Learning to Undo: Transfer Reinforcement Learning under Linear State Space Transformations

Learning to Undo: Transfer Reinforcement Learning
under Linear State Space Transformations

Mridul Mahajan', Aldo Pacchiano'?', Xuezhou Zhang'?

{mridulm, pacchian, xuezhouz}@bu.edu

'Boston University
?Broad Institute of MIT and Harvard

t Equal senior authorship

Abstract

Transfer learning in reinforcement learning (RL) has shown strong empirical success.
In this work, we take a more principled perspective by studying when and how trans-
ferring knowledge between MDPs can be provably beneficial. Specifically, we con-
sider the case where there exists a linear undo map between two MDPs (a source and
a target), such that applying this map to the target’s state space recovers the source
exactly. We propose an algorithm that learns this map via linear regression on state
feature statistics gathered from both MDPs, and then uses it to obtain the target policy
in a zero-shot manner from the source policy. Theoretically, we show that for linear
MDPs, our approach has strictly better sample complexity than learning from scratch.
Empirically, we demonstrate that these benefits extend beyond the linear setting: on
challenging continuous control tasks, our method achieves significantly improved sam-
ple efficiency. Overall, our results highlight how shared structure between tasks can be

leveraged to make learning more efficient.

1 Introduction

Reinforcement learning (RL) has seen rapid progress
in recent years and has achieved strong performance in
complex tasks, such as video games, locomotion, ma-
nipulation, and navigation (Mnih et al., 2015; Lee et al.,
2019; Zhu et al., 2019). Despite this, learning high-
quality policies from scratch typically requires millions
of environment interactions. This inefficiency limits the
applicability of RL in real-world domains where data
collection is costly or time-consuming (Dulac-Arnold
etal., 2019).

Transfer learning aims to overcome this challenge by
leveraging knowledge learned from source tasks to ac-
celerate learning on related target tasks (Taylor & Stone,
2009). It has the potential to drastically improve sam-
ple efficiency by effectively reusing prior experience.
While transfer learning has seen strong empirical suc-
cess in RL (Zhu et al., 2020), we study the problem from
a more principled lens, where we explicitly model the

Bl Scratch Bl Undo
ROTATEDSWIMMER P){()TATEDHALFCHEETAH
1.(

0.8F 10.8F 82x

>, 0.6 143x 0.6 F

h=1

% 04F J0.4F

kS

Z0.2F J0.2F

3

300 X

@ ROTATEDWALKER2D ROTATEDANT
.0 1.0

= ost Jo.sp 9X
w0

3x '
041 1041
0.2 *- 10.21
0.0 0.0
Figure 1: Sample complexity (in mil-
lion) to reach 95% of optimal perfor-
mance. Numbers on blue bars quantify
how much worse learning from scratch is.

structured similarity between tasks and exploit it for transfer.

Reinforcement Learning Journal 2025

311 3 11
(Y) = E '3 = = =
(x’y) Y 1L TTTTT TTTTT
Color Transformation Different Frame of Reference Sensor Fusion

Figure 2: Linear transformations are grounded in real-world applications.

An interesting setting is that of linear transformations: the source and target tasks differ due to
transformations in the state space that are linear. For instance, real-world transformations such as
color transformation from RGB to grayscale, change in frame of reference, and sensor fusion — all
are linear (see Fig. 2). Linear transformation provides a rich and practical setting to design principled
transfer learning methods that explicitly account for these transformations.

In this work, we propose a novel approach to address this setting by learning an undo map that
transforms the state space in the target back to the source. Instead of learning a policy from scratch,
our method recovers a function that undoes the transformation applied to the target states. This
allows us to reuse the source policies with minimal additional samples from the target task.

We propose an algorithm that exploits the fact that the action space is unchanged to learn this undo
map via linear regression on state feature statistics gathered from both MDPs. It subsequently uses
the undo map to obtain the target policy in a zero-shot manner by composing the source policy with
the learned undo map. Theoretically, we show that for linear MDPs, our approach has strictly better
sample complexity than learning from scratch.

To evaluate our method, we use challenging continuous control tasks, and construct target tasks by
changing the frame of reference of their observations, as well as a setting inspired by sensor fusion.
Our results show that learning the undo map consistently outperforms learning the target policy
from scratch in terms of sample efficiency, where it often achieves near-optimal performance with
an order of magnitude fewer samples (see Fig. 1). These results highlight the practical utility of our
approach for transfer learning in RL under linear state-space transformations.

To summarize, our work makes the following key contributions:

1. We propose a novel transfer learning method that performs linear regression on state feature
statistics to undo linear state space transformations in the target MDP (Section 3).

II. Theoretically, we prove that for linear MDPs, our approach achieves strictly better sample
complexity than learning from scratch (Section 4).

III. We demonstrate the strong empirical performance of our method by conducting experiments
on challenging continuous control tasks with linear state space transformations (Section 5).

2 Problem Setup

Tasks. We model each task as a finite-horizon episodic Markov Decision Process (MDP), defined
by the 7-tuple (S, A, P, r, H,dy, ¢), where S is the state space, A is the action space, P: S x A —
P(S) defines the transition dynamics, r : S x A — R is the reward function, H is the fixed horizon
length, dy € P(S) is the initial state distribution, and ¢ : S — R? is a fixed feature map. We assume
that d < H. The agent interacts with the task using a non-stationary policy 7, : R — P(A), and
for 0 < h < H, chooses an action ap, ~ (- | ¢(sp)). The value of the policy 7 is defined as the

expected return V7™ £ Esondo,m,P [ZhH:_Ol r(sp, ah)} , and the agent’s goal is to learn a policy 7*

that maximizes this quantity, i.e., V* = max, V™. The state-action value function Q™ (s, a) denotes
the expected return when taking action a in state s, and following policy 7 thereafter.

Learning to Undo: Transfer Reinforcement Learning under Linear State Space Transformations

Transfer Learning. The transfer learning setting follows the protocol in which the agent first inter-
acts with a source task Mg = (S°, A%, PS5 H,d5, ¢s) to learn a policy 7g, and then leverages
the learned policy to speed up learning in the target task M7 = (ST, AT PT +T H d¥, ¢7). We
assume that the agent has complete access to the source MDP M g, either by knowing its dynamics
and reward function exactly or by being allowed to interact with it arbitrarily without incurring any
sample complexity cost. In contrast, interactions with the target MDP M are limited and costly.
M g and M have some shared structure, which we describe below.

Shared Structure and Undo Map. We assume that both tasks are exactly the same except that the
agent observes states through task-specific feature maps: ¢g : S — R?S in the source and ¢ : S —
RIT in the target. We assume these feature maps are related by an unknown linear transformation
(the undo map) U, : R97 — R?s, such that for all s € S, ¢5(s) = U,ér(s). This relationship
induces a correspondence between policies: for any policy g : R? — P(A) defined in the source
feature space, we define the corresponding policy in the target task as 77 (¢ (s)) = mg (Usdr(s)).
This allows policies to generalize across tasks despite differing state representations.

Objective. Given complete access to Mg, our objective is to learn a near-optimal policy for the
target task using as few samples from the target as possible.

3 Learning the Undo Map via Regression

In this section, we present a learning algorithm

that estimates the undo map from samples. Our

method leverages the fact that the action spaces Source Ta?kM‘qS a a
in the source and target MDPs are exactly the Aot s ST
same. At a high level, the algorithm computes
state feature statistics in the source and the tar- B l l
get that are related via the undo map, and uses ~ “+(“" 1) = E[#°68) + 6°6D++6%610) +6°6D) |

this relation for transfer learning. L T LT
. Py (a0n1) = Ut (aon-1),
Definition 1 (Expected State Feature Sum). L g o oo

! olve for U, via linear regression |

Given an action sequence ag:.p—1, define oo

Yp(ag:n—1) as the h-step truncated sum of state 3T (aon-1) 2 E[ST(sT) + ST (sT)t -+ 0T (sT 4) + o7(s])}
features computed from a sample trajectory: T T T T

h—1 | |

Unaon-1) 2 (se), (1) Qoh-1: ST >l L

t=0 Target Task M7
where (so, 51, -..,5,—1) is the state sequence .
obtained by executing actions ag, ..., an_;. Figure 3: Overview of our method. We recover
The expected state feature sum for h steps, de- the map to undo the state space transformation by
noted by U (ag:n—1), is defined as: linear regression on state feature statistics.

Un(aoh-1) = E [Ynlaon-1)], @
where the expectation is over the dynamics of the MDP.

Note that the expected state feature sum is defined with respect to an open-loop sequence of actions.
Consequently, since the source and target MDPs differ only through a linear transformation of the
state space, the expected state feature sums in the source and the target (denoted by 1/_1;? (ao:n—1) and
&g(ao; h—1), respectively) are related via the undo map U, as follows:

V3 (a0:n—1) = U (agin—1), Vh € [H]. 3)

As samples from the source MDP Mg are free, we can compute ¥ (ag:n—1) exactly, while
1/),? (ao:n—1) can be empirically estimated using samples from the target MDP M.

Reinforcement Learning Journal 2025

Algorithm 1 Estimate Undo Map via Ridge Regression

Require: Source MDP Mg, target MDP M, action sequence ag. 1, number of trajectories n,
regularization parameter A
Exactly compute the expected feature sum 3 (ag:;—1) in Mg, Vh € [H].
Roll out n trajectories in M using action sequence ag:g—1-
for h € [H] do
For each trajectory ¢, compute feature sum wg’(l) (ao:h—1)-
Compute empirical average:

A

—~ 1 <)
T _ 1 @,
Un (@o:n-1) = — ;:1 Y (a0:n—1).

6: end for
7: Solve for U € R?s*47 (which estimates U,) via ridge regression:

-~

H
_ ~ 2
U=arg min > |65 (@on1) - UG (aom-)|| + XTI
h=1

UE]RdS Xdmp

8: return U

We now describe how to learn the undo map from target samples.

Learning via Ridge Regression. The relations between expected state feature sums in the source
and the target are equivalent to a system of linear equations (one for each time horizon h € [H]),
which we use to estimate U, via ridge regression. Since U, € R%s*97 estimating it amounts to
solving dg separate linear regression problems, each with dr unknowns. Therefore, we need at
least dp linearly independent equations to ensure identifiability. Since d < H (by assumption),
we use the expected feature sum relation for each h € [H] to construct H such equations. Given
that 1[}}1: is estimated empirically, we adopt ridge regression to mitigate the impact of estimation
noise. Specifically, let @T(ao: nh—1) denote the empirical estimate of the expected target feature sum
obtained from n trajectories. Then the undo map is estimated by solving:

H
~ _ 2
O=arg min > |65 (aomn-1) = UDF (o), + AU (4)
UeRds xdr 1 2
where A > 0 is a regularization parameter and || - || denotes the Frobenius norm.

The estimate @ allows us to [ift the optimal policy for the source task 7§ to an optimal policy for the
target task: 77.(-) = w5 (U(+)).

The pseudocode for the proposed algorithm to learn the undo map is given in Algorithm 1. We would
like to comment that our method is generally applicable even when the undo map is non-linear.

4 Theoretical Analysis

We model both the source and target tasks as linear MDPs, which we define below.

Definition 2 (Linear MDP (Jin et al., 2020)). An MDP is linear if the transition probabilities exhibit
a low-rank decomposition: P = ® x ¥ € RIS*AIXIS| ywhere & € RIS¥AIXd gpg & € RIS Alxd
and the matrix ® is known to the learner. Each row of ® is denoted as $(s, a) € R, which represents
the state-action features.

We now list the assumptions used in our analysis. The first is a standard assumption in linear MDPs.

Assumption 1. The reward function R is linear in the feature vector ¢(s, a). Specifically, for each
state-action pair (s, a), the reward is given by r(s,a) = ¢(s,a) Or, where r € R4

Learning to Undo: Transfer Reinforcement Learning under Linear State Space Transformations

Algorithm 2 Estimate U, via Least Squares for Linear MDPs

Require: Target MDP M, expected feature sum oracle O, action sequence ag.y 1, number of
trajectories n
Query O to obtain the expected feature sum y;, = 15 (ag.n—1) in Mg, Vh € [H].
Roll out n trajectories in M using action sequence ag:g—1-
for h € [H] do
For each trajectory 7, compute feature sum x; j, = w}];,(z) (ao:h—1)-
end for
Solve for U € R?s*47 (which estimates U,) via ordinary least squares regression:

AN AN e

H

ﬁ[i] = K;_l Z Zl‘j,hyhmy

h=1j=1

— " N -
where Ap, =37, D00 Tt
7: return U

This linear reward assumption implies that the action-value function Q7 (s, a) for any policy 7 is
also linear in ¢(s, a). We further assume that |¢(s,a)|2 < 1forall (s,a) € S x A, and that rewards
are bounded within the range [—1, 1].

In this setup, given an action sequence ag.,_1, we define 15, (ap.n—1) to be the average of the state-
action features over the first & steps of a sample trajectory.:

h

|
—

¢h(a0:h—1) £

¢(St, at)-)

S| =

-
Il
=]

The source MDP Mg and the target MDP M are exactly the same except for the state-action
features (g in source and @1 in the target), which are related via a linear undo map U,: ¢g5 =
®7UT. We assume that the £ norm of each row of U, is upper bounded by .

The learner has access to the parameter vector 0% for the state-action values of the optimal source
policy, and an oracle O for the state-action feature sum, as defined below:

Assumption 2 (Oracle for state-action feature sum in M). We denote by O an oracle that when
queried with an action sequence ag.;,—1 and time h € [H), outputs ¥} (ag.—1) = E [w;? (ao:h—1)]-

4.1 Transfer Learning Algorithm

On a high level, our learning algorithm estimates U, by utilizing the following relation between the
expected state-action feature sums in the source and the target:

Ui (aon—1) = U} (apn—1)- 6)

More concretely, it first queries O to obtain 1&;? (ag:n—1) in Mg, for all h € [H]. Next, it rolls out n
trajectories in the target using the open-loop action sequence ag. ;7 —1. It then views the truncated sum

of state-action features 1/},?"(1) (ao:n—1) (computed on the i-th sample trajectory) as noisy features for
ﬁ;‘f (ao:n—1). Subsequently, it estimates U, with U via ordinary least squares regression.

The pseudocode for this algorithm is given in Algorithm 2.

4.2 Analysis

We will now show that in the setup described above, learning the undo map via linear regression on
state-action feature statistics is provably better than learning from scratch.

Reinforcement Learning Journal 2025

From Eq. 6, the following relation holds:

Q= orUL 0% (7)

Thus, a natural way to evaluate the output U of Algorithm 2, is to bound the performance difference
with respect to the optimal policy in the target, if we act greedily with respect to @ UTG:‘,;. Let 7
denote this policy. We show that our algorithm has the following performance difference guarantee.

Theorem 1 (Performance Difference Bound for Algorithm 2). Define the covariance matrix

H
1
rE T Z Vi (ao:n—1)¥ (aon—1)",
h=1

and let Apin denote Apin (X).

For all n > +>—(log 3d7(;ds), with probability at least 1 — §, the performance difference satisfies

HAmin
H 3dg 3dg H
d 21 — 24/dr]l — .
n)\min T + 8 (6) + T 108 < (5 > +o (n)\min>

The proof is provided in Appendix B.

1V = Vil <2

The theorem shows that if the action sequence ag.y—1 is good, i.e., Amin(2) is sufficiently large
(on the order of 1/dr), then Algorithm 2 achieves a sample complexity upper bound that scales
as 5(dT\/ﬁ). This improves upon the minimax lower bound for linear MDPs, which scales as
O(drH3/?) (He et al., 2023).

Remark. Our proof relies solely on the property that the optimal state-action value function is
linearly realizable. Therefore, our performance difference guarantee extends to a more general
setting where the only assumption is that the optimal state-action value function lies within the
span of a known feature map. In this setting, the lower bound scales exponentially with the feature
dimension dr or the horizon H (Weisz et al., 2021), whereas our transfer learning method still
enjoys O(dr+v/H) dependence.

5 Experimental Evaluation

In this section, we empirically evaluate our transfer learning method to address the following re-
search questions: (i) Is it better to learn the undo map U, than to learn the target policy from
scratch? (ii) How critical is the choice of the open-loop action sequence ag.r7—1?

We begin by explaining the rationale for task selection, describing both the source and target tasks.
Next, we provide an overview of the training process for the undo map, followed by the results.

5.1 Environments

We evaluate our method on continuous control environments that are challenging to learn from
scratch: SWIMMER, HALFCHEETAH, WALKER2D, and ANT (Towers et al., 2024). To test the
transfer, we construct corresponding target tasks by rotating the global frame of reference by 45°
around relevant axes. This results in the tasks: ROTATEDSWIMMER, ROTATEDHALFCHEETAH,
ROTATEDWALKER2D, and ROTATEDANT. Additionally, we design target tasks inspired by sensor
fusion scenarios, resulting in the following tasks: FUSIONSWIMMER, FUSIONHALFCHEETAH, FU-
SIONWALKER2D, and FUSIONANT. These transformations induce structured transformations in the
observation space without altering the dynamics of the original environment. Appendix C describes
the target tasks in detail.

Learning to Undo: Transfer Reinforcement Learning under Linear State Space Transformations

= = Scratch Undo
ROTATEDSWIMMER ROTATEDHALFCHEETAH ROTATEDWALKER2D ROTATEDANT
. AN
300 o)
o / 4000 .
= J " » A ‘\[l,b 2000 , 2000 A I\ﬁ
T a0t 4 (A \l”' l‘l J Vadid o
= N \ v l\ * 1
o I 200001 M 1000 N D000
2100y / \ antl
<
' / v - </ \, .7
0 0 0 ol e
000 025 050 075 100 000 025 050 075 100 000 025 050 075 100 000 025 050 075 1.00
Samples (in Million) Samples (in Million) Samples (in Million) Samples (in Million)
FUSIONSWIMMER FUsiIONHALFCHEETAH FUSIONWALKER2D 2000 FUSIONANT
A ™"
300 - 4000
£ 2000 1500
% 200 ,,
o~ - 1000
- 1 2000 P et 1000 I\~
2 -~ \ Ve
= 100r 0 v 500 17y
= / - ,I \ e
(o em® N ettt B el
000 025 050 075 100 000 025 050 0.5 100 000 025 050 075 100 000 025 050 075 100
Samples (in Million) Samples (in Million) Samples (in Million) Samples (in Million)

Figure 4: Comparison of avg. reward with varying budget of target samples. Transfer learning via
the undo map consistently achieves significantly better sample efficiency than learning from scratch.

5.2 Training Procedure

We use the r1-baselines3-zoo framework (Raffin, 2020) to train both the source policies and
the target policies used in the learning-from-scratch baseline, with PPO (Schulman et al., 2017)
as the learning algorithm. For each environment, we adopt the tuned hyperparameters provided
in the framework, training the policies for 1 million steps each. To estimate the expected state
feature sums in the target MDP M, rather than executing full episodes, we truncate rollouts to dr
steps. This yields a sufficient number of equations to estimate the undo map. We collect samples
from approximately 5,000 rollouts, each of length dr, where dr is the dimensionality of the target
observation space. For the source statistics, a similar number of samples suffices.

The action sequence ag.;7—1 used to compute the state feature statistics is derived from the source
policy ms. More concretely, we perform a rollout of 7g in the source MDP Mg and record the
sequence of actions taken by the policy. We then use this recorded sequence as ag:7—1-

5.3 Results

In this section, we first compare our method (listed as Undo) against ~7g =+ Random
learning the target policy from scratch (listed as Scratch). Next, we
evaluate the criticality of the choice of the action sequence.

2000

Comparison with Learning from Scratch. Fig. 4 reports the avg. e

reward, averaged over three random seeds, for each method under
varying target sample budgets. Our method significantly improves 0.00 0.05 0.10 015 0.0 0.25
sample efficiency across all tasks versus learning from scratch. No- Samples (in Million)
tably, Undo reaches near-optimal performance within just 0.1 mil-
lion samples, whereas Scratch requires substantially more. Further-
more, the sensor fusion inspired target tasks are challenging to learn
from scratch, which is likely due to the increased dimensionality of
the state features. Nonetheless, Undo still achieves near-optimal
performance with very few samples from the target.

Avg. Return

=, TN

Figure 5: Sensitivity to action
sequence on ROTATEDANT.
The choice of action sequence
critically affects the perfor-
mance of our method.

Choice of Action Sequence. Fig. 5 illustrates the sensitivity of our method to the choice of action
sequence ag. 1. Random denotes results when the H actions are chosen uniformly at random, and
~ Tg represents an action sequence collected by rolling out the source policy in M g. These results
emphasize the critical role of selecting a good action sequence.

Reinforcement Learning Journal 2025

6 Related Work

Transfer Learning. Empirical methods for transfer learning in RL often lack provable guarantees
or rely on application-specific assumptions that do not generalize. For instance, while (Sun et al.,
2022) assume shared latent dynamics across observation spaces and that target observations can be
transformed into the source domain, they do not learn this mapping explicitly and offer no theoret-
ical guarantees on transfer performance. Similarly, (Watahiki et al., 2024) assume a shared latent
MDP structure between tasks but their method is not theoretically grounded. Other works, such as
(Agarwal et al., 2022), study transfer through reusing prior policies across design iterations, which
is orthogonal to our setting. Methods like (Chen et al., 2024; Yi et al., 2023) rely on very specific vi-
sual or object-level assumptions, which limits their general applicability. The notion of an undo map
to reverse state space transformations in reinforcement learning was first introduced in (Gupta et al.,
2022), where the problem is approached through a distributional lens by aligning trajectories across
the source and target tasks. However, the method does not scale beyond toy tabular environments.

Representational Transfer in Low-Rank MDPs. Several works have studied representational
transfer under low-rank or linear MDP assumptions. For instance, (Agarwal et al., 2023; Cheng
et al., 2022) use reward-free exploration in the source task to learn a good representation for the tar-
get. (Sam et al., 2024) extend this to a more general low-rank setting. (Lu et al., 2021) learn a linear
representation using least squares for multitask linear MDPs, and (Ishfaq et al., 2024) consider the
offline multitask case.

In contrast, our work approaches transfer RL through a more principled lens by making concrete
assumptions about the structural relationship between the source and target tasks. We propose an
algorithm that explicitly learns a mapping between their observation spaces by framing the problem
as supervised learning, and therefore eliminates the need for RL in the target task. Under certain
assumptions, this leads to provable improvements in sample complexity over learning from scratch.
Moreover, our method is practical and demonstrates strong empirical performance. Essentially, our
work takes a step toward more principled and broadly applicable approaches to transfer in RL.

7 Concluding Discussion

In this paper, we introduced a principled approach to transfer learning in reinforcement learning,
where the source and target tasks are related by linear transformations of the state space. By explic-
itly learning an undo map, our method achieves significant gains in sample efficiency compared to
learning target policies from scratch, as demonstrated across multiple challenging continuous con-
trol environments. Theoretically, we showed that under certain assumptions in linear MDPs, our
approach achieves strictly better sample complexity than learning from scratch. A current limitation
of our analysis is the reliance on a good action sequence — one that satisfies specific coverage proper-
ties required to estimate the undo map accurately. A promising direction for future work is to design
principled algorithms that can discover such sequences. Extending the theoretical results beyond
the linear MDP setting is another interesting direction. Finally, while our current evaluation focuses
on linear transformations, our regression-based algorithm for learning the undo map is generally
applicable, and it would be interesting to explore its ability to recover non-linear transformations.

References

Alekh Agarwal, Yuda Song, Wen Sun, Kaiwen Wang, Mengdi Wang, and Xuezhou Zhang. Provable
Benefits of Representational Transfer in Reinforcement Learning. COLT, 2023.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G.
Bellemare. Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate
Progress. NeurIPS, 2022.

Learning to Undo: Transfer Reinforcement Learning under Linear State Space Transformations

Lawrence Yunliang Chen, Kush Hari, Karthik Dharmarajan, Chenfeng Xu, Quan Vuong, and Ken
Goldberg. Mirage: Cross-Embodiment Zero-Shot Policy Transfer with Cross-Painting. RSS,
2024.

Yuan Cheng, Songtao Feng, Jing Yang, Hong Zhang, and Yingbin Liang. Provable Benefit of Mul-
titask Representation Learning in Reinforcement Learning. NeurIPS, 2022.

Gabriel Dulac-Arnold, Daniel J. Mankowitz, and Todd Hester. Challenges of Real-World Reinforce-
ment Learning. CoRR, abs/1904.12901, 2019.

Abhi Gupta, Ted Moskovitz, David Alvarez-Melis, and Aldo Pacchiano. Transfer RL via the Undo
Maps Formalism. CoRR, abs/2211.14469, 2022.

Jiafan He, Heyang Zhao, Dongruo Zhou, and Quanquan Gu. Nearly Minimax Optimal Reinforce-
ment Learning for Linear Markov Decision Processes. ICML, 2023.

Daniel J. Hsu, Sham M. Kakade, and Tong Zhang. Random Design Analysis of Ridge Regression.
Found. Comput. Math., 14(3):569-600, 2014.

Haque Ishfaq, Thanh Nguyen-Tang, Songtao Feng, Raman Arora, Mengdi Wang, Ming Yin, and
Doina Precup. Offline Multitask Representation Learning for Reinforcement Learning. NeurIPS,
2024.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably Efficient Reinforcement
Learning with Linear Function Approximation. COLT, 2020.

Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen Koltun, and Marco
Hutter. Learning agile and dynamic motor skills for legged robots. Sci. Robotics, 4(26), 2019.

Rui Lu, Gao Huang, and Simon S Du. On the Power of Multitask Representation Learning in Linear
MDP. CoRR, abs/2106.08053, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nat., 518(7540):529-533, 2015.

Antonin Raffin. RL Baselines3 Zoo. https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

Tyler Sam, Yudong Chen, and Christina Lee Yu. The Limits of Transfer Reinforcement Learning
with Latent Low-rank Structure. NeurIPS, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. CoRR, abs/1707.06347, 2017.

Yanchao Sun, Ruijie Zheng, Xiyao Wang, Andrew Cohen, and Furong Huang. Transfer RL across
Observation Feature Spaces via Model-Based Regularization. /CLR, 2022.

Matthew E. Taylor and Peter Stone. Transfer Learning for Reinforcement Learning Domains: A
Survey. JMLR, 2009.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Gouldo, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A Standard
Interface for Reinforcement Learning Environments. CoRR, abs/2407.17032, 2024.

Hayato Watahiki, Ryo Iwase, Ryosuke Unno, and Yoshimasa Tsuruoka. Cross-Domain Policy
Transfer by Representation Alignment via Multi-Domain Behavioral Cloning. CoLLAs, 2024.

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo

Reinforcement Learning Journal 2025

Gellért Weisz, Philip Amortila, and Csaba Szepesvari. Exponential Lower Bounds for Planning in
MDPs With Linearly-Realizable Optimal Action-Value Functions. ALT, 2021.

Qi Yi, Rui Zhang, Shaohui Peng, Jiaming Guo, Yunkai Gao, Kaizhao Yuan, Ruizhi Chen, Siming
Lan, Xing Hu, Zidong Du, Xishan Zhang, Qi Guo, and Yunji Chen. Online Prototype Alignment
for Few-shot Policy Transfer. ICML, 2023.

Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar. Dexterous
Manipulation with Deep Reinforcement Learning: Efficient, General, and Low-Cost. ICRA, 2019.

Zhuangdi Zhu, Kaixiang Lin, Anil K. Jain, and Jiayu Zhou. Transfer Learning in Deep Reinforce-
ment Learning: A Survey. IEEE TPAMI, 2020.

Learning to Undo: Transfer Reinforcement Learning under Linear State Space Transformations

Supplementary Materials

The following content was not necessarily subject to peer review.

A Table of Contents

In this section, we provide an outline of the contents provided in the paper’s appendices.

* Appendix B contains the proof for Theorem 1.

* Appendix C describes the environments used in the experimental evaluation.

B Proofs

In this section, we provide the proof of Theorem 1.

We first relate the performance difference between the optimal policy in the target MDP and the
policy that acts greedily with respect to ®7U TG* to the estimation error in U, where U is the output
of Algorithm 2:

Lemma 1 (Performance Difference). ||V} — V|l < 2H 1U = Uyl max-

Here, || - ||max denotes the max norm. To bound the estimation error ||U — Uy||max, We use the
following per-row guarantee:

Lemma 2 (Estimation Error Bound). Let M{i] denote the i-th row of a matrix M. Fix i € [dg].

Then, for all n > (1og 3dz), with probability at least 1 — §, the output U of Algorithm 2
satisfies:

Hﬁ[i] - U*[i]HZ < \/g dr + 2log (Z) +24 [drlog (?) +o (ni{) .

Since Y is positive semidefinite (PSD), we can relate the 3-norm to the /., norm via:

H

s,

Il < D22

Applying a union bound over all i € [dg], with per-row failure probability set to d/dg, gives a
high-probability bound on ||U — U, ||max. Substituting this into Lemma 1 concludes the proof.

®)

Proof of Lemma 1. For any s € ST,

Vii(s) = VI (s) = Q7 (s, 7 (5)) — Q1 (s, 7(s)) + Qi (s,
< Q7(s,m(s)) = f(s,77(s)) + f(s,7(s
-

+ Eg opT (s,7(s)) [VT(Vi(s)}

< 20f = Qblloc + Bnsra 2oy [VE () = VE()]

7i(s)) — Q7 (s, 7(s))
) = Q7 (s, 7(s))

Unrolling this recursion for H steps,
IVE = Villoo < 2H||f — QF s

Setting f = ®7U " 0% and Q% = ®7U,” 0% completes the proof.

Proof of Lemma 2. Note that the noise in Algorithm 2 is 1-subgaussian. Therefore, the result
follows from Theorem 1 and Remark 9 in (Hsu et al., 2014), where Condition 1 is satisfied with
po < ﬁ, Condition 2 is satisfied with ¢ = 1, and Condition 3 is satisfied with by = 0.

Reinforcement Learning Journal 2025

C Environments

ROTATEDSWIMMER. This task requires the agent to swim forward through a viscous fluid. We
apply a 45° rotation to the (x, y) plane to modify the frame in which the agent’s motion is observed.
This affects both the heading of the swimmer and its linear velocity vector. The observation is
updated accordingly by adjusting the front tip’s angle and rotating the (x, y) velocity components.

ROTATEDHALFCHEETAH. This task requires the agent to run forward in a planar environment.
The original environment operates in a 2D plane. We perform a 45° rotation on the (z,2) com-
ponents of the agent’s torso position and velocity. The joint states and angular velocities remain
unchanged.

ROTATEDWALKER2D. This task requires the agent to walk forward while maintaining balance.
Similar to HalfCheetah, we rotate the observation of the agent’s torso height and linear velocity
in the (z, z) plane by 45°. This alters how progress and vertical motion are perceived, while the
actuator and sensor states are kept intact.

ROTATEDANT. In this task, the agent is a quadraped and must navigate a 2D surface using four
legs. We rotate the global (z,y) velocity of the torso by 45°. When present, external contact forces
are also rotated in the same plane. The result is a consistent shift in perceived motion direction
across the ant’s high-dimensional observation space.

Sensor Fusion. In the fusion environments, instead of observing a dg-dimensional observation
vector, the agent receives a 10 x dg-dimensional observation. More concretely, for each source
observation element ¢, the target task provides 10 measurements of the form: xl(-J) = wj - Ty + C4,
for j € [10], where the weights w; sum to 1 and the offsets ¢; sum to 0. This simulates a sensor
fusion scenario in which the undo map w, sums the 10 measurements corresponding to each original

dimension to recover the source observation.

