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ABSTRACT

Advancements in deep learning are driven by training models with increasingly
larger numbers of parameters, which in turn heightens the computational de-
mands. To address this issue, Mixture-of-Depths (MoD) models have been pro-
posed to dynamically assign computations only to the most relevant parts of the
inputs, thereby enabling the deployment of large-parameter models with high effi-
ciency during inference and training. These MoD models utilize a routing mecha-
nism to determine which tokens should be processed by a layer, or skipped. How-
ever, conventional MoD models employ additional network layers specifically
for the routing which are difficult to train, and add complexity and deployment
overhead to the model. In this paper, we introduce a novel attention-based rout-
ing mechanism A-MoD that leverages the existing attention map of the preceding
layer for routing decisions within the current layer. Compared to standard routing,
A-MoD allows for more efficient training as it introduces no additional trainable
parameters and can be easily adapted from pre-trained transformer models. Fur-
thermore, it can increase the performance of the MoD model. For instance, we
observe up to 2% higher accuracy on ImageNet compared to standard routing and
isoFLOP ViT baselines. Furthermore, A-MoD improves the MoD training conver-
gence, leading to up to 2× faster transfer learning.

1 INTRODUCTION

Increasing the model size has enabled transformer-based deep learning models to achieve state-of-
the-art performance across various domains, including computer vision (Dosovitskiy et al., 2021)
and natural language processing (Hoffmann et al., 2022; Kaplan et al., 2020) – even unlocking
emergent capabilities (Wei et al., 2022). However, the computational costs of these large models
present significant challenges (Thompson et al., 2020). Therefore, reaching a Pareto-optimal model
to maximize both efficiency and performance is crucial.

Jacobs et al. (1991) originally introduced conditional computation via mixture of experts, laying
the foundations to increase model sizes while maintaining FLOPs, by dynamically activating only
a subset of the model parameters, termed experts, conditioned on the input. This principle allowed
scaling towards outrageously large networks (Shazeer et al., 2016) and is leveraged at the forefront
of current Large Language Models (LLMs) (Jiang et al., 2024).

Compared to standard deep learning models Dosovitskiy et al. (2021); Wang et al. (2024); He et al.
(2016), dynamic models have received less research attention and are often not yet competitive on
the Pareto front of performance and runtime on standard GPU architectures. Here, we focus on
further advancing the field of dynamic compute.

Recently, Raposo et al. (2024) introduced Mixture-of-Depths (MoD) as a variant of mixture of
experts. In MoD models, the computational costs are dynamically reduced by processing only a
subset of tokens in a layer while the remaining tokens skip the layer (see Fig. 2a). Compared
to baselines with equivalent FLOPs, MoDs can perform favorably on language tasks. A crucial
component of MoD is its router, which receives tokens as inputs and, given a user-defined capacity,
determines which tokens should enter or skip a layer. The router usually consists of a linear layer
that is jointly trained along with the model (Fig. 2b).
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Figure 1: Accuracy vs FLOPs Pareto-curve for A-MoD in comparison with MoD and ISOFlop
models on ImageNet-1k.
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Figure 2: MoD model (a) with standard routing (b) vs. our A-MoD attention routing (c).

The routing mechanisms heavily influence the model performance for several reasons. First, routing
introduces noise into the training process, as the routing is a discrete decision and is often performed
at multiple layers and per token. Second, routers depend on additional layers, and hence, need to be
trained from scratch when adapting a vanilla pretrained model to an MoD model. Lastly, the router
adds a small computational overhead to the sparsified model.

Hence, in this paper, we ask and address the question: Can we improve the routing mechanism in
MoD models based on information that is already available within the model, instead of using ad-
ditional trainable parameters within the router? We find the answer to our question in the attention
mechanism of commonly used transformer architectures (Vaswani et al., 2017; Dosovitskiy et al.,
2021).

We assume that the attention maps can be used to estimate the importance of a token, by averaging
its interaction with other tokens. Based on that, we propose to aggregate the information in the
attention maps and use it as an importance measure for token routing in MoD. We call our method
attention routing for MoD: A-MoD (Fig. 2c). We find that A-MoD can outperform standard routing
in MoD networks across a range of model sizes and tasks consistently (as shown in Fig. 2). Not only
is our A-MoD parameter-free, but it can also be applied to adapt off-the-shelf pretrained transformer
models to MoDs with almost no additional training. We further validate our method empirically and
show that routing scores computed by A-MoD are better correlated with token importance estimates
compared to routing scores from standard routers.
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This paper presents a significant advancement in the application of MoD to the visual domain. Our
primary contributions are:

• We find that MoD is not only viable but also advantageous for visual tasks, providing
empirical evidence that it can outperform traditional models in terms of both FLOPs and
performance.

• We introduce A-MoD, a parameter-free routing method for MoDs based on the attention
maps to compute token importance.

• We demonstrate that A-MoD outperforms a standard router across a range of datasets for
MoDs on finetuning and transfer learning. In the case of transfer learning, A-MoD exhibits
faster convergence of MoD models transferred from a dense pretrained model.

• Compared to standard MoD, A-MoD consistently selects important tokens, and routing de-
cisions correlate with leave-one-out token importance that is estimated by removing tokens.

2 RELATED WORK

Attention Maps The attention mechanism (Bahdanau, 2014) enables models to learn long-range
dependencies within sequences with a constant number of operations. Transformers (Vaswani et al.,
2017) leverage the attention mechanism in the language domain and have become a de facto standard
model. Dosovitskiy et al. (2021) further adapted transformers to the vision domain by treating
image patches as tokens, introducing the vision transformer (ViT). For images, attention maps have
been shown to focus on key areas such as objects in the image (Carion et al., 2020a; Jetley et al.,
2018). In this paper, we utilize this property for effective routing of tokens within neural networks.
Furthermore, we use the Data-efficient image Transformers DeiT-T and DeiT-S (Touvron et al.,
2021) instead of vanilla ViT-T and ViT-S models, as small ViTs do not generalize well when trained
on smaller datasets (Dosovitskiy et al., 2021).

Mixture of Experts and Mixture-of-Depths Since their introduction over three decades ago (Ja-
cobs et al., 1991; Jordan & Jacobs, 1993), Mixture of Experts (MoE) have been applied to various
model types. Shazeer et al. (2016) introduced MoEs to scale transformer architectures (Ludziejew-
ski et al., 2024). Subsequently, MoEs have achieved extensive empirical success across vision and
language tasks (Puigcerver et al., 2024; Jain et al., 2024; Fedus et al., 2022a; Riquelme et al., 2021).
One of the main challenges when training MoE networks is training instability (Zoph et al., 2022;
Fedus et al., 2022b). Raposo et al. (2024) recently introduced the Mixture-of-Depths (MoD) ar-
chitecture, where each transformer block processes only a subset of tokens, achieving a favorable
compute-performance trade-off compared to large transformer models. Liang et al. (2022) also in-
duce sparsity by fusing tokens together without entirely skipping tokens. In their current form,
both MoEs and MoDs use dedicated routing networks that decide which components of the overall
network process which tokens. The difference between MoEs and MoDs is that an MoE model
comprises several distinct experts that independently process the tokens. In contrast, an MoD model
only chooses between two experts per layer one of which is the layer itself and the other an identity
function, see Fig. 2.

Routing Methods Routing mechanisms are required for most conditional computation blocks (Cai
et al., 2024). In MoE models for transformers, the purpose of the router is to match tokens to experts
such that performance is maximized. In case of models with a single expert such as Switch Trans-
formers (Fedus et al., 2022b) or MoD, routers decide whether a token will benefit from processing
by the expert or will be skipped. Various methods (Liu et al., 2024) have been proposed such as
learned routers (Shazeer et al., 2016) with token choice or expert choice routing (Zhou et al., 2022),
solving a linear program to match tokens to experts (Lewis et al., 2021), hashing inputs to match
experts (Roller et al., 2021) or using reinforcement learning to make routing decisions (Clark et al.,
2022; Bengio et al., 2015; 2013). Explicitly learning the routers is the current state-of-the-art that
outperforms other methods in most cases (Dikkala et al., 2023). However, this approach mainly
proves effective with a larger number of routing parameters and is prone to training instabilities
(Ramachandran & Le, 2019). Thus, training routers that consistently lead to strong performance
remains an open problem.
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Our work focuses on improving the MoD architecture. We propose a novel routing mechanism,
based on attention maps, thereby eliminating the need for a standard router. The tokens are routed
in a parameter-free manner without any extra computational overhead.

3 METHOD

In this section, we explain the Mixture-of-Depths (MoD) architecture and introduce our attention-
based MoD routing algorithm, A-MoD, that can be employed to improve its routing.

3.1 MIXTURE-OF-DEPTHS

Our work focuses on Vision Transformers (Dosovitskiy et al., 2021; Touvron et al., 2021). Here,
given an input in terms of tokens X, the output predictions are calculated by a model f(X; Θ)
consisting of L Transformer blocks parameterized by a set of learnable weights Θ. Each transformer
block includes a Multi-Head Self-Attention (MHSA) with H heads, followed by a two-layers fully-
connected network with GeLU activations (MLP).

In MoD, Raposo et al. (2024) introduce a variation of transformer-based architectures with the as-
sumption that individual tokens require varying amounts of compute within a model. In particular,
MoD layers only process a subset of selected important tokens, while the remaining tokens skip the
layer. Empirically, this procedure can improve the performance over a vanilla ViT with a comparable
compute budget.

Whether or not tokens skip a layer is determined by token importance scores estimated by a routing
algorithm. Conventionally, standard routing computes these importance scores with additional lay-
ers (see Section 3.2). In contrast, our A-MoD computes the scores directly from the attention maps
of previous layers without the need of additional parameters (see Section 3.3).

3.2 STANDARD ROUTING

Considering a single MoD layer, the standard approach to compute the importance scores of input
tokens requires an additional router network, as shown in Figure 2b. Typically, a router is a linear
layer that projects a token vector to a scalar representing its importance score (as introduced by
Raposo et al. (2024)). Formally, we consider the l-th transformer layer fl(Xl−1; θl) parameterized
by a set of parameters θl with an input Xl−1 =

[
xl−1
1 ;xl−1

2 ; . . . ;xl−1
N

]
∈ RN×d representing a

token sequence of length N . Now, we can estimate token importance scores as:

ri = (Xl−1Wl
r)i, (1)

where Wl
r ∈ Rd×1 is the parameter of the additional linear routing network. These tokens will be

skipped or processed based on their scores as per the equation below:

xl
i =

{
rifl

(
Xl−1

)
i
+ xl−1

i if ri ≥ Pβ(Rl)

xl−1
i else

(2)

Here, Pβ(Rl) denotes the β-th percentile of all token importance scores Rl. β can be defined in
terms of the capacity C as β := 1 − C

N , where C ∈ (0, 1) is the capacity for the MoD layer. To
learn the token importance scores during backpropagation, the output of the transformer layer is
multiplied by the importance scores ri, such that it can receive a non-zero gradient.

3.3 ATTENTION ROUTING

In contrast to standard routing, we propose A-MoD, a method to compute routing scores based on
attention without additional trainable parameters. A-MoD leverages the attention map of the previous
layer to determine the routing scores for the current MoD layer, as shown in Figure 2c. The attention
map Al−1

h ∈ RN×N of the h-th head from the previous layer can be computed as follows Vaswani
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et al. (2017):

Al−1
h = softmax

(
(Ql−1

h )(Kl−1
h )T√

d

)
, (3)

where Ql−1
h ∈ RN×d and Kl−1

h ∈ RN×d are query and key matrices computed from the previous
layer respectively, and d is the embedding dimension of query and key.

Following Equation 3, each element al−1
h,ji of Al−1

h indicates how much information from the i-th
token is considered when computing the j-th output. Aggregating al−1

h,ji across all rows yields a
measure for the relevance of the i-th token with respect to all other tokens. Therefore, in A-MoD,
we propose to compute a token importance score by averaging the corresponding attention values
across all rows and attention heads as:

ri =
1

HN

H∑
h=1

N∑
j=1

al−1
h,ji. (4)

Based on the score computation above, the output from the l-th layer can then be calculated as:

xl
i =

{
fl
(
Xl−1

)
i
+ xl−1

i if ri ≥ Pβ(Rl)

xl−1
i else

(5)

We note that, for A-MoD, we do not multiply the token scores ri by the output, as the attention maps
are already learnable in the previous layer. This preserves the original token output, promoting faster
training when adapting from a vanilla pretrained checkpoint. We also tried a variation with multiply-
ing ri, but this did not lead to performance improvements and, therefore, was removed in the favor
of simplicity. For standard routing in Equation 2, this multiplication term is required to properly
calculate the gradient of the router parameters. In contrast, A-MoD removes the parameters of the
router and thereby enables easier post-hoc adaptation of MoDs and eliminates training instabilities
of routing scores.

4 EXPERIMENTS

4.1 TRAINING SETUP AND OVERVIEW

In our experiments, we systematically evaluate A-MoD and empirically demonstrate its benefits
over standard routing for MoDs. We perform evaluations across a range of model architectures and
multiple image classification tasks. In each experiment, we train a MoD, adapted from a vanilla
pretrained transformer model. We conduct experiments on both finetuning the adapted MoD model
on the same dataset used for training the vanilla pretrained transformer model and transfer learning
on different datasets.

Training setup We evaluate A-MoD across four vision transformer architectures of varying sizes:
DeiT-Tiny, DeiT-Small (Touvron et al., 2021), ViT-Base and ViT-Large (Dosovitskiy et al., 2021).
Each MoD architecture is adapted from a vanilla pretrained checkpoint on ImageNet-1k (Rus-
sakovsky et al., 2015). Starting from this checkpoint, we train the MoD models with 50% and
12.5% capacity as described in Eq. (5), i.e., 50% and 12.5% tokens are processed in each MoD
layer, respectively. Following Raposo et al. (2024), we alternate between MoD layers and dense
layers in our MoD architecture i.e. every second layer is an MoD layer. We also analyze the effect
of placing MoD layers only in the later layers of the model in Section 4.5.

Finetuning We finetune the MoD models on ImageNet-1k. For each case, we compare our A-MoD
to standard routing. We also compare both MoD variants to an isoFLOP vanilla vision transformer.
This isoFLOP model is obtained by appropriately reducing the number of layers of the original
model to match the number of FLOPs of its MoD counterpart. Only reducing the layers still allows
the isoFLOP model to benefit from the weights of the pretrained checkpoint. Each model is trained
with the AdamW optimizer (Loshchilov & Hutter, 2017) for 100 epochs using a batch size of 128
and a learning rate of 1e − 5 with a linear warmup followed by cosine annealing. We identify
this learning rate schedule after performing a sweep as shown in Figs. 12(a), 12(b) and 13 in the
Appendix.
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Table 1: A-MoD mostly outperforms MoD with standard routing and the isoFLOP baseline on
ImageNet, both for 50% and 12.5% capacity.

Model Configuration C= 12.5% C= 50%
FLOPs (G) Accuracy (%) FLOPs (G) Accuracy (%)

DeiT-Tiny
isoFLOP 0.75 67.4 0.95 71.1
MoD 0.71 67.52 0.92 69.78
A-MoD 0.71 69.76 0.92 71.8

DeiT-Small
isoFLOP 2.3 73.53 3.47 78.04
MoD 2.6 76.07 3.42 77.43
A-MoD 2.6 76.98 3.42 78.66

ViT-Base
isoFLOP 8.8 77.69 13.21 79.28
MoD 9.8 78.49 13.1 79.5
A-MoD 9.8 78.42 13.1 80.4

ViT-Large
isoFLOP 33.4 77.64 46.24 80.28
MoD 34.5 81.1 45.92 82.04
A-MoD 34.5 81.37 45.92 82.82

Transfer learning To further investigate the benefits of A-MoD, we perform transfer learning for
image classification on the smaller Stanford Cars (Krause et al., 2013), Oxford Pets (Parkhi et al.,
2012) and Flowers102 (Nilsback & Zisserman, 2008) datasets. Here, each model is trained with
SGD for 200 epochs, a batch size of 64 and learning rate 0.01 with cosine annealing.

Token importance Finally, we conduct a comparison between the routing scores computed by
standard routing and A-MoD, with a reference score that measures the importance of each token.
This analysis enables us to further distinguish the benefits of A-MoD. We use a leave-one-out method
(Hastie et al., 2009) to estimate the token importance. In particular, we measure the change in the
loss of the model if a certain token is removed at an MoD layer. This allows us to assign a reference
importance score to each token in each MoD layer, for every input image. We then correlate this
with the our routing weights for each MoD layer and token, both, for our attention-based routing
and standard routing. Overall, not only does A-MoD choose visually relevant tokens, but the routing
scores also correlate strongly with the leave-one-out token importance.

4.2 A-MoD IMPROVES PERFORMANCE FOR FINETUNING

For finetining, we train each MoD model on ImageNet. Across all our considered vision transformer
models (ranging from 5M to 300M parameters), A-MoD mostly outperforms standard routing. Re-
sults for MoDs with 50% and 12.5% capacity are presented in Table 1. Through the training curves
presented In Fig. 3 for 50% capacity and Fig. 9 for 12.5% capacity in the Appendix we highlight
that A-MoD converges faster.

For the DeiT-Tiny model with 50% capacity (see Fig. 3(a)), A-MoD outperforms MoD by more
than 2% and by 1% on the other larger models. Similarly, for 12.5% capacity, A-MoD outperforms
standard routing on both DeiT-Tiny and Small and is on par for the larger variants. While A-MoD is
marginally worse for the ViT-Base model for 12.5% capacity, it requires fewer epochs to converge
as shown in the convergence plots in Fig. 9(c) (in the Appendix) and already achieves this peak
at the 20-th epoch. Overall, Table 1 along with the training curves in Fig. 3 confirm that A-MoD
can outperform MoDs with standard routing as well as isoFLOP baselines. Specifically, A-MoD
has larger performance improvements for the smaller DeiT-Tiny and DeiT-Small and enables faster
convergence across all models.

Adapting from pretrained checkpoints As described in Eq. (5), A-MoD can compute routing
scores solely based on the attention maps and it does not multiply the output of each MoD block
with the routing score, thus mostly conserving the token output. Both properties allow A-MoD
finetuned from a pretrained checkpoint with attention routing to converge with minimal training.
Fig. 3 illustrates that A-MoD enables much faster convergence, greatly reducing the required training
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(a) DeiT-T (b) DeiT-S (c) ViT-B (d) ViT-L

Figure 3: A-MoD achieves better performance and faster convergence on ImageNet-1k. Fine-
tuning with A-MoD: Results comparing A-MoD with standard routing and isoFLOP baselines with
50% capacity on ImageNet.

(a) DeiT-T (b) DeiT-S (c) ViT-B (d) ViT-L

Figure 4: A-MoD converges faster across different datasets Transfer learning with A-MoD:
A-MoD with 50% capacity MoD trained on the Flower102 dataset. Dotted lines denote the epochs
needed to reach within 2% of peak accuracy.

time compared to standard routing. In some cases, A-MoD can achieve reasonable accuracy without
any training. This is exemplified in Fig. 3(c), where A-MoD achieves 78% accuracy without any
training. All accuracies of MoDs adapted from a pretrained checkpoint without training are reported
in Table 3 in the Appendix and highlight that A-MoD always starts from a higher accuracy than
standard routing. This is possible as the model estimates the least important tokens using the already
learned attention maps, such that final accuracy is minimally affected as further substantiated in
Section 4.4. In contrast, standard routing multiplies layer outputs by the routing scores and needs
to learn routing from scratch, as it is based on additional layers. These factors result in slower
convergence.

Multiplying routing scores to output in A-MoD In Fig. 11 in the Appendix, we compare A-MoD
with a modification that multiplies the output of the MoD block with the attention routing score
to verify if A-MoD benefits from an additional learned gradient like standard routing, i.e., using
Eq. (2) instead of Eq. (5). However, multiplying the routing scores to the output for A-MoD, in-
stead, worsens accuracy of the adapted MoD model without any training and slightly slows down
convergence.

Learning rate stability analysis To investigate the stability of our training with respect to the learn-
ing rate for A-MoD and MoD, we perform a sweep over various learning rates and track the perfor-
mance. We find that for all tested individual learning rates, A-MoD outperforms MoD, see Fig. 13.

4.3 FASTER CONVERGENCE WITH A-MoD ON TRANSFER LEARNING

We now investigate A-MoD for transfer learning tasks from ImageNet-1k to three smaller image
classification datasets: OxfordIIT-Pets, Stanford Cars and Flower102. These tasks pose a challenge
as the pretrained model must adapt to a MoD architecture with reduced capacity while training on
limited data. Fig. 4 reports the accuracy curves for A-MoD in comparison with MoD on Flower102
datasets. Results for Stanford Cars and OxfordIIIT-Pets datasets are provided in Fig. 10 in the
Appendix.

Across all datasets and model architectures, we find that A-MoD converges faster in comparison to
standard routing while outperforming standard routing in most cases. We analyze convergence by

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

M
oD

A
-M

oD

Input Layer 2 Layer 4 Layer 6 Layer 8 Layer 10 Layer 12

Figure 5: A-MoD exhibits more meaningful routing compared to MoD. Routing visualization:
Example of DeiT-Small with 50% capacity on ImageNet. Each example shows tokens chosen by
standard MoD (top) and A-MoD (bottom) for every MoD layer, white patches denote skipped. Each
column represents a MoD layer as depth increases from left to right.

measuring the number of epochs required for either model to reach within 2% of its peak accuracy.
The black dotted lines in Fig. 4 and Fig. 10 help visualize this convergence for both A-MoD and
standard routing. For ViT-Large on Flowers, (see Fig. 4(d)), A-MoD reaches 94.5% accuracy in the
35-th epochs, while standard routing requires 100-th epochs to reach the same value. Similarly, in
case of DeiT-S on Pets, (see Fig. 10(f) in the Appendix), A-MoD reaches 90% accuracy, in 25 epochs
while standard routing takes 70 epochs to reach the same accuracy, enabling a ∼ 2× speed up.
These observations are consistent across architectures and datasets and highlight the effectiveness
of A-MoD to transfer MoD models from pretrained checkpoints.

isoFLOP comparison We also compare A-MoD and standard routing to isoFLOP models on
transfer learning tasks for both 50% and 12.5% capacity in Tables 4 and 5 in the appendix. We
find that MoD models are unable to match the isoFLOP model performance on transfer tasks. We
observe this as a limitation of the MoD framework in general for transfer learning on image tasks,
irrespective of the routing mechanism employed. We propose a potential remedy to also outperform
isoFLOP models in Section 4.5.

4.4 ATTENTION ROUTING IDENTIFIES IMPORTANT TOKENS

To understand why A-MoD improves over standard routing, we investigate the routing scores and
their correlation with leave-one-out (Hastie et al., 2009) token importance. Our goal is to estimate
the relationship between the importance of a token and the routing score assigned to it by a standard
or A-MoD router. Based on our empirical results, we conjecture that A-MoD weights are better
correlated with token importance in comparison with standard routing, thus enabling A-MoD to
always choose the most relevant tokens.

We first verify this claim by visualizing the routing in case of individual examples from ImageNet-
1k as shown in Fig. 5. The figure highlights which patches of the image are chosen by the router
in each MoD layer. In case of A-MoD (bottom), the router selects tokens that are part of the bird
outline and face starting from the third MoD layer. In contrast, standard routing (top) selects more
tokens that are part of the background, up to the last layer.

Visualizing the attention maps of the last layer in Fig. 6 also confirms that A-MoD is able to focus
on the object in the image, which we use as routing scores. The attention map for each head in the
last layer for DeiT-Small identifies the silhouette of the bird for A-MoD, but struggles for standard
routing. However, as shown by Darcet et al. (2024), attention maps do not always learn semanti-
cally meaningful scores. This holds especially for larger models, where the attention scores tend to
concentrate on a single patch (token) (see Fig. 15 in the Appendix).

To quantify our qualitative observations, we compute the correlation of the routing scores with token
importance estimates. For the importance of a token, we compute the change in loss of the model if
that token is omitted in the vanilla transformer i.e. leave-one-out token importance. A large change
in loss implies higher token importance and we would expect that token to have a higher routing
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M
oD
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Input Head 1 Head 2 Head 3 Head 4 Head 5 Head 6

Figure 6: A-MoD generates more meaningful attention maps compared to MoD. Attention vi-
sualization: Example of DeiT-Small with 50% capacity on ImageNet. The attention maps of the last
MoD layer for standard routing (top row) and A-MoD (bottom row) for each example. Each column
denotes an attention head of the last layer.

(a) DeiT-T (b) DeiT-S (c) ViT-B (d) ViT-L

Figure 7: A-MoD shows higher correlation between routing scores and leave-one-out token
importance. Correlation and p-values of the routing scores with layer-wise leave-one-out token
importance on ImageNet.

score. The correlation of the routing scores for both standard routing and A-MoD with the token
importance is shown in Fig. 7 along with the corresponding p-values.

We observe that routing scores computed by A-MoD consistently have a very high correlation with
token importance suggesting that attention routing assigns higher scores to important tokens. In
contrast, standard routing sometimes even has a negative correlation with token importance, imply-
ing that it can assign higher scores to less important tokens. Moreover, all the p-values observed for
A-MoD were lower than 10−8, whereas they were significant (in some layers even larger than 0.5)
in case of standard routing, implying higher uncertainty in case of standard routing.

4.5 IMPACT OF MOD IN DIFFERENT LAYERS

In our experiments so far, MoD layers are used in alternate layers following Raposo et al. (2024).
This model architecture gives us Pareto-optimal results on ImageNet-1k (see Table 1). We conduct
an ablation study to investigate whether introducing MoDs only in the later layers and keeping the
initial layers dense is advantageous, particularly for visual tasks like classification, where learning
low-level features may be critical. In order to verify if MoDs benefit from additional feature learning
at full capacity in the earlier layers, we introduce MoD layers alternately starting from the 4-th layer,
keeping the first four layers dense.

Results in Fig. 8 show that keeping the first four layers dense improves on DeiT-Small and ViT-Base
models trained on the Stanford Cars dataset. The additional FLOPs allows for better learning in
this regime as shown in Fig. 8. With this modification, A-MoD is able to match the corresponding
isoFLOP baseline, even for transfer learning tasks. This highlights a potential method to address the
limitations of A-MoD mentioned in Section 4.3 at the cost of additional FLOPs.

9
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(a) DeiT-S (b) ViT-B

Figure 8: A-MoD improves the performance when only used in deeper layers. Introducing MoDs
only in the last 8 layers matches isoFLOP performance on the Stanford Cars dataset.

5 CONCLUSION

We propose A-MoD, a variation of Mixture-of-Depths (MoD) with attention routing instead of a
standard router. To compute token importance for an MoD layer, A-MoD utilizes the attention
maps from its previous layer, thereby achieving attention routing without additional parameters. In
case of training from a pretrained checkpoint, leveraging trained attention information also leads to
increased training stability and faster convergence compared to vanilla MoD. Furthermore, we em-
pirically demonstrate that A-MoD outperforms standard MoD across different model configurations
and datasets while making better routing decisions.

10
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(a) DeiT-T (b) DeiT-S (c) ViT-B (d) ViT-L

Figure 9: A-MoD achieves better performance and faster convergence on ImageNet-1k. Fine-
tuning with A-MoD: Results comparing A-MoD with standard routing and isoFLOP baselines for
12.5% capacity on ImageNet-1k.

A APPENDIX

A.1 MODEL SPECS

We choose four different transformer-based architectures:

A.2 DATASETS

We evaluate our models on standard benchmark datasets: ImageNet-1K, Stanford Cars, Oxford Pets
and Flowers. We use the standard train and test splits for each dataset.

• ImageNet-1k: A large-scale dataset comprising over 1.2 million images across 1,000 di-
verse categories, widely used for benchmarking image classification models (Russakovsky
et al., 2015).

• Stanford Cars: Consists of 16,185 high-resolution images of 196 car categories, focusing
on fine-grained classification tasks (Krause et al., 2013).

• Pets: Contains 37 categories of Pets with approximately 200 images per class (Parkhi et al.,
2012).

• Flowers: Consists of 8,189 images of 102 flower categories, focusing on fine-grained clas-
sification tasks (Nilsback & Zisserman, 2008).

A.3 ADDITIONAL RESULTS FOR FINETUNING ON IMAGENET-1K

Fig. 9 presents the convergence results for finetuning on ImageNet-1k with A-MoD at 12.5% capac-
ity. Table 3 denotes the accuracy of A-MoD and standard routing without any training, after adapting
the MoD weights from a vanilla pretrained checkpoint.

A.4 COMPARISON OF A-MoD WITH STANDARD ROUTING AND ISOFLOP BASELINES FOR
TRANSFER LEARNING

Table 4 and Table 5 present the classification accuracy of each model configuration across the three
datasets for 12.5% and 50% capacity respectively. Fig. 10 presents the convergence results for
A-MoD on transfer learnign tasks on the Stanford Cars and OxfordIIT-Pets datasets.

Table 2: Specifications of transformer-based models used in experiments

Model Parameters (M) FLOPS (G)
DeiT-Tiny 5.72 1.26
DeiT-Small 22.05 4.61
ViT-Base 86.57 17.58
ViT-Large 304.72 191.21
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Table 3: A-MoD improves adaptation. Accuracy of MoD on ImageNet-1k, adapted from a pre-
trained checkpoint, without any training.

Model Configuration C = 50% C = 12.5%

DeiT-Tiny MoD 4.45 0.42
A-MoD 52.6 0.97

DeiT-Small MoD 0.23 0.16
A-MoD 13.49 0.35

ViT-Base MoD 69.91 62.25
A-MoD 78.88 66.62

ViT-Large MoD 0.43 0.2
A-MoD 49.06 6.03

Table 4: Top-1 accuracy for MoD models with 12.5% capacity, compared with isoFLOP baselines.

Model FLOPS (G) Configuration Cars Flowers Pets

DeiT-Tiny

0.746 isoFLOP 85.09 90.73 85.3
0.709 MoD 75.77 81.39 84.05
0.709 A-MoD 78.32 82.82 84.68

DeiT-Small

2.333 isoFLOP 89.88 90.97 86.42
2.592 MoD 85.36 88.46 86.04
2.591 A-MoD 86.39 89.44 89.58

ViT-Base

8.849 isoFLOP 91.57 92.29 88.98
9.876 MoD 89.8 92.87 92.85
9.875 A-MoD 89.26 91.77 92.61

ViT-Large

33.439 isoFLOP 92.97 97.7 92.3
34.523 MoD 90.87 95.85 89.1
34.52 A-MoD 91.39 96.66 88.4

A.5 EFFECT OF MULTIPLYING ROUTING WEIGHTS

We compare A-MoD with a modified version which multiplies the attention routing scores to the
output of the MoD layer. Results in Fig. 11 show that multiplying the routing scores to the output
can slow down convergence.

A.6 EFFECT OF LEARNING RATES

We identify the optimal learning rates for finetuning by conducting a sweep across a range of learn-
ing rates for finetuning on ImageNet-1k as shown in Fig. 12 and Fig. 13.

A.7 ADDITIONAL VISUALIZATIONS FOR A-MoD

In Fig. 14 and Fig. 15 we show the routed patches of each MoD layer and the attention maps of the
last MoD layer in a ViT-Base trained on ImageNet respectively.

Additionally, we visualize the routed patches and the routing weights for a DeiT-Tiny model trained
on Stanford Cars in Fig. 16.

A.8 A-MoD WITH FLASH ATTENTION

Flash Attention has been proposed by Dao et al. (2022) as a method to implement attention without
the need to compute the N×N attention map explicitly, reducing hardward communication overhead
and thus speeding up computation considerably. Flash Attention directly computes the final output
of attention Al

hV
l
h for each head based on intermediate tiling steps which compute the attention
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Table 5: Top-1 accuracy for MoD models with 50% capacity, compared with isoFLOP baselines.

Model FLOPS (G) Configuration Cars Flowers Pets

DeiT-Tiny

0.951 isoFLOP 88.22 93.42 87.84
0.927 MoD 83.98 87.82 86.94
0.927 A-MoD 86.9 89.75 87.92

DeiT-Small

3.47 isoFLOP 91.97 94.6 87.84
3.42 MoD 89.58 91 91.36
3.42 A-MoD 90.10 91.8 92.12

ViT-Base

13.216 isoFLOP 92.61 96 92.64
13.105 MoD 91.18 93.62 92.72
13.104 A-MoD 91.15 93.08 93.21

ViT-Large

46.241 isoFLOP 93.17 96.13 92.8
45.927 MoD 92 95.69 89.67
45.925 A-MoD 91.95 96.56 90.37

(a) DeiT-T (b) DeiT-S (c) ViT-B (d) ViT-L

(e) DeiT-T (f) DeiT-S (g) ViT-B (h) ViT-L

Figure 10: A-MoD converges faster across different datasets Transfer learning with A-MoD:
A-MoD with 50% capacity MoD trained on the Stanford Cars (top row) and OxfordIIT-Pets (bottom
row) datasets. Dotted lines denote the epochs needed to reach within 2% of peak accuracy.

map implicitly. We propose an alternate method to perform attention routing with A-MoD in Flash
Attention framework as we do not have access to the attention map in this case. This allows efficient
implementation of our method.

Referring to Algorithm 1 in Dao et al. (2022), our goal is to aggregate the attention scores from each
tile B and gather them in a vector of size R ∈ RN×1 which are the routing weights. Thus, we can
perform attention routing with A-MoD without explicitly forming the N × N attention map which
can be expensive in terms of computation.

Following similar notations from Algorithm 1 in Dao et al. (2022), we perform A-MoD as shown in
Algorithm 1. Basically, for each query Qi, Atemp will be used to aggregate nonnormalized attention
scores for individual tokens in line 3-7. The scores will then be normalized and accumulate to the
final routing weights R in line 8 − 9. It must be noted that we swap the order of tiling from row
first (as in Dao et al. (2022)) to column first in order to aggregate row wise scores efficiently. Thus
in each iteration only the Q can be cached while the K and V need to be loaded for each tile. Our
algorithm introduces a small memory overhead of O(N) due to additional temporary variables.
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(a) DeiT-T (b) DeiT-S

Figure 11: A-MoD with routing scores multiplied to MoD output. Multiplying the output of the
MoD block with routing scores for A-MoD (red curve) compared to the proposed A-MoD without
multiplication (blue curve).

(a) DeiT-T (b) DeiT-S

Figure 12: Sweep over learning rates on ImageNet-1k for standard routing.

Figure 13: Sweep over learning rates on ImageNet-1k for standard routing and A-MoD on ViT-Base.
Orange curves denote standard routing and blue curves denote attention routing.

A.9 COMPARISON WITH TOKEN PRUNING METHODS

We compare our method A-MoD with other token-pruning and token-merging including Token Mer-
gin (ToME) (Bolya et al.), A-ViT (Yin et al., 2022) and Dynamic-ViT (Rao et al., 2021) to validate
the performance of A-MoD. We compare with the baseline results provided in Table 11 in Bolya
et al. and Table 3 in Yin et al. (2022). However, we note that ToMe (Bolya et al.) trains their models
with distillation while the other methods do not, which aids ToMe. Results are provided in Table 6
and Fig. 17

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 14: Routing example on ViT Base with 50% capacity trained on ImageNet-1k. Each example
shows tokens chosen by standard routing (top) and attention routing (bottom). Each column repre-
sents a MoD layer as depth increases from left to right.

Figure 15: Attention map of each head in the last layer of a ViT Base MoD with 50% capacity
for standard routing (top) and attention routing (bottom) finetuned on ImageNet-1k. Each column
denotes an attention head of the last layer.

A.10 MODEL THROUGHPUT

We provide a comparison of model throughput in Fig. 18. A-MoD has a higher throughput (img/s)
in comparison to MoD and isoFLOP baselines. We also provide a breakdown of each method using
the PyTorch profiler to highlight the CPU and GPU time used by each method for both the Attention
layer and the MLP layer as shown in Fig. 19.
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Figure 16: Visualizing routing scores and token selection of each MoD layer of a DeiT-Tiny MoD
with 50% capacity for standard routing (top) and attention routing (bottom) finetuned on Stanford
Cars.

Algorithm 1 A-MoD with Flash Attention, modified from Algorithm 1 in Dao et al. (2022)

1: Initialize, R ∈ RN×1 and Atemp ∈ RBr×N to zero.
2: for each i from 1 to Tr do
3: for each j from 1 to Tc do
4: Sij = QiK

T
j

5: Pij = exp (Sij)
6: Accumulate for row sum as, Atemp,j = Pij

7: end for
8: li =

∑
j Atemp,j , li ∈ RBr

9: R← R + Pij/li
10: end for
11: return Routing weights R

Table 6: Comparison with other token-pruning and merging methods (* denotes training with distil-
lation).

Model Method Top-1 Acc (%) FLOPs (G)
DeiT-T A-MoD 71.8 0.9

A-ViT 71.0 0.8
Dynamic ViT 70.9 0.9
ToMe (with distillation) 71.69* 0.93

DeiT-S A-MoD 78.66 3.42
A-ViT 78.6 3.6
Dynamic ViT 78.3 3.4
ToMe (with distillation) 79.68* 3.43
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Figure 17: Accuracy Comparison with token-pruning and merging methods

Figure 18: Accuracy vs Throughput for MoD vs ISOFlop Models with Batch Size 100 on Nvidia
A100 GPU.

A.11 EFFICIENCY OF A-MoD

To highlight the efficiency of A-MoD, we compare it with the baseline DeiT-S and report the top-
1 accuracy on ImageNet. A-MoD is able to reduce the number of FLOPs by up to 18% without
dropping performance, with standard training and no additional tricks. Results are provided in
Table 7.

Table 7: Comparison of A-MoD (70% capacity) with the vanilla DeiT-S baseline which has more
FLOPs.

Model FLOPs (G) Top-1 Accuracy (%)
DeiT-S Baseline 4.6 79.6

A-MoD (C = 70%) 3.8 79.63
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Figure 19: Profiling A-MoD, MoD and isoFLOP ViT-Base methods on Nvidia A100 GPU. The x-
axis shows different models from left to right: MoD, A-MoD and isoFLOP for both C=12.5% and
C=50%.

A.12 TRAINING FROM SCRATCH

We also provide results for training from scratch on ImageNet and observe that A-MoD outperforms
standard routing as shown in Table 8.

A.13 RESULTS ON OBJECT DETECTION

We also provide results with the DETR architecture (Carion et al., 2020b) for A-MoD. Table 9 shows
that MoD and A-MoD achieve comparable results in this case.
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Table 8: Training from scratch comparison for A-MoD and MoD on ImageNet-1k.

Model Training Epochs Method Accuracy (%)

DeiT-S 300 A-MoD 76.63
MoD 75.90

ViT-Base 160 A-MoD 73.66
MoD 72.47

Table 9: Comparison of mAP and FLOPs across DETR MOD, DETR A-MoD, and DETR-Baseline.

Model MoD, C=50% A-MoD, C=50% Baseline
mAP 39.6% 38.6% 39.9%
FLOPs(G) (Total) 83.2 83.2 86.56
FLOPs(G) (Transformer Encoder/Decoder) 7.747 7.745 10.745
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