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ABSTRACT

We propose SelfVC, a training strategy to iteratively improve a voice conversion
model with self-synthesized examples. Previous efforts on voice conversion focus
on factorizing speech into explicitly disentangled representations that separately
encode speaker characteristics and linguistic content. However, disentangling
speech representations to capture such attributes using task-specific loss terms can
lead to information loss by discarding finer nuances such as accent and emotion of
the original signal. In this work, instead of explicitly disentangling attributes with
loss terms, we present a framework to train a controllable voice conversion model
on entangled speech representations derived from self-supervised learning (SSL)
and speaker verification models. First, we develop techniques to derive prosodic
information from the audio signal and SSL representations to train predictive sub-
modules in the synthesis model. Next, we propose a training strategy to iteratively
improve the synthesis model for voice conversion, by creating a challenging train-
ing objective using self-synthesized examples. In this training approach, the current
state of the synthesis model is used to generate voice-converted variations of an
utterance, which serve as inputs for the reconstruction task, ensuring a continuous
and purposeful refinement of the model. We demonstrate that incorporating such
self-synthesized examples during training improves the speaker similarity of gener-
ated speech as compared to a baseline voice conversion model trained solely on
heuristically perturbed inputs. Our framework is trained without any text and is
applicable to a range of tasks such as zero-shot voice conversion, voice conversion
across different languages, and controllable speech synthesis with pitch and pace
modifications. We conduct extensive comparisons against prior work and find that
SelfVC achieves state-of-the-art results in zero-shot voice conversion on metrics
evaluating naturalness, speaker similarity, and intelligibility of synthesized audio.[]_-]

1 INTRODUCTION

Deriving meaningful representations from speech has been a topic of significant interest because
such representations can be useful for both downstream recognition and upstream speech generation
tasks. While some techniques (Défossez et al., 2022} Eloff et al.| |2019; [Liao et al., [2022; [Kumar
et al.| |2023) aim to compress speech into a data-efficient codec, another line of research has focused
on disentangling the learned features into components such as speaker characteristics (voice or
timbre), linguistic content (phonetic information) and prosodic information (pitch modulation and
speaking rate) (Chou et al.,2019;|Qian et al.,[2019; [Wu & Leel 2020; (Chen et al., 2021} (Qian et al.,
2022} Hussain et al.| 2023)). Representation disentanglement allows controllable speech synthesis
by training a model to reconstruct the audio from the disentangled features. During inference, the
relevant disentangled representations can be modified for performing tasks like voice conversion
(changing the speaker of an utterance) or changing the prosody.

To derive disentangled speech representations in a text-free manner, recent methods (Lakhotia et al.}
2021} |Polyak et al., [2021}; [Lin et al.| 2021} |Huang et al., 2022} |Chot et al.,|2021) have proposed to
obtain speaker information from a speaker verification model and linguistic content information from
the output of models trained using self-supervised learning (SSL) (Baevski et al.,[2020; |Gulati et al.,
2020). While the representations obtained from SSL models are highly correlated with phonetic
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information, they also contain speaker information (Huang et al.| [2022; |Hussain et al., [2022)). To
remove speaker information from the SSL. model outputs, some techniques utilize an information
bottleneck approach such as quantization (Polyak et al., 2021} |Lakhotia et al., 2021} |Gu et al.,
2021)). Alternatively, several researchers have proposed training strategies that employ an information
perturbation technique to eliminate speaker information without quantization (Qian et al.,|2022; |Chot
et al.; 202152023 \Hussain et al.| [2023). Notably, for training synthesizers, NANSY (Choi et al.,[2021)
and NANSY++ (Choi et al.l | 2023)) propose to heuristically perturb the voice of a given utterance with
hand-engineered data augmentations, before obtaining the output from the SSL model. To reconstruct
the original audio accurately, the synthesizer is forced to derive the speaker characteristics from the
speaker embedding since the speaker information in the SSL model’s output is perturbed. While such
techniques are effective, heuristic voice perturbation algorithms based on pitch randomization and
formant shifting represent a very limited set of transformations. We hypothesize that such training
strategies can be improved by utilizing neural network-generated augmentations.

In this work, we propose SelfVC, a learning framework to automatically generate diverse data trans-
formations during training and enable controllable speech synthesis from imperfectly disentangled
but uncompressed speech representations. First, we propose a feature extraction pipeline to derive
SSL representations, speaker embeddings and prosodic information from a given audio signal. Next,
we design a synthesis model to reconstruct a given utterance from the SSL features and speaker
embedding, while using the fundamental frequency contour and duration as targets for training
intermediate submodules. Finally, to train an effective voice conversion model, we propose a training
strategy that utilizes the synthesis model itself to create challenging voice-converted transformations
of a given speech utterance. At any given training iteration, the current state of the synthesis model is
used to transform the input SSL features and the model is updated to minimize the reconstruction
error of the original utterance.

All the components in our framework are trained in a text-free manner requiring only audio data.
Once trained, our framework can be used for tasks such as zero-shot voice conversion, audio
reconstruction with pitch and duration modulation as well as multilingual voice conversion across
languages outside of the training set. On metrics evaluating speaker similarity, intelligibility and
naturalness of synthesized speech we demonstrate that our model outperforms previously proposed
zero-shot voice conversion methods. The main contributions of our work are:

1. We develop a training strategy using self transformations to train a voice conversion model on
imperfectly disentangled representations, resulting in considerable improvement in speaker
similarity metrics as compared to a model trained only with heuristic transformations.

2. We propose techniques to derive prosodic information from uncompressed SSL feature
vectors and use the derived information to train a controllable synthesizer that can either
mimic the prosody of a source utterance or adapt the prosody given a target speaker.

3. Our models are trained in a text-free manner and independent of phonetic posteriograms,
hence making it simple and efficient to scale up the training data, including other languages.

4. SelfVC achieves state-of-the-art results in zero-shot any-to-any voice conversion in English.
When fine-tuned on a few hours of multi-lingual data, SelfVC outperforms prior voice
conversion methods on the cross-lingual voice conversion task.

2 RELATED WORK

Voice conversion: Voice conversion is the task of modifying an utterance of a source speaker to
match the vocal qualities of a target speaker. Traditionally, voice conversion models were trained as a
speech-to-speech translation system on a parallel dataset containing multiple speakers saying the same
utterance (Sun et al.,[2015} |Chen et al., 2014). More recently, voice conversion systems have been
developed by training neural synthesizers to reconstruct speech from disentangled representations
describing linguistic content and speaker characteristics (Qian et al.l 2019; |Chou et al}|2019). For
example, (Sun et al.l 2016} Tian et al.,[2018)) have utilized pre-trained automatic speech recognition
(ASR) and speaker verification (SV) models to disentangle content and speaker information respec-
tively. The predicted text or phonetic posteriogram (PPG) obtained from the ASR model is taken as
the content representation. However, such voice conversion systems have limitations: 1) Training
such systems requires transcribed speech data and the synthesis is limited to the language the model
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is trained on. 2) Text and PPG do not capture all linguistic features such as accent, expressions,
emotions or speaker-independent style resulting in neutral-sounding synthesized speech.

To derive linguistic content in a text-free manner, some prior works have utilized SSL based models.
However, as noted by prior work (Polyak et al.| 2021} [Huang et al., [2022), SSL model outputs
do not necessarily separate speaker and content information. One line of research (Polyak et al.,
2021 Lee et al., [2021; Lakhotia et al.| 2021} |Gu et al.| 2021)) aiming to disentangle the speaker and
content representations, proposes an information bottleneck approach to quantize SSL model outputs
thereby limiting the information to only capture the content or pseudo-text of the audio. However, the
loss of information during such a quantization approach leads to sub-optimal reconstruction quality.
Moreover, information bottleneck by itself does not guarantee disentanglement.

Addressing the limitations of information bottleneck approaches, researchers have proposed training
strategies based on heuristic transformations. For example, in ContentVec (Qian et al.| 2022} and
ACE-VC (Hussain et al., [2023)), while training the SSL-based feature extractor model, the audio
is transformed using pitch-shift transformation and the SSL model is trained to output similar
representations for the original and transformed audio. Alternatively, in NANSY (Choi et al., [2021)),
the transformations are applied while training the synthesizer, i.e. the synthesizer is tasked to
reconstruct the original audio from the speaker embedding of the original audio and the SSL features
of audio perturbed using transforms such as formant-shift, pitch-randomization and randomized
frequency shaping. Although these heuristic transformations serve as a reasonable proxy for voice
conversion methods, we hypothesize such methods can be greatly improved by utilizing the voice
conversion system itself to generate more diverse input transformations.

Transformation invariant representation learning: In unsupervised representation learning, prior
work has investigated methods to learn representations that are invariant to various input transforma-
tions (Bachman et al.| 2019; [Misra & Maaten, 2020). Several techniques addressing this challenge
utilize domain-specific and hand-engineered data augmentation methods for training transformation
invariant representation encoders (Chen et al., |2020; |Caron et al., 2020; Tian et al., 2020; Grill et al.,
2020; [Misra & Maaten, [2020). Stochastic data augmentation in the image domain such as cropping,
rescaling, shifts in brightness and recoloring have been popularly used to learn robust representations
for image classification tasks (Chen et al.| [2020; Tian et al., [2020). More recently, (Tamkin et al.,
2021) proposed to train generative models to produce diverse views from a given input by adding
a bounded perturbation. Their results demonstrate that neural generative models can produce a
more diverse set of input distortions (compared to hand-engineered augmentations) without requiring
domain-specific knowledge. While these techniques have proven valuable for learning transformation-
invariant representations in downstream recognition tasks, their applicability in upstream generative
tasks remains unexplored. In our work, we develop a novel framework for training a controllable
synthesis model using self-generated input transformations. In contrast to previous ideas, we do
not introduce additional networks for data augmentation but utilize the synthesizer model itself to
generate diverse input transformations.

3 APPROACH

Our goal is to design a voice conversion framework that can modify the voice of a given utterance,
while also providing control over the prosody of the synthesized speech. To this end, our framework
consists of two main components: (1) A feature extractor that derives content (linguistic features),
speaker embedding and prosody information from a given speech utterance (Section [3.1); and (2)
A synthesizer model that reconstructs the audio from the derived representations (Section [3.2). To
allow controllable synthesis from imperfectly disentangled representations, we propose a training
strategy that challenges the model to reconstruct the audio from self-generated perturbations of the
content representation (Section[3.3). Specifically, we train the model to reconstruct the audio from
the content representation of a heuristically modified or self transformed audio, while preserving the
speaker and style representations. The content and speaker encoder networks remain frozen during
synthesis model training. Figure[I| provides an overview of our voice conversion framework and the
synthesizer training procedure.

3.1 FEATURE EXTRACTION

The overview of the feature extraction pipeline is shown in Figure 2] (a). We derive the following
features from an audio signal to train our synthesis models.
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Content Embedding: We define content as a temporal feature that encodes the linguistic information
of a given speech utterance. We use the output of the Conformer-SSL (Gulati et al.,2020) model (G..)
as the content representation of speech (z). The Conformer-SSL model is a convolution-augmented
transformer architecture that is trained to reconstruct the masked areas of the mel-spectrogram
on English speech data, using contrastive and masked language modelling (MLM) losses (Refer
to Appendix [A.2] for model details). Given a speech utterance as a sequence of mel-spectrogram
frames x = x; ...z, the Conformer-SSL model outputs a temporally downsampled sequence of
feature vectors z = G.(x) = z1...zr.. While z primarily encodes phonetic information, it also
encompasses speaker and prosodic information. We explain our approach to address this challenge
for training a voice conversion model in Section [3.3]
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Figure 1: SelfVC Overview: The synthesizer Gy is trained to reconstruct the mel-spectrogram from
SSL-based content representation of a transformed audio and speaker embedding of the original audio. The
transformation function is either a heuristic transform or a voice-converted audio generated using self-synthesis
with a different speaker embedding.

Duration: Duration or thythm characterizes the speaking rate at a granular level, that is, how long the
speaker vocalizes each phoneme of a given utterance. Accurate modelling of rhythm during synthesis
is important to capture the nuances between the different speakers, accents and emotions. Since SSL
representations have a high correlation with phonemes (Baevski et al., 2020; |Gulati et al., [2020), we
conjecture that if a phoneme is emphasized in an utterance, the consecutive content vectors at the
corresponding timesteps will have high similarity. Therefore, we group together consecutive content
vectors with cosine similarity higher than a threshold 7, and set the target duration for the averaged
vector as the number of grouped vectors multiplied by the duration of a single vector. That is, we
process the content representation z = zj ... zy» into a duration-augmented content representation
Z'=z...z; andd = dy...d} where T < T and d, represents the duration of z. This similarity
based grouping approach is analogous to prior approaches (Lee et al.| 2021} |Qian et al.,[2021)). We
refer readers to Algorithmmin the Appendix which details our approach to obtain z’, d’ and highlights
key differences with prior methods.

Speaker Embedding: The speaker embeddings in our setup are derived from the TitaNet (Koluguri
et al.,[2022) speaker verification model (G). The speaker verification model is trained to distinguish
different speakers and generates similar embeddings for utterances from the same speaker. The output
from the TitaNet speaker verification model is a 192 dimensional speaker embedding s = Gs(x). We
provide more details on this model in the Appendix [A.2]

Pitch Contour: The pitch contour p is derived from the fundamental frequency fy contour of the
speech signal that represents the prosodic modulations over time. The raw values in the fundamental
frequency contour (derived from PYin algorithm (Mauch & Dixonl 2014)) are speaker-dependent,
therefore f is not strictly disentangled from the speaker information. To ensure that the pitch contour
only encodes the intonation and not the speaker identity, we normalize f, using the mean (feq,) and
standard deviation (f) of all pitch contours of the given speaker. That is, p = (fo — finean)/ [sa-
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Figure 2: (a) Feature Extraction: The feature extractor derives the duration augmented content information
from an SSL model, pitch contour using PYin algorithm and speaker embedding from a speaker verification
model. (b) Mel Spectrogram Synthesizer: reconstructs the mel-spectrogram from the derived features.

3.2 SYNTHESIZER

The task of the synthesizer is to first reconstruct the ground-truth mel-spectrogram from the extracted
speech representations and then vocode the mel-spectrogram into a listenable audio waveform. For
vocoding, we use a HiFiGAN (Kong et al.l|2020) vocoder, which is trained separately on spectrogram
and waveform pairs from a multi-speaker dataset.

Our mel-spectrogram synthesizer Gy, is composed of two feed-forward transformers F, and Fy
and intermediate modules to predict the duration and pitch contour similar to (Lancucki, [2021) but
operates on the grouped content representation 2’ = 27 ... 2/, instead of text. The speaker embedding
s is repeated across all time-steps and concatenated with each z; to be fed as input to the first feed-
forward transformer F,. The hidden representation from F, is then used to predict the duration
and pitch contour, that is: h = F.(2',s); ya = DurationPredictor(h), y, = PitchPredictor(h).
The pitch contour is projected and averaged over each time-step of the hidden representation h
and added to h to get k = h + PitchEmbedding(p). Finally, k is discretely upsampled as per the
ground-truth duration d’ and fed as input to the second transformer Fy to get the predicted mel-
spectrogram §§ = Fy(DurationRegulation(k,d’)). Our model is trained to optimize three losses —
mel-reconstruction error, pitch prediction error and duration prediction error such that

Loy = 19 = yll3 + Aullgp — plI3 + Nellga — d'l13 M

During inference, we can use either the predicted pitch and duration, in which case the prosody is
derived from both the content and speaker embeddings; or we can mimic the prosody and speaking
rate of the source utterance by using ground-truth duration and pitch information.

3.3 SYNTHESIZER TRAINING: ITERATIVE REFINEMENT USING SELF TRANSFORMATIONS

While the mel-spectrogram can be accurately reconstructed from a synthesizer trained using the
objective given by Equation[T} during inference, we cannot effectively modify the voice of a given
utterance. This is because the content representation 2’ is not strictly disentangled from the speaker
information. To address this challenge, past works (Choi et all 2021}; |2023)), have proposed an
information perturbation based training strategy as follows: Instead of feeding the content embed-
ding of the original audio as the input, the audio is perturbed to synthetically modify the speaker
characteristics using formant-shifting, pitch-randomization and randomized frequency shaping trans-
forms to obtain =, = Grewisic (). Next, the content embedding is derived from the perturbed audio
2" = G(xp), while the speaker embedding is still derived from the original audio s = G4(x). The
network is then tasked to reconstruct the original audio from 2’ and s. While heuristically perturbed
content representations play a crucial role in enhancing the synthesizer model’s attention towards
the speaker embedding, they are limited in terms of the range of transformations they can introduce.
Heuristic transformations represent only a subset of the potential natural variations that can occur
during voice conversion.
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To expand on the heuristic set of transforms, we propose to utilize the synthesizer model itself to
generate a voice-converted variation of a given utterance x. That is, given a synthesizer model G/,
trained until training iteration ¢, we obtain a self transformed audio for iteration ¢ 4 1 as:

Tp = gself('r) = Gzymh(GC(x)v S/) (2)

where G.(x) is the content embedding of the original audio x and s’ is the speaker embedding
obtained from an utterance =’ of a different randomly selected speaker, that is, s" = G(z’). The
content embedding input for the training step 7 + 1 is then derived as 2’ = G.(z)).

Self transformations not only provide a more diverse set of transformations but also present an
increasingly challenging reconstruction task for the synthesizer, as its voice conversion capabilities
improve with each training iteration. Figure|l|demonstrates the proposed self transformation training
strategy. In our experiments, we begin self transformations after 100k mini-batch iterations of training
with heuristically modified audio. Thereafter, we get a reasonable initialization for a voice conversion
model, and we start using self transformations to obtain x,, as per Equation

4 EXPERIMENTS

4.1 DATASET AND TRAINING

The Conformer-SSL model used as the content encoder is pretrained on 56k hours of unlabelled
English speech from the LibriLight (Kahn et al.,2020) corpus sampled at 16 KHz. We fine-tune the
Conformer-SSL model (using self-supervision with contrastive and MLM loss) on the train-clean-360
subset of LibriTTS (Zen et al., [2019) dataset with audio sampled at 22050 Hz to make the model
compatible with the mel-spectrogram representation of the synthesizer. For both the content encoder
and synthesizer, we use 80 bands for mel spectrogram with the FFT, window, and hop size set to
1024, 1024, and 256 respectively. We fine-tune the Conformer-SSL on this revised spectrogram
representation for 50 epochs with a batch size of 32 using the AdamW optimizer with a fixed learning
rate of 5e — 5 and 81 = 0.9, B2 = 0.99. Fine-tuning takes around 50 hours on a single NVIDIA RTX
A6000 GPU.

For our primary experiments, the mel-spectrogram synthesizer and the HifiGAN vocoder are also
trained on the train-clean-360 subset of the LibriTTS dataset which contains 360 hours of speech
from 904 speakers. We train three variants of the mel-spectrogram synthesizer:

1. Baseline-NoTransform is trained to simply reconstruct the mel-spectrogram from the embeddings
of the given utterance without any information perturbation procedure.

2. Baseline—Heuristic is trained to reconstruct the mel-spectrogram from the content embedding of
the heuristically perturbed utterance and the speaker embedding of the original utterance. We employ
two transforms gy, g2 proposed in (Choi et al.| [2021)). g; perturbs formant, pitch, and frequency
response and gy perturbs formant and frequency response while preserving pitch. The hyperparameter
details of these transformations are provided in the Appendix[A.3]

3. SelfVC is first trained in the same way as Baseline—Heuristic for the first 100k mini batch iterations.
Thereafter, we use the gy, transformation procedure given by Equation

All three variants of the synthesizer are optimized using an AdamW optimizer (Loshchilov & Hutter]
2019) with a fixed learning rate of 1e — 4 and 8, = 0.8, B2 = 0.99 for 500 epochs with a batch size
of 32. The threshold 7 for duration extraction is set as 0.925. The loss coefficients for the duration
and pitch loss are set as Ay = Ay = 0.1. The training time for Synth (SelfTransform) model is around
5 days on 4 NVIDIA RTX A6000 GPUs. The HifiGAN vocoder is also trained on the train-clean-360
subset of the LibriTTS and the same vocoder is used across all three synthesizers. We point readers
to Appendix [A.2]for detailed architectures and implementation of various components.

4.2 EVALUATION METRICS

We encourage readers to listen to our audio examples linked in the footnote on the first page.
Quantitatively, we evaluate the synthesized audio on the following aspects:

Intelligibility: For intelligibility, we transcribe the synthesized and original through and ASR and
compute two error metrics between the transcriptions — Character Error Rate (CER) and Phoneme
Error Rate (PER). For CER, we transcribe the audio using the Quartznet (Kriman et al., 2020) ASR
model. For multilingual evaluation, we compute the PER on the transcriptions obtained from the
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pre-trained wav2vec2-Large-XLSR-53 ASR model which has been trained to recognize phonetic
labels in multiple languages. (Xu et al.,2021). We also report the CER and PER between the predicted
and ground truth transcripts of real data for reference in our Results.

Speaker Similarity Metrics: To evaluate speaker similarity to our target speaker, we compute
the speaker embeddings of synthesized and real utterances using a separate pre-trained speaker
verification model (Koluguri et al., [2020). Then we pair the synthesized and real utterances to
create an equal number of positive (same-speaker) and negative (alternate-speaker) pairs for each
target speaker to compute the Equal Error Rate (SV-EER). We also report the mean cosine similarity
between the positive pairs (SV-SIM). Finally, we also ask human listeners to rate the speaker similarity
of the generated and real utterance from the target speaker on a 5-point scale to obtain Sim-MOS.

Naturalness (MOS): We ask human listeners to rate the naturalness of each utterance ona 1to 5
scale with 1 point increments. We include details of MOS and SIM-MOS evaluations in Appendix [A.6]

Prosodic Similarity (GPE): To evaluate prosodic similarity for the reconstruction task (Section 4.3)),
we compute error between the fundamental frequency contours of the original and synthesized audio.
Specifically, we use Gross Pitch Error (GPE) (Chu & Alwanl 2009) to evaluate prosodic similarity.

Table 1: Reconstruction evaluation: Resynthesized speech from different synthesizers is evaluated for intelligi-
bility (PER), speaker similarity (SV-EER) and prosodic similarity (GPE). Lower values are desirable.

Guided Predictive
Dataset Technique | SV-EER | PER| GPE| | SV-EER| PER| GPE |
Real Data 31%  9.8% - 31%  9.8% -
VCTK Baseline—NoTransform 46% 51% 7.8% 4.7%  54% 11.1%
(English) Baseline-Heuristic 4.3%  4.9%  7.9% 45%  53% 11.1%
Seen Language  SelfVC 42%  4.6% 7.8% 41%  4.7% 12.0%
Real Data 2.3%  22.1% - 2.3% 22.1% -
CSS10 Baseline-NoTransform 55% 19.3% 11.7% 4.9% 21.2% 15.9%
(Multilingual) Baseline-Heuristic 53% 19.2% 11.6% 55% 21.5% 16.1%
Unseen Language SelfVC 4.1% 19.5% 10.8% 4.8% 211% 16.8%

4.3 RECONSTRUCTION

First, we evaluate how effectively our setup can reconstruct audio from the extracted representations
for unseen utterances and speakers. Our synthesizers can operate in two modes during inference —
1) Guided: In this scenario, we use ground truth pitch and duration information derived from the
source utterance. 2) Predictive: In this case, we use the predicted pitch and duration for synthesis.
We conduct the reconstruction test on two unseen datasets — 1) We choose 200 utterances from
the VCTK (Yamagishi et al.,|2019) dataset (English) with 20 random utterances from each of the
10 speakers (5 random male and 5 random female speakers); 2) To evaluate performance on unseen
languages, we choose 200 utterances from the CSS10 (Park & Mulc, 2019) dataset with 20 random
utterances from each of the 10 unseen languages. The CSS10 dataset has a single speaker per
language and contains at least 4 hours of speech per language. For both of these evaluations, we use
the synthesizer models trained on the same dataset, i.e. train-clean-360 subset of LibriTTS (English).
The synthesized speech is evaluated on the intelligibility, speaker similarity and prosodic similarity
metrics.

As indicated by the results in Table |1} all three synthesizers achieve similar performance on the
above metrics. This is expected since the speaker and content embedding are derived from the same
utterance and all three synthesizers are trained for the reconstruction task. However, for controllable
synthesis tasks such as voice conversion, we demonstrate that SelfVC considerably outperforms these
baselines (Section[d.4). Since our model is trained in a text-free manner, we also see a promising
generalization to unseen languages. The PER on CSS10 is higher than VCTK due to the larger
phonetic vocabulary in non-English languages and the PER of the wav2vec2 model (Xu et al.| [2021)
being higher even on real data. For unseen languages, our synthesizers produce more intelligible
speech in the guided mode, where the duration information of the source utterance is kept intact.

4.4 VOICE CONVERSION

To convert the voice of a given source utterance to a target speaker, we derive the content embedding
from the source utterance and estimate the speaker embedding from the target speaker’s audio and
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feed both as input to the synthesizer. To compare our zero-shot voice conversion method against prior
work, we choose utterances from the LibriTTS test-clean subset since it is an unseen dataset across
all voice conversion methods. We randomly choose 10 target speakers (5 male and 5 female) and 20
source utterances from the remaining speakers to create 200 voice conversion trials for each technique
and report the results in Table[2] For our primary evaluation, we use 10 seconds of speech from each
target speaker to derive the speaker embedding. We split the 10 second target-speaker utterance into
2 second segments and estimate the speaker embedding as the mean speaker embedding across the
segments. To be consistent with past work, we keep the duration of the source utterance unchanged
during synthesis using duration guided mode and use predictive mode for pitch. We also evaluate the
speaker-similarity performance for different amounts of target speaker data and present the results in
Figure [3]of the Appendix. Additionally, we include voice conversion results on seen speakers and
out-of-domain VCTK dataset in Appendix [A.4]

Table 2: Comparison of different zero-shot voice-conversion techniques on speaker similarity, intelligibility and
naturalness metrics (Section[4.2) on unseen speakers and source utterances from the test-clean LibriTTS subset
using 10 seconds of target speaker audio.

Speaker Similarity Intelligibility Naturalness
Technique | SV-EER| SV-Sim{ Sim-MOS 1 | PER| CER| | MOS 1
Real Data | 26% 0.61 436+0.08 | 87% 6.7% | 4.30+0.08
AdaIN-VC (Chou et al.|2019) 28.7% 0.36 2.624+0.07 | 14.3% 15.5% 2.14 +0.08
MediumVC (Gu et al.[[2021) 27.4% 0.40 2.8240.08 | 27.7%  29.1% 2.51 +0.07
FragmentVC (Lin et al.|[2021) 23.3% 0.39 2.28+0.08 | 27.0% 31.1% 2.42 +0.07
S3PRL-VC (Huang et al.|[2022) 20.5% 0.38 2.66 & 0.07 | 12.5% 9.6% 2.81 +0.08
YourTTS (Casanova et al.[[2022) 6.6% 0.54  3.014+0.08 8.4% 4.9% | 3.49+0.07
ACE-VC (Hussain et al.|[2023) 6.6% 0.49 3.29 +0.09 9.0% 3.8% 3.77 +0.07
Baseline-NoTransform 28.9% 0.36  2.214+0.08 | 5.5% 1.9% | 3.9540.05
Baseline—Heuristic 6.0% 0.53 3.65 +0.07 5.2% 1.6% 3.97 + 0.06
SelfVC 3.4% 0.58 3.74+0.07 5.1% 1.6% | 4.06 +£0.06

Effectiveness of Self Transformations: We perform ablations to compare effectiveness of different
input transformation techniques. As reported in Table [2] incorporating heuristic transformations
during training (Baseline—Heuristic) improves speaker similarity of generated audio over a baseline
that does not use any transformations (Baseline-NoTransform). The speaker similarity metrics (SV-
EER, SV-Sim and Sim-MOS) further improve in SelfVC when we incorporate the self transformation
based iterative refinement procedure (Section[3.3). Note that both the baseline techniques and the
SelfVC approach use identical neural architectures and undergo training for the same number of
epochs with consistent optimizer hyperparameters. It is interesting to note that while Baseline-
NoTransform generates intelligible and natural-sounding audio, it clearly falls short on speaker
similarity metrics indicating the importance of input transformation methods for voice conversion.

Comparison against Prior Work: Although we have conducted controlled experiments by varying
input transformation techniques in our models, it is challenging to make similar comparisons with
prior research due to disparities in vocoders, datasets, and compatibility of model architectures
between synthesizers and vocoders. We use the official open-source implementations and model
checkpoints of six previously proposed techniques. For a fair comparison, we evaluate all prior
techniques on the same voice conversion trial pairs as our methods, using the same ASR and SV
models for calculating CER, PER and SV metrics. While NANSY (Choi et al.l 2023) is not officially
open-sourced, our Baseline—Heuristic method closely follows the training strategy proposed in
NANSY using the same hyperparameters for heuristic functions (Appendix [A.3)), incorporating more
recent neural architectures for the synthesizer and feature extractors. As shown in Table 2] SelfVC
outperforms previously proposed voice conversion models on all quantitative metrics. It is interesting
to note that SelfVC trained on just the train-clean-360 subset of LibriTTS outperforms YourTTS
which is trained on a much larger dataset comprising LibirTTS (train-clean-360, train-clean-100),
VCTK and two additional languages (French and Portugese).

Cross-lingual Voice Conversion: For Cross-lingual voice conversion, we use the CSS10 dataset
that contains speech utterances from 10 different languages. We consider three voice conversion
scenarios: 1) English to CSS10: Source utterance is from the test-clean subset of LibriTTS (English)
and target speaker is from the CSS10 dataset 2) CSS10 to CSS10: Source utterance from a language
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Table 3: Results on cross-lingual voice conversion task in three scenarios considering different languages for
source utterance and target speaker (described in Section[.4). 10 seconds of target speaker utterance is used to
derive speaker embedding. Lower SV-EER is desirable for higher speaker similarity and lower PER is desirable
for more intelligible speech.

English to CSS10 CSS10to CSS10 CSS10 to English

Technique | SV-EER | PER| | SV-EER | PER| | SV-EER| PER |
Real Data | 41%  8T% | 41%  221% |  26% 22.1%
AdaIN-VC (Chou et al.|[2019) 24.0% 16.3% 20.9%  33.5% 27.7%  36.9%
MediumVC (Gu et al.|[2021) 29.3% 28.4% 28.1%  43.3% 29.8%  45.7%
FragmentVC (Lin et al.[[2021) 25.6% 29.9% 25.0%  42.4% 26.4% 44.1%
S3PRL-VC (Huang et al.[[2022) 31.5% 12.9% 30.1%  32.9% 23.1%  35.1%
YourTTS (Casanova et al.[[2022) 13.2%  8.5% 12.5%  23.6% 9.7%  28.0%
ACE-VC (Hussain et al.}[2023) 15.1% 9.3% 30.1%  68.3% 17.6%  70.9%
Baseline-NoTransform (LibriTTS) 24.6%  5.3% 30.9%  23.7% 26.2%  23.8%
Baseline—Heuristic (LibriTTS) 15.8%  5.3% 20.3%  23.3% 9.8% 23.8%
SelfVC (LibriTTS) 12.7%  5.1% 18.4%  23.7% 7.0%  25.4%
SelfVC (LibriTTS + CSS10) 4.4% 6.0% 4.4% 18.9% 4.8% 19.9%

in the CSS10 dataset and target speaker is from another language of CSS10. 3) CSS10 to English:
Source utterance from a language in the CSS10 dataset and target speaker is from LibriTTS (English).

For English to CSS10 we create 200 voice conversion trials considering 20 source utterances and
10 target speakers in CSS10. For CSS10 to CSS10 and CSS10 to English, we generate 500 voice
conversion trials each, considering 50 source utterances (5 each from the 10 languages) and 10 target
speakers. We use 10 seconds of target speaker data across all experiments. We compare different
voice conversion techniques on these trial pairs and present the results in Table 3]

In the English to CSS10 experiments, SelfVC (LibriTTS), which is trained solely on train-clean-360
LibriTTS subset, outperforms baseline methods and prior work, achieving lower SV-EER and PER.
It is interesting to note that SelfVC (LibriTTS) outperforms YourTTS, which is trained on a more
extensive trilingual dataset as discussed above. For CSS10 to CSS10 voice conversion, we observe a
higher SV-EER and PER for SelfVC (LibriTTS) as compared to YourTTS. This is not very surprising,
since YourTTS model was trained on multilingual speech data while SelfVC (LibriTTS) has only been
trained on English speech. For CSS10 fo English voice conversion, SelfVC (LibriTTS) outperforms
all baselines and prior work. Interestingly, ACE-VC, which uses similar model architectures and
the same training data as our setup, does not generate intelligible speech when the source utterance
is from CSS10. This result indicates that the text-free nature of our model allows generalization to
unseen languages.

To adapt SelfVC for new languages, we conduct fine-tuning of only the synthesis model on both
LibriTTS (train-clean-360) and CSS10 utterances (using data other than the test trial pairs), which
considerably improves SV-EER and PER for the SelfVC (LibriTTS + CSS10) model. The improve-
ment in SV-EER is significant but not surprising since the 10 CSS10 speakers are now seen during
training in the SelfVC (LibriTTS + CSS10) model. The improvement in PER is promising and
demonstrates the effective adaptability of our model to different languages. We delve into details
of the finetuning process and report the phoneme error rates for each of the 10 CSS10 languages in

Appendix

5 CONCLUSION

We introduce a novel training strategy, SelfVC, that utilizes self transformations to train controllable
synthesis models on imperfectly disentangled representations. Our results indicate a clear benefit
of incorporating self-synthesized examples while training a voice conversion model, as shown by a
significant improvement in speaker similarity metrics while keeping the model architecture unchanged.
By deriving and modelling prosodic information during training, SelfVC allows for both fine-grained
and high-level control over the prosody of the synthesized speech. SelfVC achieves SOTA results in
zero-shot voice conversion for English and can be easily scaled to multiple languages in a text-free
manner, outperforming prior approaches in cross-lingual voice conversion. We recommend future
work to apply our training strategy in other data domains for creating controllable synthesis models.
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A APPENDIX

A.1 DERIVING DURATION-AUGMENTED CONTENT EMBEDDINGS

Given the output z = G.(x) = 2z1...zr from the Conformer-SSL model, we group together
consecutive feature vectors with high cosine similarity. That is, we maintain a running average of
consecutive vectors with cosine similarity greater than a threshold 7 and obtain the target duration
for the averaged vector as the product of the number of grouped vectors and the duration of a single
vector. The original duration § of a single vector is 4 mel-spectrogram frames or 46ms or raw audio.
This procedure differs slightly from previous work (Lee et al.,[2021) in that, instead of computing
similarities between consecutive pairs of the original vectors, we now compare the average embedding
of the current group with the next original embedding. Our temporal downsampling procedure is
similar to (Qian et al., [2021)) but we additionally maintain the durations of the grouped vectors to be
used as targets for the duration predictor in our synthesizer. Our technique also differs from prior
work (Kreuk et al., 2022} Maimon & Adi, 2022) that obtains duration/rhythm information from
discrete SSL representations instead of the continuous vectors. Algorithm (1| details our grouping
procedure to obtain duration-augmented content embeddings.

Algorithm 1 Deriving duration-augmented content by grouping similar consecutive vectors

1 2+ [z] > Initialize 2’ with the vector from the first time-step in z
2: d' + [0] > dj represents duration of z;. & represents duration of of each z; (i.e 4 frames)
3: num_grouped < 1 > number of similar vectors grouped at the last processed time-step
4: fort < 2to T’ do

5: if CosineSimilarity(z;, z’[—1]) > 7 then > Group z; with the running group
6: Z'[=1] « (2 + num_grouped x z'[—1]) /(num_grouped + 1) > Update average
7: d'[—1] < § x (num_grouped + 1)

8: num_grouped <— num_grouped + 1

9: else > Insert z; in a new group
10 2" .append(z)
11: d'.append ()
12: num_grouped < 1
13: end if
14: end for

15: return z', d’

A.2 MODEL ARCHITECTURE AND IMPLEMENTATION DETAILS

Our voice conversion comprises the following neural networks. Total number of parameters and
inference latency for each model are listed in Table

Conformer-SSL Model: The Conformer-SSL model (Gulati et al., [2020) used in this work is a
convolution-augmented transformer architecture that is trained to reconstruct the masked areas of the
mel-spectrogram on English speech data, using contrastive and masked language modelling (MLM)
losses. It is pre-trained on the LibriLight corpus which consists of 56k hrs of unlabeled English
speech. The model consists of 18 layers, 8 attention heads and a hidden dimension of 512. The output
head of the Conformer model gives a 256 dimensional encoding per timestep. The model temporally
downsamples the input mel-spectrogram by a factor of 4. With the STFT parameters used in our
setup, each vector from the Conformer-SSL model corresponds to a contextualized representation of
46ms of audio.

Speaker Verification TitaNet Model: TitaNet (Koluguri et al.,|2022) is based on a 1-D depthwise
separable convolution architecture with Squeeze and Excitation layers that provide global context,
followed by channel attention-based statistics pooling layer to map variable-length utterances to a
fixed-length embedding. The TitaNet speaker verification model is trained using additive angular
margin loss (Liu et al.,2017) on 3373 hours of speech from multiple datasets that span 16681 speakers.
Comprising of 25.3 million parameters, the TitaNet model is designed to be parameter-efficient and
achieves state-of-the-art results on the VoxCeleb-1 speaker verification benchmark with an EER of
0.68%. The output from this speaker verification model is a 192 dimensional speaker embedding.
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Mel-spectrogram Synthesizer: The spectrogram synthesizer takes as input the content and speaker
embeddings and predicts the mel-spectrogram. The speaker and content embeddings derived from
the Conformer-SSL and TitaNet models respectively are first projected to 256 dimensions each using
a learnable linear layer. The projected speaker embedding is then repeated across all time-steps and
concatenated with the projected content embeddings. The synthesizer is a FastPitch (Lancucki, [2021)
based model that contains two feed forward transformer networks (encoder and decoder) that follow
an identical architecture. Each transformer network contains 6 layers, with a hidden dimension of
1536. Each layer is composed of a single-headed attention module with an attention head of size
64 followed by a 1-d convolutional block. Each convolutional block is a sequential operation of
Convld, ReLU, Convld, Dropout and Layer Normalization. The kernel size for the convolution is 3
and dropout probability is 0.1.

The mel-spectrogram synthesizer also contains two submodules for predicting pitch and duration. The
pitch and duration predictors take as input the output of the encoder network and predict a sequence
of scalar values for duration or pitch (speaker normalized F{ contour). Duration is used to regulate
the length of the encoder output and pitch is embedded and concatenated with the encoder’s output to
be fed as input to the decoder. Both the pitch and duration predictor follow the same architecture —
Each network contains two convolutional blocks. Each convolutional block is a serial composition
of Convld, ReLLU and layer normalization with a kernel size of 3 and hidden dimension of 256,
followed by a linear layer that maps the hidden dimension to a scalar value for duration or pitch.

HiFiGAN Vocoder: The HiFi-GAN (Kong et al., |2020) vocoder used in this work consists of one
generator and two discriminators: multi-scale and multi-period discriminators. In the generator
network, consists of 4 upsampling blocks with an upsampling factor of 8, 8, 2, 2 with kernel
sizes 16, 16, 4, 4 respectively. The model outputs audio at 22050Hz. The HiFiGAN vocoder is
trained for 350 epochs on train-clean-360 subset of LibriTTS. Thereafter, the vocoder is additionally
fine-tuned on synthetic mel-spectrograms, generated by the three mel-spectrogram synthesizers
(Baseline-NoTransform, Baseline-Heuristic and SelfVC) for the same dataset for 5 epochs.

Table 4: Model size and wall clock inference time for a speech utterance of length 10 seconds using a batch

size of 1 on CPU and NVIDIA RTX A6000 GPU.
Inference Time

(Seconds)
Model | # Parameters | CPU GPU
Speaker Encoder TiTaNet 25M | 0.13 0.05
Conformer-SSL 121 M | 0.44 0.10
Mel-Spectrogram Synthesizer 59M | 0.15 0.01
HiFiGAN Vocoder 85 M 2.1 0.08

A.3 HEURISTIC TRANSFORMATION FUNCTIONS

For heuristic transformations, we follow the perturbation functions and hyperparameters proposed
in (Chot et al.|[2023)). The three fundamental perturbation functions used are 1) Formant Shifting (fs)
2) Pitch Randomization (pr) and 3) Random Frequency Shaping (peq).

During training, the source utterance is perturbed by randomly choosing a transformation function
g1 or go — Transformation function g; is a serial composition of peq and fs; And g» is a serial
composition of peq, pr and fs.

For pr, pitch shift ratio is sampled uniformly from U(1, 2) and pitch range ratio is sampled from
U(1,1.5). Random frequency shaping (peq) is serial composition of low-shelfing, peaking and
high-shelfing filters. Following NANSY, we use one low-shelving H'S, one high-shelving H%S, and
eight peaking filters HYe3 ...  ffPeak,

HP™Q(z) = HYS(2) H™S (2) [ [ HF*™(2).
=1
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Each component is a second-order IIR filter parameterized by a cutoff/center frequency, quality
factor, and gain parameter. The cutoff frequencies for H™S and H"S are set at 60H z and 10k H z,
respectively. Center frequencies of H % ...  HFek are uniformly spaced in between the shelving
filters on a logarithmic scale. The quality factor of each component is randomly sampled as ) =
Qmin(Qmax/Qmin)* Where Qmin = 2, Qmax = 5, and z ~ U(0,1). The gain (in decibel) of each

component is randomly sampled from U (—12,12).

We refer the readers to the link in the footnote (an unofficial open-source implementation of NANSY)
for the precise implementation of transformation functions used in our work.

A.4 VOICE CONVERSION ON SEEN SPEAKERS AND VCTK DATASETS

We present results for additional experiments on speen speakers from train-clean-360 (using utterances
from the hold out set) and unseen speakers from VCTK dataset in Table[5] We choose VCTK because
it is an out-of-domain test set of unseen speakers for our models trained on LibriTTS. Similar to
our primary experiments, we consider 20 source utterances, each from a different speaker and 10
target speakers resulting in 200 voice conversion trials. We compare against one prior work ACE-
VC (Hussain et al., [2023)), since ACE-VC is trained on the same dataset and VCTK dataset is not
used during training. Other prior techniques considered in our main experiments conduct training on
the VCTK dataset.

On the VCTK dataset, we find that SelfVC significantly outperforms the baselines and ACE-VC
on the SV-EER metric. We also present the t-SNE plots for speaker embeddings of generated and
real utterances in Figure[3] It can be observed that the embeddings of generated audio are closely
clustered with the real embeddings of the target speaker for both seen and unseen speakers. We study
the effect using different amounts of target speaker data when deriving speaker embedding for voice
conversion in Figure 3] While the SV-EER improves as we incorporate more data from the target
speaker, we observe marginal improvement beyond 16 seconds of target speaker data. In this graph,
seen speakers refers to LibriTTS train-clean-360 and unseen speakers refers to VCTK.
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Figure 3: Left: SV-EER of voice converted speech generated by SelfVC using different amounts of target
speaker data for estimating the speaker embedding. Right: t-SNE visualization of speaker embeddings of
SelfVC synthesized and ground-truth audio for 10 target speakers. Each color represents a different speaker.

Table 5: Voice Conversion experiments on seen speakers (LibriTTS train-clean-360) and out-of-domain unseen
speakers (VCTK). We compare against one prior work trained on the same dataset as ours.

LibriTTS (train-clean-360) VCTK
Technique | SV-EER| PER| CER| | SV-EER| PER| CER |
Real Data \ 29%  8.7% 6.3% | 31%  9.8% 5.1%
ACE-VC|Hussain et al.|(2023) ‘ 5.3% 8.8% 3.7% ‘ 9.2% 22.1% 8.2%
Baseline—NoTransform 19.1%  5.5% 2.6% 252%  7.6% 3.8%
Baseline—Heuristic 4.4%  5.5% 2.3% 8.5%  7.6% 3.1%
SelfVC 3.0% 5.4% 2.2% 4.3% 7.4% 3.8%

https://github.com/dhchoi99/NANSY/blob/master/datasets/functional.py
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Figure 4: Phoneme Error Rate on Individual Languages of the CSS10 dataset for voice conversion experiments
when the source utterance is from CSS10 and the target speaker is from another language in CSS10 or the
LibriTTS test-clean dataset.

A.5 MULTILINGUAL PHONEME ERROR RATE

In Figure ] we present phoneme error rate on individual languages for CSS10 to CSS10 and CSS10
to LibriTTS cross-lingual voice conversion experiments respectively. We also compare against the
YourTTS model, which has the lowest average PER amongst the prior work considered in our work.
As evident from the graphs, PER across all languages improve when SelfVC is fine-tuned on the
LibriTTS train-clean-360 and CSS10 dataset (SelfVC (LibriTTS + CSS10) ). The fine-tuning is
conducted for 10 epochs with a fixed learning rate of 1e — 4 on the combined LibriTTS and CSS10
dataset and takes around 5 hours on a single NVIDIA RTX A6000 GPU. Certain languages such as
Chinese, Russian and Japanese have higher PER across all methods. This is because of the large
phonetic vocabulary of such languages which results in a higher PER from the wav2vec2 model even

on real utterances (Xu et all,[202T).

A.6 MOS AND SIM-MOS EVALUATION

Naturalness MOS Evaluation: We ask human listeners to rate the audio on a scale of 1 to 5 point
naturalness scale with 1 point increments. We present 200 audio examples of each technique and each
audio is independently rated by at least 4 listeners. This results in a total of at least 800 evaluations
per technique. The template used for the Naturalness human study is shown in Figure[5] We report
the MOS with 95% confidence intervals in Tablelof the paper.

Speaker Similarity MOS (Sim-MOS): For Sim-MOS evaluation, we ask human listeners to rate the
speaker similarity of a given pair of utterances. For this evaluation, each synthetic utterance is paired
with a real utterance of the target speaker. We create pairs for all of the 200 synthesized utterances
of each technique. Each pair is rated by at least 4 independent listeners resulting in at least 800
speaker similarity evaluations of each technique. We ask the listeners to judge only the voice/speaker
of the utterances and ignore the accent, content, grammar and expressiveness of speech following
past work (Jia et al., [2018}; [Casanova et al}[2022)). The template used for this user study is shown in
Figure@ The Sim-MOS with 95% confidence intervals in Table|2|of the paper. For reference, the
reported Sim-MOS for same-speaker ground truth pairs is 4.36 4= 0.08 and different-speaker ground
truth pairs is 1.77 £ 0.10.

Naturalness Evaluation Speaker Similarity Evaluation
Listen to the sample of speech and assess the quality of the audio based on how close it is to Please listen to the speech samples and rate the speaker similarity between them. Your rating should
natural speech on a scale of 1 to 5. For better results, wear headphones and work in a quiet reflect your evaluation of how close the voices of the two speakers sound. You should not judge the
environment. accent, content, grammar, expressiveness or audio quality of the two voices. Instead, just focus on
the similarity of the speakers to one another.
Audio : i
Audio 1 Audio 2
P 000/0:11  m— o0 i
> 000/0:16 w—- 9 i P 000/0:07 wmm—— ) i

How natural is the above audio? e )
How similar are the speakers of the above two audio samples?

1 Completely Unnatural Speech
1 Not Similar at all

© 2 Mostly Unnatural Speech
3 Equally Natural and Unnatural Speech
© 4 Mostly Natural Speech

2 Slightly Similar
3 Moderately Similar
4 Very Similar

5 Completely Natural Speech 5 Extremely Similar
= =
Figure 5: User Study template used for Natural- Figure 6: User Study template used for Speaker
ness MOS evaluation Similarity MOS evaluation
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