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Abstract

How to solve high-dimensional linear programs (LPs) efficiently is a fundamental
question. Recently, there has been a surge of interest in reducing LP sizes using
random projections, which can accelerate solving LPs independently of improving
LP solvers. This paper explores a new direction of data-driven projections, which
use projection matrices learned from data instead of random projection matrices.
Given training data of n-dimensional LPs, we learn an n × k projection matrix
with n > k. When addressing a future LP instance, we reduce its dimensionality
from n to k via the learned projection matrix, solve the resulting LP to obtain a k-
dimensional solution, and apply the learned matrix to it to recover an n-dimensional
solution. On the theoretical side, a natural question is: how much data is sufficient
to ensure the quality of recovered solutions? We address this question based on
the framework of data-driven algorithm design, which connects the amount of
data sufficient for establishing generalization bounds to the pseudo-dimension of
performance metrics. We obtain an Õ(nk2) upper bound on the pseudo-dimension,
where Õ compresses logarithmic factors. We also provide an Ω(nk) lower bound,
implying our result is tight up to an Õ(k) factor. On the practical side, we explore
two simple methods for learning projection matrices: PCA- and gradient-based
methods. While the former is relatively efficient, the latter can sometimes achieve
better solution quality. Experiments demonstrate that learning projection matrices
from data is indeed beneficial: it leads to significantly higher solution quality than
the existing random projection while greatly reducing the time for solving LPs.

1 Introduction

Linear programming (LP) has been one of the most fundamental tools used in various industrial
domains [23, 18], and how to address high-dimensional LPs efficiently has been a major research
subject in operations research. To date, researchers have developed various fast LP solvers, most of
which stem from the simplex or interior-point method. Recent advances include a parallelized simplex
method [27] and a randomized interior-point method [16]. Besides the improvements in LP solvers,
there has been a growing interest in reducing LP sizes via random projections [44, 37, 2], motivated by
the success of random sketching in numerical linear algebra [48]. Such a projection-based approach
is solver-agnostic in that it can work with any solvers, including the aforementioned recent solvers,
for solving reduced-size LPs. This solver-agnostic nature is beneficial, especially considering that LP
solvers have evolved in distinct directions of simplex and interior-point methods.

In the context of numerical linear algebra, there has been a notable shift towards learning sketching
matrices from data, instead of using random matrices [28, 29, 12, 33, 40]. This data-driven approach is
effective when we frequently address similar instances. The line of previous research has demonstrated
that learned sketching matrices can greatly improve the performance of sketching-based methods.
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1.1 Our contribution

Drawing inspiration from this background, we study a data-driven projection approach for accelerat-
ing repetitive solving of similar LP instances, which often arise in practice [21] (see also Remark 3.2).
Our approach inherits the solver-agnostic nature of random projections for LPs, and it can improve
solution quality by learning projection matrices from past LP instances. Our contribution is a cohesive
study of this data-driven approach to LPs from both theoretical and practical perspectives, as follows.

Generalization bound. We first formulate the task of learning projection matrices as a statistical
learning problem and study the generalization bound. Specifically, we analyze the number of LP-
instance samples sufficient for bounding the gap between the empirical and expected objective values
attained by the data-driven projection approach. Such a generalization bound is known to depend
on the pseudo-dimension of the class of performance metrics. We prove an Õ(nk2) upper bound on
the pseudo-dimension (Theorem 4.4), where n and k are the original and reduced dimensionalities,
respectively, and Õ compresses logarithmic factors. A main technical non-triviality lies in Lemma 4.3,
which elucidates a piecewise polynomial structure of the optimal value of LPs as a function of input
parameters. Besides playing a key role in proving Theorem 4.4, Lemma 4.3 offers general insight into
the optimal value of LPs, which could have broader implications. We also give an Ω(nk) lower bound
on the pseudo-dimension (Theorem 4.5). As experiments demonstrate later, we can get high-quality
solutions with k much smaller than n, suggesting our result, with only an Õ(k) gap, is nearly tight.

Learning methods. We then explore how to learn projection matrices in Section 5. We consider
two simple learning methods based on principal component analysis (PCA) and gradient updates.
The former efficiently constructs a projection matrix by extracting the top-k subspace around which
optimal solutions of future instances are expected to appear. The latter, although more costly, directly
improves the optimal value of LPs via gradient ascent. In Section 6, experiments on various datasets
confirm that projection matrices learned by the PCA- and gradient-based methods can lead to much
higher solution quality than random projection [2], while greatly reducing the time for solving LPs.

1.2 Related work

Random projections for LPs. Vu et al. [44] introduced a random-projection method to reduce
the number of equality constraints, and Poirion et al. [37] extended it to inequality constraints. As
discussed therein, reducing the number of inequality constraints of LPs corresponds to reducing the
dimensionality (the number of variables) of dual LPs. Recently, Akchen and Mišić [2] developed
a column-randomized method for reducing the dimensionality of LPs. While these studies provide
high probability guarantees, we focus on data-driven projections and discuss generalization bounds.

Data-driven algorithm design. Data-driven algorithm design [7], initiated by Gupta and Rough-
garden [25], has served as a foundational framework for analyzing generalization bounds of various
data-driven algorithms [8, 10, 11, 12, 39, 9]. Our statistical learning formulation in Section 3 and a
general proof idea in Section 4 are based on it. Among the line of studies, the analysis technique for
data-driven integer-programming (IP) methods [10, 11] is close to ours. The difference is that while
their technique is intended for analyzing IP methods (particularly, branch-and-cut methods), we focus
on LPs and discuss a general property of the optimal value viewed as a function of input parameters.
Thus, our analysis is independent of solution methods, unlike the previous studies. This aspect is
crucial for analyzing our solver-agnostic approach. Some studies have also combined LP/IP methods
with machine learning [14, 21, 41], while learning of projection matrices has yet to be studied.

Learning through optimization. Our work is also related to the broad stream of research on learning
through optimization procedures [4, 47, 1, 13, 42, 36, 3, 20, 45, 19], which we discuss in Appendix A.

Notation. For a positive integer n, let In and 0n be the n× n identity matrix and the n-dimensional
all-zero vector, respectively, where we omit the subscript when it is clear from the context. For two
matrices A and B with the same number of rows (columns), [A,B] ([A;B]) denotes the matrix
obtained by horizontally (vertically) concatenating A and B.

2 Reducing dimensionality of LPs via projection

We overview the projection-based approach for reducing the dimensionality of LPs [37, 2]. For ease
of dealing with feasibility issues, we focus on the following inequality-form LP with input parameters
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c ∈ Rn, A ∈ Rm×n, and b ∈ Rm:
maximizex∈Rn c⊤x subject to Ax ≤ b. (1)

When n is large, restricting variables to a low-dimensional subspace can be helpful for computing an
approximate solution to (1) quickly. Specifically, given a projection matrix P ∈ Rn×k with n > k,
we consider solving the following projected LP, instead of (1):

maximizey∈Rk c⊤Py subject to APy ≤ b. (2)
Once we get an optimal solution y∗ to the projected LP (2), we can recover an n-dimensional solution,
x̃ = Py∗, to the original LP (1). Note that the recovered solution is always feasible for (1), although
not always optimal. We measure the solution quality with the objective value c⊤x̃ = c⊤Py∗. Ideally,
if P ’s columns span a linear subspace that contains an optimal solution to (1), the recovered solution
x̃ = Py∗ is optimal to (1) due to the optimality of y∗ to (2). Therefore, if we find such a good P
close to being ideal with small k, we can efficiently obtain a high-quality solution x̃ = Py∗ to (1) by
solving the smaller projected LP (2).
Remark 2.1 (Solver-specific aspects). As mentioned in Section 1, this projection-based approach is
solver-agnostic in that we can apply any LP solver to projected LPs (2). To preserve this nature, we
focus on designing projection matrices and do not delve into solver-specific discussions. Experiments
in Section 6 will use Gurobi as a fixed LP solver, which is a standard choice. Strictly speaking, pro-
jections alter the sparsity and numerical stability of projected LPs, which can affect the performance
of solvers. This point can be important, especially when original LPs are sparse and solvers exploit
the sparsity. Investigating how to take such solver-specific aspects into account is left for future work.

3 Data-driven projection

While the previous studies [44, 37, 2] have reduced LP sizes via random projections, we may be able
to improve solution quality by learning projection matrices from data. We formalize this idea as a
statistical learning problem. Let Π denote the set of all possible LP instances and D an unknown
distribution on Π. Given LP instances sampled from D, our goal is to learn P that maximizes the
expected optimal value of projected LPs over D. Below, we assume the following three conditions.
Assumption 3.1. (i) Every π ∈ Π takes the inequality form (1), (ii) x = 0n is feasible for all π ∈ Π,
and (iii) optimal values of all instances in Π are upper bounded by a finite constant H > 0.

Although Assumption 3.1 narrows the class of LPs we can handle, it is not as restrictive as it seems.
Suppose for example that LP instances in Π have identical equality constraints. While such LPs in
their current form do not satisfy (i), we can convert them into the inequality form (1) by considering
the null space of the equality constraints (see Appendix C for details), hence satisfying (i). This
conversion is useful for dealing with LPs of maximum-flow and minimum-cost-flow problems on a
fixed graph topology, where we can remove the flow-conservation equality constraints by considering
the null space of the incidence matrix of the graph. Regarding condition (ii), we may instead assume
that there exists an arbitrary common feasible solution x0 without loss of generality. This is because
we can translate the feasible region so that x0 coincides with the origin 0n. Condition (ii) also implies
that for any P ∈ Rn×k, projected LPs are feasible (i.e., their feasible regions are non-empty) since
y = 0k is always feasible for any projected LPs. Condition (iii) is satisfied simply by focusing on
bounded LPs (i.e., LPs with finite optimal values) and setting H to the largest possible optimal value.
Conditions (ii) and (iii) also ensure that the optimal value of projected LPs always lies in [0, H],
which is used to derive a generalization bound in Section 4. In Section 6, we see that many problems,
including packing and network flow problems, can be written as LPs satisfying Assumption 3.1.

Due to condition (i), we can identify each LP instance π ∈ Π with its input parameters (c,A, b)
in (1), i.e., π = (c,A, b). For an LP instance π ∈ Π and a projection matrix P ∈ Rn×k, we define

u(P , π) = max{ c⊤Py : APy ≤ b } (3)
as the optimal value of the projected LP. Our goal is to learn P ∈ Rn×k from LP instances sampled
from D to maximize the expected optimal value on future instances, i.e., Eπ∼D[u(P , π)].
Remark 3.2 (Validity of the setting). The above statistical learning setting regarding LP instances is
not an artifact. As Fan et al. [21] discussed, LPs often serve as descriptive models, and each instance
can be viewed as a realization of input parameters following some distribution. Such a scenario arises
in, for example, daily production planning and flight scheduling. Note that the statistical learning
setting is also widely used as a foundational framework in data-driven algorithm design [25, 8, 12, 9].
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4 Generalization bound

This section studies the generalization bound, namely, how many samples from D are sufficient for
guaranteeing that the expected optimal value, Eπ∼D[u(P , π)], of learned P is close to the empirical
optimal value on sampled instances. First, let us overview the basics of learning theory. Let U ⊆ RΠ

be a class of functions, where each u ∈ U takes some input π ∈ Π and returns a real value. We use
the following pseudo-dimension [38] to measure the complexity of a class of real-valued functions.
Definition 4.1. Let N be a positive integer. We say U ⊆ RΠ shatters an input set, {π1, . . . , πN} ⊆ Π,
if there exist threshold values, t1, . . . , tN ∈ R, such that each of all the 2N outcomes of {u(πi) ≥ ti :
i = 1, . . . , N } is realized by some u ∈ U . The pseudo-dimension of U , denoted by pdim(U), is the
maximum size of an input set that U can shatter.

In our case, the set U consists of functions u(P , ·) : Π→ R, defined in (3), for all possible projection
matrices P ∈ Rn×k. Each u(P , ·) ∈ U takes an LP instance π = (c,A, b) ∈ Π as input and returns
the optimal value of the projected LP. Assumption 3.1 ensures that the range of u(P , ·) is bounded
by [0, H] for all P ∈ Rn×k. Thus, the well-known uniform convergence result (see, e.g., Anthony
and Bartlett [5, Theorem 19.2] and Balcan [7, Theorem 29.2]) implies that for any distribution D on
Π, ε > 0, and δ ∈ (0, 1), if N = Ω((H/ε)2(pdim(U) + log(1/δ))) instances drawn i.i.d. from D
are given, with probability at least 1− δ, for all P ∈ Rn×k, it holds that∣∣∣ 1

N

∑N
i=1 u(P , πi)− Eπ∼D[u(P , π)]

∣∣∣ ≤ ε. (4)

That is, if a projection matrix P produces high-quality solutions on N ≈ (H/ε)2 ·pdim(U) instances
sampled i.i.d. from D, it likely yields high-quality solutions on future instances from D as well. Thus,
analyzing pdim(U) of U = {u(P , ·) : Π→ R : P ∈ Rn×k } reveals the sufficient sample size.
Remark 4.2 (Importance of uniform convergence). While the above generalization bound is not
the sole focus of learning theory, it is particularly valuable in data-driven algorithm design, as is
also discussed in the literature [8, 10]. Note that (4) holds uniformly for all P ∈ Rn×k, offering
performance guarantees regardless of how P is learned. Thus, we may select learning methods based
on their empirical performance. This is helpful since there are no gold-standard methods for learning
parameters of algorithms; we discuss learning methods for our case in Section 5. This situation differs
from the standard supervised learning setting, where we minimize common losses, e.g., squared and
logistic. Additionally, the uniform bound ensures that learned P does not overfit sampled instances.

4.1 Upper bound on pdim(U)

Building upon the above learning theory background, a crucial factor for establishing the generaliza-
tion bound is pdim(U). To upper bound this, we give a structural observation of the optimal value of
LPs (Lemma 4.3) and combine it with a general proof idea in data-driven algorithm design [25, 7].

We first overview the general proof idea. Suppose that we have an upper bound on the number of
outcomes of {u(P , πi) ≥ ti : i = 1, . . . , N } that grows more slowly than 2N . Since shattering N
instances requires 2N outcomes, the largest N , such that the upper bound is at least 2N , serves as an up-
per bound on pdim(U) (intuitively, pdim(U) ≲ log2(“upper bound on the number of outcomes”)).
Below, we discuss bounding the number of outcomes, which is the most technically important step.

To examine the number of possible outcomes, we consider a fundamental question related to sensitivity
analysis of LPs: how does the optimal value of an LP behave when input parameters change?1 In our
case, a projected LP has input parameters (P⊤c,AP , b) ∈ Rk×Rm×k×Rm, where P⊤c and AP
change with P ∈ Rn×k. Thus, addressing this question offers insight into the number of outcomes.
Lemma 4.3 provides an answer for a more general setting, which might find other applications beyond
our case since learning through LPs is not limited to the projection-based approach [47, 13, 42, 20].

Lemma 4.3. Let t ∈ R be a threshold value. Consider an LP π̃ = (c̃, Ã, b̃) ∈ Rk × Rm×k × Rm

such that each entry of c̃, Ã, and b̃ is a polynomial of degree at most d in ν real variables, θ ∈ Rν .

1While a similar question is studied in Balcan et al. [11, Theorem 3.1], their result focuses on the case
where new constraints are added to LPs to analyze branch-and-cut methods, unlike our Lemma 4.3. In our case,
we need to care about rank-deficient input matrices, which we circumvent via the reformulation given at the
beginning of the proof of Lemma 4.3.
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Assume that π̃ is bounded and feasible for every θ ∈ Rν . Then, there are up to
(
m+2k
2k

)
(m+ 2k + 2)

polynomials of degree at most (2k + 1)d in θ whose sign patterns (< 0, = 0, or > 0) partition Rν

into some regions, and whether max{ c̃⊤y : Ãy ≤ b̃ } ≥ t or not is identical within each region.

Proof. First, we rewrite the LP π̃ = (c̃, Ã, b̃) as an equivalent 2k-dimensional LP with non-negativity
constraints: max{ c̃⊤(y+ − y−) : Ã(y+ − y−) ≤ b̃, [y+;y−] ≥ 0 }. The resulting constraint
matrix, A′ := [Ã,−Ã;−I2k], has full column rank, which simplifies the subsequent discussion.
Note that the maximum degree of input parameters remains at most d, while the sizes, m and k,
increase to m′ := m + 2k and k′ := 2k, respectively. Below, we focus on the reformulated LP
(c′,A′, b′) ∈ Rk′ ×Rm′×k′ ×Rm′

, where c′ := [c̃;−c̃], b′ := [b̃;02k], and A′ has full column rank.

We consider determining max{ c′⊤y : A′y ≤ b′ } ≥ t or not by checking all vertices of the feasible
region. For any size-k′ subset, I ⊆ {1, . . . ,m′}, of row indices of A′ ∈ Rm′×k′

, let A′
I denote the

k′ × k′ submatrix of A′ with rows restricted to I and b′I ∈ Rk′
the corresponding subvector of b′.

For every subset I with detA′
I ̸= 0, let yI := A′

I
−1

b′I . Since the LP is bounded and feasible, and
A′ has full column rank, there is a vertex optimal solution written as yI = A′

I
−1

b′I for some I (see
the proof of Korte and Vygen [31, Proposition 3.1]). Thus, the optimal value is at least t if and only
if there exists at least one size-k′ subset I with detA′

I ̸= 0, A′yI ≤ b′, and c′⊤yI ≥ t.

Based on the above observation, we identify polynomials whose sign patterns determine max{ c′⊤y :

A′y ≤ b′ } ≥ t or not. For any subset I , if detA′
I ̸= 0, Cramer’s rule implies that yI = A′

I
−1

b′I
is written as fI(θ)/ detA

′
I , where fI(θ) is some k′-valued polynomial vector of θ with degrees

at most k′d. Thus, we can check A′yI ≤ b′ and c′⊤yI ≥ t by examining sign patterns of m′ + 1
polynomials, A′fI(θ)− (detA′

I)b
′ and c′⊤fI(θ)− tdetA′

I , whose degrees are at most (k′+1)d.
Considering all the

(
m′

k′

)
choices of I , there are

(
m′

k′

)
(m′ + 2) polynomials of the form detA′

I ,
A′fI(θ)− (detA′

I)b
′, and c′⊤fI(θ)− tdetA′

I with degrees at most (k′+1)d such that their sign
patterns partition Rν into some regions, and max{ c′⊤y : A′y ≤ b′ } ≥ t or not is identical within
each region. Substituting m+ 2k and 2k into m′ and k′, respectively, completes the proof.

Lemma 4.3 states that the outcome of whether u(P , π) = max{ c⊤Py : APy ≤ b } exceeds t or
not is determined by sign patterns of polynomials of P , and an upper bound on the sign patterns
of polynomials is known as Warren’s theorem [46], as detailed shortly. Combining them with the
aforementioned general idea yields the following upper bound on pdim(U).
Theorem 4.4. pdim(U) = O(nk2 logmk).

Proof. Let (π, t) ∈ Π × R be a pair of an LP instance and a threshold value. Setting θ = P and
d = 1 in Lemma 4.3, we have up to

(
m+2k

k

)
(m + 2k + 2) polynomials of degree at most 2k + 1

whose sign patterns determine whether u(P , π) ≥ t or not. Thus, given N pairs of input instances
and threshold values, (πi, ti)

N
i=1, we have up to N ×

(
m+2k
2k

)
(m+ 2k + 2) polynomials whose sign

patterns determine u(P , πi) ≥ ti or not for all i = 1, . . . , N , i.e., outcomes of N instances.

Warren’s theorem states that given ℓ polynomials of ν variables with degrees at most ∆, the number of
all possible sign patterns is at most (8eℓ∆/ν)

ν [46] (see also Goldberg and Jerrum [24, Corollary 2.1]).
In our case, the number of polynomials is ℓ = N ×

(
m+2k
2k

)
(m + 2k + 2), and each of them has

ν = nk variables (P ’s entries) and degrees at most ∆ = 2k + 1. Thus, the number of all possible

outcomes is at most
(
8eN

(
m+2k
2k

) (m+2k+2)(2k+1)
nk

)nk

≲
(
N
nk

)nk
poly(m, k)nk

2

. To shatter the set

of N instances, the right-hand side must be at least 2N . Taking the base-2 logarithm, it must hold that
N ≲ nk log2

N
nk +O(nk2 logmk) ≤ 2

3N+O(nk2 logmk), where we used x log2
1
x ≤ 2

3 for x > 0.
Therefore, U can shatter O(nk2 logmk) instances, obtaining the desired bound on pdim(U).

4.2 Lower bound on pdim(U)

We then provide an Ω(nk) lower bound on pdim(U) to complement the above Õ(nk2) upper bound,
implying the tightness up to an Õ(k) factor. See Appendix B for the proof.
Theorem 4.5. pdim(U) = Ω(nk).
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Our proof indeed gives the same lower bound on the γ-fat shattering dimension for γ < 1/2, which
implies a lower bound of Ω(nk/ε) on N , the sample size needed to guarantee (4) [5, Theorem 19.5].
Thus, in terms of the sample complexity, our result is tight up to an Õ(k/ε) factor. The 1/ε gap is
inevitable in general [5, Section 19.5], while closing the Õ(k) gap is an interesting open problem.

5 Learning methods

We then discuss how to learn projection matrices from training datasets. From the bound (4), given
N training LP instances, the expected solution quality on future instances likely remains within the
range of ±ε from the empirical one, where ε ≲ H

√
pdim(U)/N ≲ Hk

√
n/N due to Theorem 4.4,

regardless of how we learn a projection matrix P . Therefore, in practice, we only need to find an
empirically good projection matrix P , which motivates us to explore various ideas for learning P .
Below, we discuss two natural ideas: PCA- and gradient-based methods.

Remark 5.1 (Training time). We emphasize that learning methods are used only before addressing
future LP instances and not once a projection matrix P is learned. Hence, they can take much longer
than the time for solving new LP instances. Similarly, we suppose that optimal solutions to training
instances are available, as we can compute them a priori. Note that similar premises are common in
most data-driven algorithm research [28, 14, 12, 9, 21, 41]. Considering this, our learning methods
are primarily intended for conceptual simplicity, not for efficiency. For completeness, we present the
theoretical time complexity and the training time taken in the experiments in Appendix E.

5.1 PCA-based method

As described in Section 2, a projection matrix P should preferably have columns that span a low-
dimensional subspace around which future optimal solutions will appear. Hence, a natural idea is to
use PCA to extract such a subspace, regarding optimal solutions to training instances as data points.

Formally, let X ∈ RN×n be a matrix whose ith row is an optimal solution to the ith training instance.
We apply PCA to this X . Specifically, we subtract the mean, x̄ = 1

NX⊤1N , from each row of X
and apply the singular value decomposition (SVD) to X − 1N x̄⊤, obtaining a decomposition of the
form UΣV ⊤ = X − 1N x̄⊤. Let Vk−1 ∈ Rn×(k−1) be the submatrix of V whose columns are the
top-(k − 1) right-singular vectors of X − 1N x̄⊤. We use P = [x̄,Vk−1] ∈ Rn×k as a projection
matrix. Here, x̄ is concatenated due to the following consideration: since Vk−1 is designed to satisfy
Vk−1Y

′ ≈X⊤ − x̄1⊤
N for some Y ′ ∈ R(k−1)×N , we expect [x̄,Vk−1]Y ≈X⊤ to hold for some

Y ∈ Rk×N , hence P = [x̄,Vk−1]. This method is not so costly when optimal solutions to training
LP instances are given, as it only requires finding the top-(k−1) right-singular vectors of X−1N x̄⊤.

5.2 Gradient-based method

While the PCA-based method aims to extract the subspace into which future optimal solutions are
likely to fall, it only uses optimal solutions and discards input parameters of LPs. As a complementary
approach, we provide a gradient-based method that directly improves the optimal value of LPs.

As a warm-up, consider maximizing u(P , π) = max{ c⊤Py : APy ≤ b } of a single LP instance
π = (c,A, b) via gradient ascent. Assume that the projected LP satisfies a regularity condition, which
requires the existence of an optimal solution y∗ at which active constraints are linearly independent.
Then, u(P , π) is differentiable in P and the gradient is expressed as follows [42, Theorem 1] (see
Appendix D for details of the derivation):

∇u(P , π) = cy∗⊤ −A⊤λ∗y∗⊤, (5)

where λ∗ ∈ Rm is a dual optimal solution. Thus, we can use the gradient ascent method to maximize
u(P , π) under the regularity condition. However, this condition is sometimes prone to be violated,
particularly when Slater’s condition does not hold (i.e., there is no strictly feasible solution). For
example, if the original LP has a constraint x ≥ 0n and every column of P has opposite-sign entries,
it is likely that only y = 0k satisfies Py ≥ 0n by equality, which is the unique optimal solution but
not strictly feasible. In this case, the regularity condition is violated since all rows of P ∈ Rn×k are
active at 0k and linearly dependent due to n > k. To alleviate this issue, we apply the following
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Table 1: Sizes of inequality-form LPs, where m (n) represents the number of constraints (variables).
Packing MaxFlow MinCostFlow GROW7 ISRAEL SC205 SCAGR25 STAIR

m 50 1000 1000 581 316 317 671 696
n 500 500 500 301 142 203 500 467

projection for j = 1, . . . , k before computing the gradient in (5):

P:,j ← argminx∈Rn{ ∥x− P:,j∥2 : Ax ≤ b }, (6)

where P:,j denotes the jth column of P . This minimally changes each column P:,j to satisfy the
original constraints. Consequently, any convex combination of P ’s columns is feasible for the original
LP, increasing the chance that there exists a strictly feasible solution in {y ∈ Rk : APy ≤ b },
although it is not guaranteed. This improves the likelihood that the regularity condition is satisfied.

Given N training instances, π1, . . . , πN , we repeatedly update P as with SGD: for each πi, we iterate
to compute the gradient (5) and to update P with it. The projection (6) onto the feasible region of πi

comes before computing the gradient for πi. We call this method SGA (stochastic gradient ascent).

5.3 Final projection for feasibility

The previous discussion suggests that making each column of P feasible for training LP instances can
increase the likelihood that future LP instances projected by P will have strictly feasible solutions.
Considering this, after obtaining a projection matrix P with either the PCA- or gradient-based method,
we project each column of P onto the intersection of the feasible regions of training LP instances,
which we call the final projection. This can be done similarly to (6) replacing the constraints with
[A1; . . . ;AN ]x ≤ [b1; . . . ; bN ]. If A1, . . . ,AN are identical, we can do it more efficiently by
replacing the constraints with A1x ≤ min{b1, . . . , bN}, where the minimum is taken element-wise.
Note that although the final projection can be costly for large N , we need to do it only once at the
end of learning P . This final projection never fails since 0n is always feasible as in Assumption 3.1.

6 Experiments

We experimentally evaluate the data-driven projection approach.2 We used MacBook Air with Apple
M2 chip, 24 GB of memory, and macOS Sonoma 14.1. We implemented algorithms in Python 3.9.7
with NumPy 1.23.2. We used Gurobi 10.0.1 [26] for solving LPs and computing projection in (6).
We used the following three synthetic and five realistic datasets, each of which consists of 300 LP
instances (200 for training and 100 for testing). Table 1 summarizes LP sizes of the eight datasets.3

Synthetic datasets. We consider three types of LPs representing packing, maximum flow, and
minimum-cost flow problems, denoted by Packing, MaxFlow, and MinCostFlow, respectively. A
packing problem is an LP with non-negative parameters c, A, and b. We created a base instance by
drawing their entries from the uniform distribution on [0, 1] and multiplying b by n. We then obtained
300 random instances by multiplying all input parameters by 1 + ω, where ω was drawn from the
uniform distribution on [0, 0.1]. To generate MaxFlow and MinCostFlow LPs, we first randomly
created a directed graph with 50 vertices and 500 arcs and fixed source and sink vertices, denoted by
s and t, respectively. We confirmed there was an arc from s to t to ensure feasibility. We set base arc
capacities to 1, which we perturbed by multiplying 1+ ω with ω drawn from the uniform distribution
on [0, 0.1], thus obtaining 300 MaxFlow instances. For MinCostFlow, we set supply at s and demand
at t to 1. We set base arc costs to 1 for all arcs but (s, t), whose cost was fixed to be large enough,
and perturbed them similarly using 1 + ω to obtain 300 MinCostFlow instances. We transformed
MaxFlow and MinCostFlow instances into equivalent inequality-form LPs with a method given in
Appendix C, which requires a (trivially) feasible solution x0. For MaxFlow, we used x0 = 0 (i.e., no
flow) as a trivially feasible solution. For MinCostFlow, we let x0 be all zeros but a single 1 at the
entry corresponding to (s, t), which is a trivially feasible (but costly) solution.

2The source code is available at https://github.com/ssakaue/data-driven-projection-lp-code.
3While Gurobi can solve larger LPs, we used the moderate-size LPs as the learning methods could take much

longer with the limited computational resources. We admit that larger instances might introduce new challenges.
Nevertheless, the trends observed in our experiments offer informative insights for larger scenarios as well.
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Realistic datasets. We used five LPs in Netlib [15], GROW7, ISRAEL, SC205, SCAGR25, and
STAIR. For each, we generated datasets of 300 random instances. To create realistic datasets, we
made them contain 2% of outliers as follows. For normal 98% data points, we perturbed coefficients
of objective functions by multiplying 1 + 0.1ω, where ω was drawn from the normal distribution; for
2% outliers, we perturbed them by multiplying 1+ω, i.e., 10 times larger noises. Except for ISRAEL,
the LPs have equality constraints. We transformed them into inequality-form LPs as described in
Appendix C, using x0 found by the initialization procedure of Gurobi’s interior-point method.4

Methods. We compared four methods, named Full, ColRand, PCA, and SGA. The first two are
baseline methods, while the latter two are our data-driven projection methods. Note that all four
methods solved LPs with Gurobi, the state-of-the-art commercial solver. The only difference among
them lies in how to reduce the dimensionality of LPs, as detailed below.

Full: a baseline method that returns original n-dimensional LPs without reducing the dimensionality.

ColRand: a column-randomized method based on the work by Akchen and Mišić [2], which reduces
the dimensionality by selecting k out of n variables randomly and fixing the others to zeros.

PCA: the PCA-based method that reduces the dimensionality with a projection matrix P learned as
in Section 5.1, followed by the final projection described in Section 5.3.

SGA: the gradient-based method that learns P as described in Section 5.2, followed by the final
projection as with PCA. We initialized P with that obtained by PCA and conducted a single epoch
of training, setting the learning rate to 0.01.5

For ColRand, PCA, and SGA, we used increasing values of the reduced dimensionality, k =⌊
n

100

⌋
, 2
⌊

n
100

⌋
, . . . , until it reached the maximum value no more than

⌊
n
10

⌋
, i.e., up to 10% of the

original dimensionality. PCA and SGA learned projection matrices P from N = 200 training
instances, which were then used to reduce the dimensionality of 100 test instances. For ColRand, we
tried 10 independent choices of k variables and recorded the average and standard deviation.

Results. Figure 1 shows how the solution quality and running time of Gurobi differ among the four
methods, where “objective ratio” means the objective value divided by the optimal value computed
by Full. For all datasets except STAIR, PCA and/or SGA with the largest k achieved about 95% to
99% objective ratios, while being about 4 to 70 times faster than Full. Regarding STAIR, PCA and
SGA attained 13.1% and 51.2% objective ratios, respectively. By stark contrast, ColRand resulted
in objective ratios close to zero in most cases except for Packing and ISRAEL. The results suggest
that given informative training datasets, data-driven projection methods can lead to significantly
better solutions than the random projection method. Regarding running times, there were differences
between PCA/SGA and ColRand, which were probably caused by the numerical property of Gurobi.
Nonetheless, all of the three were substantially faster than Full. In summary, the data-driven projection
methods achieve high solution quality while greatly reducing the time for solving LPs.

Comparing PCA and SGA, SGA achieved better objectives than PCA in Packing, MaxFlow, Min-
CostFlow, and STAIR, while performing similarly in GROW7 and SC205. In ISRAEL and SCAGR25,
SGA was worse than PCA, but this is not surprising since optimizing u(P , π) is a non-convex prob-
lem. The results suggest that no method could be universally best. Fortunately, the generalization
bound (4) justifies selecting a learning method based on empirical performance. Specifically, if we
adopt a learning method that produces P with the best empirical performance on N instances at hand,
its expected performance on future instances is likely to stay within the range of ±ε of the empirical
one, where ε ≲ H

√
pdim(U)/N ≲ Hk

√
n/N since pdim(U) = Õ(nk2) due to Theorem 4.4. If N

is sufficiently large, the high empirical performance is expected to be maintained on future instances.

Additionally, we examined the effect of the noise strength on the performance of PCA and SGA using
the synthetic datasets. The details of the experiment and the results are shown in Appendix G. Therein,
we found that PCA and SGA were robust against noise on capacities and costs in MaxFlow and Min-
CostFlow datasets. This is probably because they can exploit fixed topologies of underlying graphs,
even if the capacities and costs are largely perturbed. Fixed graph topologies are common in real-
world LPs, such as those appear in transportation planning. Our data-driven projection methods can be
effective in such scenarios, particularly if sufficiently large datasets of such LP instances are available.

4We expect this x0 is (close to) the analytic center, although we could not verify Gurobi’s internal processes.
5While we also tried SGA with the random initialization, we found that the PCA-initialization worked better.

We present the results with the random initialization in Figure 3 in Appendix F for completeness.
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Figure 1: Plots of objective ratios (upper) and Gurobi’s running times (lower, semi-log) for Full,
ColRand, PCA, and SGA averaged over 100 test instances. The error band of ColRand indicates the
standard deviation over 10 independent trials. The results of Full are shown for every k for reference,
although it always solves n-dimensional LPs and hence is independent of k.

7 Conclusion

We have studied the data-driven projection approach to LPs. We have established a generalization
bound by proving an Õ(nk2) upper bound on the pseudo-dimension and complemented it by an Ω(nk)
lower bound. We have also proposed PCA- and gradient-based learning methods and experimentally
evaluated them. Our theoretical and empirical findings lay the groundwork for the further development
of the data-driven approach to LPs and contribute to the broader trend of AI/ML for optimization [43].

8 Limitations and discussions

Our work is limited to the statistical learning setting with assumptions on LP instances (see Section 3
and Assumption 3.1). In particular, the current approach cannot deal with equality constraints varying
across instances since they usually make LP instances have no common feasible solution. Despite the
narrowed applicability, we believe our setting is a reasonable starting point for developing the data-
driven projection approach to LPs, as is also discussed in Remark 3.2 and the paragraph following
Assumption 3.1. Overcoming these limitations will require more involved methods, such as training
neural networks to extract meaningful low-dimensional subspaces from non-i.i.d. messy LP instances.

Our learning methods are not efficient, and applying them to huge LPs in practice might be challenging.
Similar challenges are common in most data-driven algorithm research, as discussed in Remark 5.1,
and we believe our conceptually simple learning methods are helpful for future research. Regarding
the data-driven approach to low-rank approximation, Indyk et al. [29] found that a few-shot learning
method is useful for efficiently learning sketching matrices. A key ingredient in their method is a
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surrogate loss, which enjoys a consistency guarantee and whose gradient can be computed efficiently.
Empirically, they found that minimizing this loss through only a few iterations of SGD yields a good
sketching matrix. We expect that similar ideas will be effective for learning projection matrices for
LPs efficiently, while how to design surrogate losses in our setting is left for future work. For the same
reason, our experiments are limited to moderate-size LPs, as mentioned in Footnote 3. Nevertheless,
the results sufficiently serve as a proof of concept of the data-driven projection approach.

There also exist general limitations of the projection-based approach [44, 37, 2]. First, it does not
consider solver-specific aspects, including numerical stability and sparsity, as discussed in Remark 2.1.
Second, the projection-based approach has a limited impact on the theoretical time complexity. The
theoretical time complexity of the projection-based approach is dominated by two factors: multiplying
P to reduce the dimensionality and solving the projected LP. Recent theoretical studies have revealed
that solving an LP takes asymptotically the same computation time as matrix multiplication [17,
30], suggesting projections may not contribute to improving the total theoretical time complexity.
Nevertheless, the projection-based approach leads to dramatic speedups in practice, as in Figure 1.
Moreover, it can be even faster beyond the theoretical implications when GPUs are available. It is
noteworthy that the projection-based approach largely benefits from GPUs, as matrix multiplication
can be highly parallelized. An exciting future direction is to combine recent GPU-implemented LP
solvers [6, 34, 35] with projections, which will have vast potential for solving huge LPs efficiently.
Exploring data-driven projections for reducing the number of constraints will also be interesting,
while this involves addressing the feasibility issue. Poirion et al. [37] used random projections for
reducing the number of inequality constraints, which would provide useful insights into this direction.
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A Additional related work on learning through optimization

Many researchers have addressed learning tasks whose input–output pipelines involve optimization
steps [4, 47, 1, 13, 42, 36, 3, 20, 45, 19]. While most of them seek to develop practical learning
methods, several have studied generalization guarantees. Wang et al. [45] have studied a so-called
decision-focused learning method with reparametrization, which is technically the same as projection.
Their theoretical result focuses on learning of models that generate objective functions, assuming
reparametrization matrices to be fixed. By contrast, we obtain a generalization bound for learning
projection matrices. El Balghiti et al. [19] have studied generalization bounds in the so-called smart
predict-then-optimize setting. While they focus on learning of models that generate coefficients of
objectives from contextual information as with Wang et al. [45], our interest is in learning projection
matrices, which affect both objectives and constraints. On the practical side, the line of work provides
useful techniques for differentiating outcomes of optimization with respect to input parameters. Our
gradient-based method for learning projection matrices is partly based on the result by Tan et al. [42].

B Proof of the lower bound on pdim(U)

We establish the lower bound on pdim(U) in Theorem 4.5 by constructing a set of (n − 2k)k LP
instances that U can shatter. The instances are written as πr,s = (cr,A, bs) ∈ Rn × R2k×n × R2k

for r = 1, . . . , n− 2k and s = 1, . . . , k, where

cr =

[
er
02k

]
, A = [02k,n−2k, I2k], and bs =

[
es
0k

]
.

Here, er and es are the rth and sth standard basis vectors of Rn−2k and Rk, respectively, and 0a,b is
the a× b all zeros. We consider a projection matrix of the form

P =

[
Q
Ik
−Ik

]
,

where Q ∈ {0, 1}(n−2k)×k is a binary matrix that we will use as tunable parameters to shatter the set
of (n− 2k)k instances. Let yj denote the jth entry of the variable vector y ∈ Rk. Since we have

AP =

[
Ik
−Ik

]
the constraints, APy ≤ bs, imply yj = 0 for j = 1, . . . , k with j ̸= s and ys ∈ [0, 1]. Let y be such
a feasible solution. Then, the objective value is written as c⊤r Py = e⊤r Qy = Qr,sys, where Qr,s is
the (r, s) entry of Q ∈ {0, 1}(n−2k)×k. Since Qr,s ∈ {0, 1} and ys ∈ [0, 1], we have max{ c⊤r Py :
APy ≤ bs } = Qr,s. Thus, the set of those (n − 2k)k instances can be shattered by setting all
threshold values to 1/2 and appropriately choosing each entry of Q ∈ {0, 1}(n−2k)×k. In other words,
all the 2(n−2k)k outcomes of {u(P , πr,s) = Qr,s ≥ 1/2 : r = 1, . . . , n− 2k, s = 1, . . . , k } can
realize by changing P ∈ Rn×k (or Q ∈ {0, 1}(n−2k)×k). Thus, we obtain an Ω(nk) lower bound
on the pseudo-dimension of U =

{
u(P , ·) : Π→ R : P ∈ Rn×k

}
.

C How to remove equality constraints

Suppose that we are given an LP of the form

maximize
z∈Rn

w⊤z subject to Aineqz ≤ bineq, Aeqz = beq,

which has both inequality and equality constraints. Below, assuming that a (trivially) feasible solution
x0 is available (i.e., Aineqx0 ≤ bineq and Aeqx0 = beq), we transform the LP into an equivalent
inequality form. First, we replace the variable vector z with z′ + x0, obtaining an equivalent LP of
the form

maximize
z′∈Rn

w⊤(z′ + x0) subject to Aineqz
′ ≤ bineq −Aineqx0, Aeqz

′ = 0.
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The equality constraints, Aeqz
′ = 0, mean that z′ must be in the null space of Aeq. Therefore,

z′ is always represented as z′ = (I − A†
eqAeq)x with some x ∈ Rn, where A†

eq is the pseudo-
inverse of Aeq and I − A†

eqAeq is the orthogonal projection matrix onto the null space of Aeq.6

Substituting z′ = (I −A†
eqAeq)x into the above LP allows us to remove the equality constraints

since they are automatically satisfied for every x. After all, by transforming the variable vector as
z = (I−A†

eqAeq)x+ x0, we can obtain an equivalent LP of the form

maximize
x∈Rn

w⊤(I−A†
eqAeq)x subject to Aineq(I−A†

eqAeq)x ≤ bineq −Aineqx0,

where the additive constant, w⊤x0, in the objective is omitted. This is an inequality-form LP (1)
with c = (I−A†

eqAeq)
⊤w, A = Aineq(I−A†

eqAeq), and b = bineq −Aineqx0. Note that x = 0 is
always feasible for the resulting LP and that we can use this transformation if Aeq and beq are fixed,
even if w, Aineq, and bineq can change across instances.

D Derivation of the gradient in SGA

We explain how to derive the gradient of u(P , π) in (5), which indeed follows from Tan et al. [42,
Theorem 1] (or the implicit function theorem). To focus on computing the gradient, we suppose that
the columns of P have already been projected onto the feasible region of π by the projection step (6).

Consider computing the gradient∇u(P , π) of u(P , π) = max
{
c⊤Py : APy ≤ b

}
with respect

to P . For convenience, we define new parameters w = P⊤c ∈ Rk and W = AP ∈ Rm×k and let
y∗ ∈ argmax

{
w⊤y : Wy ≤ b

}
. Then, we can differentiate the optimal value, u(P , π) = w⊤y∗,

with respect to w and W by applying the implicit function theorem to the KKT condition. Specifically,
as shown in Tan et al. [42, Theorem 1], we have ∂u

∂w = y∗ and ∂u
∂W = −λ∗y∗⊤, where λ∗ ∈ Rm

≥0 is
the dual optimal solution. From the chain rule, we have

∇u(P , π) =
∂u

∂w
· ∂w
∂P

+
∂u

∂W
· ∂W
∂P

,

where the indices for the products are aligned appropriately. By substituting the derivatives into this,
we obtain∇u(P , π) = cy∗⊤ −A⊤λ∗y∗⊤. When applying the implicit function theorem, we must
ensure that the Jacobian matrix is invertible. In the above case, ensuring the regularity condition (i.e.,
active constraints are linearly independent at y∗) is sufficient.

E Running time of learning methods

We discuss the theoretical complexity of the PCA- and SGA-based methods. For convenience, we use
Tlp(m,n) to represent the time complexity of solving an LP instance with m inequality constraints
and n variables, as this factor highly depends on problem settings. Also, let Tproj(m) be the time
for solving the problem in (6) k times for projecting columns of P ∈ Rn×k onto the feasible region
specified by m inequality constraints. Given the Tlp(m,n)-time linear optimization oracle, we can
implement this projection step with a Frank–Wolfe-style algorithm. In this case, the time for projecting
columns of P within an ε-error is typically Tproj(m) = Tlp(m,n) · poly(n,m) log(1/ε) [32, 22].

PCA-based method. Computing SVD of X ∈ RN×n takes O(Nn2) time. Then, the final projection
takes up to Tproj(Nm) time. Thus, the total time complexity is O(Nn2) + Tproj(Nm).

SGA-based method. We discuss the complexity of a single iteration, which consists of projecting
columns of P as in (6), solving a projected LP for obtaining y∗ and λ∗, and computing the gradient
in (5). These take Tproj(m), Tlp(m, k), and O(n(m+ k)) time, respectively. Thus, the per-iteration
complexity is Tproj(m) + Tlp(m, k) + O(n(m + k)). After finishing all the iterations, the final
projection takes Tproj(Nm) time, as with the PCA-based method. In the experiments, we ran SGA
for a single epoch, i.e., N iterations. Thus, the total time complexity is N(Tproj(m) + Tlp(m, k) +
O(n(m+ k))) + Tproj(Nm).

6We can also represent z′ by a linear combination of a basis of the null space of Aeq, which we can compute
via SVD. However, we found that this representation was numerically unstable in our experiments.
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Figure 2: Running times of PCA and SGA for learning projection matrices on 200 training instances.

We turn to the running times of the PCA- and SGA-based methods in the experiments in Section 6.
Figure 2 shows the times taken by PCA and SGA for learning projection matrices on training datasets
of 200 instances. (Full and ColRand are not included since they do not learn projection matrices.)
We assumed that optimal solutions of training instances were computed a priori, and hence the time
for solving original LPs was not included. The figure shows that SGA took much longer than PCA.
This is natural since SGA iteratively solves LPs for computing gradients (5) and quadratic programs
for projection (6), while PCA only requires computing the top-(k − 1) right-singular vectors of
X − 1N x̄⊤, as discussed above.

F Results with random initialization of SGA

Figure 3 shows the same plots as in Figure 1 but with SGA initialized with ColRand instead of PCA,
which was mentioned in Footnote 5.

G Objective ratios on synthetic datasets with various noise levels

This section examines the effect of the noise strength on the performance of our data-driven projection
methods. We created synthetic datasets, Packing, MaxFlow, and MinCostFlow, in the same way as
in Section 6. An important difference from Section 6 is the increased noise level ω, which perturbs
LP inputs through multiplication by 1 + ω. We draw ω from a uniform distribution over [0, ω̄] with
the upper bound ω̄ ranging from 0.0 to 2.0 in increments of 0.2; in Section 6, ω̄ was fixed at 0.1.
The larger ω̄ is, the less consistent the tendencies in the LP input parameters become, making it
more challenging to learn projection matrices with PCA and SGA. We fixed the dimensionality k of
projected LPs to 20, which means the size of projection matrices P is n× 20.

Figure 4 presents objective ratios achieved by each method on Packing, MaxFlow, and MinCostFlow
datasets. There is a notable difference between Packing and the others, which we discuss below.

Packing. The performance of our data-driven methods (PCA and SGA) worsens as ω̄ increases,
as expected. While they exhibit clear advantage over the random-projection baseline (ColRand) at
small ω̄ values, they behave similarly to ColRand when ω̄ = 2.0.

MaxFlow and MinCostFlow. In contrast to the Packing case, our data-driven methods, particularly
SGA, performed well even with high noise levels, while the performance of ColRand remained
poor. The success of data-driven methods is probably due to the fixed graph topology, which creates
consistent tendencies across LP instances despite varying edge capacities and costs.

Note that fixed graph topologies are ubiquitous. For example, in daily transportation planning, the
topology of traffic networks is fixed, while the capacities and costs may fluctuate due to congestion.
The above results highlight the merit of our data-driven projection methods in such applications.
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Figure 3: The same plots as in Figure 1 but with SGA initialized with ColRand instead of PCA, as
mentioned in Footnote 5. Compared with Figure 1, the objective ratio of SGA deteriorates particularly
in MinCostFlow, GROW7, SC205, and SCAGR25.
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Figure 4: Objective ratios on synthetic datasets with varying upper bounds ω̄ on the noise level.
Except for Full, the LP dimensionality is set to k = 20. Other settings are the same as in Section 6.
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• If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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versions (if applicable).
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that is necessary to appreciate the results and make sense of them.
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properly respected?
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the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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