances used spectral filtering to approximate disturbance-response maps in the fully observed setting [9]. Our work develops a new convex relaxation for partial observation, based on a two-level spectral approximation of linear dynamical controllers. Unlike in prediction [20], where convolution with inputs can be directly evaluated using observed outputs, control lacks access to the comparator's actions. In the full observation case, disturbances can be reconstructed and filtered; under partial observation, this is infeasible, so we instead convolve the natural observation sequence (3), introducing additional structure and analytical challenges.

Online Convex Optimization. Our approach reduces online control to online convex optimization over spectral policy parameters. For background, we refer to standard references on regret minimization [10, 18].

2 Our Method

We propose a convex relaxation of the online control problem with partial observation, grounded in a two-level spectral approximation of linear dynamical controllers (LDCs). The central idea is to represent the input-output behavior of a marginally stable LDC as a composition of spectral operations, enabling efficient improper learning through a compact, universal basis. To do so, we leverage the fact that the controllers in a LDC have the structure of convolution of the natural observations with vectors of the form $\begin{bmatrix} 1, \alpha, \alpha^2, \ldots \end{bmatrix}$, and spectral filters provide a compact, universal representation for such sequences. Formally, the filters used in our method are obtained from the top h eigenvectors of a fixed Hankel matrix $H \in \mathbb{R}^{m \times m}$, defined by

$$H_{ij} = \frac{(1-\gamma)^{i+j-1}}{i+j-1},\tag{2}$$

where γ is a known lower bound on the system's stability margin. These eigenvectors form a universal basis, independent of the system dynamics, cost functions, or noise realizations, and are precomputed before learning. Figure 1 shows examples of the resulting filter shapes.

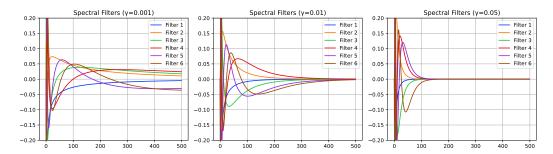


Figure 1: Entries of the first six eigenvectors of H_{500} , plotted coordinate-wise.

The algorithm operates on a signal called the *natural observation sequence*, denoted $\mathbf{y}_t^{\text{nat}}$, which corresponds to the output the system would have produced had the learner applied zero controls from the start. This sequence is computed online by maintaining a fictitious internal state \mathbf{z}_t that tracks the contribution of the learner's own actions:

$$\mathbf{z}_{t+1} = A\mathbf{z}_t + B\mathbf{u}_t, \quad \mathbf{y}_t^{\mathsf{nat}} = \mathbf{y}_t - C\mathbf{z}_t.$$
 (3)

Unlike the raw observations y_t , the natural sequence y_t^{nat} is independent of the learner's parameters, making it amenable to convex optimization.

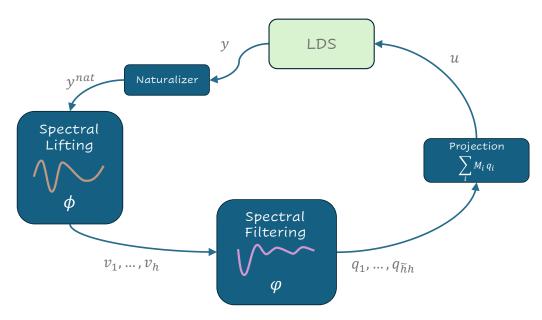


Figure 2: Illustration of the Double Spectral Control (DSC) method. The learner receives the observed signal y_t , from which it computes the natural observation y^{nat} in an online manner by maintaining a fictitious internal state. This signal is processed through two levels of spectral operations: a *spectral lifting* stage using filters ϕ , followed by a *spectral filtering* stage using filters φ . The resulting features are linearly combined to generate the control action u, which is applied to the linear dynamical system (LDS).

Why Double Filtering. As illustrated in 2, our method consists of two stages: *lifting* and *learning*, and spectral filtering is applied in both. If spectral filtering were applied only during learning as in standard lifting approaches such as [19], the ambient dimension would remain polynomial in the stability margin, and the number of tunable parameters would not decrease. While one could, in principle, avoid explicit lifting by analyzing the composite effect of the two filtering operators directly, this would require substantially different assumptions and analysis. We found our double-filtering approach to be both more direct and conceptually aligned with prior work.

Spectral Filtering vs. Fourier Basis. While the Fourier basis, used in methods like the Fourier Neural Operator [25], is orthonormal and does not induce spectral decay, the Hankel spectral basis exhibits exponentially decaying eigenvalues. This decay enables logarithmic approximation guarantees in the number of retained components, which are crucial for improved dependence on the stability margin γ . These guarantees are specific to the Hankel basis and do not directly carry over to Fourier-based representations.

2.1 **Algorithm Overview**

Algorithm 1 constructs the control \mathbf{u}_t through a two-stage spectral transformation of the natural observation history. First, the past sequence $\mathbf{y}_{t-m:t}^{\text{nat}}$ is convolved with a fixed set of spectral filters $\{\phi_i\}_{i=1}^h$, derived from the top eigenvectors of a Hankel matrix H. This spectral lifting step produces a sequence of intermediate signals that captures long-term dependencies in a compact representation. Crucially, this step enables dimensionality reduction: directly lifting the full history would require a number of parameters that scales polynomially with the inverse stability margin γ^{-1} , as detailed in previous work [19]. In contrast, our intermediate spectral approximation ensures only polylogarithmic dependence on γ^{-1} .

Next, the lifted signal undergoes a second spectral transformation, analogous to the spectral filtering technique of [20], as adapted to the control setting by [9], but now applied to the already filtered and lifted natural observation sequence. Specifically, we convolve the lifted signal with a second set of filters $\{\varphi_i\}_{i=1}^h$, also obtained as eigenvectors of a Hankel matrix. The resulting features are linearly combined using learnable matrices to produce the control \mathbf{u}_t . Since this map is linear in the parameters, we can apply Projected Online Gradient Descent over a convex set $\mathcal{K} \subseteq \mathbb{R}^{(\tilde{h}+1)\times (h+2)\times n\times p}$.

The loss functions ℓ_t are convex and memoryless (Definition 3.9). Moreover, by leveraging fast online convolution methods [4], each step can be implemented in time polylogarithmic in the horizon T and the stability margin γ^{-1} .

Algorithm 1 Double Spectral Control Algorithm

- 1: **Input:** Horizon T, number lifting filters h, number of learning filters h, memories m, \tilde{m} , step size η , convex constrains set $\mathcal{K} \subseteq \mathbb{R}^{(\tilde{h}+1)\times n\times(h+2)p}$.
- 2: Compute $\{(\sigma_j, \phi_j)\}_{j=1}^h$ and $\{(\lambda_j, \varphi_j)\}_{j=1}^{\tilde{h}}$, the top eigenpairs of a matrices whose i, j th entry is $\frac{(1-\gamma)^{i+j-1}}{i+j-1}$ of dimensions m and \tilde{m} respectively.
- 3: Initialize $M_i^0 \in \mathbb{R}^{n \times (h+2)p}$ for all $i \in \{0, \dots, \tilde{h}\}$, and $\mathbf{z}_0 = 0 \in \mathbb{R}^d$.
- 4: **for** t = 0, ..., T 1 **do**
- Perform spectral lifting by computing

$$\tilde{\mathbf{y}}_t^{\mathsf{nat}} = \begin{bmatrix} \mathbf{y}_t^{\mathsf{nat}} & \sigma_0^{1/4} Y_{t:t-m}^{\mathsf{nat}} \boldsymbol{\phi}_0 & \dots & \sigma_h^{1/4} Y_{t:t-m}^{\mathsf{nat}} \boldsymbol{\phi}_h \end{bmatrix}^\top \in \mathbb{R}^{(h+2)p} \,.$$

Define $\tilde{Y}_{t:t-\tilde{m}}^{\mathsf{nat}} = \begin{bmatrix} \tilde{\mathbf{y}}_t^{\mathsf{nat}} & \dots & \tilde{\mathbf{y}}_{t-\tilde{m}}^{\mathsf{nat}} \end{bmatrix}$ and compute control

$$\mathbf{u}_t = M_0^t ilde{\mathbf{y}}_t^{\mathsf{nat}} + \sum_{i=1}^{ ilde{h}} \lambda_i^{1/4} M_i^t ilde{Y}_{t:t- ilde{m}}^{\mathsf{nat}} oldsymbol{arphi}_i$$

- Update $\mathbf{z}_{t+1} = A\mathbf{z}_t + B\mathbf{u}_t$
- Observe \mathbf{y}_{t+1} and record $\mathbf{y}_{t+1}^{\text{nat}} = \mathbf{y}_{t+1} C\mathbf{z}_{t+1}$. Set $M^{t+1} = \Pi_{\mathcal{K}} \left[M^t \eta \nabla_M \ell_t \left(M^t \right) \right]$
- 10: **end for**
- 11: return M^T

3 Preliminaries

3.1 Notation

We use \mathbf{x} to denote states, \mathbf{u} for control inputs, \mathbf{y} for observations, and \mathbf{w} for disturbances. The dimensions of the state, control and observation spaces are denoted by $d = \dim(\mathbf{x})$, $n = \dim(\mathbf{u})$ and $p = \dim(\mathbf{y})$ respectively. Matrices related to the system dynamics and control policy are denoted by capital letters A, B, C, K, M. For convenience, we write $\mathbf{y}_t^{\text{nat}} = 0$ for all $t \leq 0$.

Given a policy π , we denote the state and control at time t by $(\mathbf{x}_t^{\pi}, \mathbf{u}_t^{\pi})$ when following π . If π is parameterized by a set of parameters Θ , and the context makes the inputs clear, we use $(\mathbf{x}_t^{\Theta}, \mathbf{u}_t^{\Theta})$ or $(\mathbf{x}_t(\Theta), \mathbf{u}_t(\Theta))$ to refer to the same quantities. For simplicity, we use $(\mathbf{x}_t, \mathbf{u}_t)$ without any superscript or argument to refer to the state and control at time t under Algorithm 1.

3.2 Setting

We begin by making the following assumptions about our system. Non-stochasticity allows us to assume without loss of generality that $\mathbf{x}_0 = 0$.

Definition 3.1. An LDS as in (1) is controllable if the noiseless LDS given by $\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t$ can be steered to any target state from any initial state.

Assumption 3.2. The system matrices B and C are bounded, i.e., $||B|| \le \kappa_B$, $||C|| \le \kappa_C$. The powers of the system matrix A are bounded as $||A^i|| \le \kappa(1-\gamma)^i$. The disturbance at each time step is also bounded, i.e., $||\mathbf{w}_t|| \le W$.

Remark 3.3 (Measurement Noise). Adding bounded noise to the observations is equivalent to introducing an additional bounded disturbance term, which is already captured in our formulation through the definition of \mathbf{y}^{nat} . Due to Assumption 3.2, the same arguments apply when measurement noise is present, and all theoretical guarantees remain valid under this modification.

Assumption 3.4. The cost functions $c_t(\mathbf{y}, \mathbf{u})$ are convex. Moreover, as long as $\|\mathbf{y}\|, \|\mathbf{u}\| \leq D$, the gradients are bounded:

$$\|\nabla_{\mathbf{y}} c_t(\mathbf{y}, \mathbf{u})\|, \|\nabla_{\mathbf{u}} c_t(\mathbf{y}, \mathbf{u})\| \leq GD.$$

As mentioned in [19], the most well-known class of controllers for partially observable linear dynamical systems is that of linear dynamical controllers due to its connection to Kalman filtering. We define a (κ, γ) -diagonalizably stable LDCs as follows:

Definition 3.5. A linear dynamical controller π has parameters $(A_{\pi}, B_{\pi}, C_{\pi})$ and chooses the the control at time t as:

$$\mathbf{s}_{t+1} = A_{\pi} \mathbf{s}_t + B_{\pi} \mathbf{y}_t$$
$$\mathbf{u}_t^{\pi} = C_{\pi} \mathbf{s}_t$$

We say that this linear dynamical controller is (κ, γ) -diagonalizably stable if:

- 1. $A_{\pi} = H_{\pi}L_{\pi}H_{\pi}^{-1}$ where L_{π} is a real positive diagonal matrix such that $||L_{\pi}|| \leq 1 \gamma$ and $||H_{\pi}||, ||H_{\pi}^{-1}|| \leq \kappa$.
- 2. $||B_{\pi}||, ||C_{\pi}|| \leq \kappa$.

3. Define
$$\mathcal{A}:=egin{bmatrix}A & BC_{\pi}\\B_{\pi}C & A_{\pi}\end{bmatrix}$$
. Then, $\left\|\mathcal{A}^i\right\|\leq \kappa^2(1-\gamma)^i$.

4. Let A_{CL} be the closed loop matrix for the policy defined in Lemma A.2, then $A_{CL} = HLH^{-1}$ where L is a real positive diagonal matrix such that $||L|| \leq 1 - \gamma$ and $||H||, ||H^{-1}|| \leq \kappa$.

We denote by $S = \{(A_{\pi}, B_{\pi}, C_{\pi}) : (A_{\pi}, B_{\pi}, C_{\pi}) \text{ is } (\kappa, \gamma)\text{-diagonalizably stable}\}$ the set of such policies, and, with slight abuse of notation, also use S to refer to the class of LDC policies \mathbf{u}_{t}^{π} where $(A_{\pi}, B_{\pi}, C_{\pi}) \in S$.

²The requirement of nonnegative eigenvalues can be relaxed by integrating over a larger set; it is imposed here for ease of presentation.

Assumption 3.6. The zero policy $(A_{\pi}, B_{\pi}, C_{\pi}) = (0, 0, 0)$ lies in S.

For simplicity, we assume that κ , κ_B , κ_C , $W \ge 1$ and $\gamma \le 2/3$, without loss of generality.

Algorithm 1 learns a convex relaxation of the LDC policy class S from Definition 3.5, which we define as follows:

Definition 3.7. [Double Spectral Controller] The class of Double Spectral Controllers with h lifting filters and \tilde{h} learning filters, memories (m, \tilde{m}) and stability γ is defined as:

$$\left\{\mathbf{u}_t(M) = M_0 \tilde{\mathbf{y}}_t^{\mathsf{nat}} + \sum_{i=1}^{\tilde{h}} \lambda_i^{1/4} M_i \tilde{Y}_{t:t-\tilde{m}}^{\mathsf{nat}} \boldsymbol{\varphi}_i \, \big| \, M \in \mathbb{R}^{(\tilde{h}+1) \times n \times (h+2)p} \right\} \,,$$

where:

$$1. \ \ \tilde{\mathbf{y}}_t^{\mathsf{nat}} = \begin{bmatrix} \mathbf{y}_t^{\mathsf{nat}} & \sigma_0^{1/4} Y_{t:t-m}^{\mathsf{nat}} \boldsymbol{\phi}_0 & \dots & \sigma_h^{1/4} Y_{t:t-m}^{\mathsf{nat}} \boldsymbol{\phi}_h \end{bmatrix}^\top \in \mathbb{R}^{(h+2)p} \,,$$

2.
$$\tilde{Y}_{t:t-\tilde{m}}^{\mathsf{nat}} = \begin{bmatrix} \tilde{\mathbf{y}}_t^{\mathsf{nat}} & \dots & \tilde{\mathbf{y}}_{t-\tilde{m}}^{\mathsf{nat}} \end{bmatrix}$$

3. $(\sigma_i, \phi_i) \in \mathbb{R} \times \mathbb{R}^m$ and $(\lambda_i, \varphi_i) \in \mathbb{R} \times \mathbb{R}^{\tilde{m}}$ are the (i+1)-th and i-th top eigenpairs of $H \in \mathbb{R}^{m \times m}$ and $\tilde{H} \in \mathbb{R}^{\tilde{m} \times \tilde{m}}$ with the (i,j)-th entry being $\frac{(1-\gamma)^{i+j-1}}{i+j-1}$ respectively.

To enable learning via online gradient descent, we require a bounded set of parameters:

Definition 3.8. We define the domain over which we optimize as

$$\mathcal{K} = \left\{ M \in \mathbb{R}^{(\tilde{h}+1) \times n \times (h+2)p} \mid \left\| \mathbf{y}_{t}^{M} \right\|, \left\| \mathbf{u}_{t}^{M} \right\| \leq \mathcal{R}, \left\| M \right\| \leq \mathcal{R}_{M} \right\} .$$

where

$$\mathcal{R} = \frac{4096\kappa^{24}\kappa_B\kappa_C^2Wh^4}{\gamma^4}\log^{1/2}\left(\frac{2}{\gamma}\right), \quad \mathcal{R}_M = \frac{128\kappa^{16}\kappa_B\kappa_C\sqrt{h^5\tilde{h}}}{\gamma^{5/2}}\log^{1/4}\left(\frac{2}{\gamma}\right).$$

We further note that in Algorithm 1, online gradient descent is not performed on the actual cost function, but on a modified cost function, referred to as the memory-less loss function:

Definition 3.9. We define the memory-less loss function at time t as

$$\ell_t(M) = c_t(\mathbf{y}_t(M), \mathbf{u}_t(M)),$$

where $\mathbf{u}_t(M)$ is as defined in 3.7, and $\mathbf{y}_t(M)$ is observed by playing $\mathbf{u}_0(M), \dots, \mathbf{u}_{t-1}(M)$.

Our use of a memory-less convex loss offers an alternative to [29], which formulates online control as optimization with memory. Our approach, inspired by [2], yields a more direct analysis while still relying on surrogate losses that implicitly capture system memory.

4 Main Result and Analysis Overview

In this section, we present our main result and its proof:

Theorem 4.1 (Main Theorem). Let c_t be any sequence of convex Lipschitz cost functions satisfying Assumption 3.4, and let the LDS be controllable (Definition 3.1) and satisfy Assumption 3.2. Then, Algorithm 1 achieves the following regret bound:

$$Regret_T (OSC, S) = \tilde{O}\left(\frac{\sqrt{T}}{\gamma^{11}}\right),$$

where \tilde{O} hides poly-logarithmic factors in $\frac{T}{\gamma}$ and constants, and S is the class of LDCs defined in Definition 3.5. This result holds under the following choice of inputs:

1.
$$m = \left[\frac{1}{\gamma} \log \left(\frac{C_1 T^{3/2}}{\gamma^3}\right)\right]$$
,

2.
$$h = \left[2 \log T \log \left(\frac{C_2 \sqrt{m}}{\gamma^2} T^{3/2} \log T \log^{1/4} \left(\frac{2}{\gamma} \right) \right) \right],$$

3.
$$\tilde{m} = \left[\frac{1}{\gamma} \log \left(\frac{C_3 h^{19/2}}{\gamma^{12}} \sqrt{T} \log^{5/4} \left(\frac{2}{\gamma}\right)\right)\right]$$
,

4.
$$\tilde{h} = \left[2 \log T \log \left(\frac{C_4 h^{21/2} \sqrt{\tilde{m}}}{\gamma^{23/2}} \sqrt{T} \log T \log^{3/2} \left(\frac{2}{\gamma} \right) \right) \right]$$

5.
$$\eta = \frac{1}{C_5} \sqrt{\frac{\gamma^7}{h^5 \tilde{h} m \tilde{m}}}$$

6. K is the set from Definition 3.8,

where the constants are defined as follows:

$$C_1 = C_0 G \kappa^{13} \kappa_B \kappa_C^4 W^2 , \ C_2 = C_0 G \kappa^{13} \kappa_B^2 \kappa_C^5 W^2 d , \ C_3 = C_0 G \kappa^{56} \kappa_B^3 \kappa_C^5 W^2 ,$$
$$C_4 = C_3 d , \ C_5 = 1024 G \kappa^{12} \kappa_B \kappa_C^3 W^2$$

and C_0 is some absolute constant.

The regret bound in Theorem 4.1 matches the $\tilde{\mathcal{O}}(\sqrt{T})$ rate that is optimal in the convex cost setting, while significantly improving the computational dependence on the stability margin γ . Specifically, the number of tunable parameters and the per-round runtime scale only as $\operatorname{polylog}(1/\gamma)$, whereas prior work [30] requires polynomial dependence on $1/\gamma$. Thus, our method preserves the optimal asymptotic regret rate while achieving an exponentially better scaling in both model size and runtime with respect to the stability margin, as emphasized in Corollary 4.4.

Before proceeding to the proof, we outline the key technical definitions and lemmas required to understand the main proof, while deferring their proof to the Appendix.

In Appendix A, we prove that the spectral policy class can approximate S up to arbitrary accuracy. Formally, we state this as:

Lemma 4.2. For any LDC policy $(A_{\pi}, B_{\pi}, C_{\pi}) \in \mathcal{S}$, there exists a Double spectral controller with $M \in \mathcal{K}$ such that:

$$\sum_{t=1}^{T} |c_t(\mathbf{y}_t(M), \mathbf{u}(M)) - c_t(\mathbf{y}_t^{\pi}, \mathbf{u}_t^{\pi})| = \mathcal{O}(\sqrt{T}),$$

for $m, h, \tilde{m}, \tilde{h}$ as defined in Theorem 4.1.

Classical results in online gradient descent provide a regret bound with respect to loss functions $\ell_t(M^t)$. However, our regret is defined in terms of the actual costs $c_t(\mathbf{x}_t, \mathbf{u}_t)$. To overcome this technicality, in Appendix B.3 we prove that $c_t(\mathbf{x}_t, \mathbf{u}_t)$ is well approximated by $\ell_t(M^t)$. We formally state this result here:

Lemma 4.3. Algorithm 1 is executed with η as defined in Theorem 4.1. Then for every $t \in [T]$,

$$\left| c_t(\mathbf{y}_t, \mathbf{u}_t) - \ell_t(M^t) \right| \leq \frac{16G\mathcal{R}\mathcal{R}_M h\tilde{h}\sqrt{m\tilde{m}}\kappa^4 \kappa_B \kappa_C^2 W}{\gamma^3 \sqrt{T}} \log^{1/2} \left(\frac{2}{\gamma}\right).$$

Proof of Theorem 4.1. Observe that for our choice of $m, h, \tilde{m}, \tilde{h}$, using Lemma 4.2 and the Definition 3.9 we get:

$$\min_{M^{\star} \in \mathcal{K}} \sum_{t=1}^{T} \ell_t(M^{\star}) - \min_{\pi \in \mathcal{S}} \sum_{t=1}^{T} c_t(\mathbf{y}_t^{\pi}, \mathbf{u}_t^{\pi}) = \mathcal{O}(\sqrt{T}),$$
(4)

since the cost evaluated on the stationary approximating policy M^{\star} is identical to the memory-less loss on that policy. To derive a regret bound, we apply the standard guarantee for Online Gradient Descent (Theorem 3.1 in [18]). Lemma B.1 ensures that the set \mathcal{K} is convex, and Lemma B.2 confirms the convexity of the memory-less loss functions. Additionally, Lemma B.3 provides a Lipschitz bound for these losses, and together with the diameter bound of M, this yields a regret guarantee under our step size choice η . Instantiating this bound with our selected values of $m, h, \tilde{m}, \tilde{h}$, we obtain:

$$\sum_{t=1}^{T} \ell_t \left(M^t \right) - \min_{M^{\star} \in \mathcal{K}} \sum_{t=1}^{T} \ell_t \left(M^{\star} \right) = \tilde{\mathcal{O}} \left(\frac{\sqrt{T}}{\gamma^{11}} \right). \tag{5}$$

Next, Lemma 4.3 gives us the bound on the difference between the memory-less loss $\ell_t(M^t)$ and the cost incurred by the algorithm $c_t(\mathbf{x}_t, \mathbf{u}_t)$ for every $t \in [T]$. Summing over all $t \in [T]$ and for our selected values of $m, h, \tilde{m}, \tilde{h}$:

$$\sum_{t=1}^{T} c_t \left(\mathbf{y}_t, \mathbf{u}_t \right) - \sum_{t=1}^{T} \ell_t \left(M_{1:h}^t \right) = \tilde{\mathcal{O}} \left(\frac{\sqrt{T}}{\gamma^{11}} \right). \tag{6}$$

Finally, we add equations (4),(5),(6) together to obtain the result:

$$\sum_{t=1}^{T} c_t \left(\mathbf{y}_t, \mathbf{u}_t \right) - \min_{\pi \in \mathcal{S}} \sum_{t=1}^{T} c_t \left(\mathbf{y}_t^{\pi}, \mathbf{u}_t^{\pi} \right) = \tilde{\mathcal{O}} \left(\frac{\sqrt{T}}{\gamma^{11}} \right)$$

Finally, Algorithm 1 maintains only $\operatorname{polylog}(T/\gamma)$ parameters at each step t. The spectral lifting step (line 5) at time $t \in [T]$ can be efficiently implemented by zero-padding each filter ϕ_i to length T and applying online convolution to the natural observation stream $\{y_t^{\mathsf{nat}}\}_{t \in [T]}$. Likewise, the controller computation (line 6) involves convolving the lifted, filtered stream $\tilde{\mathbf{y}}_t^{\mathsf{nat}}$ with zero-padded filters φ_i . By leveraging the fast online convolution method presented in Theorem 3 of [4], we obtain the following corollary:

Corollary 4.4. Each round of Algorithm 1 can be implemented with amortized runtime polylog (T/γ) .

5 Conclusions

We introduced *Double Spectral Control* (DSC), a new algorithm for controlling partially observed linear dynamical systems under adversarial disturbances and convex loss functions. Our method constructs a two-level spectral approximation of linear dynamical controllers, enabling efficient learning via a convex relaxation. DSC achieves optimal regret while exponentially improving the runtime dependence on the stability margin compared to prior work. To our knowledge, this is the first algorithm to combine partial observation, adversarial noise, and general convex losses with polylogarithmic runtime guarantees.

5.1 Limitations

Our method assumes access to the system dynamics (A,B,C), which may not be available in many practical scenarios. Extending DSC to settings with unknown or partially known dynamics is an important direction for future work. We also assume full-information feedback on the loss functions; extending the method to the bandit setting is a natural next step.

This work is primarily theoretical and serves as a proof of concept. Our analysis relies on Definition 3.5, which assumes that certain system matrices are real-diagonalizable. While this assumption simplifies the regret analysis, it excludes systems with oscillatory or non-diagonalizable dynamics. The focus on positive real eigenvalues stems from the Hankel-based spectral filtering method rather than an artifact of analysis. Extending the framework to oscillatory or Jordan-block systems remains an open challenge. Empirically, our experiments focused on symmetric systems satisfying these assumptions and therefore should not be interpreted as validating them. Extending the approach to more general dynamical systems, and exploring whether similar spectral compression arises under complex dynamics, presents an important direction for future work. Finally, evaluating DSC on real-world control tasks remains an important step toward validating its practical effectiveness.

6 Acknowledgments

EH gratefully acknowledges support from the Office of Naval Research and Open Philanthropy.

References

- [1] Y. Abbasi-Yadkori and C. Szepesvári. Regret bounds for the adaptive control of linear quadratic systems. In *Proceedings of the 24th Annual Conference on Learning Theory*, pages 1–26, 2011.
- [2] N. Agarwal, B. Bullins, E. Hazan, S. M. Kakade, and K. Singh. Online control with adversarial disturbances, 2019. URL https://arxiv.org/abs/1902.08721.
- [3] N. Agarwal, E. Hazan, and K. Singh. Logarithmic regret for online control, 2019. URL https://arxiv.org/abs/1909.05062.
- [4] N. Agarwal, X. Chen, E. Dogariu, V. Feinberg, D. Suo, P. Bartlett, and E. Hazan. Futurefill: Fast generation from convolutional sequence models, 2024. URL https://arxiv.org/abs/2410.03766.
- [5] S. Arora, E. Hazan, H. Lee, K. Singh, C. Zhang, and Y. Zhang. Towards provable control for unknown linear dynamical systems, 2018. URL https://openreview.net/forum?id=BygpQlbA-.
- [6] K. Åström. *Introduction to stochastic control theory*, volume 70 of *Mathematics in science and engineering*. Academic Press, United States, 1970. ISBN 0-12-065650-7.
- [7] T. Basar and P. Bernhard. *Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach*. Birkhäuser, Boston, MA, 2nd edition, 2008.
- [8] S. Boyd. Lecture 10: Linear quadratic stochastic control with partial state observation. https://web.stanford.edu/class/ee363/lectures/, 2009. Lecture notes for EE363: Convex Optimization I, Stanford University, Winter 2008–09.
- [9] A. Brahmbhatt, G. Buzaglo, S. Druchyna, and E. Hazan. A new approach to controlling linear dynamical systems, 2025. URL https://arxiv.org/abs/2504.03952.
- [10] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press, 2006.
- [11] X. Chen and E. Hazan. Online control for meta-optimization. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.
- [12] A. Cohen, A. Hassidim, T. Koren, N. Lazic, Y. Mansour, and K. Talwar. Online linear quadratic control, 2018. URL https://arxiv.org/abs/1806.07104.
- [13] A. Cohen, T. Koren, and Y. Mansour. Learning linear-quadratic regulators efficiently with only \sqrt{T} regret. In *International Conference on Machine Learning*, pages 1300–1309, 2019.
- [14] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu. Regret bounds for robust adaptive control of the linear quadratic regulator. In *Advances in Neural Information Processing Systems*, pages 4188–4197, 2018.
- [15] D. Foster and M. Simchowitz. Logarithmic regret for adversarial online control. In H. D. III and A. Singh, editors, *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pages 3211–3221. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/foster20b.html.
- [16] G. Goel and B. Hassibi. Regret-optimal estimation and control. *IEEE Transactions on Automatic Control*, 68(5):3041–3053, May 2023.
- [17] N. Golowich, E. Hazan, Z. Lu, D. Rohatgi, and Y. J. Sun. Online control in population dynamics, 2024. URL https://arxiv.org/abs/2406.01799.
- [18] E. Hazan. Introduction to online convex optimization, 2016. URL https://arxiv.org/abs/ 1909.05207.
- [19] E. Hazan and K. Singh. Introduction to online control, 2025. URL https://arxiv.org/abs/2211.09619.

- [20] E. Hazan, K. Singh, and C. Zhang. Learning linear dynamical systems via spectral filtering, 2017. URL https://arxiv.org/abs/1711.00946.
- [21] E. Hazan, H. Lee, K. Singh, C. Zhang, and Y. Zhang. Spectral filtering for general linear dynamical systems, 2018. URL https://arxiv.org/abs/1802.03981.
- [22] R. E. Kalman. A new approach to linear filtering and prediction problems. *Journal of Basic Engineering*, 82.1:35–45, 1960.
- [23] O. Kjellqvist and A. Rantzer. Output feedback minimax adaptive control. arXiv preprint arXiv:2403.01234, 2024.
- [24] S. Lale, K. Azizzadenesheli, B. Hassibi, and A. Anandkumar. Logarithmic regret bound in partially observable linear dynamical systems, 2020. URL https://arxiv.org/abs/2003. 11227.
- [25] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-kumar. Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895, 2020.
- [26] A. M. Lyapunov. The general problem of the stability of motion. *International journal of control*, 55(3):531–534, 1992.
- [27] H. Mania, S. Tu, and B. Recht. Certainty equivalence is efficient for linear quadratic control. In *Advances in Neural Information Processing Systems*, pages 10154–10164, 2019.
- [28] A. Marsden and E. Hazan. Dimension-free regret for learning asymmetric linear dynamical systems, 2025. URL https://arxiv.org/abs/2502.06545.
- [29] E. Minasyan, P. Gradu, M. Simchowitz, and E. Hazan. Online control of unknown time-varying dynamical systems, 2022. URL https://arxiv.org/abs/2202.07890.
- [30] M. Simchowitz, K. Singh, and E. Hazan. Improper learning for non-stochastic control, 2020. URL https://arxiv.org/abs/2001.09254.
- [31] A. Suggala, Y. J. Sun, P. Netrapalli, and E. Hazan. Second order methods for bandit optimization and control, 2024. URL https://arxiv.org/abs/2402.08929.
- [32] D. Suo, N. Agarwal, W. Xia, X. Chen, U. Ghai, A. Yu, P. Gradu, K. Singh, C. Zhang, E. Minasyan, J. LaChance, T. Zajdel, M. Schottdorf, D. Cohen, and E. Hazan. Machine learning for mechanical ventilation control, 2022. URL https://arxiv.org/abs/2102.06779.
- [33] K. Zhang, B. Hu, and T. Basar. Policy optimization for linear control with robustness guarantee: Implicit regularization and global convergence. *SIAM Journal on Control and Optimization*, 59 (5):3644–3672, 2021.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The improvement in the running time is proven in Corollary 4.4. The regret bound is proven in Theorem 4.1. The empirical performance is demonstrated in our experiments.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in section 5.1.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions are mentioned in 3. The complete proof of Theorem 4.1 is in the Appendix.

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.

- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we describe our method completely in Algorithm 1. Our code repository will be open sourced and a link will be provided in the final version.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: A link to the code will be provided in the final version. However, we omit the GitHub repository with all of our code at the moment in order not to violate the double blind policy and keep the paper anonymous.

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Experiment details will be expansively explained in the supplementary materials.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Experiment details with the robust statistical significance measures will be reported in the supplementary materials.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We will completely describe the necessary computing resources in the supplementary materials.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not involve human participants, and all experiments are simulation-based without the use of any external datasets. Furthermore, the work does not raise concerns related to safety, security, discrimination, surveillance, deception or harassment, environmental impact, human rights, or issues of bias and fairness.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: Our work is purely in the theoretical domain and hence it does not have any societal implications.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper proposes a new method for control, and hence we do not have any data or models to be released.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: The paper does not use anyone's code to run the simulations.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We release the code for our simulations.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing experiments or research with human subjects have been performed for this paper.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: No research with human subjects have been performed for this paper.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs have only been used for formatting purposes for this paper.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Approximation Results

In this section, we present the proof of Lemma 4.2. We begin by showing that the class S can be approximated by a family of controllers that are linear in spectral projections of past observations, computed over a fixed memory window. The following definition formalizes this class.

Definition A.1 (Spectral-Projection Linear Controller). Let $h \in \mathbb{N}$ denote the number of spectral components, $m \in \mathbb{N}$ the memory length, and $\gamma \in (0,1)$ a stability parameter. We define the class of Spectral-Projection Linear Controllers as:

$$\left\{ \mathbf{u}_{t}^{K} = \sum_{i=1}^{h} \sigma_{i}^{1/4} K_{i} Y_{t:t-m}^{K} \boldsymbol{\phi}_{i} \mid K_{i} \in \mathbb{R}^{n \times p} \right\},$$

where $Y_{t:t-m}^K = \begin{bmatrix} y_t^K & y_{t-1}^K & \cdots & y_{t-m}^K \end{bmatrix} \in \mathbb{R}^{p \times (m+1)}$ denotes the matrix of past observations under controller K, and $(\sigma_i, \phi_i) \in \mathbb{R} \times \mathbb{R}^{m+1}$ are the top h+1 eigenpairs (indexed from 0) of the Hankel matrix $H \in \mathbb{R}^{(m+1) \times (m+1)}$, with entries

$$H_{ij} = \frac{(1-\gamma)^{i+j-1}}{i+j-1}.$$

In Section A.1, we establish the following lemma, which shows that the class of linear dynamic controllers in S can be approximated by the class of spectral-projection linear controllers, for appropriately chosen values of m and h.

Lemma A.2. Let a LDC $(A_{\pi}, B_{\pi}, C_{\pi}) \in \mathcal{S}$. Then for

$$m \geq \frac{1}{\gamma} \log \left(\frac{56G\kappa^{13}\kappa_B\kappa_C^4 W^2 T}{\varepsilon\gamma^3} \right) \,, \qquad h \geq 2 \log T \log \left(\frac{224G\kappa^{13}\kappa_B^2\kappa_C^5 W^2 \sqrt{m}d}{\varepsilon\gamma^2} T \log T \log^{1/4} \left(\frac{2}{\gamma} \right) \right) \,,$$

and $\varepsilon \in (0,1)$, there exists a spectral-projection linear controller with

$$K_i = \sigma_i^{-1/4} \left(\sum_{j=1}^d C_{\pi} H_{\pi} e_j e_j^{\top} H_{\pi}^{-1} B_{\pi} \boldsymbol{\phi}_i^{\top} \boldsymbol{\mu}_{\alpha_j} \right) \quad \text{where} \quad \mu_{\alpha} = [1, \alpha, \dots, \alpha^m] \in \mathbb{R}^{m+1} \,,$$

such that

$$\sum_{t=1}^{T} \left| c_t(\mathbf{y}_t^K, \mathbf{u}_t^K) - c_t(\mathbf{y}_t^{\pi}, \mathbf{u}_t^{\pi}) \right| \le \varepsilon T.$$

We now observe that any spectral-projection linear controller can be viewed as a static linear controller acting on a lifted dynamical system. Define the lifted system as follows:

$$\tilde{\mathbf{x}}_t = \tilde{A}\tilde{\mathbf{x}}_{t-1} + \tilde{B}\mathbf{u}_t + \tilde{\mathbf{w}}_t, \qquad \tilde{\mathbf{y}}_t = \tilde{C}\tilde{\mathbf{x}}_t,$$
 (7)

where

$$\tilde{A} = \begin{bmatrix} A & 0 & \cdots & 0 \\ I & 0 & \cdots & 0 \\ 0 & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{(m+1)d \times (m+1)d}, \quad \tilde{B} = \begin{bmatrix} B \\ 0 \\ \vdots \\ 0 \end{bmatrix} \in \mathbb{R}^{(m+1)d \times n}, \quad \tilde{\mathbf{w}}_t = \begin{bmatrix} \mathbf{w}_t \\ 0 \\ \vdots \\ 0 \end{bmatrix} \in \mathbb{R}^{(m+1)d}.$$

$$(8)$$

The output matrix \tilde{C} is given by:

$$\tilde{C} = \begin{bmatrix} C & \cdots & 0 \\ \sigma_0^{1/4} \phi_0(1) C & \cdots & \sigma_0^{1/4} \phi_0(m+1) C \\ \vdots & \ddots & \vdots \\ \sigma_h^{1/4} \phi_h(1) C & \cdots & \sigma_h^{1/4} \phi_h(m+1) C \end{bmatrix} \in \mathbb{R}^{(h+2)p \times (m+1)d}, \tag{9}$$

where $\phi_i = (\phi_i(1), \dots, \phi_i(m+1))^{\top}$ is the i+1-th eigenvector of the Hankel matrix in Definition A.1.

The control law defined by the spectral-projection linear controller corresponds to a static linear controller on the lifted system:

$$K = \begin{bmatrix} 0 \\ K_0 \\ K_1 \\ \vdots \\ K_h \end{bmatrix} \in \mathbb{R}^{(h+2)p \times n}, \quad \text{so that} \quad \mathbf{u}_t = K\tilde{\mathbf{y}}_t. \tag{10}$$

The lifted state and lifted output can be written compactly as:

$$\tilde{\mathbf{x}}_t = \begin{bmatrix} \mathbf{x}_t^\top & \mathbf{x}_{t-1}^\top & \cdots & \mathbf{x}_{t-m}^\top \end{bmatrix}^\top \in \mathbb{R}^{(m+1)d}, \tag{11}$$

$$\tilde{\mathbf{y}}_t^K = \begin{bmatrix} (\mathbf{y}_t^K)^\top & \sigma_0^{1/4} (Y_{t:t-m}^K \boldsymbol{\phi}_0)^\top & \cdots & \sigma_h^{1/4} (Y_{t:t-m}^K \boldsymbol{\phi}_h)^\top \end{bmatrix}^\top \in \mathbb{R}^{(h+2)p}, \tag{12}$$

To evaluate performance, we define the lifted cost \tilde{c}_t by applying the original cost function c_t to the first p coordinates of $\tilde{\mathbf{y}}_t$ (i.e., the original observation \mathbf{y}_t) and to the control \mathbf{u}_t .

Finally, in the zero-input (natural) system, the lifted observation becomes:

$$\tilde{\mathbf{y}}_t^{\mathsf{nat}} = \begin{bmatrix} (\mathbf{y}_t^{\mathsf{nat}})^\top & \sigma_0^{1/4} (Y_{t:t-m}^{\mathsf{nat}} \boldsymbol{\phi}_0)^\top & \cdots & \sigma_h^{1/4} (Y_{t:t-m}^{\mathsf{nat}} \boldsymbol{\phi}_h)^\top \end{bmatrix}^\top \in \mathbb{R}^{(h+2)p}. \tag{13}$$

where $Y_{t:t-m}^{nat}$ is as defined in Algorithm 1.

We now summarize key norm bounds for the lifted system components, which will be used in subsequent analysis.

- The output dimension of the lifted system is (h+2)p.
- The lifted input matrix satisfies $\|\tilde{B}\| \leq \kappa_B$, and the lifted noise satisfies $\|\tilde{\mathbf{w}}_t\| \leq W$ for all t, by assumption.
- By Assumption 3.6, the lifted dynamics matrix satisfies the exponential decay bound

$$\|\tilde{A}^i\| < \kappa^2 (1 - \gamma)^i$$
 for all $i > 0$.

• The norm of the lifted output matrix \tilde{C} can be bounded as follows. Each spectral projection row block after the first block in \tilde{C} is of the form

$$\left[\sigma_i^{1/4}\phi_i(1)C \cdots \sigma_i^{1/4}\phi_i(m+1)C\right],\,$$

and since the eigenvectors $\phi_i \in \mathbb{R}^{m+1}$ are orthonormal and the eigenvalues σ_i are bounded by $\sigma_i \leq \log\left(\frac{2}{\gamma}\right)$, defining Φ as a matrix with ϕ_i^T as its rows, we have

$$\|\tilde{C}\| \leq \|C\| + \sigma_{\max}^{1/4} \|\Phi \otimes C\| \leq \kappa_C \left(1 + \sqrt{h+1} \log^{1/4} \left(\frac{2}{\gamma}\right)\right) \leq 4\kappa_C \sqrt{h} \cdot \log^{1/4} \left(\frac{2}{\gamma}\right).$$

The lifted cost function \(\tilde{c}_t\), which is defined by applying the original cost function \(c_t\) to the first \(p\) coordinates of \(\tilde{y}_t\) and to \(\mathbf{u}_t\), inherits the same Lipschitz constant \(G\) as the original cost. That is, for all \(t,\)

$$\operatorname{Lip}(\tilde{c}_t) \leq G$$
.

• Finally, for the control matrix $K \in \mathbb{R}^{(h+2)p \times n}$ defined in the proof of Lemma A.2, the norm can be bounded as

$$||K|| \le \kappa^4 \sqrt{\frac{2(h+1)}{\gamma}} \le 2\kappa^4 \sqrt{\frac{h}{\gamma}}.$$

In section A.2, we prove the following lemma that states that linear controllers can be approximated by spectral controller defined as follows.

Lemma A.3. Consider a system with parameters (A, B, C) such that $\|B\| \leq \tilde{\kappa}_B$, $\|C\| \leq \tilde{\kappa}_C$, and $\|A^i\| \leq \tilde{\kappa}^2 (1 - \tilde{\gamma})^i$ for all $i \in \mathbb{N}$. Let $\{c_t\}_{t=1}^T$ be a sequence of cost functions that are \tilde{G} -Lipschitz over the domain $\{\|\mathbf{y}\|, \|\mathbf{u}\| \leq D\}$. Suppose $K \in \mathbb{R}^{n \times p}$ is a linear controller such that $A + BKC = HLH^{-1}$, where L is a diagonal matrix with nonnegative entries satisfying $\|L\| \leq 1 - \tilde{\gamma}$, and $\|H\|, \|H^{-1}\| \leq \tilde{\kappa}$.

Then, for any $\varepsilon \in (0,1)$, there exists a spectral controller of the form

$$\mathbf{u}_t^M = M_0 \mathbf{y}_t^{\mathsf{nat}} + \sum_{i=1}^{\tilde{h}} \lambda_i^{1/4} M_i Y_{t-1:t-\tilde{m}}^{\mathsf{nat}} \boldsymbol{\varphi}_i,$$

where (λ_i, φ_i) are the top \tilde{h} eigenpairs of the Hankel matrix $H \in \mathbb{R}^{\tilde{m} \times \tilde{m}}$ with $H_{ij} = \frac{(1-\tilde{\gamma})^{i+j-1}}{i+j-1}$, such that

$$\sum_{t=1}^{T} \left| c_t(\mathbf{y}_t^M, \mathbf{u}_t^M) - c_t(\mathbf{y}_t^K, \mathbf{u}_t^K) \right| \le 2\varepsilon T,$$

provided

$$\tilde{m} \geq \frac{1}{\tilde{\gamma}} \log \left(\frac{6\tilde{G}\tilde{\kappa}^{14}\tilde{\kappa}_B^3 \tilde{\kappa}_C^5 \tilde{W}^2}{\varepsilon \tilde{\gamma}^5} \right), \quad \tilde{h} \geq 2 \log T \cdot \log \left(\frac{400\tilde{G}\tilde{\kappa}^{14}\tilde{\kappa}_B^3 \tilde{\kappa}_C^5 \tilde{W}^2 \sqrt{\tilde{m}} d}{\varepsilon \tilde{\gamma}^{9/2}} \log T \log^{1/4} \left(\frac{2}{\tilde{\gamma}} \right) \right).$$

Moreover, the parameters M lie in the bounded set

$$\mathcal{K} = \left\{ M \in \mathbb{R}^{\tilde{h} \times n \times p} \; \middle| \; \|\mathbf{y}_t^M\|, \|\mathbf{u}_t^M\| \le \frac{4\tilde{\kappa}^6 \tilde{\kappa}_B \tilde{\kappa}_C^2 \tilde{W}}{\tilde{\gamma}^2}, \; \|M_0\| \le \tilde{\kappa}, \; \|M_i\| \le \tilde{\kappa}^4 \tilde{\kappa}_B \tilde{\kappa}_C \sqrt{\frac{2}{\tilde{\gamma}}} \right\}.$$

Thus, we complete the proof of Lemma 4.2 as follows:

Proof of Lemma 4.2. Substituting the values of the bounds in Lemma A.3 and substituting $\varepsilon = 1/\sqrt{T}$ completes the proof.

A.1 Approximating LDC with spectral Surrogate Controller

In this section, we prove Lemma A.2. We begin by deriving bounds on the observations and controls generated by any linear dynamic controller in S, as well as by the corresponding spectral-projection linear controller constructed in Lemma A.2. These bounds are established in the following lemmas.

Lemma A.4. Let $(A_{\pi}, B_{\pi}, C_{\pi}) \in \mathcal{S}$. Then for all $t \geq 0$, the observation and control satisfy:

$$\|\mathbf{y}_t^{\pi}\|, \|\mathbf{u}_t^{\pi}\| \le \frac{\kappa_C \kappa^3 W}{\gamma}.$$

Proof. Define the joint state $\mathbf{z}_t^{\pi} = \begin{bmatrix} \mathbf{x}_t^{\pi} \\ \mathbf{s}_t^{\pi} \end{bmatrix}$, with closed-loop dynamics

$$\mathbf{z}_{t+1}^{\pi} = \mathcal{A}\mathbf{z}_{t}^{\pi} + \mathcal{B}\mathbf{w}_{t}, \quad \text{where} \quad \mathcal{A} = \begin{bmatrix} A & BC_{\pi} \\ B_{\pi}C & A_{\pi} \end{bmatrix}, \quad \mathcal{B} = \begin{bmatrix} I \\ 0 \end{bmatrix}.$$

Since $\mathbf{z}_0^{\pi} = 0$, we have

$$\mathbf{z}_t^{\pi} = \sum_{i=0}^{t-1} \mathcal{A}^{t-1-i} \mathcal{B} \mathbf{w}_i.$$

The outputs are $\mathbf{y}_t^{\pi} = [C \ 0]\mathbf{z}_t^{\pi}$, $\mathbf{u}_t^{\pi} = [0 \ C_{\pi}]\mathbf{z}_t^{\pi}$. Using definition 3.5, $\|\mathcal{A}^i\| \leq \kappa^2 (1-\gamma)^i$, $\|\mathcal{B}\| = 1$, $\|C\| \leq \kappa_C$, $\|C_{\pi}\| \leq \kappa$, and $\|\mathbf{w}_i\| \leq W$, we get:

$$\|\mathbf{y}_t^{\pi}\| \le \kappa_C \sum_{i=0}^{t-1} \|\mathcal{A}^i\| W \le \frac{\kappa^2 \kappa_C W}{\gamma}, \quad \|\mathbf{u}_t^{\pi}\| \le \kappa \sum_{i=0}^{t-1} \|\mathcal{A}^i\| W \le \frac{\kappa^3 W}{\gamma}.$$

Lemma A.5. Let $(A_{\pi}, B_{\pi}, C_{\pi}) \in \mathcal{S}$ and let K be as mentioned in Lemma A.2 for $(A_{\pi}, B_{\pi}, C_{\pi})$. Then, for any $t \geq 0$,

$$\|\mathbf{y}_t^K\| \le \frac{\kappa^2 \kappa_C W}{\gamma}.$$

Proof. Observe that our spectral-projection linear controller can be represented by the lifted system defined in Equations (7), (8), (9) and (10) for the choice of K_i in Lemma A.2. By definition 3.5, $\tilde{A}+\tilde{B}\tilde{K}\tilde{C}=HLH^{-1}$, and thus $\left\|(\tilde{A}+\tilde{B}\tilde{K}\tilde{C})^i\right\|\leq \kappa^2(1-\gamma)^i$. Moreover, observe that $\|\tilde{\mathbf{w}}_t\|\leq W$. Thus,

$$\tilde{\mathbf{x}}_t^K = \sum_{i=1}^t (\tilde{A} + \tilde{B}\tilde{K}\tilde{C})^{i-1}\tilde{\mathbf{w}}_{t-i} \implies \|\tilde{\mathbf{x}}_t^K\| \le \frac{\kappa^2 W}{\gamma}.$$

Using Eqn (11), it is clear that $\mathbf{y}_t^K = \begin{bmatrix} C & 0 & \dots & 0 \end{bmatrix} \tilde{\mathbf{x}}_t^K$ and thus, $\left\| \mathbf{y}_t^K \right\| \leq \frac{\kappa^2 \kappa_C W}{\gamma}$

We now complete the proof of Lemma A.2 as follows:

Proof of Lemma A.2. Observe that

$$\mathbf{u}_t^{\pi} = \sum_{i=0}^t C_{\pi} A_{\pi}^i B_{\pi} \mathbf{y}_{t-i}^{\pi}.$$

Consider the following policy π_{τ} defined for some $\tau \in \mathbb{N} \cup \{0\}$:

$$\mathbf{u}_{t}^{\pi_{\tau}} = \begin{cases} \sum_{i=0}^{h} \sigma_{i}^{1/4} K_{i} Y_{t:t-m}^{\pi_{\tau}} \boldsymbol{\phi}_{i} & \text{if } t \leq \tau - 1\\ \sum_{i=0}^{m} C_{\pi} A_{\pi}^{i} B_{\pi} \mathbf{y}_{t-i}^{\pi_{\tau}} & \text{if } t = \tau\\ \sum_{i=0}^{t} C_{\pi} A_{i}^{i} B_{\pi} \mathbf{y}_{t-i}^{\pi_{\tau}} & \text{if } t \geq \tau + 1 \end{cases}$$

Observe that π_0 is pure LDC policy and that π_{T+1} is purely spectral policy. In order to bound the difference of costs between these, we shall bound the difference of costs between π_{τ} and $\pi_{\tau-1}$ for any $\tau \in [T]$.

Observe that for all $t \in [0, \tau-2]$, $\mathbf{u}_t^{\pi_{\tau}} = \mathbf{u}_t^{\pi_{\tau-1}}$ and for all $t \in [0, \tau-1]$, $\mathbf{y}_t^{\pi_{\tau}} = \mathbf{y}_t^{\pi_{\tau-1}}$ by the definition of π_{τ} . Thus, $Y_{\tau-1:\tau-m-1}^{\pi_{\tau}} = Y_{\tau-1:\tau-m-1}^{\pi_{\tau-1}}$ and this gives us

$$\mathbf{u}_{\tau-1}^{\pi_{\tau-1}} = \sum_{i=1}^{m} C_{\pi} A_{\pi}^{i} B_{\pi} \mathbf{y}_{\tau-i-1}^{\pi_{\tau-1}} = \sum_{i=0}^{m} C_{\pi} H_{\pi} L_{\pi}^{i} H_{\pi}^{-1} B_{\pi} \mathbf{y}_{\tau-i-1}^{\pi_{\tau-1}}.$$

Writing $L_{\pi}^i = \sum_{j=1}^d \alpha_j^i e_j e_j^{\top}$, and defining $\mu_{\alpha} = \begin{bmatrix} 1 & \alpha & \dots & \alpha^m \end{bmatrix}^{\top} \in \mathbb{R}^{m+1}$, we get

$$\mathbf{u}_{\tau-1}^{\pi_{\tau-1}} = \sum_{i=0}^{m} C_{\pi} H_{\pi} \left(\sum_{j=1}^{d} \alpha_{j}^{i} e_{j} e_{j}^{\top} \right) H_{\pi}^{-1} B_{\pi} \mathbf{y}_{\tau-i-1}^{\pi_{\tau-1}} = \sum_{j=1}^{d} C_{\pi} H_{\pi} e_{j} e_{j}^{\top} H_{\pi}^{-1} B_{\pi} Y_{\tau-1:\tau-m-1}^{\pi_{\tau-1}} \mu_{\alpha_{j}}.$$

Since $\{\phi_i \mid i \in [m] \cup \{0\}\}$ form an orthonormal basis,

$$\mathbf{u}_{\tau-1}^{\pi_{\tau-1}} = \sum_{i=1}^{d} C_{\pi} H_{\pi} e_{j} e_{j}^{\top} H_{\pi}^{-1} B_{\pi} Y_{\tau-1:\tau-m-1}^{\pi_{\tau-1}} \left(\sum_{i=0}^{m} \phi_{i} \phi_{i}^{\top} \right) \mu_{\alpha_{j}} = \sum_{i=0}^{m} \sigma_{i}^{1/4} K_{i} Y_{\tau-1:\tau-m-1}^{\pi_{\tau-1}} \phi_{i}.$$

Since, $Y_{\tau-1:\tau-m-1}^{\pi_{\tau-1}}=Y_{\tau-1:\tau-m-1}^{\pi_{\tau}}$, and all of $\{\mathbf{y}_t^{\pi_{\tau}}\,|\,t\in[\tau-1]\}$ are outputs of the spectral-projection linear policy. Using Lemma A.5, we know that $\|Y_{\tau-1:\tau-m-1}^{\pi_{\tau}}\|\leq \frac{\sqrt{m+1}\kappa^2\kappa_CW}{\gamma}\leq \frac{2\kappa^2\kappa_CW\sqrt{m}}{\gamma}$. Moreover,

$$\mathbf{u}_{\tau-1}^{\pi_{\tau}} = \sum_{i=0}^{h} \sigma_i^{1/4} K_i Y_{\tau-1:\tau-m-1}^{\pi_{\tau}} \boldsymbol{\phi}_i.$$

Taking the difference, we get that:

$$\left\| \mathbf{u}_{\tau-1}^{\pi_{\tau}} - \mathbf{u}_{\tau-1}^{\pi_{\tau-1}} \right\| \leq \sum_{i=h+1}^{m} \left\| \sigma_{i}^{1/4} K_{i} \right\| \left\| Y_{\tau-1:\tau-m-1}^{\pi_{\tau}} \right\| \leq \frac{2\kappa^{6} \kappa_{C} W \sqrt{m}}{\gamma} \sum_{i=h+1}^{m} \sum_{j=1}^{d} |\phi_{i}^{\top} \boldsymbol{\mu}_{\alpha_{j}}|$$

Using Lemma 7.4 of [9], we get that:

$$\|\mathbf{u}_{\tau-1}^{\pi_{\tau}} - \mathbf{u}_{\tau-1}^{\pi_{\tau-1}}\| \leq \frac{2\kappa^{6}\kappa_{C}Wd\sqrt{m}}{\gamma} \log^{1/4} \left(\frac{2}{\gamma}\right) \int_{h}^{\infty} \exp\left(-\frac{\pi^{2}j}{16\log T}\right) dj$$

$$\leq \frac{4\kappa^{6}\kappa_{C}Wd\sqrt{m}}{\gamma} \log T \log^{1/4} \left(\frac{2}{\gamma}\right) \exp\left(-\frac{\pi^{2}h}{16\log T}\right)$$

$$\leq \delta_{1} \qquad [h \geq 2\log T \log\left(\frac{4\kappa^{6}\kappa_{C}Wd\sqrt{m}}{\delta_{1}\gamma} \log T \log^{1/4} \left(\frac{2}{\gamma}\right)\right)] \quad (14)$$

Now, observe that since the controls of π_{τ} and $\pi_{\tau-1}$ are the same until time $\tau-2$, $\mathbf{x}_{\tau-1}^{\pi_{\tau}}=\mathbf{x}_{\tau-1}^{\pi_{\tau-1}}$. Thus, using eqn. (14), we get that:

$$\|\mathbf{x}_{\tau}^{\pi_{\tau}} - \mathbf{x}_{\tau}^{\pi_{\tau-1}}\| = \|B(\mathbf{u}_{\tau-1}^{\pi_{\tau}} - \mathbf{u}_{\tau-1}^{\pi_{\tau-1}})\| \le \kappa_B \delta_1$$
 (15)

and

$$\|\mathbf{y}_{\tau}^{\pi_{\tau}} - \mathbf{y}_{\tau}^{\pi_{\tau-1}}\| = \|CB(\mathbf{u}_{\tau-1}^{\pi_{\tau}} - \mathbf{u}_{\tau-1}^{\pi_{\tau-1}})\| \le \kappa_B \kappa_C \delta_1 \tag{16}$$

Again by using the fact that $\mathbf{y}_{t-i}^{\pi_{\tau}} = \mathbf{y}_{t-i}^{\pi_{\tau-1}}$ for all $i \geq 1$

$$\|\mathbf{u}_{\tau}^{\pi_{\tau}} - \mathbf{u}_{\tau}^{\pi_{\tau-1}}\| = \left\| \sum_{i=0}^{\tau} C_{\pi} A_{\pi}^{i} B_{\pi} \mathbf{y}_{\tau-i}^{\pi_{\tau}} - \sum_{i=0}^{m} C_{\pi} A_{\pi}^{i} B_{\pi} \mathbf{y}_{\tau-i}^{\pi_{\tau-1}} \right\|$$

$$\leq \|C_{\pi} B_{\pi} \left(\mathbf{y}_{\tau}^{\pi_{\tau}} - \mathbf{y}_{\tau}^{\pi_{\tau-1}} \right)\| + \left\| \sum_{i=1}^{\tau} C_{\pi} A_{\pi}^{i} B_{\pi} \mathbf{y}_{\tau-i}^{\pi_{\tau}} - \sum_{i=1}^{m} C_{\pi} A_{\pi}^{i} B_{\pi} \mathbf{y}_{\tau-i}^{\pi_{\tau-1}} \right\|$$

$$\leq \kappa_{B} \kappa_{C} \kappa^{2} \delta_{1} + \frac{\kappa^{6} \kappa_{C} W}{\gamma^{2}} \left(1 - \gamma \right)^{m+1} \quad \text{[choice of } h\text{]}$$

$$\leq 2\kappa^{2} \kappa_{B} \kappa_{C} \delta_{1} \qquad \left[m \geq \frac{1}{\gamma} \log \left(\frac{\kappa^{4} W}{\kappa_{B} \gamma^{2} \delta_{1}} \right) \right] \tag{17}$$

Now, for any $t > \tau$, we have that

$$\begin{bmatrix} \mathbf{x}_{t}^{\pi_{\tau}} - \mathbf{x}_{t}^{\pi_{\tau-1}} \\ \mathbf{s}_{t}^{\pi_{\tau}} - \mathbf{s}_{t}^{\pi_{\tau-1}} \end{bmatrix} = \begin{bmatrix} A & B_{\pi}C \\ BC_{\pi} & A_{\pi} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{t-1}^{\pi_{\tau}} - \mathbf{x}_{t-1}^{\pi_{\tau-1}} \\ \mathbf{s}_{t-1}^{\pi_{\tau}} - \mathbf{s}_{t-1}^{\pi_{\tau-1}} \end{bmatrix} = \begin{bmatrix} A & B_{\pi}C \\ BC_{\pi} & A_{\pi} \end{bmatrix}^{t-\tau-1} \begin{bmatrix} \mathbf{x}_{\tau+1}^{\pi_{\tau}} - \mathbf{x}_{\tau+1}^{\pi_{\tau-1}} \\ \mathbf{s}_{\tau+1}^{\pi_{\tau}} - \mathbf{s}_{\tau+1}^{\pi_{\tau-1}} \end{bmatrix}.$$

In order to compute the terms on the RHS

$$\begin{aligned} \left\| \mathbf{x}_{\tau+1}^{\pi_{\tau}} - \mathbf{x}_{\tau+1}^{\pi_{\tau-1}} \right\| &= \left\| A \left(\mathbf{x}_{\tau}^{\pi_{\tau}} - \mathbf{x}_{\tau}^{\pi_{\tau-1}} \right) + B \left(\mathbf{u}_{\tau}^{\pi_{\tau}} - \mathbf{u}_{\tau}^{\pi_{\tau-1}} \right) \right\| \\ &\leq \kappa^{2} \left\| \mathbf{x}_{\tau}^{\pi_{\tau}} - \mathbf{x}_{\tau}^{\pi_{\tau-1}} \right\| + \kappa_{B} \left\| \mathbf{u}_{\tau}^{\pi_{\tau}} - \mathbf{u}_{\tau}^{\pi_{\tau-1}} \right\| \\ &\leq \kappa^{2} \kappa_{B} \delta_{1} + 2\kappa^{2} \kappa_{B}^{2} \kappa_{C} \delta_{1} \leq 3\kappa^{2} \kappa_{B}^{2} \kappa_{C} \delta_{1}. \end{aligned}$$
 [Eqns (15) and (17)] (18)

and thus,

$$\|\mathbf{y}_{\tau+1}^{\pi_{\tau}} - \mathbf{y}_{\tau+1}^{\pi_{\tau-1}}\| = \|C(\mathbf{x}_{\tau+1}^{\pi_{\tau}} - \mathbf{x}_{\tau+1}^{\pi_{\tau-1}})\| \le 3\kappa^2 \kappa_B^2 \kappa_C^2 \delta_1$$
 (19)

Moreover, for $t > \tau$, the controller does behave like an LDC, however, the starting state is different and must be calculated. Observe that if $\mathbf{s}_t^{\pi_{\tau}} := \sum_{i=0}^t A_{\pi}^i B_{\pi} \mathbf{y}_{t-i}^{\pi_{\tau}}$ for all $t > \tau$, then the control is correctly defined. Hence,

$$\begin{aligned} \left\| \mathbf{s}_{\tau+1}^{\pi_{\tau}} - \mathbf{s}_{\tau+1}^{\pi_{\tau-1}} \right\| &= \left\| A_{\pi} B_{\pi} \left(\mathbf{y}_{\tau}^{\pi_{\tau}} - \mathbf{y}_{\tau}^{\pi_{\tau-1}} \right) + B_{\pi} \left(\mathbf{y}_{\tau+1}^{\pi_{\tau}} - \mathbf{y}_{\tau+1}^{\pi_{\tau-1}} \right) \right\| \\ &\leq \kappa^{3} \kappa_{B} \kappa_{C} \delta_{1} + 3\kappa^{3} \kappa_{B}^{2} \kappa_{C}^{2} \delta_{1} \leq 4\kappa^{3} \kappa_{B}^{2} \kappa_{C}^{2} \delta_{1} \end{aligned} \quad \text{[Eqns (16) and (19)]} .$$

Putting this together, we have that

$$\left\| \begin{bmatrix} \mathbf{x}_{\tau+1}^{\pi_{\tau}} - \mathbf{x}_{\tau+1}^{\pi_{\tau-1}} \\ \mathbf{s}_{\tau+1}^{\pi_{\tau}} - \mathbf{s}_{\tau+1}^{\pi_{\tau-1}} \end{bmatrix} \right\| \leq 3\kappa^2 \kappa_B^2 \kappa_C \delta_1 + 4\kappa^3 \kappa_B^2 \kappa_C^2 \delta_1 \leq 7\kappa^3 \kappa_B^2 \kappa_C^2 \delta_1.$$

Thus, we have

$$\left\| \begin{bmatrix} \mathbf{x}_{t}^{\pi_{\tau}} - \mathbf{x}_{t}^{\pi_{\tau-1}} \\ \mathbf{s}_{t}^{\pi_{\tau}} - \mathbf{s}_{t}^{\pi_{\tau-1}} \end{bmatrix} \right\| \leq \kappa^{2} (1 - \gamma)^{t - \tau - 1} \left\| \begin{bmatrix} \mathbf{x}_{\tau+1}^{\pi_{\tau}} - \mathbf{x}_{\tau+1}^{\pi_{\tau-1}} \\ \mathbf{s}_{\tau+1}^{\pi_{\tau}} - \mathbf{s}_{\tau+1}^{\pi_{\tau-1}} \end{bmatrix} \right\| \leq 7\kappa^{5} \kappa_{B}^{2} \kappa_{C}^{2} \delta_{1}.$$

Observe that

$$\mathbf{y}_{t}^{\pi_{\tau}} - \mathbf{y}_{t}^{\pi_{\tau-1}} = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_{t}^{\pi_{\tau}} - \mathbf{x}_{t}^{\pi_{\tau-1}} \\ \mathbf{s}_{t}^{\pi_{\tau}} - \mathbf{s}_{t}^{\pi_{\tau-1}} \end{bmatrix}, \qquad \mathbf{y}_{t}^{\pi_{\tau}} - \mathbf{y}_{t}^{\pi_{\tau-1}} = \begin{bmatrix} 0 & C_{\pi} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{t}^{\pi_{\tau}} - \mathbf{x}_{t}^{\pi_{\tau-1}} \\ \mathbf{s}_{t}^{\pi_{\tau}} - \mathbf{s}_{t}^{\pi_{\tau-1}} \end{bmatrix},$$

for all $t > \tau$. Thus, for all $t > \tau$ (and also for all $t \in [T]$ using the previous bounds) we have that

$$\max\left\{\left\|\mathbf{y}_{t}^{\pi_{\tau}}-\mathbf{y}_{t}^{\pi_{\tau-1}}\right\|,\left\|\mathbf{u}_{t}^{\pi_{\tau}}-\mathbf{u}_{t}^{\pi_{\tau-1}}\right\|\right\} \leq 7\kappa^{6}\kappa_{B}^{2}\kappa_{C}^{3}\delta_{1}.$$

Now, observe that:

$$\max \left\{ \left\| \mathbf{y}_{t}^{\pi_{T+1}} - \mathbf{y}_{t}^{\pi_{0}} \right\|, \left\| \mathbf{u}_{t}^{\pi_{T+1}} - \mathbf{u}_{t}^{\pi_{0}} \right\| \right\} \leq \sum_{\tau=1}^{T+1} \max \left\{ \left\| \mathbf{y}_{t}^{\pi_{\tau}} - \mathbf{y}_{t}^{\pi_{\tau-1}} \right\|, \left\| \mathbf{u}_{t}^{\pi_{\tau}} - \mathbf{u}_{t}^{\pi_{\tau-1}} \right\| \right\}$$

$$\leq 14\kappa^{6} \kappa_{B}^{2} \kappa_{C}^{3} \delta_{1} T$$

If out choice of $\delta_1 \leq W/14\kappa^3\kappa_B^2\kappa_C^2\gamma T$, then the difference is upper bounded by $\kappa^3\kappa_C W/\gamma$ and since by lemma A.4, $\|\mathbf{y}_t^{\pi_0}\|$, $\|\mathbf{u}_t^{\pi_0}\| \leq \kappa^3\kappa_C W/\gamma$, we have that $\|\mathbf{y}_t^{\pi_0}\|$, $\|\mathbf{u}_t^{\pi_0}\|$, $\|\mathbf{y}_t^{\pi_{T+1}}\|$, $\|\mathbf{u}_t^{\pi_{T+1}}\| \leq 2\kappa^3\kappa_C W/\gamma$. Using lipschitzness, this gives us

$$\sum_{t=1}^{T} \left| c_t(\mathbf{y}_t^{\pi_{T+1}}, \mathbf{u}_t^{\pi_{T+1}}) - c_t(\mathbf{y}_t^{\pi_0}, \mathbf{u}_t^{\pi_0}) \right| \leq \frac{2G\kappa^3\kappa_C W}{\gamma} \left(\sum_{t=1}^{T} \left\| \mathbf{y}_t^{\pi_{T+1}} - \mathbf{y}_t^{\pi_0} \right\| + \left\| \mathbf{u}_t^{\pi_{T+1}} - \mathbf{u}_t^{\pi_0} \right\| \right) \\
\leq \frac{2G\kappa^3\kappa_C W}{\gamma} \cdot T \cdot 28\kappa^6 \kappa_B^2 \kappa_C^3 \delta_1 T \\
\leq \frac{56G\kappa^9 \kappa_B^2 \kappa_C^4 W}{\gamma} \cdot \delta_1 T^2 = \varepsilon T$$

by picking $\delta_1 = \varepsilon \gamma/56G\kappa^9\kappa_B^2\kappa_C^4WT \leq W/14\kappa^3\kappa_B^2\kappa_C^2\gamma T$. This completes the proof by substituting the value of δ_1 into the choosen expressions of m and h.

A.2 Linear controllers

In the previous section, we have proven that any LDC controller in \tilde{S} can be approximated by spectral-projection linear controller. As explained previously, this spectral-projection linear controller can be viewed as a linear controller over the lifted system defined in eqns (7), (8), (9).

In this section, we prove that the class of linear controllers can be approximated by spectral filtering. We begin by making certain assumptions only for this section, and defining the class of linear controllers that we aim to compete against and the class of spectral controllers.

Assumption A.6. The system matrices B, C are bounded, i.e., $||B|| \leq \tilde{\kappa}_B, ||C|| \leq \tilde{\kappa}_C$. The disturbance at each time step is also bounded, i.e., $||\mathbf{w}_t|| \leq \tilde{W}$.

Assumption A.7. The cost functions $c_t(\mathbf{y}, \mathbf{u})$ are convex. Moreover, as long as $\|\mathbf{y}\|, \|\mathbf{u}\| \leq D$, the gradients are bounded:

$$\|\nabla_{\mathbf{y}}c_t(\mathbf{y},\mathbf{u})\|, \|\nabla_{\mathbf{u}}c_t(\mathbf{y},\mathbf{u})\| \leq \tilde{G}D.$$

Definition A.8. A linear policy K is $(\tilde{\kappa}, \tilde{\gamma})$ -diagonalizably stable if there exist matrices L, H satisfying $A + BKC = HLH^{-1}$, such that the following conditions hold:

- 1. L is diagonal with nonnegative entries.
- 2. The spectral norm of L is strictly less than one, i.e., $||L|| \le 1 \tilde{\gamma}$.
- 3. The controller and the transformation matrices are bounded, i.e., $||K||, ||H||, ||H^{-1}|| \leq \tilde{\kappa}$.

We denote by $\tilde{S} = \{K : K \text{ is } (\tilde{\kappa}, \tilde{\gamma}) \text{-diagonalizably stable}\}$ the set of such policies, and, with slight abuse of notation, also use \tilde{S} to refer to the class of linear policies $\mathbf{u}_t = S\mathbf{y}_t$ where $S \in \tilde{S}$. Each policy in \tilde{S} is fully parameterized by the matrix $K \in \mathbb{R}^{n \times p}$.

Assumption A.9. The zero policy K = 0 lies in \tilde{S} .

For simplicity, we assume that $\tilde{\kappa}, \tilde{\kappa}_B, \tilde{W}, \tilde{G} \geq 1$ and $\tilde{\gamma} \leq 2/3$, without loss of generality.

We define $\mathbf{y}_t^{\text{nat}}$ as the observation at time t assuming that all inputs to the system were zero from the beginning of time, i.e.

$$\mathbf{x}_{t+1}^{\mathsf{nat}} = A\mathbf{x}_t^{\mathsf{nat}} + \mathbf{w}_t; \qquad \qquad \mathbf{y}_t^{\mathsf{nat}} = C\mathbf{x}_t^{\mathsf{nat}}$$

We define our disturbance response controller with respect to these as follows:

Definition A.10. [Spectral Controller] The class of Spectral Controllers with h parameters, memory m and stability $\tilde{\gamma}$ is defined as:

$$\left\{\mathbf{u}_t^M = M_0 \mathbf{y}_t^{\mathsf{nat}} + \sum_{i=1}^h \lambda_i^{1/4} M_i Y_{t-1:t-m}^{\mathsf{nat}} \boldsymbol{\varphi}_i \right\} \,,$$

where $\varphi_i \in \mathbb{R}^m, \lambda_i \in \mathbb{R}$ are the i^{th} top eigenvector and eigenvalue of $H \in \mathbb{R}^{m \times m}$ such that $H_{ij} = \frac{(1-\tilde{\gamma})^{i+j-1}}{i+j-1}$. Any policy in this class is fully parameterized by the matrices $M \in \mathbb{R}^{n \times p \times h}$.

The sequence $\{\mathbf{y}_t^{\mathsf{nat}}\}_{t\in[T]}$ can be iteratively computed using the following:

$$\mathbf{y}_t^{\mathsf{nat}} = \mathbf{y}_t - C \sum_{i=1}^t A^{i-1} B \mathbf{u}_{t-i}$$

Alternatively, it can be carried out recursively, starting from $\mathbf{z}_0 = 0$, as:

$$\mathbf{z}_{t+1} = A\mathbf{z}_t + B\mathbf{u}_t;$$
 $\mathbf{y}_t^{\mathsf{nat}} = \mathbf{y}_t - C\mathbf{z}_t$

Lemma A.11. Under our assumptions, $\|\mathbf{y}_t^{\mathsf{nat}}\| \leq \frac{\tilde{\kappa}^2 \tilde{\kappa}_C \tilde{W}}{\tilde{\gamma}}$

Proof. Unrolling the recursion, we get that

$$\mathbf{y}_t^{\mathsf{nat}} = \sum_{i=1}^t CA^{i-1} \mathbf{w}_{t-i}$$

Taking norm on both sides,

$$\left\|\mathbf{y}_t^{\mathsf{nat}}\right\| \leq \tilde{\kappa}^2 \tilde{\kappa}_C \tilde{W} \sum_{i=1}^t (1-\tilde{\gamma})^{i-1} \leq \frac{\tilde{\kappa}^2 \tilde{\kappa}_C \tilde{W}}{\tilde{\gamma}}$$

Lemma A.12. For any $K \in \tilde{\mathcal{S}}$, the corresponding states \mathbf{x}_t^K and control inputs \mathbf{u}_t^K are bounded by

$$\left\|\mathbf{y}_t^K\right\| \leq \frac{2\tilde{\kappa}^5 \tilde{\kappa}_B \tilde{\kappa}_C^2 \tilde{W}}{\tilde{\gamma}^2} \,, \quad \left\|\mathbf{u}_t^K\right\| \leq \frac{2\tilde{\kappa}^6 \tilde{\kappa}_B \tilde{\kappa}_C^2 \tilde{W}}{\tilde{\gamma}^2} \,.$$

Proof. As in many other parts of this paper, we first write Δ_t^K as a linear transformation of nature's observations:

$$\begin{split} \left\| \Delta_t^K \right\| &= \left\| \sum_{i=1}^t \left(A + BKC \right)^{i-1} BK \mathbf{y}_{t-i}^{\mathsf{nat}} \right\| \\ &\leq \tilde{\kappa}^3 \tilde{\kappa}_B \sum_{i=0}^t \left(1 - \tilde{\gamma} \right)^i \left\| \mathbf{y}_{t-i-1}^{\mathsf{nat}} \right\| \\ &\leq \frac{\tilde{\kappa}^5 \tilde{\kappa}_B \tilde{\kappa}_C \tilde{W}}{\tilde{\gamma}^2} \,. \end{split}$$

Then, since $\mathbf{y}_t^K = \mathbf{y}_t^{\mathsf{nat}} + C\Delta_t^K$ and $\mathbf{u}_t^K = K\mathbf{y}_t^K$, we get our result.

For convenience of notation, for a given policy π we define $\Delta_t^{\pi} = \mathbf{x}_t^{\pi} - \mathbf{x}_t^{\text{nat}}$. We begin by defining the class of open-loop optimal controllers as follows:

Definition A.13 (Open Loop Optimal Controller). The class of Open Loop Optimal Controllers of with memory m is defined as:

$$\left\{\mathbf{u}_{t}^{K,m} = K\mathbf{y}_{t}^{\mathsf{nat}} + \sum_{i=1}^{m} KC \left(A + BKC\right)^{i-1} BK\mathbf{y}_{t-i}^{\mathsf{nat}}\right\} \,.$$

Any policy in this class is fully parameterized by the matrix $K \in \mathbb{R}^{d \times n}$ and the memory $m \in \mathbb{Z}$.

Next, we state and prove Lemma A.14, which shows that any linear policy in \tilde{S} can be approximated up to arbitrary accuracy with an open-loop optimal controller of suitable memory.

Lemma A.14. Let a linear policy $K \in \tilde{\mathcal{S}}$. Then, for $m \geq \frac{1}{\tilde{\gamma}} \log \left(\frac{6\tilde{G}\tilde{\kappa}^{14} \kappa_B^3 \tilde{\kappa}_C^5 \tilde{W}^2}{\varepsilon \tilde{\gamma}^5} \right)$ and $\varepsilon \in (0,1)$,

$$\sum_{t=1}^{T} \left| c_t(\mathbf{y}_t^{K,m}, \mathbf{u}_t^{K,m}) - c_t(\mathbf{y}_t^{K}, \mathbf{u}_t^{K}) \right| \le \varepsilon T, \qquad \qquad \left\| \mathbf{y}_t^{K,m} \right\|, \left\| \mathbf{u}_t^{K,m} \right\| \le \frac{3\tilde{\kappa}^6 \tilde{\kappa}_B \tilde{\kappa}_C^2 \tilde{W}}{\tilde{\gamma}^2}.$$

Proof. We begin by bounding the difference in the observation and the difference in the control inputs. The difference in cost is bounded using the fact that the cost functions are lipschitz in the control and observation. We begin by unrolling the expressions for Δ_t^K in terms of $\mathbf{y}_t^{\text{nat}}$:

$$\Delta_{t}^{K} = A\Delta_{t-1}^{K} + BK\mathbf{y}_{t-1}^{K} = (A + BKC)\Delta_{t-1}^{K} + BK\mathbf{y}_{t-1}^{\mathsf{nat}} = \sum_{i=1}^{t} (A + BKC)^{i-1}BK\mathbf{y}_{t-i}^{\mathsf{nat}}$$
(20)

This gives us that:

$$\mathbf{u}_t^K = K\mathbf{y}_t^{\mathsf{nat}} + KC\Delta_t^K = K\mathbf{y}_t^{\mathsf{nat}} + \sum_{i=1}^t KC(A + BKC)^{i-1}BK\mathbf{y}_{t-i}^{\mathsf{nat}}$$

Notice that for all $t \leq m$, $\mathbf{u}_t^K = \mathbf{u}_t^{K,m}$ and hence $\mathbf{y}_t^K = \mathbf{y}_t^{K,m}$. For t > m,

$$\begin{split} \left\| \mathbf{u}_t^K - \mathbf{u}_t^{K,m} \right\| &= \left\| \sum_{i=m+1}^t KC(A + BKC)^{i-1} BK \mathbf{y}_{t-i}^{\mathsf{nat}} \right\| \\ &\leq \frac{\tilde{\kappa}^6 \tilde{\kappa}_B \tilde{\kappa}_C^2 \tilde{W}}{\tilde{\gamma}} \sum_{i=m+1}^t (1 - \tilde{\gamma})^{i-1} \\ &\leq \frac{\tilde{\kappa}^6 \tilde{\kappa}_B \tilde{\kappa}_C^2 \tilde{W}}{\tilde{\gamma}^2} (1 - \tilde{\gamma})^m \,. \end{split} \qquad [\Delta - \mathsf{ineq., C-S}]$$

We also note that for any policy π ,

$$\mathbf{y}_t^{\pi} = \mathbf{y}_t^{\mathsf{nat}} + C\Delta_t^{\pi} = \mathbf{y}_t^{\mathsf{nat}} + \sum_{i=1}^t CA^{i-1}B\mathbf{u}_{t-i}^{\pi}$$

Using both the previous results and the fact that $\mathbf{u}_t^K = \mathbf{u}_t^{K,m}$ for any $t \leq m$, we similarly get:

$$\left\| \mathbf{y}_{t}^{K} - \mathbf{y}_{t}^{K,m} \right\| = \left\| \sum_{i=1}^{t} CA^{i-1}B(\mathbf{u}_{t-i}^{K} - \mathbf{u}_{t-i}^{K,m}) \right\| = \left\| \sum_{i=1}^{t-m} CA^{i-1}B(\mathbf{u}_{t-i}^{K} - \mathbf{u}_{t-i}^{K,m}) \right\|,$$

and by using Assumption A.9 we can write:

$$\left\|\mathbf{y}_{t}^{K} - \mathbf{y}_{t}^{K,m}\right\| \leq \tilde{\kappa}_{B}\tilde{\kappa}_{C}\tilde{\kappa}^{2} \sum_{i=1}^{\infty} (1 - \tilde{\gamma})^{i-1} \left\|\mathbf{u}_{t-i}^{K} - \mathbf{u}_{t-i}^{K,m}\right\| \leq \frac{\tilde{\kappa}^{8}\tilde{\kappa}_{B}^{2}\tilde{\kappa}_{C}^{3}\tilde{W}}{\tilde{\gamma}^{3}} (1 - \tilde{\gamma})^{m}.$$

Using the fact that $\tilde{\kappa}_B \tilde{\kappa}_C \tilde{\kappa}^2 / \tilde{\gamma} > 1$, we get the following uniform bound:

$$\max\left\{\left\|\mathbf{u}_t^K-\mathbf{u}_t^{K,m}\right\|,\left\|\mathbf{y}_t^K-\mathbf{y}_t^{K,m}\right\|\right\} \leq \frac{\tilde{\kappa}^8\tilde{\kappa}_B^2\tilde{\kappa}_C^3\tilde{W}}{\tilde{\gamma}^3}(1-\tilde{\gamma})^m\,.$$

Whenever $m \geq \frac{1}{\tilde{\gamma}}\log\left(\frac{\tilde{\kappa}^2\tilde{\kappa}_B\tilde{\kappa}_C}{\tilde{\gamma}}\right)$, which is indeed true from our choice of ε and m, this implies that the $\left\|\mathbf{y}_t^K-\mathbf{y}_t^{K,m}\right\|, \left\|\mathbf{u}_t^K-\mathbf{u}_t^{K,m}\right\| \leq \tilde{\kappa}^6\tilde{\kappa}_B\tilde{\kappa}_C^2\tilde{W}/\tilde{\gamma}^2$. Using Lemma A.12 $\left\|\mathbf{y}_t^K\right\|, \left\|\mathbf{u}_t^K\right\| \leq 2\tilde{\kappa}^6\tilde{\kappa}_B\tilde{\kappa}_C^2\tilde{W}/\tilde{\gamma}^2$, by triangle inequality $\left\|\mathbf{y}_t^{K,m}\right\|, \left\|\mathbf{u}_t^{K,m}\right\| \leq 3\tilde{\kappa}^6\tilde{\kappa}_B\tilde{\kappa}_C^2\tilde{W}/\tilde{\gamma}^2$. Thus, the sum of costs is bounded using lipschitzness of c_t as follows:

$$\begin{split} \sum_{t=1}^{T} \left| c_t(\mathbf{y}_t^K, \mathbf{u}_t^K) - c_t(\mathbf{y}_t^{K,m}, \mathbf{u}_t^{K,m}) \right| &\leq \frac{3\tilde{G}\tilde{\kappa}^6 \tilde{\kappa}_B \tilde{\kappa}_C^2 \tilde{W}}{\tilde{\gamma}^2} \sum_{t=1}^{T} \left(\left\| \mathbf{y}_t^K - \mathbf{y}_t^{K,m} \right\| + \left\| \mathbf{u}_t^K - \mathbf{u}_t^{K,m} \right\| \right) \\ &\leq \frac{6\tilde{G}\tilde{\kappa}^{14} \tilde{\kappa}_B^3 \tilde{\kappa}_C^5 \tilde{W}^2}{\tilde{\gamma}^5} (1 - \tilde{\gamma})^m \cdot T \leq \varepsilon T \,. \end{split} \quad \text{[choice of } m \text{]}$$

To enable learning via online gradient descent, we require a bounded set of parameters:

Definition A.15. The set of bounded spectral parameters is defined as

$$\mathcal{K} = \left\{ M \in \mathbb{R}^{h \times n \times p} \mid \left\| \mathbf{y}_{t}^{M} \right\|, \left\| \mathbf{u}_{t}^{M} \right\| \leq \frac{4\tilde{\kappa}^{6} \tilde{\kappa}_{B} \tilde{\kappa}_{C}^{2} \tilde{W}}{\tilde{\gamma}^{2}}, \left\| M_{0} \right\| \leq \tilde{\kappa}, \left\| M_{i} \right\| \leq \tilde{\kappa}^{4} \tilde{\kappa}_{B} \tilde{\kappa}_{C} \sqrt{\frac{2}{\tilde{\gamma}}} \right\}.$$

We shall now prove that every open-loop optimal controller can be approximated up to arbitrary accuracy with a spectral controller.

Lemma A.16. For every open loop optimal controller $\pi_{K,m}^{\mathsf{OLOC}}$ such that $K \in \tilde{\mathcal{S}}$ and $\|\mathbf{y}^{K,m}\|, \|\mathbf{u}^{K,m}\| \leq \frac{3\tilde{\kappa}^6 \tilde{\kappa}_B \tilde{\kappa}_C^2 \tilde{W}}{\tilde{\gamma}^2}$, there exists an spectral controller $\pi_{h,m,\tilde{\gamma},M}^{\mathsf{SC}}$ with $M \in \mathcal{K}$ such that:

$$\sum_{t=1}^{T} \left| c_t(\mathbf{y}_t^M, \mathbf{u}_t^M) - c_t(\mathbf{y}_t^{K,m}, \mathbf{u}_t^{K,m}) \right| \le \varepsilon T.$$

for any $\varepsilon \in (0,1)$ and $h \geq 2 \log T \log \left(\frac{400\tilde{G} \tilde{\kappa}^{14} \tilde{\kappa}_B^3 \tilde{\kappa}_C^5 \tilde{W}^2 \sqrt{m} d}{\varepsilon \tilde{\gamma}^{9/2}} \log T \log^{1/4} \left(\frac{2}{\tilde{\gamma}} \right) \right)$.

Proof. Since $K \in \tilde{S}$, there exists a diagonal $L \in \mathbb{R}^{n \times n}$ as in Definition A.8 so that:

$$\mathbf{u}_t^{K,m} = K\mathbf{y}_t^{\mathsf{nat}} + \sum_{i=1}^m KC(A+BKC)^{i-1}BK\mathbf{y}_{t-i}^{\mathsf{nat}} = K\mathbf{y}_t^{\mathsf{nat}} + \sum_{i=1}^m KCHL^{i-1}H^{-1}BK\mathbf{y}_{t-i}^{\mathsf{nat}}.$$

Then write $L^{i-1} = \sum_{j=1}^d \alpha_j^{i-1} e_j e_j^\top$ and obtain

$$\begin{aligned} \mathbf{u}_t^{K,m} &= K\mathbf{y}_t^{\mathsf{nat}} + \sum_{i=1}^m KCH\left(\sum_{j=1}^d \alpha_j^{i-1} e_j e_j^\top\right) H^{-1}BK\mathbf{y}_{t-i}^{\mathsf{nat}} \\ &= K\mathbf{y}_t^{\mathsf{nat}} + \sum_{j=1}^d KCHe_j e_j^\top H^{-1}BK\sum_{i=1}^m \alpha_j^{i-1}\mathbf{y}_{t-i}^{\mathsf{nat}} \,. \end{aligned}$$

 $\text{Recall } Y_{t-1:t-m}^{\text{nat}} = [\mathbf{y}_{t-1}^{\text{nat}}, \dots, \mathbf{y}_{t-m}^{\text{nat}}] \in \mathbb{R}^{d \times m} \text{, define } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and get } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [1, \alpha, \dots, \alpha^{m-1}] \in \mathbb{R}^m \text{ and } \boldsymbol{\mu}_{\alpha} = [$

$$\begin{split} \mathbf{u}_t^{K,m} &= K \mathbf{y}_t^{\mathsf{nat}} + \sum_{j=1}^d KCH e_j e_j^\top H^{-1} BK Y_{t-1:t-m}^{\mathsf{nat}} \boldsymbol{\mu}_{\alpha_j} \\ &= K \mathbf{y}_t^{\mathsf{nat}} + \sum_{j=1}^d KCH e_j e_j^\top H^{-1} BK Y_{t-1:t-m}^{\mathsf{nat}} \left(\sum_{i=1}^m \boldsymbol{\varphi}_i \boldsymbol{\varphi}_i^\top \right) \boldsymbol{\mu}_{\alpha_j} \quad \left[\sum_{i=1}^m \boldsymbol{\varphi}_i \boldsymbol{\varphi}_i^\top = \mathbb{I}_m \right] \\ &= K \mathbf{y}_t^{\mathsf{nat}} + \sum_{i=1}^m \left(\sum_{j=1}^d KCH e_j e_j^\top H^{-1} BK \boldsymbol{\varphi}_i^\top \boldsymbol{\mu}_{\alpha_j} \right) Y_{t-1:t-m}^{\mathsf{nat}} \boldsymbol{\varphi}_i \,. \end{split}$$

Let $\pi_{h,m,\tilde{\gamma},M^*}^{\text{SC}}$ be the spectral controller with $M_0 = K$ and $M_i^* = \lambda_i^{-1/4} KCH \left(\sum_{j=1}^d \boldsymbol{\varphi}_i^{\top} \boldsymbol{\mu}_{\alpha_j} e_j e_j^{\top}\right) H^{-1} BK$ for all $i \in [h]$. Note that we have

$$\|M_0\| \leq \tilde{\kappa}, \quad \|M_i^*\| \leq \tilde{\kappa}^4 \tilde{\kappa}_B \tilde{\kappa}_C \cdot \max_{\ell \in [d]} \lambda_j^{-1/4} \left\langle \boldsymbol{\varphi}_j, \boldsymbol{\mu}_{\alpha_l} \right\rangle \quad \forall 1 \leq j \leq m,$$

and from the analysis of Lemma 7.4 of [9], we have that $\lambda_j^{-1/4}\left\langle \boldsymbol{\varphi}_j, \mu(\alpha_l) \right\rangle \leq \sqrt{\frac{2}{\tilde{\gamma}}}$. Thus, $\|M_i^*\| \leq \tilde{\kappa}^4 \tilde{\kappa}_B \tilde{\kappa}_C \sqrt{\frac{2}{\tilde{\gamma}}}$. Then,

$$\begin{split} \left\| \mathbf{u}_{t}^{K,m} - \mathbf{u}_{t}^{M^*} \right\| &= \left\| \sum_{i=h+1}^{m} KCH \left(\sum_{j=1}^{d} \boldsymbol{\varphi}_{i}^{\intercal} \boldsymbol{\mu}_{\alpha_{j}} e_{j} e_{j}^{\intercal} \right) H^{-1}BKY_{t-1:t-m}^{\mathsf{nat}} \boldsymbol{\varphi}_{i} \right\| \\ &\leq \frac{\tilde{\kappa}^{6} \tilde{\kappa}_{B} \tilde{\kappa}_{C}^{2} \tilde{W} \sqrt{m}}{\tilde{\gamma}} \sum_{i=h+1}^{m} \sum_{j=1}^{d} |\boldsymbol{\varphi}_{i}^{\intercal} \boldsymbol{\mu}_{\alpha_{j}}| \qquad \left[\| Y_{t-1:t-m} \| \leq \frac{\tilde{\kappa}^{2} \tilde{\kappa}_{C} \tilde{W}}{\tilde{\gamma}} \sqrt{m} \right] \\ &\leq \frac{30 \tilde{\kappa}^{6} \tilde{\kappa}_{B} \tilde{\kappa}_{C}^{2} \tilde{W} \sqrt{m}}{\tilde{\gamma}^{3/2}} \log^{1/4} \left(\frac{2}{\tilde{\gamma}} \right) \sum_{i=h+1}^{m} \sum_{j=1}^{d} \exp \left(-\frac{\pi^{2} j}{16 \log T} \right) \qquad \text{[Lemma 7.4 of [9]]} \\ &\leq \frac{30 \tilde{\kappa}^{6} \tilde{\kappa}_{B} \tilde{\kappa}_{C}^{2} \tilde{W} \sqrt{m} d}{\tilde{\gamma}^{3/2}} \log^{1/4} \left(\frac{2}{\tilde{\gamma}} \right) \int_{h}^{\infty} \exp \left(-\frac{\pi^{2} j}{16 \log T} \right) dx \\ &\leq \frac{50 \tilde{\kappa}^{6} \tilde{\kappa}_{B} \tilde{\kappa}_{C}^{2} \tilde{W} \sqrt{m} d}{\tilde{\gamma}^{3/2}} \log T \log^{1/4} \left(\frac{2}{\tilde{\gamma}} \right) \exp \left(-\frac{\pi^{2} h}{16 \log T} \right), \end{split}$$

$$\begin{aligned} \left\| \mathbf{y}_{t}^{M^{*}} - \mathbf{y}_{t}^{K,m} \right\| &= \left\| \sum_{i=1}^{t} CA^{i-1}B(\mathbf{u}_{t-i}^{M^{*}} - \mathbf{u}_{t-i}^{K,m}) \right\| \\ &\leq \tilde{\kappa}_{B}\tilde{\kappa}_{C}\tilde{\kappa}^{2} \sum_{i=1}^{t} (1 - \tilde{\gamma})^{i-1} \left\| \mathbf{u}_{t-i}^{M} - \mathbf{u}_{t-i}^{K,m} \right\| \\ &\leq \frac{50\tilde{\kappa}^{8}\tilde{\kappa}_{B}^{2}\tilde{\kappa}_{C}^{3}\tilde{W}\sqrt{m}d}{\tilde{\gamma}^{5/2}} \log T \log^{1/4} \left(\frac{2}{\tilde{\gamma}}\right) \exp\left(-\frac{\pi^{2}h}{16 \log T}\right). \end{aligned}$$
 [Assumption A.9]

Using the fact that $\tilde{\kappa}_C \tilde{\kappa}_B \tilde{\kappa}^2 / \tilde{\gamma} > 1$, we get a uniform bound:

$$\max\left\{\left\|\mathbf{y}_t^{K,m}-\mathbf{y}_t^{M^*}\right\|,\left\|\mathbf{u}_t^{K,m}-\mathbf{u}_t^{M^*}\right\|\right\} \leq \frac{50\tilde{\kappa}^8\tilde{\kappa}_B^2\tilde{\kappa}_C^3\tilde{W}\sqrt{m}d}{\tilde{\gamma}^{5/2}}\log T\log^{1/4}\left(\frac{2}{\tilde{\gamma}}\right)\exp\left(-\frac{\pi^2h}{16\log T}\right)\,.$$

Whenever $h \geq 2 \log T \log \left(\frac{50 \tilde{\kappa}_B \tilde{\kappa}_C \tilde{\kappa}^2 \sqrt{md}}{\sqrt{\tilde{\gamma}}} \log T \log \left(\frac{2}{\tilde{\gamma}} \right) \right)$, which is indeed the case for our choice of ε and h, this implies that $\left\| \mathbf{y}_t^{M^*} - \mathbf{y}_t^{K,m} \right\|, \left\| \mathbf{u}_t^{M^*} - \mathbf{u}_t^{K,m} \right\| \leq \frac{\tilde{\kappa}^6 \tilde{\kappa}_B \tilde{\kappa}_C^2 \tilde{W}}{\tilde{\gamma}^2}$. Hence, by triangle

inequality $\|\mathbf{y}_t^{M^*}\|$, $\|\mathbf{u}_t^{M^*}\| \le \frac{4\tilde{\kappa}^6\tilde{\kappa}_B\tilde{\kappa}_C^2\tilde{W}}{\tilde{\gamma}^2}$. Thus, the sum of costs is bounded as follows:

$$\begin{split} \sum_{t=1}^{T} \left| c_t(\mathbf{y}_t^{M^*}, \mathbf{u}_t^{M^*}) - c_t(\mathbf{y}_t^{K,m}, \mathbf{u}_t^{K,m}) \right| &\leq \frac{4\tilde{G}\tilde{\kappa}^6 \tilde{\kappa}_B \tilde{\kappa}_C^2 \tilde{W}}{\tilde{\gamma}^2} \sum_{t=1}^{T} \left(\left\| \mathbf{y}_t^{M^*} - \mathbf{y}_t^{K,m} \right\| + \left\| \mathbf{u}_t^{M^*} - \mathbf{u}_t^{K,m} \right\| \right) \\ &\leq \frac{400\tilde{G}\tilde{\kappa}^{14} \tilde{\kappa}_B^3 \tilde{\kappa}_C^5 \tilde{W}^2 \sqrt{m} d}{\tilde{\gamma}^{9/2}} \log T \log^{1/4} \left(\frac{2}{\tilde{\gamma}} \right) \exp \left(-\frac{\pi^2 h}{16 \log T} \right) \cdot T \\ &\leq \varepsilon T \,. & \text{[choice of h]} \end{split}$$

Using these lemmas, we complete the proof of Lemma A.3 as follows:

Proof of Lemma A.3. The proof follows directly from Lemmas A.14 and A.16.

B Learning Results

B.1 Convexity of loss function and feasibility set

To conclude the analysis, we first show that the feasibility set K is convex and the loss functions are convex with respect to the variables M. This follows since the states and the controls are linear transformations of the variables.

Lemma B.1. The set K from Definition 3.8 is convex.

Proof. Since $\mathbf{x}_t^M, \mathbf{u}_t^M$ are linear in M, from the convexity of the norm, the fact that the sublevel sets of a convex function is convex and that the intersection of convex sets is convex, we are done.

Lemma B.2. The loss $\ell_t(M)$ is convex in M.

Proof. The loss function ℓ_t is given by $\ell_t(M) = c_t(\mathbf{x}_t(M), \mathbf{u}_t(M))$. Since the cost c_t is a convex function with respect to its arguments, we simply need to show that \mathbf{x}_t^M and \mathbf{u}_t^M depend linearly on M. The control is given by

$$\mathbf{u}_{t}^{M} = \bar{M}_{0}\mathbf{y}_{t}^{\mathsf{nat}} + \sum_{i=1}^{\tilde{h}} \sum_{j=1}^{\tilde{m}} \lambda_{i}^{1/4} \left[\varphi_{i}\right]_{j} \bar{M}_{i}\mathbf{y}_{t-j}^{\mathsf{nat}} + \sum_{l=0}^{h} \sum_{k=0}^{m} \sigma_{l}^{1/4} \left[\phi_{l}\right]_{k} M_{0l}\mathbf{y}_{t-k}^{\mathsf{nat}} + \sum_{i=1}^{\tilde{h}} \sum_{j=1}^{\tilde{m}} \sum_{l=0}^{h} \sum_{k=0}^{m} \left(\sigma_{l}\lambda_{i}\right)^{1/4} \left[\phi_{l}\right]_{k} \left[\varphi_{i}\right]_{j} M_{il}\mathbf{y}_{t-j-k}^{\mathsf{nat}},$$
(21)

which is a linear function of the variables. Similarly, the observation \mathbf{y}_t^M is given by

$$\mathbf{y}_t^M = \mathbf{y}_t^{\mathsf{nat}} + \sum_{q=1}^t CA^{q-1}B\mathbf{u}_{t-q}^M\,.$$

Thus, we have shown that $\mathbf{y}_t(M)$ and $\mathbf{u}_t(M)$ are linear transformations of M. A composition of convex and linear functions is convex, which concludes our Lemma.

B.2 Lipschitzness of $\ell_t(\cdot)$

The following lemma states and proves the explicit lipschitz constant of $\ell_t(\cdot)$.

Lemma B.3. For any $M, M' \in \mathcal{K}$ it holds that,

$$|\ell_t(M) - \ell_t(M')| \le \frac{32G\mathcal{R}h\tilde{h}\sqrt{m\tilde{m}}\kappa^4\kappa_B\kappa_C^2W}{\gamma^2}\log^{1/2}\left(\frac{2}{\gamma}\right)||M - M'||.$$

Proof. Taking the difference in controls defined in eqn. (21):

$$\|\mathbf{u}_t(M) - \mathbf{u}_t(M')\| \le \frac{16h\tilde{h}\sqrt{m\tilde{m}}\kappa^2\kappa_C W}{\gamma}\log^{1/2}\left(\frac{2}{\gamma}\right)\|M - M'\|$$

Taking the difference in the observations,

$$\|\mathbf{y}_{t}(M) - \mathbf{y}_{t}(M')\| = \left\| \sum_{q=1}^{t} CA^{q-1}B(\mathbf{u}_{t-q}(M) - \mathbf{u}_{t-q}(M')) \right\|$$

$$\leq \frac{\kappa_{B}\kappa_{C}\kappa^{2}}{\gamma} \max_{q \in [t]} \left\{ \|\mathbf{u}_{t-q}(M) - \mathbf{u}_{t-q}(M')\| \right\}$$

$$\leq \frac{16h\tilde{h}\sqrt{m\tilde{m}}\kappa^{4}\kappa_{B}\kappa_{C}^{2}W}{\gamma^{2}} \log^{1/2}\left(\frac{2}{\gamma}\right) \|M - M'\|$$

Using the fact that $\kappa_B \kappa_C \kappa^2 / \gamma > 1$, we get a uniform bound:

$$\max\left\{\left\|\mathbf{y}_{t}(M)-\mathbf{y}_{t}(M')\right\|,\left\|\mathbf{u}_{t}(M)-\mathbf{u}_{t}(M')\right\|\right\} \leq \frac{16h\tilde{h}\sqrt{m\tilde{m}}\kappa^{4}\kappa_{B}\kappa_{C}^{2}W}{\gamma^{2}}\log^{1/2}\left(\frac{2}{\gamma}\right)\left\|M-M'\right\|.$$

Using the lipschizness of the cost function from Assumption 3.4, the definition of K, we have

$$\begin{aligned} |\ell_t(M) - \ell_t(M')| &= |c_t(\mathbf{y}_t(M), \mathbf{u}_t(M)) - c_t(\mathbf{y}_t(M'), \mathbf{u}_t(M'))| \\ &\leq G\mathcal{R} \left(\|\mathbf{x}_t(M) - \mathbf{x}_t(M')\| + \|\mathbf{u}_t(M) - \mathbf{u}_t(M')\| \right) \\ &\leq \frac{32G\mathcal{R}h\tilde{h}\sqrt{m\tilde{m}}\kappa^4\kappa_B\kappa_C^2W}{\gamma^2} \log^{1/2} \left(\frac{2}{\gamma}\right) \|M - M'\| . \end{aligned}$$

B.3 Loss functions with memory

The actual loss c_t at time t is not calculated on $\mathbf{x}_t(M^t)$, but rather on the true state \mathbf{x}_t , which in turn depends on different parameters M^i for various historical times i < t. Nevertheless, $c_t(\mathbf{x}_t, \mathbf{u}_t)$ is well approximated by $\ell_t(M^t)$, as stated in Lemma 4.3 and proven next.

Proof of Lemma 4.3: By the choice of step size η , and by the computation of the lipschitz constant of ℓ_t w.r.t M in Lemma B.3, we have:

$$\eta = \frac{\mathcal{R}_M}{L\sqrt{T}},$$

where L is the lipschitz constant of ℓ_t w.r.t M, computed in Lemma B.3. Thus, for each $j \in [h]$,

$$||M^t - M^{t-i}|| \le \sum_{s=t-i+1}^t ||M^s - M^{s-1}|| \le i\eta L = \frac{i\mathcal{R}_M}{\sqrt{T}}.$$

Observe that $\mathbf{u}_t = \mathbf{u}_t(M^t)$. Observe that \mathbf{y}_t and $\mathbf{y}_t(M^t)$ can be written as

$$\mathbf{y}_t(M^t) = \mathbf{y}_t^{\mathsf{nat}} + \sum_{q=1}^t CA^{q-1}B\mathbf{u}_{t-q}(M^t)\,, \qquad \mathbf{y}_t = \mathbf{y}_t^{\mathsf{nat}} + \sum_{q=1}^t CA^{q-1}B\mathbf{u}_{t-q}(M^{t-q})\,.$$

Evaluating the difference,

$$\|\mathbf{y}_{t} - \mathbf{y}_{t}(M^{t})\| \leq \left\| \sum_{q=1}^{t} CA^{q-1}B(\mathbf{u}_{t-q}(M^{t}) - \mathbf{u}_{t-q}(M^{t-q})) \right\|$$

$$\leq \kappa_{B}\kappa_{C}\kappa^{2} \sum_{q=1}^{t} (1 - \gamma)^{q-1} \left\| \mathbf{u}_{t-q}(M^{t}) - \mathbf{u}_{t-q}(M^{t-q}) \right\|$$

$$\leq \frac{16h\tilde{h}\sqrt{m\tilde{m}}\kappa^{4}\kappa_{B}\kappa_{C}^{2}W}{\gamma} \log^{1/2} \left(\frac{2}{\gamma}\right) \sum_{q=1}^{t} (1 - \gamma)^{q-1} \left\| M^{t} - M^{t-q} \right\|$$

$$\leq \frac{16\mathcal{R}_{M}h\tilde{h}\sqrt{m\tilde{m}}\kappa^{4}\kappa_{B}\kappa_{C}^{2}W}{\gamma\sqrt{T}} \log^{1/2} \left(\frac{2}{\gamma}\right) \sum_{q=1}^{t} q(1 - \gamma)^{q-1}$$

$$\leq \frac{16\mathcal{R}_{M}h\tilde{h}\sqrt{m\tilde{m}}\kappa^{4}\kappa_{B}\kappa_{C}^{2}W}{\gamma^{3}\sqrt{T}} \log^{1/2} \left(\frac{2}{\gamma}\right).$$

By definition, $\ell_t(M^t) = c_t(\mathbf{y}_t(M^t), \mathbf{u}_t(M^t))$, and by the definition of \mathcal{K} and the projection used in Algorithm 1 we have by Assumption 3.4:

$$\begin{aligned} \left| \ell_t(M^t) - c_t(\mathbf{y}_t, \mathbf{u}_t) \right| &= \left| c_t(\mathbf{y}_t(M^t), \mathbf{u}_t(M^t)) - c_t(\mathbf{y}_t, \mathbf{u}_t) \right| \\ &\leq G \mathcal{R} \|\mathbf{y}_t(M^t) - \mathbf{y}_t\| \\ &\leq \frac{16G \mathcal{R} \mathcal{R}_M h \tilde{h} \sqrt{m \tilde{m}} \kappa^4 \kappa_B \kappa_C^2 W}{\gamma^3 \sqrt{T}} \log^{1/2} \left(\frac{2}{\gamma} \right) \,. \end{aligned}$$

C Experiments

We present a series of synthetic experiments designed to evaluate the performance of the DSC, as specified in Algorithm 1. We compare DSC against the gradient response controller (GRC) [30] and the linear quadratic gaussian controller (LQG) [8]. We analyze the performance of these three controllers under the following system settings: a linear signal, where the initial state \mathbf{x}_0 is randomly sampled from the Gaussian distribution; and a signal with the ReLU state transition. For each signal type, we evaluate the performance of controllers under two types of perturbations: (i) Gaussian noise, and (ii) sinusoidal disturbances; and provide 95% confidence intervals for each setting.

For each experiment, we consider an LDS with a hidden state dimension of d=10, observation dimension of p=3, and a control dimension of n=2. The system matrix $A\in\mathbb{R}^{d\times d}$ is diagonalizable, with the largest eigenvalue being 0.8, ensuring marginal stability. The control matrix $B\in\mathbb{R}^{d\times n}$ consists of Normally distributed entries. For the described settings, we use $h=\tilde{h}=5$ filters and $m=\tilde{m}=10$ memory for both controllers.

Each figure reports the average quadratic loss computed over a sliding window, with its size set to 10% of the sequence length. Hyperparameters are selected to reflect representative and stable performance, though the experimental setup generalizes to higher-dimensional systems and alternative perturbation models.

The empirical results presented in Figures 3a demonstrate that the DSC controller outperforms the GRC controller, while LQG remains optimal for the setting with Gaussian perturbations. Furthermore, under sinusoidal perturbations, DSC maintains a performance advantage over both LQG and GRC, as illustrated in Figure 3b. Similar conclusions on the performance of the DSC controller hold for the experiments with ReLU state transition as shown in Figures 3c and 3d. The confidence intervals further substantiate that the performance gains of DSC over GRC are consistent and statistically robust across random system initializations.

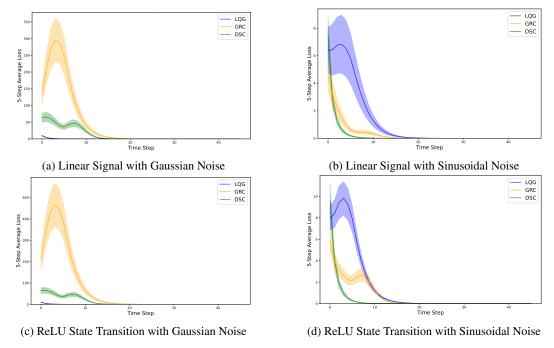


Figure 3: Comparison of Controllers: LQG, GRC, and DSC with 95% Confidence Intervals over 100 trials under Different Input Signal and Perturbation Settings.

D Advantage of Smaller γ

We provide a construction in the fully observed setting, i.e., C=I, similar to the one in [9]. Prior work typically assumes a stability margin of $\gamma=\Omega(1/\mathrm{polylog}(T))$ to guarantee an $O(\mathrm{polylog}(T))$ runtime. In contrast, our analysis shows that even when $\gamma=\Omega(1/T^k)$ for any $k\in(0,1/33)$, one can maintain sublinear regret while still achieving an $O(\mathrm{polylog}(T))$ runtime. This section illustrates that such smaller values of γ can lead to a substantially lower aggregate cost compared to the standard choice $\gamma=1/\mathrm{polylog}(T)$.

Consider a noiseless scalar linear system with parameters $a, b \in \mathbb{R}$ evolving as

$$x_{t+1} = ax_t + bu_t.$$

At each time step, the instantaneous loss is defined as

$$\forall t \in [T], \quad c_t(x, u) = \max\{-x, -1\}.$$

Since the system is one-dimensional, for sufficiently large κ , the set of (κ, γ) -diagonalizably stable controllers reduces to

$$S(\gamma) = \{ k \in \mathbb{R} \mid 0 \le a + bk \le 1 - \gamma \}.$$

With initial state $x_0 = 1$, the minimum total loss over the horizon T is

$$\min_{k \in S(\gamma)} \sum_{t=1}^{T} c_t(x_t, u_t) = \min_{k \in S(\gamma)} \sum_{t=1}^{T} (-x_t) = -\max_{k \in S(\gamma)} \sum_{t=1}^{T} (a + bk)^{t-1}$$
$$= -\sum_{t=1}^{T} (1 - \gamma)^{t-1} = -\frac{1 - (1 - \gamma)^T}{\gamma}.$$

Since $0 \le 1 - \gamma \le e^{-\gamma}$, we obtain the bounds

$$-\frac{1}{\gamma} \le \min_{k \in S(\gamma)} \sum_{t=1}^{T} c_t(x_t, u_t) \le -\frac{1 - e^{-\gamma T}}{\gamma}.$$

Applying the lower bound gives

$$\min_{k \in S(1/\operatorname{polylog}(T))} \sum_{t=1}^{T} c_t(x_t, u_t) \ge -\operatorname{polylog}(T),$$

while the upper bound yields

$$\min_{k \in S(1/T^k)} \sum_{t=1}^{T} c_t(x_t, u_t) \le -T^k (1 - e^{-T^{1-k}}) \le -\frac{T^k}{2}.$$

Therefore, the difference between the two minimum cumulative costs satisfies

$$\min_{k \in S(1/\text{polylog}(T))} \sum_{t=1}^T c_t(x_t, u_t) - \min_{k \in S(1/T^k)} \sum_{t=1}^T c_t(x_t, u_t) \ge \frac{T^k}{2} - \text{polylog}(T) = \Omega(T^{k/2}).$$

In summary, setting $\gamma=1/T^k$ results in a markedly smaller cost for the best controller in the class $S(\gamma)$ compared to the $\gamma=1/\mathrm{polylog}(T)$ case. This demonstrates a polynomial improvement in the achievable aggregate performance.