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Abstract

This paper lays down the research agenda for a domain-specific foundation model
for operating systems (OSes). Our case for a foundation model revolves around
the observations that several OS components such as CPU, memory, and network
subsystems are interrelated and that OS traces offer the ideal dataset for a foundation
model to grasp the intricacies of diverse OS components and their behavior in
varying environments and workloads. We discuss a wide range of possibilities that
then arise, from employing foundation models as policy agents to utilizing them as
generators and predictors to assist traditional OS control algorithms. Our hope is
that this paper spurs further research into OS foundation models and creating the
next generation of operating systems for the evolving computing landscape.

1 Introduction
Application
Workloads

Hardware
Counters

Kernel Data
Structures

Hardware
Specification

FM4OS
Foundation

Model

As a Policy Agent

As a Generative
Model

As a Predictive
Model

Pretraining

Fine-tuning

CPU and
Accelerators

Memory
Management

Network
Manager

File System
and Storage

Data Modalities

OS Components

Process
Statistics

Decisions and
Configurations OS

Traces

Figure 1: FM4OS: a foundation model for operating systems.

The Operating System (OS) is the cen-
tral pillar of modern computing sys-
tems, overseeing hardware and soft-
ware resources and enabling applica-
tions ranging from assistive robotics
to cloud services. OSes serve vital
tasks such as scheduling processes;
managing CPU, network, and memory resources, and interfacing with devices. To make good
decisions, OS policies must account for complex system dynamics such as hardware variances and
environment responses, which is challenging for two reasons. First, OSes can be deployed atop
a variety of hardware, and amidst diverse workloads and environments. Second, the OS does not
have full visibility of the environment (e.g., network performance) or the workload (e.g., application
request patterns), making the state space uncertain.

Conventional OS policies, reliant on manual algorithms or heuristics, lack adaptability across hard-
ware, environments, and workloads, and often require manual tuning. Recent proposals for using
machine learning (ML) models in OS components such as the network manager [1, 23], memory man-
ager [26, 28, 40, 53] and CPU scheduler [9], while being good starting points in bringing data-driven
decisions, are still far from ideal as they only optimize for individual components. Furthermore, they
neither integrate well together nor generalize well for diverse environments.

Inspired by the recent successes of large unsupervised “foundation” models in NLP and vision tasks,
we argue that it is time for the OS to eschew such task-specific solutions in favor of foundation models.
Our insight is that OS traces consisting of hardware metrics, system event logs, and application
arrivals and requests, can capture all the information on the workings of various OS components and
the impact of their decisions on each other. Further, OS traces collected on diverse hardware and
application workloads can also capture the intricate relationship between OS decisions, hardware
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features, and application workloads. We argue that a foundation model trained on such traces,
FM4OS, is plausible and can be used for several downstream tasks (as shown in Figure 1).

2 Background
In this section, we first provide background on OS decision-making: what makes it difficult and why
adaptive decisions are needed, and then we give a brief background on foundation models.

Desiderata for operating systems. Operating systems oversee hardware and software resources,
including CPU, memory, storage, and network (Table 1 in appendix). In general, OS tasks can be
considered sequential decision-making processes where past actions and states of the OS instruct the
action at any time. However, these can be very complex because:
• OSes can be deployed on diverse hardware with differing performance profiles. Further, they can

run different workloads (e.g., microservice [29] vs. ML workloads [50]) with varying objectives
(e.g., prioritize power efficiency for robots vs. optimize performance for cloud servers).

• Access to fine-grained metrics (like the ones shown in Table 1: System State column) from
hardware devices or the OS kernel, may be limited.

• System dynamics, i.e., the interplay of policies between OS components, also plays a role in
decision-making because the actions of one component can impact the future states of other com-
ponents. Capturing these intricate dynamics is difficult due to the myriad OS policy combinations.

Thus, in the OS setting, there is an inherent uncertainty and partial observability in the state.

Existing methods: Prior research has proposed learned and data-driven approaches to address these
challenges. Some have employed DNNs to learn policies for specific OS components [2, 9, 22,
30, 56, 57] while others have tackled state uncertainty by modeling OS tasks as MDPs [1, 31,
34, 48, 53]. Additionally, statistical and deep learning methods have been explored to generate
realistic workloads [3, 20, 21, 27, 55] that can help inform conventional policies. However, these
approaches remain point solutions that model individual OS components, leading to a diverse bag of
policies, operating independently of others. Consequently, they fall short in optimizing end-to-end OS
performance and decision-making. Ideally, if we could learn how an OS task is impacted by other OS
components, application workloads, and hardware specifications, we can devise methods to optimize
OS decisions for desired objectives. These existing approaches also struggle with generalization
beyond their training distribution, as shown in prior research [17, 41]. Therefore, we need techniques
that generalize well to unseen inputs.

Foundation models. This is a catch-all term for ML models trained on a large and diverse dataset to
understand the general structure of the data and then fine-tuned (with much less data) for specific
tasks. While they have been touted as useful in myriad settings [4, 54], these models have shown
tremendous empirical success in sequence modeling problems in natural language [5, 10, 15],
finance [51], computer vision [38], biomedical imaging [44] and climate modeling [32] to name
a few. At the core of these successes is efficient use of the transformer architecture [45], which
learns long-term (spatial and/or) temporal correlations between input sequences, and the principles of
transfer learning [42], that enable learning for different tasks, domains, and modalities.

Several OS tasks also fall into this broad category of sequential modeling with the important caveat
that the cadence with which decisions are made and the amount (time) and explicit form (states) of
past observations vary widely between tasks (see Table 1 in Appendix B).

3 FM4OS: A Foundation Model for the OS
We propose the development of FM4OS, a foundation model that understands the “natural behavior”
of the OS and can be fine-tuned for several classes of downstream tasks - all of which either replace
or aid the existing policies in the OS. We begin by describing the data sources available that can be
used to train such a model.

Data Sources. Today’s OSes, along with associated monitoring and data collection infrastructures,
provide data in several forms (as shown in Figure 1), including logs from OS components, hardware
metrics, and application workloads. We elaborate on these sources in Appendix A.

We will use the term “OS trace” to refer to the union of the data corresponding to a single machine
drawn from the sources above, represented as a single (time-annotated) sequence. Such traces can be
collected from systems with varying hardware specs (CPU, Cache, RAM, NIC, file system, etc.) and
under various deployments (cloud, robots, and edge). Below, we describe two OS tasks that operate
on different parts of the system, both of which can be trained from the OS traces.
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An example use case. Consider the OS scheduling task SCH and cache replacement task CACHE
(descriptions as given in Table 1). As shown in the table, optimal decision-making for the SCH task
requires process states, process completion times, hardware state, and process arrival workloads while
the CACHE task requires cache size, state, and cache access workloads. All of these are captured in
the OS traces. For SCH, the process states and completion times are captured in the logs, process
arrival workloads and hardware aspects are captured by the application workloads and environment
metadata, respectively. Similarly, for CACHE, the cache state is captured by the resource metrics,
cache size by environment metadata, and cache access patterns by application workloads.

The OS traces also capture the relationships between the two tasks. For example, the process
completion times would depend on the hardware specs of resources other than CPUs, such as the
cache. This is because processes may access resources other than CPUs during their execution. For
the same reason, OS decisions relating to CACHE would also impact the process completion times.
Since our OS traces record features that cover the input space of both tasks SCH and CACHE, they
can be used to train one model that can orchestrate both. This model can then be used for several
downstream tasks, including: (i) directly making good-quality decisions for the SCH and CACHE
tasks, (ii) predicting the completion time of a newly arrived process, or (iii) generating traces for
CACHE tasks that can be used to improve conventional data-driven or ML-based algorithms.

When trained on diverse OS traces, the model learns how scheduler and cache behaviors relate
to hardware and workloads, enabling generalization to predict program performance on new CPU
specifications and cache sizes.

Foundation Model for the OS. The OS traces used above not only encode information for SCH and
CACHE tasks but also that corresponding to the decision-making in several other OS components,
e.g., I/O prefetching, packet scheduling, congestion control policies, etc. Referring to Table 1, we
make two observations to support this. Firstly, several of the OS tasks have shared state space compo-
nents. For example, both PREFETCH and CACHE tasks need the cache state, both PREFETCH
and PAGE tasks require process instructions, etc. Secondly, these tasks are not entirely independent,
as shown in the above SCH task example, where the process completion times (needed for SCH)
depend on the policies adopted in the CACHE task. This inter-dependence of one component on
others is a widely seen and natural phenomenon in the operating system. Using OS traces collected
across many machines, one can therefore build a foundation model – FM4OS, that knows the ‘natural
behavior’ of the OS. A prospective pretaining regime for FM4OS is discussed in Appendix C.

4 Downstream Tasks for FM4OS
We are now ready to discuss the fine-tuning of FM4OS. We present key downstream tasks and
categorize them into three broad use cases: as a policy agent, a generative model, and a predictive
model. We discuss these individually below and highlight challenges unique to the OS setting that
require novel research on training and using foundation models, in Appendix D.

4.1 FM4OS as a Policy Agent

As discussed in §2, several OS tasks can be modeled as a sequential decision-making process where
the state of the OS evolves according to the actions a policy makes. Prior works [1, 9, 22, 34] have
used handcrafted features based on heuristics in order to model complex system dynamics.

The key challenge for any solution addressing multiple tasks in the OS is the diversity in state
and action spaces of tasks and the different lengths of temporal history deemed relevant for each
task (see Table 1). Foundation models have been shown to solve precisely this issue of varying
lengths of temporal history due to their ability to summarize inputs of arbitrary lengths in a common
representation space. Further, they have also shown evidence of being capable of handling multi-
modal input data [43], which suits the various forms of information captured in OS traces (see §3).
By engineering the size of these representations for pre-training and specifying the objective during
fine-tuning, we expect that FM4OS can be used to suggest optimal actions.

Making low-level decisions: By pre-training FM4OS over OS traces, we expect it to understand the
semantic space for OS decision-making. Then, we can use FM4OS to take low-level actions for OS
tasks, such as setting the congestion window for the CC task and choosing processes for the SCH
task. Fine-tuning to make these decisions requires historical traces labeled with optimal actions.

Policy selection: Current inference times for transformer-based models do not match the pace at
which some OS tasks require actions (every few ns). Accelerating inference [13, 52], especially
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for operation in the OS [19] is an ongoing research area. In the meantime, FM4OS can address
the relatively simpler task of selecting from existing policies (over longer time frames) instead of
specifying actions explicitly. For each task, there exist policies optimized for specific environments
and workloads. For instance, for the CACHE task, Least Recently Used (LRU) policy is favored
when access patterns follow locality trends, while Least Frequently Used (LFU) policy is more
suitable for random accesses with consistent popular requests [37, 49].

4.2 FM4OS as a Generative Model
Content generated by ML models offers new opportunities for OSes, similar to benefits observed from
using generative models in other domains [3, 38]. Synthetically generated data can help add diversity
to existing training data used by data-driven solutions, help with the availability and sharing of
proprietary or confidential data, and testing models under settings that occur infrequently in practice.

Generating traces: The lack of (diverse) training data is a major hurdle in most data-driven and
learned approaches for OS tasks. Even if such data were available, storing and maintaining such a
large corpus of data collected under different hardware configurations and workloads be challenging.
For example, for the CACHE task, traces are needed for different memory specifications and for
different types of workloads (small objects, large objects, mixed sizes, etc.). By training FM4OS
using auto-regressive tasks like Next Token Prediction, we could train the model to learn to generate
OS traces that can be used in a variety of ways.

Fine-tuning it with specially designed prompts could lead to traces that adhere to specific constraints
(e.g., setting hardware configurations, limiting network bandwidth, etc). These can be used to
supplement the training data collected on specific configurations. Further, the foundation model can
also be fine-tuned to obfuscate confidential information from the traces while keeping the important
relationships of the traces intact (prior works [27, 55] show feasibility of such obfuscation in network
traces). Another opportunity that we identify here is that FM4OS can also be used to generate
pathological corner cases. Specifically, we posit that by appropriately querying the foundation model,
we can use it to generate pathological corner cases that would have been otherwise difficult to get.

4.3 FM4OS as a Predictive Model
Foundation models have been shown to exhibit good performance on downstream prediction tasks [5,
32]. In the OS setting, we can use FM4OS as an encoder of the state, and then use linear probing
to predict various things about the system’s response, future utilization. This can lead to efficient
placement, scheduling, performance, and anomaly detection.

System response prediction: Understanding how the environment of the OS evolves with application-
level decisions made by the OS are crucial to improve decision quality. For example, predicting the
time to completion of a process would allow the kernel to reorder its CPU work queue based on
completion times leading to an optimal schedule for minimum waiting time of jobs. Since FM4OS is
pre-trained to understand precisely the needed semantic relationships between OS subsystems, it can
be used to closely predict system responses.

Application behavior prediction: Predicting the behavior of an application can help the OS prepare
in advance for additional resources the application might need and minimize competition for shared
hardware. For example, if the OS can predict that an application’s execution will be memory-intensive
in the near future based on its recent memory allocation calls and nature of inputs received, it can
both provision more memory for the application and avoid scheduling another memory-intensive
application on the same node.

Anomaly Detection: Using the state encoding of the OS or any of its components, and given a
trace, one can ask if the current state is normal, or if there is some anomaly or failure issue. Such
predictions can be used to identify and kill anomalous applications, thereby improving the security of
the OS kernel.

5 Summary
In conclusion, we argue that the OS decision-making tasks provide a rich arena for a domain-specific
foundation model to be built for the OS. We discuss the shortcomings of existing methods of data-
driven decision-making and posit that rich OS traces can provide the necessary data to train such a
foundation model, FM4OS, which can understand the ‘natural behavior’ of the OS. We then provide a
systematic analysis of the various ways in which FM4OS can be used and the various key challenges
that remain open research questions.
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A Data Sources for OS Traces
Below we list the various data sources that can be used to train FM4OS:

• Action logs from OS components: Kernel logs such as dmesg in Linux/MacOS and event logs in
Windows, capture kernel debugging data, hardware events (e.g., network link status), and system
events like interrupts, process restarts. These logs capture the actions taken by the OS components
and the system state used by OS tasks (System state and Actions columns in Table 1).

• Resource metrics and hardware counters: Hardware drivers record several quantities relating
to the resource’s state at a pre-configured frequency. These include CPU, memory, and disk
bandwidth utilization, NIC queue length, and hardware counters.

• Application workloads: Workload traces from productions [29, 39, 47], public infrastructures [18]
and synthetically generated ones offer detailed application-level information, such as application
type, request arrival rates, statistics of resource usage during execution.

B Decision Making Tasks in Operating Systems
Table 1 shows the various components in the OS and a representative subset of the tasks for these
components. It also shows the relevant system and environment states, action spaces, and the
objectives of these tasks. Each task description is also accompanied by an acronym that we use in the
paper to refer to the particular task, e.g. SCH for the CPU scheduling task.

C Pretraining Methodology for FM4OS
We envision FM4OS to be pre-trained using self-supervised methods on a large corpus of OS traces.
This pre-trained model would capture temporal relationships in the sequence of inputs it accepts and
build an understanding of the system dynamics of the OS. Existing literature (particularly in natural
language) has proposed several pre-training tasks that can be used to develop this basic understanding.
Notable among these are the Next Token Prediction [35], Masked Language Modeling, Next Sentence
Prediction [14]; each with their own pros and cons. While it seems intuitive to employ an auto-
regressive model, pre-trained with next token prediction to build FM4OS, the optimal pre-training
task is an open and interesting question in itself.
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Table 1: Various decision-making components in the OS.
Components Description and Acronym System State Environment Info Actions Objectives

CPU
Scheduling [SCH]: Choose next process to run

and which CPU to run it on [9]
Process state (niceness, prior-
ity, execution time), Hardware
state (CPU, RAM spec, etc.)

Arrival pattern and type
of processes (computation-
heavy vs. I/O-heavy)

Process to core as-
signment

Job completion
time, fairness

Voltage and
frequency
scaling

[DVFS]: Choosing CPU frequen-
cies dynamically to reduce power
consumptions [25]

CPU frequency buckets, Hard-
ware spec of the CPU

Process workloads, and
process instructions

Choose CPU fre-
quency

CPU perfor-
mance, power,
temperature

Memory
Subsystem

Page Allo-
cation

[ALLOC]: What page size to use
(e.g., huge pages vs normal pages)
and how to allocate memory [30]

Page table size, Hardware
spec (amount of memory, type,
etc.)

Memory access patterns of
running processes

Page Size, Alloca-
tion mechanism

Latency of mem-
ory accesses

Page Re-
placement

[PAGE]: Choose a page in the phys-
ical memory to replace with another
page in virtual memory [24]

Physical memory state, Hard-
ware spec (amount of memory,
type, etc.)

Program instructions, his-
torical data of page faults
for the processes

Choose the page
to replace

Number of page
faults

Network
Subsystem

Packet
Scheduling

[NETQUEUE]: Order packets to
send/process from the NIC queues

Queuing delays, NIC spec Application type (video
streaming, analytics, etc.)

Packet drop rate Throughput and
delay

Congestion
Control

[CC]: Set congestion window, pac-
ing rate for the connection [1, 23]

Network throughput, delay
and packet loss; NIC spec

Application type (video
streaming, analytics, etc.)

Congestion win-
dow, pacing rate

Throughput and
delay

Storage
Subsystem

I/O schedul-
ing

[IOSCH]: Deciding in which order
I/O requests should be submitted to
storage devices [22]

I/O metadata (block offset,
size), queue state, historical
I/O latencies

Application type informa-
tion (e.g., database, file sys-
tem, etc.)

Order of I/O re-
quests

I/O latencies

Prefetching [PREFETCH]: Predict which seg-
ments of memory to prefetch [2]

Cache size and state, Cache
and PCIe spec

Process workloads and pro-
cess instructions

Choose segment
to prefetch

Throughput of fu-
ture reads

Cache re-
placement

[CACHE]: Decide whether and
which object to replace in the cache
with the new object [8, 40, 53]

Cache size and state (occu-
pied, address, last access)

Cache workloads (object
sizes, frequency of access,
etc.)

Choose a set
of objects to
evict/admit

Cache hit ratio

D Open Challenges for FM4OS
D.1 Challenges in using FM4OS as a Policy Agent

End-to-end application performance depends on collective decisions made by OS components. Using
foundation models as policy agents brings two unique challenges: composability of actions from
various policy agents and end-to-end explanability of their decisions. The former arises because
decisions of one policy can affect the future states of other agents (as with the CACHE and SCH
example discussed in §2). Independently fine-tuned components in the OS may result in suboptimal
OS-wide decisions, that may affect both individual application and system-wide guarantees (e.g.
fairness and starvation-freedom). One possible approach here is to jointly fine-tune components (to
ensure concerted decisions) as well as to develop techniques that provide component-wise guarantees
(on performance, e.g., bounds on tail request completion times, or correctness, e.g., safety and
liveness properties [17]), and formally guaranteed composability of these actions to provide global
invariants for the entire OS.

Regarding the latter, ideally, we desire human users to understand the OS at some level to audit or
debug it. However, learned decisions from a black-box model may easily obscure the understanding
of overall behavior. We envision the use of approaches that describe what each learned policy did in
a given execution (similar to LIME [36]), what could have happened had a learned policy made a
different decision, and also produce human-comprehensible ‘summaries’ in the form of rules [11, 12],
or programs [46] of what the module will do ahead of time.

D.2 Challenges in using FM4OS as a Generative Model

As with any generative model, quantifying the quality of synthetic samples is a key challenge. At the
very least, these traces should maintain certain relationships between variables (e.g., total network
transmissions should be less than network bandwidth). They must also capture desired properties that
are difficult to obtain otherwise, such as ‘realism’, i.e., a specific sequence of requests in a generated
trace can actually arise in practice — this is an avenue for future research. Further, the generated
traces should also be diverse to be useful. For example, for a cache replacement algorithm, we would
want traces with diverse and realistic combinations of small and large object arrivals to effectively
stress-test the algorithm [8]. Another challenge is with leakage and memorization of sensitive data.
As shown in previous works [7, 33], carefully designed prompts can extract memorized training data
with sensitive information. Thus, integrating techniques such as filtering the memorized data [6] and
ideas from say, differential privacy [16], into FM4OS are necessary.
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