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Abstract

Iterative self-training is a popular framework
in weakly supervised text classification that in-
volves bootstrapping a deep neural classifier
from heuristic pseudo-labels. The quality of
pseudo-labels, especially the initial ones, is
crucial to final performance but they are in-
evitably noisy due to their heuristic nature, so
selecting the correct ones has a huge poten-
tial for performance boost. One straightfor-
ward solution is to select samples based on
the softmax probability scores corresponding
to their pseudo-labels. However, we show
through our experiments that such methods are
ineffective and unstable due to the erroneously
high-confidence predictions from poorly cali-
brated models. Recent studies on the mem-
orization effects of deep neural models sug-
gest that these models first memorize train-
ing samples with clean labels and then those
with noisy labels. Inspired by this observa-
tion, we propose a novel pseudo-label selec-
tion method LOPS that takes learning order
of samples into consideration. We hypothe-
size that the learning order reflects the proba-
bility of wrong annotation in terms of ranking,
and therefore, select the top samples that are
learnt earlier. LOPS can be viewed as a strong
performance-boost plug-in to most of existing
weakly-supervised text classification methods,
as confirmed in extensive experiments on Six
real-world datasets.

1 Introduction

Weakly supervised text classification has recently
attracted much attention from researchers and the
main-stream methods (Agichtein and Gravano,
2000; Riloff et al., 2003; Tao et al., 2015; Meng
etal., 2018; Mekala and Shang, 2020; Mekala et al.,
2020, 2021) follow an iterative self-training frame-
work. As shown in Figure 2, these methods start
with generating pseudo-labels, train a deep neural
classifier to learn the mapping between documents
and classes, and then bootstrap on unlabeled data.
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Figure 1: Distributions of correctly and wrongly la-
beled pseudo-labels using different selection strategies
on the NYT coarse-grained dataset for its initial pseudo-
labels. The base classifier is BERT. (a) is based on the
softmax probability of samples’ pseudo-labels and (b)
is based on the earliest epochs at which samples are
learnt.

The quality of the pseudo-labels, especially the
initial ones, plays a crucial role in the final per-
formance of these self-training-based methods. In
weak supervision, people typically generate ini-
tial pseudo-labels by some heuristic, for example,
through string matching between the documents
and user-provided seed words. Therefore, pseudo-
labels are inevitably noisy. A classifier trained on
such noisy labels has a high risk of making erro-
neous predictions, worsening the quality of pseudo-
labels in next iterations and upon bootstrapping
significantly hurting the final performance.

A straightforward solution to address this prob-
lem is to threshold samples by the softmax proba-
bility scores corresponding to their pseudo-labels.
However, deep neural networks (DNNs) usually
have a poor calibration and generate overconfident
predicted probability scores (Guo et al., 2017). For
example, as shown in Figure 1(a), 60% of wrongly-
labeled samples in noisy New York Times (NYT)
coarse-grained dataset have a predicted probability
by BERT greater than 0.9 for their pseudo-labels,
and 0.9 is generally considered to be high prob-
ability. Although there are recent works that use
uncertainty to fix calibration (Rizve et al., 2021),
they require a validation set, which is unavailable
under the weakly supervised setting. As a result,
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Figure 2: Usually self-training frameworks follow the path in the top block, starting from generating noisy pseudo-
labeled documents, training the text classifier, and bootstrapping by adding high confidence predictions. We pro-
pose to add a step "Label Selection" (shown in below block) to select the correctly labeled documents. LOPS
trains a classifier to obtain the learning order of samples and we stop the training when at least 50% of samples
corresponding to each class are learnt. The numbers shown are learnt epochs and the samples lying in the shaded

part are selected.

probability score-based selection is not appropriate
here. There are other lines of work focusing on
label selection from noisy data using co-teaching,
curriculum learning (Jiang et al., 2018; Han et al.,
2018), and weighting the instances for selective
training (Ren et al., 2018; Fang et al., 2020). How-
ever, all these methods require clean validation sets
to infer the parameters, whereas in our problem,
we have no clean annotated data.

Recent studies on the memorization effects of
DNNs show that they memorize easy and clean in-
stances first, and gradually learn hard instances and
eventually memorize the wrong annotations (Arpit
et al., 2017; Geifman et al., 2018; Zhang et al.,
2021). In our experiments on text classification
tasks, we observe the same pattern for different
classifiers. For example, as shown in Figure 1(b),
BERT classifier learns most of the clean instances
in the first epoch and learns wrong instances across
all epochs. Although it also learns good number
of wrong instances in the first epoch, it is signifi-
cantly less than the probability-based selection in
Figure 1(a). Since the correct samples are learnt
first, we hypothesize that learning order-based se-
lection will be able to filter out the wrongly labeled
samples.

[lluminated by our observation, we propose
a novel learning order inspired pseudo-label
selection method LOPS. As shown in Figure 2,
we propose to add a "Label Selection" step after
generating pseudo-labels and train the classifier

on selected pseudo-labeled documents. LOPS in-

volves training a classifier and tracking the learning

order of samples and we stop the training when at
least 50% of samples corresponding to each class
are learnt. Specifically, we define a sample is learnt
if and only if the classifier trained on pseudo-labels
gives the same argmax prediction as its pseudo-
label at the end of an epoch. We empirically show
that LOPS improves the vanilla self-training meth-
ods and it is much more effective and stable than
probability score-based selections.

Our contributions are summarized as follows:

* We propose a novel pseudo-label selection
method LOPS that takes learning order of sam-
ples into consideration.

* We show that selection based on learning order
is much stable and effective than selection based
on probability scores.

» Extensive experiments and case studies on real-
world datasets with different classifiers and
weakly supervised text classification methods
demonstrate significant performance gains upon
using LOPS. It can be viewed as a solid
performance-boost plug-in for weak supervision.

Reproducibility. We will release the code and

datasets on Github'.

2 Related Work

We review the literature about (1) pseudo-labeling
in weakly supervised text classification, (2) label
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selection methods, and (3) learning dynamics.

2.1 Pseudo-Labeling in Weakly Supervised
Text Classification

Since the weakly supervised text classification
methods lack gold annotations, pseudo-labeling
has been a common phenomenon to generate initial
supervision. Pseudo-labeling procedure depends
on the type of weak supervision. Mekala and Shang
(2020) and Mekala et al. (2020) have a few label-
indicative seed words as supervision and they gen-
erate pseudo-labels using string-matching where
a document is assigned a label whose aggregated
term frequency of seed words is maximum. (Meng
et al., 2018) generates pseudo-documents using the
seed information corresponding to a label. (Wang
et al., 2020) takes only label names as supervision
and generates class-oriented document representa-
tions, and cluster them to create a pseudo-training
set. Under the same scenario, (Mekala et al., 2021)
consider samples that exclusively contain the label
surface name as its respective weak supervision.
In (Karamanolakis et al., 2021b), pseudo-labels
are created from the predictions of a trained neu-
ral network. All the above mentioned methods
involve learning from noisy data and our label se-
lection method substantially reduces the noise and
improves their performance.

2.2 Label Selection

There are different lines of work aiming to select
true-labeled examples from a noisy training set.
One line of work involves training multiple net-
works to guide the learning process. Along this di-
rection, (Malach and Shalev-Shwartz, 2017) main-
tains two DNNs and update them based on their dis-
agreement. (Jiang et al., 2018) learns another neu-
ral network that provides data-driven curriculum.
(Han et al., 2018; Yu et al., 2019) use co-training
where they select instances based on small loss cri-
teria and cross-train two networks simultaneously.
Another line of work learns weights for the training
data. Along this line, (Ren et al., 2018) propose a
meta-learning algorithm that learns weights corre-
sponding to training examples based on their gradi-
ent directions. (Fang et al., 2020) learns dynamic
importance weighting that iterates between weight
estimation and weighted classification. weighting
the instances for selective training (Ren et al., 2018;
Fang et al., 2020). Recently, (Rizve et al., 2021)
propose utilizing prediction uncertainty to perform
label selection. All the above-mentioned methods

require clean validation sets to infer parameters,
whereas our method needs no clean annotated data.
Inspired from the recent studies on memorization
effects of DNNs that they learn clean data earlier
than noisy data, we use learning order to select the
samples.

2.3 Learning dynamics

In deep learning regime, models with large capac-
ity are typically more robust to outliers. Neverthe-
less, data examples can still exhibit diverse levels
of difficulties. Arpit et al. (2017) finds that data
examples are not learned equally when injecting
noisy data into training. Easy examples are of-
ten learned first. Hacohen et al. (2019) furthers
shows such order of learning examples is shared
by different random initializations and neural ar-
chitectures. Toneva et al. (2019) shows that certain
examples are forgotten frequently during training,
which means that they can be first classified cor-
rectly then incorrectly. Model performance can
be largely maintained when removing those least
forgettable examples from training.

3 Problem Formulation

The input of our problem contains: (1) n unlabeled
text documents D = {D,D,,...,D,}, (2) m tar-
get classes C = {C1,Co,...,Cp,} and (3) a source
of weak supervision V. Using the weak super-
vision W, a subset of unlabeled text documents
are pseudo-labeled to generate noisy training data
D = {D¢, UD¢, U...De,,} where D¢, denotes
the samples that are pseudo-labeled as C;. D can
be partitioned as correctly labeled samples D, and
wrongly labeled samples D, based on the underly-
ing groundtruth labels. We aim to select D, from
noisy training data D and filter out wrongly anno-
tated samples Dy.

Note that, we have no clean annotated data. Also,
there is no restriction on source of supervision
W. It can be just the label surface names (Wang
et al., 2020), label-indicative seed words (Mekala
and Shang, 2020), or rules (Karamanolakis et al.,
2021a).

4 Pseudo-Labels are Noisy

Pseudo-labeling is the process of generating labels
for unlabeled samples to guide the learning pro-
cess. In the context of weakly supervised learning,
where we don’t have any annotated samples, ini-
tial pseudo-labels are generated using some heuris-



Table 1: Dataset statistics.

Dataset #Docs #labels AvgLen
NYT-Coarse 13081 5 778
NYT-Fine 13081 26 778
20News-Coarse 17871 5 400
20News-Fine 17871 17 400
AGNews 120000 4 426
Books 33594 8 620

tics like counting and string-matching utilizing the
weak supervision. Since this process is heuristic,
the initial pseudo-labels are noisy.

We consider New York Times fine-grained
dataset and generate pseudo-labels using different
heuristics from (Mekala and Shang, 2020; Mekala
et al., 2020, 2021; Wang et al., 2020) and com-
pute noise ratio shown in Table 2. The first docu-
ment is incorrectly pseudo-labeled as football by
all string-match based strategies. Football and soc-
cer are used interchangeably and the string-match
strategies assign football for the second document
whereas the contextualization helps by identifying
the interpretation and assigns correct pseudo-label.
We can observe that no strategy is perfect and all of
them generate noisy labels with significantly high
noise ratio.

When a classifier is trained on such noisy train-
ing data, it can make some high confident erro-
neous predictions. And, upon bootstrapping the
classifier on unlabeled data, it has a snowball effect
where such high confident erroneous predictions
are added to the training data, and thus corrupting
it more. As this process repeats for a few itera-
tions, it adds more noise and significantly effects
the final performance. The number of iterations of
self-training is a key hyper-parameter to tune and
we cannot apply self-training for too many itera-
tions as the performance typically improves in the
beginning but later, drops down significantly. For
example, the macro f1-score of ConWea (Mekala
and Shang, 2020) on 20Newsgroup coarse-grained
dataset with 30% noise, increases for the first two
iterations to 75% and drops down to 56% by sixth
iteration.

As shown in Table- 2, pseudo-label heuristics
generate significantly noisy training data. There-
fore, identifying and selecting the correctly labeled
samples is necessary and has a huge potential for
a boost in performance. Note that, if the labels
are not selected carefully, it could instead hurt the
performance.

5 Probability-based Pseudo-label
Selection: An Intuitive Baseline

One intuitive way is to select the samples based
on model’s prediction probability scores. Specifi-
cally, we train a classifier on pseudo-labeled data
and predict on the same data and using the predic-
tion probabilities corresponding to pseudo-labels,
filter out the low confidence samples based on a
threshold.

However, many of these selected predictions
are usually incorrect due to the poor calibration
of neural networks (Guo et al., 2017). For example,
in NYT coarse-grained dataset, the average confi-
dence score of correctly-labeled samples is 0.98
and wrongly-labeled samples is 0.72 and as shown
in Figure 1(a), 60% incorrectly labeled samples
have probability more than 0.9.

As a result of poor calibration in DNNS, the pre-
diction probability scores are densely distributed
and very close, due to which, choosing a threshold
is difficult. Moreover, selection based on an abso-
lute, fixed threshold for all datasets is not feasible
as the distribution of prediction probability varies
across different datasets. And, selection based on
quantile suffers from poor calibration that causes
a low-entropy probability distribution. Therefore,
filtering based on such sensitive, poorly calibrated
probability-based threshold is unstable and has
high variance across multiple runs, as confirmed in
our experiments.

6 LOPS: Our Pseudo-label Selection

In this section, we describe LOPS, our label selec-
tion method.

Our selection method takes learning order into
consideration. It is based on the recent studies that
a DNN learns clean instances first and gradually
memorizes the wrongly annotated samples. We
call a sample in training data being learnt, when
the model’s prediction of that sample matches the
training label. We define learning order of the train-
ing data as a collection of epochs at which each
sample is learnt, sorted in ascending manner. We
calculate the learning order at the granularity of
epoch because the model would have seen all the
training data by the end of an epoch, and hence,
the learning order computed would be fair for all
samples. And, if needed, it’s easy to extend it to
the more fine-grained granularity such as batches.

As the model is known to learn clean instances
first, we hypothesize that this learning order reflects



Table 2: Pseudo-labels generated using different heuristics on NYT-Fine dataset and their respective noise ratios.

Incorrect pseudo-labels are highlighted in red and correct pseudo-labels are highlighted in

pseudo-label assigned.

. N/A denotes no

Input Docs (unlabeled)

"Class'': [Seed Words]

1. Tom aikens, a michelin-starred chef, says running a restaurant is same as managing a football team.
2. Genoa defender giovanni marchese was handed bans by italian football federation
3. orson welles made his debut in "citizen kane". It’s music was composed by paul bowles..

"soccer": ["soccer"],
"football": ["football"],
"music": ["music"],
"movies": ["movies"]

Pseudo-label Heuristic

Generated Initial Pseudo-labels

# of Pseudo-labels Noise Ratio

String-Match (Mekala et al., 2020)

Contextualized String-Match (Mekala and Shang, 2020)
Exclusive String-Match (Mekala et al., 2021)
Clustering (Wang et al., 2020) 1.

1. football, 2.

1. football, 2. football, 3. music 8229 31.80%
, 3. music 8411 31.24%

1. football, 2. football, 3. N/A 3512 52.13%
, 2. football, 3. 5865 15.64%

the probability of wrong annotation in terms of
ranking. In a preliminary experiment on noisy New
York Times coarse-grained dataset with BERT (De-
vlin et al., 2018) as classifier, we plot the distri-
bution of epochs at which each sample is learnt
for correctly labeled and wrongly labeled samples
shown in Figure 1(b). We can observe that there is
a clear demarcation between the epochs at which
correctly-labeled and wrongly-labeled samples are
learnt. Almost all the correctly labeled samples are
learnt in first epoch where as the wrongly labeled
samples are learnt across all epochs. Moreover,
there is a significant proportion of wrongly labeled
samples that are never learnt.

Motivated by this observation, for every label,
we select its corresponding training samples that
are learnt early. Moreover, following (Mekala and
Shang, 2020), we assume that weak supervision
W is of reasonable quality i.e. majority of pseudo-
labels are good. Therefore, we select top-50% of
samples for each label based on their learning or-
der. Specifically, we train a classifier and obtain
predictions of all samples in training data at the
end of each epoch and track their learning order. If
our selected bucket doesn’t contain 50% or more
samples corresponding to a label yet, we add the
new learned ones belonging to that label. Finally,
we stop the training when at least 50% of samples
corresponding to every label are learnt.

We summarize our method using pseudo-code
in Algorithm 1. LOPS can be viewed as a
performance-boost plug-in for weakly supervised
text classification.

7 Experiments

In this section, we evaluate our label selection
method on different state-of-the-art classifiers and
weakly supervised text classification frameworks.

Algorithm 1: LOPS Method

Input: Noisy training data D, Classifier C.
Output: Selected samples Dge;
for epoche € {1,2,3,...n.p} do
Train C on D .
Obtain predictions on D using C'
for each label [ do
if D..; contains < 50% ofﬁl then
Dsei (1) = samples with label [ learnt in
epoch e
Dsel = Dsel U Dsel(l)
if % of learnt samples > 50 for all labels then

|  Break
e=c+1
Return D,

7.1 Datasets

We experiment on three datasets. The dataset statis-
tics are provided in Table 1. The details of datasets
are provided below:

¢ The New York Times (NYT): The NYT dataset
is a collection of news articles published by The
New York Times. They are classified into 5
coarse-grained genres (e.g., science, sports) and
25 fine-grained categories (e.g., music, football,
dance, basketball).

e The 20 Newsgroups (20News): The 20News
dataset? is a collection of newsgroup documents
partitioned widely into 6 groups (e.g., recre-
ation, computers) and 20 fine-grained classes
(e.g., graphics, windows, baseball, hockey). Fol-
lowing (Wang et al., 2020), coarse- and fine-
grained miscellaneous labels are ignored.

* AGNews (Zhang et al., 2015) is a huge collec-
tion of news articles categorized into four coarse-
grained topics such as business, politics, sports,
and technology.

* Books (Wan and McAuley, 2018; Wan et al.,
2019) is a dataset containing description of books,
user-book interactions, and users’ book reviews

http://qwone.com/~jason/20Newsgroups/
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Table 3: Evaluation results on six datasets using different combinations of classifiers and selection methods. Ini-
tial pseudo-labels are generated using String-Match. Micro and Macro f1 scores and their respective standard
deviations are presented in percentages. Abnormally high standard deviations are highlighted in blue and low

performances are highlighted in red.

NYT-Coarse NYT-Fine 20News-Coarse 20News-Fine AGNews Books

Classifier Method mi-f1 ma-fl mi-f1 ma-fl mi-fl ma-fl mi-fl ma-fl mi-fl ma-fl mi-fl ma-fl
No-Filter 90(0.17) | 80(0.91) | 77(0.36) | 71(0.43) | 77(0.27) | 76(0.76) | 70(0.30) | 69(0.25) | 75(0.64) | 75(0.47) | 55(0.54) | 57(0.82)
Random 90(0.47) | 80(0.47) | 78(0.94) | 71(0.47) | 79(1) 76(1.5) | 71(0.5) 70(1) | 76(0.35) | 76(0.65) | 56(0.18) | 58(0.35)
BERT Probability 92(1.5) 85(2) 46(2.5) 22(0.5) | 78(2.5) 77(3) | 47(23.5) | 47(23.5) | 77(1.25) | 77(1.34) | 54(1.12) | 56(1.43)
Stability 93(0.5) 86(0.5) | 48(29.5) | 35(33.5) | 76(5) 75(5) 73(0.5) 72(1) | 79(0.75) | 79(0.35) | 55(0.43) | 57(0.19)
LOPS 94(0.36) 88(0.5) | 84(0.54) | 81(0.34) | 81(1) | 80(0.43) | 73(0.61) | 72(1) | 79(0.86) | 79(0.58) | 57(0.87) | 59(0.46)
Upperbound | 98(0.27) | 96(0.37) | 97(0.71) | 92(0.62) | 94(0.37) | 94(0.61) | 87(0.37) | 86(0.36) | 89(0.46) | 89(0.76) | 76(0.21) | 76(0.19)
No-Filter 90(0.41) | 82(0.24) | 79(0.65) | 76(0.54) | 76(0.41) | 75(0.58) | 67(0.67) | 67(0.87) | 74(0.44) | 74(0.71) | 57(0.29) | 58(0.53)
Random 92.33(0.21) | 84(0.82) | 76(1.25) | 74(0.34) | 76(1) 74(1) | 68(0.23) | 68(0.23) | 74(0.32) | 74(0.27) | 56(0.57) | 58(0.32)
ROBERTa Probability 93(0.48) 87(1) 26(23) 14(11.5) | 76(0.5) 75(1) 46(23) | 45(23.5) | 76(0.89) | 76(1.12) | 56(1.28) | 57(1.85)
Stability 90(1.09) 83(0.5) | 21.5(12.5) 9(5) 78(1) 76(1.5) 70(1) 70(1) | 76(0.48) | 76(0.64) | 58(1.18) | 59(1.06)
LOPS 92(2.99) 85(3) 81(0.9) 80(0.5) 77(2) 75(2) | 70(0.68) | 70(0.34) | 75(0.22) | 75(0.27) | 59(0.41) | 60(0.45)
Upperbound | 98(0.17) | 96(0.16) | 97(0.34) | 92(0.26) | 94(0.74) | 94(0.35) | 85(0.32) | 85(0.65) | 89(0.17) | 89(0.28) | 76(0.29) | 77(0.22)
No-Filter 89(0.74) | 80(0.64) | 77(0.34) | 71(0.75) | 77(0.39) | 75(0.68) | 60(0.74) | 66(0.61) | 72(0.97) | 72(0.53) | 57(0.31) | 58(0.46)
Random 90(0.03) | 80(0.51) | 76(0.94) | 72(0.7) | 78(0.5) 75(1) | 67(0.49) | 67(0.32) | 67(0.22) | 67(0.63) | 57(0.43) | 58(0.45)
XLNet Probability 91(0.29) 83(0.5) 38(6.5) 36(1) 77(1) 75(0.3) | 69(0.82) | 69(0.12) | 70(1.09) | 70(1.14) | 54(1.42) | 56(1.26)
Stability 91(1) 82(1.5) 79(0.5) 76(1.1) | 79(1.5) | 77(1.5) | 68(0.49) | 68(1) 74(1.1) | 74(0.87) | 56(0.88) | 58(0.97)
LOPS 89(0.17) 81(0.9) | 80(0.22) | 77(0.83) | 82(0.5) | 81(0.2) | 70(0.31) | 70(0.27) | 77(0.57) | 77(0.54) | 58(0.65) | 59(0.67)
Upperbound | 98(0.12) | 96(0.21) | 97(0.32) | 93(0.38) | 94(0.23) | 94(0.29) | 86(0.43) | 86(0.35) | 89(0.28) | 89(0.39) | 76(0.44) | 76(0.43)
No-Filter 91(0.24) | 82(0.28) | 76(0.41) | 69(0.38) | 78(0.26) | 76(0.38) | 70(0.46) | 70(0.38) | 61(0.28) | 61(0.43) | 51(0.41) | 53(0.37)
Random 90(0.42) | 80(0.56) | 77(0.52) | 70(1.02) | 79(0.46) | 78(0.32) | 69(0.21) | 69(0.29) | 68(0.18) | 68(0.19) | 53(0.46) | 55(0.42)
GPT2 Probability 93(1.04) | 85(1.13) | 76(0.57) | 71(0.69) | 80(1.49) | 78(1.50) | 69(1.21) | 69(1.18) | 66(0.69) | 66(0.89) | 51(1.11) | 54(1.09)
Stability 94(0.56) | 88(0.59) | 79(0.62) | 75(0.65) | 81(1.02) | 78(1.50) | 70(0.68) | 70(0.63) | 72(0.58) | 72(0.53) | 53(1.02) | 55(1.13)
LOPS 95(0.49) | 89(0.51) | 80(0.09) | 76(0.21) | 82(0.57) | 80(0.63) | 70(0.76) | 70(0.48) | 75(0.52) | 75(0.31) | 56(0.89) | 58(0.63)
Upperbound | 98(0.24) | 96(0.21) | 97(0.18) | 92(0.19) | 94(0.23) | 93(0.27) | 86(0.35) | 85(0.38) | 88(0.26) | 88(0.28) | 72(0.19) | 73(0.22)

collected from a popular online book review
website Goodreads®. Following (Mekala et al.,
2020), we select books belonging to eight popu-
lar genres. Using the title and description as text,
we aim to predict the genre of a book.

7.2 Compared Label Selection Methods

We compare with several metrics used for label

selection mentioned below:

* Probability: We sort the prediction probabilities
corresponding to pseudo-labels in descending
order and select the same number of samples as
LOPS in each iteration of bootstrapping.

* Random: We randomly select the same number
of samples as LOPS in each iteration of boot-
strapping. To avoid the label imbalance after
selection, we sample in a stratified fashion based
on class labels.

* Learning Stability (stability): (Dong et al.,
2021) introduced a metric to measure the data
quality based on the frequency of events that an
example is predicted correctly throughout the
training. We sort the samples based on learning
stability in descending order i.e. most stable to
least stable and select the same number of sam-
ples as LOPS in each iteration of bootstrapping.

We consider the same number of samples as LOPS
in each iteration for all above baselines because we
cannot tune individual thresholds for each dataset

*https://www.goodreads.com/

since there is no clean data under the weakly super-
vised setting and one fixed threshold for all datasets
doesn’t work as the distribution of prediction prob-
ability varies across datasets. So, to perform con-
trolled experiments with a fair comparison, we con-
sider the same number of samples as LOPS in each
iteration.

We also present experimental results without
any label selection (denoted by No-Filter) as lower
bound and with all the wrongly annotated samples
removed as Upperbound.

7.3 Experimental Settings

Seed Words. For all our experiments, we con-
sider label-indicative seed words used in (Mekala
and Shang, 2020; Wang et al., 2020) as weak su-
pervision and generate initial pseudo-labels using
String-Match (Mekala et al., 2020) unless speci-
fied.
Text Classifiers. We experiment on four
state-of-the-art text classifiers: (1) BERT
(bert-base-uncased) (Devlin et al., 2018),
(2) RoBERTa (roberta-base) (Liu et al.,
2019), (3) XLNet (x1net-base-cased) (Yang
et al., 2019), and (4) GPT-2 (Radford et al., 2019).
We follow the same self-training method for all
these classifiers that starts with generating pseudo-
labels, training a classifier on pseudo-labeled data,
and bootstrap it on unlabelled data by adding sam-
ples whose prediction probabilities are greater than


https://www.goodreads.com/

Table 4: Evaluation results of weakly supervised text classification frameworks with LOPS label selection method.

This demonstrates that LOPS can be easily plugged in and improves the performance.

NYT-Coarse NYT-Fine 20News-Coarse | 20News-Fine AGNews Books
Framework | Method | mi-fl | ma-fl | mi-fl | ma-fl | mi-fl | ma-fl | mi-fl | ma-fl | mi-fl | ma-fl | mi-fl | ma-fl
ConWea No-Filter | 93 87 87 77 74 74 68 68 73 73 52 52
LOPS 94 90 87 78 79 78 70 70 79 79 57 58
X-Class No-Filter | 96 93 86 74 58 61 70 70 82 82 53 54
LOPS 96 93 86 74 60 62 71 71 83 82 54 56

0. The pseudo-code of a self-training weakly su-

pervised text classification framework with label

selection is shown in Algorithm 2 in Appendix A.
While training the classifiers, we fine-tuned

RoBERTa for 3 epochs, BERT, XLNet, GPT-2 for

4 epochs. We bootstrapped all the classifiers for 5

iterations and while bootstrapping, we set the prob-

ability threshold § as 0.6 to select the confident
predictions.

Weakly Supervised Text Classification Frame-

works. We also experiment on state-of-the-art

weakly supervised text classification methods de-
scribed below.*

* ConWea (Mekala and Shang, 2020) is a seed-
word driven iterative framework that uses pre-
trained language models to contextualize the
weak supervision.

* X-Class (Wang et al., 2020) takes only label
surface names as supervision and learns class-
oriented document representations. These docu-
ment representations are aligned to classes, com-
puting pseudo labels for training a classifier.

We use the public implementations of ConWea’
and X-Class® and modify them to plug-in our fil-
ter. Specifically, in ConWea, we add our filter be-
fore training the text classifier and for X-Class, we
plug-in our filter after learning the document-class
alignment.

7.4 Quantitative Results

We discuss the effectiveness of LOPS with different
classifiers and weakly supervised text classification
frameworks.

7.4.1 Evaluation results with different
classifiers

We summarize the evaluation results with different
combinations of classifiers and selection methods
in Table 3. All experiments are run on three random

*We also considered experimenting on ASTRA, however
the instructions to run on custom datasets were not made
public yet.

5https ://github.com/dheeraj7596/ConWea

*https://github.com/ZihanWangKi/XClass

seeds and mean, standard deviations are reported in
percentages. We discuss the effectiveness of LOPS
as follows:

* As shown in table 3, upon plugging our proposed
method LOPS, we observe a significant boost in
performance over No-Filter with all the classi-
fiers. In some cases like BERT on NYT-Fine, the
improvement is as high as 7 points on micro-fl
and 10 points on macro-fl.

* We observe that LOPS always outperforms ran-
dom selection which shows that the selection in
LOPS is strategic and principled.

¢ LOPS performs better than probability and stabil-
ity based selection methods in most of the cases.
This shows that LOPS is very effective in remov-
ing the wrongly labeled samples and preserving
the correctly labeled samples.

* We observe abnormally low performances of
probability and stability based selection meth-
ods in some scenarios (highlighted in red in Ta-
ble 3). This is because the probability and sta-
bility scores are so densely distributed that many
wrongly labeled samples are selected that sig-
nificantly effected the performance, which got
worsened with iterative self-training.

* We have to note unusually high standard devia-
tion for probability and problematic score based
selection methods in some cases(highlighted in
blue in Table 3). This demonstrates that these
selection methods are unstable. LOPS is compar-
atively more stable and its effectiveness is largely
due to its invariance.

» Although probability and stability based selec-
tion methods outperform LOPS in a few cases,
their unstable nature makes them unreliable.
Therefore, we believe LOPS is a superior method
than other compared selection methods.

* We observe that LOPS uplifts the performance
quite close to supervised methods. This demon-
strates that LOPS acts as an effective plugin and
helps in closing the performance gap between the
weakly supervised and supervised settings.


https://github.com/dheeraj7596/ConWea
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Figure 3: Risk vs Coverage Analysis: we plot # correctly labeled samples and noise ratio in selected subset by

LOPS and probability-based method on NYT-Coarse, 20News-Fine, and Books datasets using BERT classifier.

Table 5: Incorrectly pseudo-labeled samples selected
by probability-based selection are shown below. These
samples are learnt at later epochs, thus LOPS avoids

selecting them.

Document

Pseudo-label

Corinthians have received offer from tottenham
hotspur for brazil’s paulinho although the mid-
fielder said on saturday he would not decide his
future until after the confederations cup ."there
is an official offer from tottenham to corinthians

Football
Softmax Prob: 0.96
Learnt Epoch: 2

but, as i did when there was an inter milan offer,
i’1l sit and decide with my family before i make
any decision," paulinho told reporters.

Brittney griner and elena delle donne were
poised to make history as the first pair of rook-
ies from same class to start wnba all-star game.
Now, neither will be playing as both are side-
lined with injuries. It’s a tough blow for the
league, which has been marketing the two bud-
ding stars.

Baseball
Softmax Prob: 0.96
Learnt Epoch: 2

Denmark central defender simon kjaer has
joined french side lille from vfl wolfsburg on a
four-year deal. Lille paid two million euros. 72
million pounds for the 24-year-old kjaer, who
has won 35 caps for his country. He joined
wolfsburg from palermo for 12 million euros.

Intl. Business
Softmax Prob: 0.94
Learnt Epoch: 2

Fiorentina striker giuseppe rossi is quickly mak-
ing up for lost time after suffering successive
knee ligament injuries which kept him out of ac-
tion for the best part of two years.

Football
Softmax Prob: 0.95
Learnt Epoch: 2

7.4.2 Evaluation results with different weakly
supervised text classification methods

We summarize the evaluation results with different
weakly supervised methods in Table 4. The results
demonstrate that LOPS improves the performance
of ConWea significantly and X-Class sometimes.
Note that, X-Class sets a confidence threshold and
selects only top-50% instances. So, this selection
already provides a hidden advantage and LOPS
improves the performance on top of it.

7.5 Risk-Coverage Analysis

We perform risk-coverage analysis by plotting
the number of correctly labeled samples selected
and noise ratio vs coverage for both LOPS
and probability-based selection methods on three

datasets NYT-Coarse, 20News-Fine, Books using
BERT classifier shown in Figure 3. Coverage is
defined as the proportion of samples selected after
executing the selection method and noise ratio is
the proportion of wrongly annotated documents
in the selected documents. We can observe that
the number of correctly labeled samples selected is
higher for LOPS than probability-based selection
for all datasets. And also, noise ratio is lower for
LOPS than probability-based selection method on
all datasets. This plot clearly shows that LOPS is
much effective than probability-based selection.

7.6 Example samples

A few incorrectly pseudo-labeled samples from
NYT-Fine dataset that are selected by probability-
based selection with RoBERTa as classifier are
shown in Table 5. We observe a high probability as-
signed to each incorrect pseudo-label whereas these
are learnt by the classifier at later epochs. These
wrongly annotated samples induce error that gets
propagated and amplified over the iterations. By
not selecting these wrong instances, LOPS curbs
this and boosts the performance.

8 Conclusion and Future Work

In this paper, we proposed LOPS, a novel learning
order inspired pseudo-label selection method. Our
method is inspired from recent studies on mem-
orization effects that showed that clean samples
are learnt first and then wrong samples are mem-
orized. Experimental results demonstrate that our
method is effective, stable and can act as a perfor-
mance boost plugin on many text classifiers and
weakly supervised text classification methods. It
outperforms several label selection methods based
on probability and learning stability. In the future,
we are interested in analyzing the role of noise and
investigate any positive consequences of noise in
text classification.



9 Ethical Consideration

This paper proposes a label selection method for
weakly supervised text classification frameworks.
The aim of the paper is to detect the noise caused
by the heuristic pseudo-labels and we don’t intend
to introduce any biased selection. Based on our
experiments, we manually inspected some filtered
samples and we didn’t find any underlying pattern.
Hence, we do not anticipate any major ethical con-
cerns.
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A Appendix

The pseudo code for self-training with LOPS is
shown in Algorithm 2.

Algorithm 2: Self-training with LOPS la-

bel selection
Input: Unlabeled data D, Classifier C,

Weak Supervision W.
Output: Prediction labels pred Labs
D = Generate Pseudo-labels from D, W
forire {1,2,3,...,nis} do
D, = LOPS (D, O)
Train C on Dy,
predLabs, predProbs = Predict(C', D)
D =D U {x|predProbs(z) > 8}

it it + 1
Return predLabs
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