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Abstract

When judging the sameness of three-dimensional (3D) objects that differ by a
rotation, response time typically increases with the angle of rotation. This increase
is usually taken as evidence for mental rotation, but the extent to which low-level
perceptual mechanisms contribute to this phenomenon is unclear. To investigate
this, we built a neural model that breaks down this computation into two stages: a
fast feedforward stage that extracts low-dimensional latent representations of the
objects being compared, and a slow recurrent processing stage that compares those
representations to arrive at a decision by accumulating evidence at a rate that is
proportional to the proximity of the representations. We found that representation
of 3D objects learned by a generic autoencoder was sufficient to emulate human
response times using this model. We conclude that perceptual representations may
play a key role in limiting the speed of spatial reasoning. We discuss our findings
in the context of the mental rotation hypothesis and identify additional, as yet
unverified representational constraints that must be satisfied by neural systems that
perform mental rotation.

1 Introduction

William James, the father of American psychology, called the sense of sameness the very keel and
backbone of our thinking. Unlike object recognition which happens within milliseconds of visual
stimulation [1], reasoning about the sameness of two objects is, in general, thought to be an effortful
cognitive process requiring deliberation. But why? In a classic experiment, Shepard and Metzler
[2] asked participants whether images of three-dimensional (3D) objects that differed by a rotation,
depicted the same object or two different objects. They found that human response times increased
with the angle of rotation. This famous result is generally taken to imply that sameness judgement
in spatial reasoning tasks entails “mental rotation”, a type of mental simulation in which one of the
objects is rotated in the mind’s eye until it is aligned with the other [3].

While the above account seems reasonable at the outset, it has precipitated an intense debate that
continues to this day [4, 5, 6]. First, the rotation hypothesis does not specify a neural mechanism by
which the decision is made. Consequently, there is no physiological evidence for mental rotation till
date. Second, it ignores the nature of the visual representations that underlie spatial reasoning. It has
recently come to light that feedforward neural network models can achieve human-like performance in
physical prediction tasks that were previously thought to require mental simulation [7, 8]. Therefore,
it is conceivable that visual representations learned by feedforward networks may also be able to
support spatial reasoning without mental rotation. Specifically, we hypothesized that image pairs that
differ by larger rotations would be further apart in the neural representational space.
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To test this, we built a neural network model comprised of an autoencoder that extracts low-
dimensional latent representation of synthetic images of 3D objects, and a recurrent neural network
that operates on the latent embeddings of pairs of images to make decisions. We show that the
representation learned by the autoencoder is informative about the 3D orientation of objects, and
can account for the rotation-dependent response times without any dedicated machinery for mental
simulation.

2 Methods

We ran experiments where we generated synthetic stimuli, trained neural network models using those
data, analyzed the representation learned by the model and evaluated the model using separate test
stimuli. Below, we describe each of these steps in detail.

2.1 Stimulus

We generated a dataset of 25,000 training images and 200 test images using Blender 3D rendering
engine (Fig. S1 in Appendix). Like the classic stimuli [9], each image contained a three-dimensional
object that was built of cubes connected face-to-face like a lego, with multiple arms and two free
ends. To ensure stimulus diversity, each stimulus was constructed using either 10 or 13 identical
cubes (1m3), yielding objects with 3 and 4 connected arms respectively. The camera was positioned
25m away from the centroid of the object. For images in the training set, the direction of the camera
was allowed to be completely random in 3D space. The test images comprised a subset of 10 objects,
and the camera direction was varied systematically by choosing equally spaced angles along the the
horizontal plane and the vertical plane, yielding 20 unique views per object.

2.2 Model

The model was comprised of two modules (Fig. 1). An autoencoder compressed the input to a
low-dimensional latent space, and a recurrent neural network received a pair of latent embeddings
and generated a time-varying decision variable as the output. Unlike models that learn to predict
rotation angle with supervision [10], this model was not trained end-to-end. Instead, the modules
were optimized with separate, general-purpose objectives as described below.

The autoencoder module was a feedforward network comprised of an encoder with three layers
of width 128, 64, and 12 ReLu units, and a decoder with an inverted structure to reconstruct the
input. The input dimensionality was 4096 and the autoencoder was trained with L2 regularization
to minimize the reconstruction loss (mean-squared error) across the training images. This module
reduces the dimensionality of a 64x64 image by embedding it into a 12-dimensional latent space, x.

The second module was a vanilla recurrent neural network (RNN) comprised of 200 hidden units with
tanh non-linearity, two 12-dimensional input channels that received inputs x1 and x2, and a linear
readout that generated a one-dimensional time-varying output, y(t). The network was trained via
back propagation through time, to integrate evidence for sameness at a rate that was proportional to
the proximity (inverse of distance) between the inputs, until a bound of 1 was reached. The resulting
target function for the output was y(t) = min(ct/|x1 − x2|, 1). The constant of proportionality, c,
was adjusted such that the mean response time across the training set was 0.6 seconds.

2.3 Evaluation

Next, we analyzed the latent representation learned by the autoencoder on the set of 200 test images.
We computed the distance between the latent embeddings of all pairs of test images containing the
same object at different rotations, and quantified the relationship between distance and the angle of
rotation by linear regression.

Finally, we computed the response time for each pair of latent embeddings tested above, by feeding
them as inputs to the RNN module. The response time was taken to be the time t at which the output
y(t) reached an amplitude of 0.95. This can be interpreted as the time at which the network is at least
95% confident that the two inputs correspond to the same object.
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Figure 1: The model takes in a pair of images and first embeds them into a low-dimensional latent
space. The compressed visual representations are then fed to a recurrent module which accumulates
evidence for sameness at a rate that is proportional to the proximity of the inputs. Response is
triggered when a bound (horizontal dashed line) is reached.

3 Results

We verified that the autoencoder produced near-perfect reconstructions of all images implying that
the compression was nearly lossless (R2 = 0.98± 0.01; Fig. S2A,B in Appendix). We examined the
distance between the latent representation of all image pairs, and found that the embeddings of images
containing the same object were closer to each other than those that contained different objects (Mean
distance ± SEM (a.u.) – same objects: 20.5 ± 2.4, different objects: 81.5 ± 0.8; Fig. S2C). This
means that the low-dimensional visual representation learned by the autoencoder is informative about
the sameness of objects. We tested whether the latent representations also contained fine-grained
information about the angle of rotation. Consistent with our hypothesis, the distance between latent
representation of test image pairs containing the same 3D object was significantly correlated with the
magnitude of rotation of the objects in those images (Fig. 2A; Pearson’s r = 0.52, p = 1.7e-3).

The recurrent network module showed a linear increase in response times as a function of the distance
between inputs during training (Fig. S3 in Appendix), and this behavior generalized to the test set (Fig.
2B; Pearson’s r = 0.83, p < 1e-8). Taken together, the two modules can explain the rotation-dependent
increase in response times observed in spatial reasoning tasks (Fig. 2C).

Figure 2: A. Distance between latent representations of image pairs as a function of the magnitude of
rotation of the object. B. Response time of the RNN module as a function of the distance between
inputs. C. Response time as a function of the magnitude of rotation. Shaded regions denote 95%
confidence intervals.
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4 Discussion

The similarity between representations learned by feedforward neural networks and visual cortex has
been one of the most remarkable success stories linking human and machine intelligence [11]. It is
generally believed that this similarity might not have implications for complex cognitive tasks which
go significantly beyond the realm of image recognition [12, 13, 14]. Our findings show that this need
not be the case. The geometry of representation of 3D objects learned by even a purely unsupervised
mechanism, has sufficient structure to facilitate a rich, human-like pattern of response times in spatial
reasoning. This is in alignment with recent studies that demonstrate that visual representations may
be sufficient to perform physical inferences about the stability of objects without any physics engine
[7, 8].

Our modeling approach is in the spirit of leveraging the representational capacity of feedforward
networks in the service of flexible cognitive processes [15]. In particular, the autoencoder module
extracts a low-dimensional visual representation in a task-agnostic manner, while the recurrent
module implements a drift-diffusion process that sequentially samples from that representation until
a judgement about sameness is made. In contrast, existing accounts of behavior in this task downplay
the contribution of visual representations and instead appeal to a purely hypothetical cognitive process
called mental rotation. Rational models of mental rotation have had to additionally grapple with the
problem of how to determine the axis and the direction of rotation, and how much to rotate [16].
Mechanistic models of mental rotation attempt to achieve rotation-invariant pattern recognition by
positing finely tuned attractor dynamics that drift toward a canonical view of the object stored in
memory [17]. We suggest that models that allow visual representations to do some of the heavy-lifting
can substantially reduce the cognitive demands of spatial reasoning. A dominant role for visual
representation would also explain why human responses in this task are not cognitively penetrable
[18].

We emphasize that although the proposed model does not feature an explicit mechanism for mental
rotation, it does not falsify the mental rotation hypothesis. One way to accommodate a role for
mental rotation in this framework is by adding feedback connections from the recurrent module to the
bottleneck layer of the autoencoder. Such a modification would induce time-varying activity in that
layer, allowing for the representation of one input image to evolve towards the other. We note that for
dynamical representations to qualify as evidence for mental rotation, they must satisfy an important
constraint: the intermediate representations should correspond to valid latent embeddings of the
object that smoothly interpolates between the two 3D views. Neuroimaging studies have consistently
found that the human posterior parietal cortex is activated during this task [19]. Whether this activity
is a substrate for mental rotation or not would depend on the precise temporal dynamics.

The proposed model exhibits greater variability in response times than behavioral data reported in
literature. Whether this discrepancy is due to the form of synthetic images used here is unclear
but could be tested experimentally. In keeping with the large body of work on spatial reasoning,
we tested our models using a simple set of 3D stimuli in which only the rotation angle was varied.
Future extensions of this work should analyze how added sources of variability in object texture,
lighting condition, and viewing distance interact with rotation angles to influence decision times,
and test those predictions in humans. Another limitation of this model is that it does not consider
the contribution of active sampling strategies using eye movements [20]. Directed eye movements
have been shown to play a critical role in many cognitive tasks. Therefore, it would be important to
extend this model by allowing visual representations to be influenced by spatial attention. Finally, the
RNN was trained to linearly integrate the difference between inputs. While this has an appealing
interpretation due to its correspondence with the drift-diffusion process, future studies must test
whether alternative loss functions provide quantitatively better fits to human response times.
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Appendix

.1 Method details

Code to generate the stimulus set, and to train and analyze networks can be found in this public
repository: https://github.com/kaushik-l/mentalrotation.

When rendering the images using Blender, six point light sources were placed around the object at
equal distances along the cardinal axes. The brightness and the location of these sources can be found
in the code.

Images were transformed to grayscale and normalized to have a mean and standard deviation of 0.5
before training. The autoencoder was trained for 30,000 epochs with a batch size of 128, learning
rate of 1e-3, and weight decay hyperparameter set to 1e-5. Training was carried out using ’Adam’
optimizer. The decoder output was tanh transformed to keep the dynamic range between -1 to 1. We
also optionally reduced the dimensionality of the bottleneck layer from 12 dimensions down to 3
dimensions by applying a linear transformation, and found no degradation in performance.

The time constant of the RNN hidden layer units was 100ms, and the network activity was updated
in timesteps of 10ms. The RNN was first trained using pairs of simulated input vectors for 200,000
epochs and then retrained with the pair of latent embeddings from the training images for a further
10,000 epochs. The learning rate was set to 1e-3 and training was carried out using ’Adam’ optimizer.
Note that the response times of the RNN was set to be less than 1 second to keep training times
manageable. It should be straightforward to obtain longer response times ( 5 seconds in human
behavior) by increasing the training time or the network size.

Dataset generation (CPU time about 20 hours) and training of the autoencoder module (CPU time
about 2 hours) were carried out on a MacBook Pro (M1 chip, 2020), while the RNN was trained
using TPUs available on Google Colaboratory (compute time about 5 hours).

.2 Supplementary Figures

Figure S1: Close-up view of a selection of 20 synthetic images used in this study. Note that the
experiments were conducted using images generated by positioning the camera further away from
the object (see Fig. 1).
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Figure S2: A. A subset of images (left) and their reconstructions (right). B. Reconstruction loss
during training. C. Relative frequency of the distance (in latent space) between image pairs containing
the same object (black) and different objects (gray).

Figure S3: A. Loss during training of the RNN module. B. Output of the RNN for three different sets
of inputs with different separations between them. Horizontal black line on top denotes the bound
with respect to which response times are computed. C. Response times as a function of separation
between inputs.
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Figure S4: Correlation between model response times and angle of rotation, computed separately
using the representation taken from each layer of the autoencoder. L0 corresponds to pixel space.
Blue and orange lines denote results for two different axes of rotation.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No] Too early

to assess societal impact, negative or otherwise.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Instructions
not included but the code is fairly self-explanatory and comments are included where
necessary.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See method details in Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See figure captions.
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(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See method details in Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See method details in Appendix.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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